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Abstract: The �nite-sample as well as the asymptotic distribution of Leung
and Barron�s (2006) model averaging estimator are derived in the context of
a linear regression model. An impossibility result regarding the estimation of
the �nite-sample distribution of the model averaging estimator is obtained.

1. Introduction

Model averaging or model mixing estimators have received increased interest in
recent years; see, e.g., Yang (2000, 2003, 2004), Magnus (2002), Leung and Barron
(2006), and the references therein. [For a discussion of model averaging from a
Bayesian perspective see Hoeting et al. (1999).] The main idea behind this class
of estimators is that averaging estimators obtained from di¤erent models should
have the potential to achieve better overall risk performance when compared to a
strategy that only uses the estimator obtained from one model. As a consequence,
the above mentioned literature concentrates on studying the risk properties of model
averaging estimators and on associated oracle inequalities. In this paper we derive
the �nite-sample as well as the asymptotic distribution (under �xed as well as under
moving parameters) of the model averaging estimator studied in Leung and Barron
(2006); for the sake of simplicity we concentrate on the special case when only two
candidate models are considered. Not too surprisingly, it turns out that the �nite-
sample distribution (after centering and scaling) depends on unknown parameters,
and thus cannot be directly used for inferential purposes. As a consequence, one
may be interested in estimators of this distribution, e.g., for purposes of conducting
inference. We establish an impossibility result by showing that any estimator of the
�nite-sample distribution of the model averaging estimator is necessarily �bad� in
a sense made precise in Section 4. While we concentrate on Leung and Barron�s
(2006) estimator (in the context of only two candidate models) as a prototypical
example of a model averaging estimator in this paper, similar results will typically
hold for other model averaging estimators (and more than two candidate models)
as well.
We note that results on distributional properties of post-model-selection estima-

tors that parallel the development in the present paper have been obtained in Sen
(1979), Sen and Saleh (1987), Pötscher (1991), Pötscher and Novak (1998), Leeb
and Pötscher (2003, 2005b,c), Leeb (2005, 2006). See also Leeb and Pötscher (2006)
for impossibility results pertaining to shrinkage-type estimators like the Lasso or

AMS 2000 subject classi�cations: Primary 62F10, 62F12; secondary 62E15, 62J05, 62J07
Keywords and phrases: Model mixing, model aggregation, combination of estimators, model

selection, �nite sample distribution, asymptotic distribution, estimation of distribution

1



2 Benedikt M. Pötscher

Stein�s estimator. An easily accessible exposition of the issues discussed in the just
mentioned literature can be found in Leeb and Pötscher (2005a).
The only other paper we are aware of that considers distributional properties

of model averaging estimators is Hjort and Claeskens (2003). Hjort and Claeskens
(2003) provide a result (Theorem 4.1) that says that � under some regularity con-
ditions � the asymptotic distribution of a model averaging estimation scheme is
the distribution of the same estimation scheme applied to the limiting experiment
(which is a multivariate normal estimation problem). This result is an immediate
consequence of the continuous mapping theorem, and furthermore becomes vacuous
if the estimation problem one starts with is already a Gaussian problem (as is the
case in the present paper).

2. The Model Averaging Estimator and Its Finite-Sample Distribution

Consider the linear regression model

Y = X� + u

where Y is n � 1 and where the n � k non-stochastic design matrix X has full
row rank k, implying n � k. Furthermore, u is normally distributed N(0; �2In),
0 < �2 <1. Although not explicitly shown in the notation, the elements of Y , X,
and u may depend on sample size n. [In fact, the random variables Y and u may
be de�ned on a sample space that varies with n.] Let Pn;�;� denote the probability
measure on Rn induced by Y , and let En;�;� denote the corresponding expectation
operator. As in Leung and Barron (2006), we also assume that �2 is known (and
thus is �xed). [Results for the case of unknown �2 that parallel the results in the
present paper can be obtained if �2 is replaced by the residual variance estimator
derived from the unrestricted model. The key to such results is the observation
that this variance estimator is independent of the least squares estimator for �.
The same idea has been used in Leeb and Pötscher (2003) to derive distributional
properties of post-model-selection estimators in the unknown variance case from
the known variance case. For brevity we do not give any details on the unknown
variance case in this paper.] Suppose further that k > 1, and that X and � are
commensurably partitioned as

X = [X1 : X2]

and � = [�01; �
0
2]
0 where Xi has dimension ki � 1. Let the restricted model be

de�ned as MR = f� 2 Rk : �2 = 0g and let MU = R
k denote the unrestricted

model. Let �̂(R) denote the restricted least squares estimator, i.e., the k� 1 vector
given by

�̂(R) =

�
(X 0

1X1)
�1X 0

1Y
0k2�1

�
;

and let �̂(U ) = (X 0X)�1X 0Y denote the unrestricted least squares estimator. Le-
ung and Barron (2006) consider model averaging estimators in a linear regression
framework allowing for more than two candidate models. Specializing their estima-
tor to the present situation gives

~� = �̂�̂(R) + (1� �̂)�̂(U ) (1)

where the weights are given by

�̂ = [exp(��r̂(R)=�2) + exp(��r̂(U )=�2)]�1 exp(��r̂(R)=�2):
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Here � > 0 is a tuning parameter (note that Leung and Barron�s tuning parameter
corresponds to 2�) and

r̂(R) = Y 0Y � �̂(R)0X 0X�̂(R) + �2(2k1 � n)

and
r̂(U ) = Y 0Y � �̂(U )0X 0X�̂(U ) + �2(2k � n):

For later use we note that

�̂ = [1 + exp(�2�k2) exp(��(�̂(R)0X 0X�̂(R)� �̂(U )0X 0X�̂(U ))=�2)]�1

= [1 + exp(�2�k2) exp(�



X�̂(R)�X�̂(U )





2

=�2)]�1 (2)

where kxk denotes the Euclidean norm of a vector x, i.e., kxk = (x0x)1=2. Leung

and Barron (2006) establish an oracle inequality for the risk En;�;�(



X(~� � �)





2

)

and show that the model averaging estimator performs favourably in terms of this
risk. As noted in the introduction, in the present paper we consider distributional
properties of this estimator. Before we now turn to the �nite-sample distribution
of the model averaging estimator we introduce some notation: For a symmetric
positive de�nite matrix A the unique symmetric positive de�nite root is denoted
by A1=2. The largest (smallest) eigenvalue of a matrix A is denoted by �max(A)
(�min(A)). Furthermore, PR and PU denote the projections on the column space of
X1 and of X, respectively.

Proposition 1 The �nite-sample distribution of
p
n(~� � �) is given by the distri-

bution of

Bn
p
n�2 + Cn

p
nZ1 +

�
1 + exp(2�k2) exp

�
��




Z2 + (X 0
2(I � PR)X2)

1=2�2





2

=�2
���1

�

fDn

p
nZ2 �Bn

p
n�2g (3)

which can also be written as

Cn
p
nZ1 +Dn

p
nZ2 �

�
1 + exp(�2�k2) exp

�
�



Z2 + (X 0

2(I � PR)X2)
1=2�2





2

=�2
���1

�

fDn

p
nZ2 �Bn

p
n�2g: (4)

Here

Bn =

�
(X 0

1X1)
�1X 0

1X2

�Ik2

�
; Cn =

�
(X 0

1X1)
�1=2

0k2�k1

�
;

Dn =

�
�(X 0

1X1)
�1X 0

1X2(X
0
2(I � PR)X2)

�1=2

(X 0
2(I � PR)X2)

�1=2

�
;

and Z1 and Z2 are independent, Z1 � N(0; �2Ik1), and Z2 � N(0; �2Ik2).

Proof. Observe that

~� = �̂(R) + (1� �̂)(�̂(U )� �̂(R)) = �̂(R) + (1� �̂)(X 0X)�1X 0(PU � PR)Y
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with PR = X1(X
0
1X1)

�1X 0
1 and PU = X(X 0X)�1X 0. Diagonalize the projection

matrix PU � PR as
PU � PR = U�U 0

where the orthogonal n� n matrix U is given by

U = [U1;U2;U3] =
h
X1(X

0
1X1)

�1=2 : (I � PR)X2(X
0
2(I � PR)X2)

�1=2 : U3
i

with U3 representing an n � (n � k) matrix whose columns form an orthonormal
basis of the orthogonal complement of the space spanned by the columns of X.
The n� n matrix � is diagonal with the �rst k1 as well as the last n� k diagonal
elements equal to zero, and the remaining k2 diagonal elements being equal to 1.
Furthermore, set V = U 0Y which is distributed N(U 0X�; �2In). Then




X�̂(U )�X�̂(R)




2

= k(PU � PR)Y k2 = k�V k2 = kV2k2

where V2 is taken from the partition of V 0 = (V 01 ; V
0
2 ; V

0
3)
0 into subvectors of di-

mensions k1, k2, and n � k, respectively. Note that V2 is distributed N((X
0
2(I �

PR)X2)
1=2�2; �

2Ik2). Hence, in view of (2) we have that (1 � �̂)(�̂(U ) � �̂(R)) is
equal to

h
1 + exp(2�k2) exp

�
�� kV2k2 =�2

�i�1
(X 0X)�1X 0U�V

=
h
1 + exp(2�k2) exp

�
�� kV2k2 =�2

�i�1
(X 0X)�1

�
0k1�1
X 0
2U2V2

�

=
h
1 + exp(2�k2) exp

�
�� kV2k2 =�2

�i�1
DnV2:

Furthermore,

�̂(R) = (X 0X)�1X 0PRY

= (X 0X)�1X 0PRUV
= (X 0X)�1X 0X1(X

0
1X1)

�1=2V1

=

�
(X 0

1X1)
�1=2V1

0k2�1

�
= CnV1

with V1 distributed N((X
0
1X1)

�1=2X 0
1X�; �

2Ik1). Hence, the �nite sample distrib-
ution of ~� is the distribution of

CnV1 +
h
1 + exp(2�k2) exp

�
�� kV2k2 =�2

�i�1
DnV2 (5)

where V1 and V2 are independent normally distributed with parameters given above.
De�ning Zi as the centered versions of Vi, subtracting �, and scaling by

p
n then

delivers the result.

Remark 2 (i) The �rst two terms in (3) represent the distribution of
p
n(�̂(R)��),

whereas the third term represents the distribution of (1� �̂)
p
n(�̂(U )� �̂(R)). In

(4), the �rst two terms represent the distribution of
p
n(�̂(U ) � �), whereas the

third term represents the distribution of ��̂pn(�̂(U )� �̂(R)).
(ii) If �2 = 0 then (3) can be rewritten as

Cn
p
nZ1 + kZ2k

h
1 + exp(2�k2) exp

�
�� kZ2k2 =�2

�i�1
Dn

p
n(Z2= kZ2k)
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showing that this term has the same distribution as

Cn
p
nZ1 +

p
�2[1 + exp(2�k2) exp

�
���2=�2

�
]�1Dn

p
nU

where �2 is distributed as a �2 with k2 degrees of freedom, U = Z2= kZ2k is uni-
formly distributed on the unit sphere in Rk2 , and Z1, �

2, and U are mutually
independent.

Theorem 3 The �nite-sample distribution of
p
n(~���) possesses a density fn;�;�

given by

fn;�;�(t) = (2��
2)�k=2[det(X 0X=n)]1=2 �

exp

�
�(2�2)�1




n�1=2(X 0
1X1)

1=2t1 + n
�1=2(X 0

1X1)
�1=2X 0

1X2t2





2
�
�

�
1 + exp

�
����2g

�


n�1=2D�1
n2 (t2 + n

1=2�2)




�2
+ 2�k2

��k2
�

�
1 + 2���2g

�


n�1=2D�1
n2 (t2 + n

1=2�2)




�2
�

�
1 + exp

�
���2g

�


n�1=2D�1
n2 (t2 + n

1=2�2)




�2
� 2�k2

���1)�1
�

exp

�
�(2�2)�1





g
�


n�1=2D�1

n2 (t2 + n
1=2�2)





�


n�1=2D�1

n2 (t2 + n
1=2�2)





�1

�

n�1=2D�1
n2 (t2 + n

1=2�2)�D�1
n2 �2)





2
�
; (6)

where t is partitioned as (t01; t
0
2)
0 with t1 being a k1� 1 vector. Furthermore, Dn2 =

(X 0
2(I �PR)X2)

�1=2, and g is as de�ned in the Appendix (with a = exp(2�k2) and
b = ��1�2).

Proof. By (5) we have that the �nite-sample distribution of
p
n(~� � �) is the

distribution of
�
p
n� +

p
n[Cn : Dn][V

0
1 : V

0
3 ]
0

where

V3 =
h
1 + exp(2�k2) exp

�
�� kV2k2 =�2

�i�1
V2:

By Lemmata 15 and 16 in the Appendix it follows that V3 possesses the density

 (v3) = (2��2)�k2=2
h
1 + exp

�
����2g (kv3k)2 + 2�k2

�ik2
�

�
1 + 2���2g (kv3k)2

h
1 + exp

�
���2g (kv3k)2 � 2�k2

�i�1��1
�

exp

�
�(2�2)�1




g (kv3k) v3= kv3k � (X 0
2(I � PR)X2)

1=2�2





2
�
:

Since V1 is independent of V2, and hence of V3, the joint density of [V
0
1 : V

0
3 ]
0 exists

and is given by

(2��2)�k1=2 expf�(2�2)�1



v1 � (X 0

1X1)
�1=2X 0

1X�




2

g (v3):



6 Benedikt M. Pötscher

Since the matrix [Cn : Dn] is non-singular we obtain for the density of
p
n(~� � �)

(2��2)�k1=2n�k=2[det(X 0
1X1) det(X

0
2(I � PR)X2)]

1=2 �
exp

�
�(2�2)�1




n�1=2(X 0
1X1)

1=2(t1 + n
1=2�1)

+n�1=2(X 0
1X1)

�1=2X 0
1X2(t2 + n

1=2�2)

�(X 0
1X1)

�1=2X 0
1X�





2
�
�

 
�
n�1=2(X 0

2(I � PR)X2)
1=2(t2 + n

1=2�2)
�
:

Note that det(X 0
1X1) det(X

0
2(I � PR)X2) = det(X 0X). Using this, and inserting

the de�nition of  , delivers the �nal result (6).

Remark 4 From Proposition 1 one can immediately obtain the �nite-sample dis-
tribution of

p
nAn(~���) by premultiplying (3) or (4) by An. Here An is an arbitrary

(nonstochastic) pn�k matrix. If An has full row-rank equal to k (implying pn = k),
this distribution has a density, which is given by det(An)

�1fn;�;�(A�1n s), s 2 Rk.

3. Asymptotic Properties

For the asymptotic results we shall � besides the basic assumptions made in the
preceding section � also assume that

lim
n!1

X 0X=n = Q (7)

exists and is positive de�nite, i.e.,Q > 0. We �rst establish �uniform
p
n-consistency�

of the model averaging estimator, implying, in particular, uniform consistency of
this estimator.

Theorem 5 Suppose (7) holds.

1. Then ~� is uniformly
p
n-consistent for �, in the sense that

lim
M!1

sup
n�k

sup
�2Rk

Pn;�;�

�p
n



~� � �




 �M
�
= 0. (8)

Consequently, for every " > 0

lim
n!1

sup
�2Rk

Pn;�;�

�
cn




~� � �



 � "

�
= 0 (9)

holds for any sequence of real numbers cn � 0 satisfying cn = o(n1=2); which
reduces to uniform consistency for cn = 1.

2. The results in Part 1 also hold for An~� as an estimator of An�, where An are
arbitrary (nonstochastic) matrices of dimension pn � k such that the largest
eigenvalues �max(A

0
nAn) are bounded.

Proof. We prove (8) �rst. Rewrite the model averaging estimator as ~� = �̂(U ) +

�̂(�̂(R)� �̂(U )). Since



~� � �




 �



�̂(U )� �




+
����̂
���



�̂(R)� �̂(U )




 ;
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since
Pn;�;�

�p
n



�̂(U )� �




 �M
�
�M�2�2 trace[(X 0X=n)�1];

and since trace[(X 0X=n)�1]! trace[Q�1] <1, it su¢ces to establish

lim
M!1

sup
n�k

sup
�2Rk

Pn;�;�

�p
n
����̂
���



�̂(R)� �̂(U )




 �M
�
= 0. (10)

Now, using (2) and the elementary inequality z2=[1 + c exp(z2)]2 � c�2 we have

�̂
2



�̂(R)� �̂(U )





2

� �̂
2
��1min(X

0X)



X�̂(R)�X�̂(U )





2

= ��1min(X
0X)

�
1 + exp(�2�k2) exp

�
�



X�̂(R)�X�̂(U )





2

=�2
���2

�



X�̂(R)�X�̂(U )





2

� n�1��1min(X
0X=n)��1�2 exp(4�k2) � Kn�1�2 (11)

for a suitable �nite constant K, since �min(X
0X=n) ! �min(Q) > 0. This proves

(10) and thus completes the proof of (8). The remaining claims in Part 1 follow
now immediately. Part 2 is an immediate consequence of Part 1, of the inequality




An~� �An�




2

� �max(A
0
nAn)




~� � �




2

;

and of the assumption on �max(A
0
nAn).

Remark 6 (i) The proof has in fact shown that the di¤erence between ~� and �̂(U )
is bounded in norm by a deterministic sequence of the form const � �n�1=2.
(ii) Although of little statistical signi�cance since �2 is here assumed to be known,

the proof also shows that the above proposition remains true if a supremum over
0 < �2 � S, (0 < S <1) is inserted in (8) and (9).
In the next two theorems we give the asymptotic distribution under general

"moving parameter" asymptotics. Note that the case of �xed parameter asymptotics
(�(n) � �) as well as the case of the usual local alternative asymptotics (�(n) =
� + �=

p
n) is covered by the subsequent theorems. In both these cases, Part 1 of

the subsequent theorem applies if �2 6= 0, while Part 2 with 
 = 0 and 
 = �2,
respectively, applies if �2 = 0.

Theorem 7 Suppose (7) holds.

1. Let �(n) be a sequence of parameters such that




p
n�

(n)
2




 ! 1 as n ! 1.
Then the distribution of

p
n(~� � �(n)) under Pn;�(n);� converges weakly to a

N(0; �2Q�1)-distribution.

2. Let �(n) be a sequence of parameters such that
p
n�

(n)
2 ! 
 2 Rk2 as n!1.

Then the distribution of
p
n(~���(n)) under Pn;�(n);� converges weakly to the

distribution of

B1
 + C1Z1 +
�
1 + exp(2�k2) exp

�
��




Z2 + (Q22 �Q21Q�111 Q12)1=2





2

=�2
���1

�

fD1Z2 �B1
g (12)
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where

B1 =

�
Q�111 Q12
�Ik2

�
; C1 =

�
Q
�1=2
11

0k2�k1

�
;

D1 =

�
�Q�111 Q12(Q22 �Q21Q�111 Q12)�1=2

(Q22 �Q21Q�111 Q12)�1=2
�
;

and where Z1 � N(0; �2Ik1) is independent of Z2 � N(0; �2Ik2). The density
of the distribution of (12) is given by

f1;
(t) = (2��
2)�k=2[det(Q)]1=2 �

exp

�
�(2�2)�1




Q1=211 t1 +Q
�1=2
11 Q12t2





2
�
�

h
1 + exp

�
����2g

�

D�1
12(t2 + 
)



�2 + 2�k2
�ik2

�
n
1 + 2���2g

�

D�1
12(t2 + 
)



�2 �
h
1 + exp

�
���2g

�

D�1
12(t2 + 
)



�2 � 2�k2
�i�1��1

�

exp
n
�(2�2)�1




g
�

D�1

12(t2 + 
)


� 

D�1

12(t2 + 
)


�1�

D�1
12(t2 + 
)�D�1

12



2
o
; (13)

where t is partitioned as (t01; t
0
2)
0 with t1 being a k1 � 1 vector. Furthermore,

D12 = (Q22 � Q21Q
�1
11 Q12)

�1=2, and g is as de�ned in the Appendix (with
a = exp(2�k2) and b = ��1�2).

Proof. To prove Part 1 represent
p
n(~���(n)) as pn(�̂(U )��(n))+ �̂pn(�̂(R)�

�̂(U )). The �rst term is N(0; �2(X 0X=n)�1)-distributed under Pn;�(n);�, which ob-

viously converges to a N(0; �2Q�1)-distribution. It hence su¢ces to show that

�̂
p
n(�̂(R) � �̂(U )) converges to zero in Pn;�(n);�-probability. Since �

�1
min(X

0X=n)
is bounded by assumption (7) and since

�̂
2




p
n(�̂(R)� �̂(U ))





2

� n��1min(X
0X)




X�̂(R)�X�̂(U )




2

�
�
1 + exp

�
���2




X�̂(R)�X�̂(U )




2

� 2�k2
���2

as shown in (11), it furthermore su¢ces to show that




X�̂(R)�X�̂(U )




2

!1 in Pn;�(n);�-probability. (14)

Note that




X�̂(R)�X�̂(U )




2

= k(PU � PR)Y k2

=



(PU � PR)u+ (PU � PR)X2�

(n)
2





2

�
���



(PU � PR)X2�

(n)
2




� k(PU � PR)uk
���
2

:
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The second term satis�es En;�(n);� k(PU � PR)uk
2
= �2k2 and hence is stochasti-

cally bounded in Pn;�(n);�-probability. The square of the �rst term, i.e.,




(PU � PR)X2�
(n)
2





2

equals

p
n�

(n)0
2 [(X 0

2X2=n)� (X 0
2X1=n)(X

0
1X1=n)

�1(X 0
1X2=n)]

p
n�

(n)
2 :

Since the matrix in brackets converges to Q22 �Q21Q11Q12, which is positive def-
inite, the above display diverges to in�nity, establishing (14). This completes the
proof of Part 1.
We next turn to the proof of Part 2. The proof of (12) is immediate from (3)

upon observing that Bn ! B1,
p
nCn ! C1, and

p
nDn ! D1. To prove (13)

observe that (12) can be written as

B1
 + C1Z1 +
�
1 + exp(2�k2) exp

�
��




Z2 + (Q22 �Q21Q�111 Q12)1=2





2

=�2
���1

�

fD1(Z2 + (Q22 �Q21Q�111 Q12)1=2
)g =

B1
 + C1Z1 +D1
h
1 + exp(2�k2) exp

�
�� kW2k2 =�2

�i�1
W2

where W2 � N((Q22 �Q21Q
�1
11 Q12)

1=2
; �2Ik2) is independent of Z1. Again using
Lemmata 15 and 16 in the Appendix gives the density of

W3 =
h
1 + exp(2�k2) exp

�
�� kW2k2 =�2

�i�1
W2

as

�(w3) = (2��2)�k2=2
�
1 + exp

�
����2g(kw3k)2 + 2�k2

��k2 �
n
1 + 2���2g (kw3k)2

�
1 + exp

�
���2g(kw3k)2 � 2�k2

���1o�1 �

exp

�
�(2�2)�1




g (kw3k)w3= kw3k � (Q22 �Q21Q�111 Q12)1=2





2
�
:

Since Z1 is independent of Z2, and hence of W3, the joint density of [Z
0
1 : W

0
3]
0

exists and is given by

(2��2)�k1=2 exp
�
�(2�2)�1 kz1k2

�
�(w3):

Since the matrix [C1 : D1] is non-singular we obtain �nally

(2��2)�k1=2
�
det(Q11) det(Q22 �Q21Q�111 Q12)

�1=2 �

exp

�
�(2�2)�1




Q1=211 (t1 �Q�111 Q12
) +Q
�1=2
11 Q12(t2 + 
)





2
�
�

�
�
(Q22 �Q21Q�111 Q12)1=2(t2 + 
)

�
:

Inserting the expression for � derived above gives (13).
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Since in both cases considered in the above theorem the limiting distribution is
continuous, the �nite-sample cumulative distribution function (cdf)

Fn;�(n);�(t) = Pn;�(n);�

�p
n(~� � �(n)) � t

�

converges to the cdf of the corresponding limiting distribution even in the sup-norm
as a consequence of the multivariate version of Polya�s Theorem (cf. Billingsley and
Topsoe (1967), Ex.6, Chandra (1989)). We next show that the convergence occurs
in an even stronger sense. Let f1 denote the density of the asymptotic distribution
of
p
n(~� � �(n)) given in the previous theorem. That is, f1 is equal to f1;
 given

in (13) if
p
n�

(n)
2 ! 
 2 R

k2 , and is equal to the density of an N(0; �2Q�1)-

distribution if




p
n�

(n)
2




 ! 1. For obvious reasons and for convenience we shall
denote the N(0; �2Q�1)-density by f1;1.

Theorem 8 Suppose the assumptions of Theorem 7 hold. Then the �nite-sample
density fn;�(n);� of

p
n(~� � �(n)) converges to f1, the density of the correspond-

ing asymptotic distribution, in the L1-sense. Consequently, the �nite-sample cdf
Fn;�(n);� converges to the corresponding asymptotic cdf in total variation distance.

Proof. In the case where
p
n�

(n)
2 ! 
 2 Rk2 , inspection of (6), and noting that

g as well as T�1 given in Lemma 15 are continuous, shows that (6) converges to

(13) pointwise. In the case where




p
n�

(n)
2




!1, Lemma 17 in the Appendix and
inspection of (6) show that (6) converges pointwise to the density of a N(0; �2Q�1)-
distribution. Observing that fn;�(n);� as well as f1 are probability densities, the
proof is then completed by an application of Sche¤é�s lemma.

Remark 9 We note for later use that inspection of (13) combined with Lemma 17
in the Appendix shows that for k
k ! 1 we have f1;
 ! f1;1 (the N(0; �2Q�1)-
density) pointwise on Rk, and hence also in the L1-sense. As a consequence, the
corresponding cdfs converge in the total variation sense to the cdf of a N(0; �2Q�1)-
distribution.

Remark 10 The results in this section imply that the convergence of the �nite-
sample cdf to the asymptotic cdf does not occur uniformly w.r.t. the parameter �.
[Cf. also the �rst step in the proof of Theorem 13 below.]

Remark 11 Theorems 7 and 8 in fact provide a characterization of all accumu-
lation points of the �nite sample distribution Fn;�(n);� (w.r.t. the total variation

topology) for arbitrary sequences �(n). This follows from a simple subsequence ar-

gument applied to
p
n�

(n)
2 and observing that (R[f�1;1g)k2 is compact; cf. also

Remark 4.4 in Leeb and Pötscher (2003).

Remark 12 Part 1 of Theorem 7 as well as the representation (12) immediately
generalize to

p
nA(~� � �) with A a non-stochastic p� k matrix. If A has full row-

rank equal to k, the resulting asymptotic distribution has a density, which is given
by det(A)�1f1(A�1s), s 2 Rk.

4. Estimation of the Finite-Sample Distribution: An Impossibility
Result

As can be seen from Theorem 3, the �nite-sample distribution depends on the
unknown parameter �, even after centering at �. Hence, it is obviously of interest
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to estimate this distribution, e.g., for purposes of conducting inference. It is easy
to construct a consistent estimator of the cumulative distribution function Fn;�;�
of the scaled and centered model averaging estimator ~�, i.e., of

Fn;�;�(t) = Pn;�;�

�p
n(~� � �) � t

�
:

To this end, let M̂ be an estimator that consistently decides between the restricted
model MR and the unrestricted model MU , i.e., limn!1 Pn;�;�(M̂ = MR) = 1 if

�2 = 0 and limn!1 Pn;�;�(M̂ = MU ) = 1 if �2 6= 0. [Such a procedure is easily
constructed, e.g., from BIC or from a t-test for the hypothesis �2 = 0 with critical
value that diverges to in�nity at a rate slower than n1=2.] De�ne �fn equal to f

y
1;1,

the density of the N(0; �2(X 0X=n)�1)-distribution, on the event M̂ = MU , and

de�ne �fn equal to f
y
1;0 otherwise, where f

y
1;0 follows the same formula as f1;0,

with the only exception that Q is replaced by X 0X=n. Then � as is proved in the
Appendix � Z

Rk

�� �fn(z)� fn;�;�(z)
�� dz ! 0 (15)

in Pn;�;�-probability as n!1 for every � 2 Rk. De�ne �Fn as the cdf corresponding
to �fn. Then for every � > 0

Pn;�;�

�

 �Fn � Fn;�;�



TV

> �
�
! 0

as n!1, where k�kTV denotes the total variation norm. This shows that �Fn is a
consistent estimator of Fn;�;� in the total variation distance. A fortiori then also

Pn;�;�

�
sup
t

�� �Fn(t)� Fn;�;�(t)
�� > �

�
! 0

holds.
The estimator �Fn just constructed has been obtained from the asymptotic cdf by

replacing unknown quantities with suitable estimators. As noted in Remark 10, the
convergence of the �nite-sample cdf to their asymptotic counterpart does not occur
uniformly w.r.t. the parameter �. Hence, it is to be expected that �Fn will inherit
this de�ciency, i.e., �Fn will not be uniformly consistent. Of course, this makes it
problematic to base inference on �Fn, as then there is no guarantee � at any sample
size � that �Fn will be close to the true cdf. This naturally raises the question if
estimators other than �Fn exist that are uniformly consistent. The answer turns out
to be negative as we show in the next theorem. In fact, uniform consistency fails
dramatically, cf. (17) below. This result further shows that uniform consistency
already fails over certain shrinking balls in the parameter space (and thus a fortiori
fails in general over compact subsets of the parameter space), and fails even if
one considers the easier estimation problem of estimating Fn;�;� only at a given
value of the argument t rather than estimating the entire function Fn;�;� (and
measuring loss in a norm like the total variation norm or the sup-norm). Although
of little statistical signi�cance, we note that a similar result can be obtained for the
problem of estimating the asymptotic cdf. Related impossibility results for post-
model-selection estimators as well as for certain shrinkage-type estimators are given
in Leeb and Pötscher (2005b,c, 2006).
In the result to follow we shall consider estimators of Fn;�;�(t) at a �xed value

of the argument t. An estimator of Fn;�;�(t) is now nothing else than a real-valued
random variable �n = �n(Y;X). For mnemonic reasons we shall, however, use the
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symbol F̂n(t) instead of �n to denote an arbitrary estimator of Fn;�;�(t). This no-
tation should not be taken as implying that the estimator is obtained by evaluating
an estimated cdf at the argument t, or that it is constrained to lie between zero
and one. For simplicity, we give the impossibility result only in the simple situation
where k2 = 1 and Q is block-diagonal, i.e., X1 and X2 are asymptotically orthog-
onal. There is no reason to believe that the non-uniformity problem will disappear
in more complicated situations.

Theorem 13 Suppose (7) holds. Suppose further that k2 = 1 and that Q is block-
diagonal, i.e., the k1 � k2 matrix Q12 is equal to zero. Then the following holds for
every � 2MR and every t 2 Rk: There exist �0 > 0 and �0, 0 < �0 <1, such that
any estimator F̂n(t) of Fn;�;�(t) satisfying

Pn;�;�

����F̂n(t)� Fn;�;�(t)
��� > �

�
n!1�! 0 (16)

for every � > 0 (in particular, every estimator that is consistent) also satis�es

sup
#2Rk

jj#��jj<�0=
p
n

Pn;#;�

����F̂n(t)� Fn;#;�(t)
��� > �0

�
n!1�! 1: (17)

The constants �0 and �0 may be chosen in such a way that they depend only on t,
Q, �, and the tuning parameter �. Moreover,

lim inf
n!1

inf
F̂n(t)

sup
#2Rk

jj#��jj<�0=
p
n

Pn;#;�

����F̂n(t)� Fn;#;�(t)
��� > �0

�
> 0 (18)

and

sup
�>0

lim inf
n!1

inf
F̂n(t)

sup
#2Rk

jj#��jj<�0=
p
n

Pn;#;�

����F̂n(t)� Fn;#;�(t)
��� > �

�
� 1

2
; (19)

where the in�ma in (18) and (19) extend over all estimators F̂n(t) of Fn;�;�(t).

Proof. Step 1 : Let � 2 MR and t 2 Rk be given. Observe that by Theorems 7
and 8 the limit

F1;
(t) := limFn;�+(�;
)0=
p
n;�(t)

exists for every � 2 Rk1 , 
 2 Rk2 = R, and does not depend on �. We now show
that F1;
(t) is non-constant in 
 2 R. First, observe that by Remark 9 and the
block-diagonality assumption on Q

lim
k
k!1

F1;
(t) = P
�
Q
�1=2
11 Z1 � t1

�
P

�
Q
�1=2
22 Z2 � t2

�

where Z1 and Z2 are as in Theorem 7, t is partitioned as (t01; t2)
0 with t2 a scalar,

and P is the probability measure governing (Z 01; Z2)
0. Second, we have from (12)

and the block-diagonality assumption on Q that F1;
(t) is the product of

P

�
Q
�1=2
11 Z1 � t1

�

with

P

 �
1 + exp(2�) exp

�
��

�
Z2 +Q

1=2
22 


�2
=�2
���1 �

Q
�1=2
22 Z2 + 


�
� 
 � t2

!

:

(20)
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Since P(Q
�1=2
11 Z1 � t1) is positive and independent of 
, it su¢ces to show that

(20) di¤ers from P(Q
�1=2
22 Z2 � t2) for at least one 
 2 R. Suppose �rst that t2 > 0.

Then specializing to the case 
 = 0 in (20) it su¢ces to show that

P

��
1 + exp(2�) exp

�
��Z22=�2

���1
Q
�1=2
22 Z2 � t2

�
: (21)

di¤ers from P(Q
�1=2
22 Z2 � t2). But this follows from

P

��
1 + exp(2�) exp

�
��Z22=�2

���1
Q
�1=2
22 Z2 � t2

�

= 1=2 + P
�
Z2 � 0; h(Z2) � Q

1=2
22 t2

�

= 1=2 + P
�
0 � Z2 � g

�
Q
1=2
22 t2

��

> 1=2 + P
�
0 � Z2 � Q

1=2
22 t2

�

= P

�
Q
�1=2
22 Z2 � t2

�

since h as de�ned in the Appendix (with a = exp(2�) and b = �2=�) is strictly
monotonously increasing and satis�es h(x) < x for every x > 0, which entails
g(y) > y for every y > 0. For symmetry reasons a dual statement holds for t2 < 0.
It remains to consider the case t2 = 0. In this case (20) equals

P

 �
1 + exp(2�) exp

�
��

�
Z2 +Q

1=2
22 


�2
=�2
���1 �

Z2 +Q
1=2
22 


�
� Q

1=2
22 


!

:

(22)
Let 
 > 0 be arbitrary. Then (22) equals

P

�
Z2 +Q

1=2
22 
 < 0

�
+ P

�
Z2 +Q

1=2
22 
 � 0; h

�
Z2 +Q

1=2
22 


�
� Q

1=2
22 


�
:

Arguing as before, this can be written as

P

�
Z2 +Q

1=2
22 
 < 0

�
+ P

�
0 � Z2 +Q

1=2
22 
 � g

�
Q
1=2
22 


��

> P

�
Z2 +Q

1=2
22 
 < 0

�
+ P

�
0 � Z2 +Q

1=2
22 
 � Q

1=2
22 


�

= P (Z2 � 0) = P
�
Q
�1=2
22 Z2 � 0

�

which completes the proof of Step 1.
Step 2 : We prove (17) and (18) �rst. For this purpose we make use of Lemma 3.1

in Leeb and Pötscher (2006) with the notational identi�cation � = � 2 MR, B =
R
k, Bn = f# 2 Rk : k#� �k < �0n

�1=2g, 'n(�) = Fn;�;�(t), and '̂n = F̂n(t), where
�0 will be chosen shortly. The contiguity assumption of this lemma is obviously
satis�ed; cf. also Lemma A.1 in Leeb and Pötscher (2006). It hence remains to
show that there exists a value of �0, 0 < �0 < 1, such that �� de�ned in Lemma
3.1 of Leeb and Pötscher (2006), which represents the limit inferior of the oscillation
of Fn;�;�(t) over Bn, is positive. Applying Lemma 3.5(a) of Leeb and Pötscher (2006)
with �n = �0n

�1=2 and the set G0 equal to G = f(�0; 
)0 2 Rk : k(�0; 
)0k < 1g,
it su¢ces to show that F1;
(t) viewed as a function of (�

0; 
)0 is non-constant on
the set f(�0; 
)0 2 Rk : k(�0; 
)0k < �0g; in view of Lemma 3.1 of Leeb and Pötscher
(2006), the corresponding �0 can then be chosen as any positive number less than
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one-half of the oscillation of F1;
(t) over this set. That such a �0 indeed exists now
follows from Step 1. Furthermore, observe that F1;�(t) depends only on �, Q, �,
and t. Hence, �0 and �0 may be chosen such that they also only depend on these
quantities. This completes the proof of (17) and (18).
To prove (19) we use Corollary 3.4 in Leeb and Pötscher (2006) with the same

identi�cation of notation as above, with �n = �0n
�1=2, and with V = R

k. The
asymptotic uniform equicontinuity condition in that corollary is then satis�ed in
view of

kPn;�;� � Pn;#;�kTV � 2�
�
k� � #k�1=2max(X

0X)=(2�)
�
� 1;

cf. Lemma A.1 in Leeb and Pötscher (2006). Given that the positivity of �� has
already been established in the previous paragraph, applying Corollary 3.4 in Leeb
and Pötscher (2006) then establishes (19).

Remark 14 The impossibility result given in the above theorem also holds for the
class of randomized estimators (with Pn;�;� replaced by P�n;�;�, the distribution of
the randomized sample). This follows immediately from Lemma 3.6 in Leeb and
Pötscher (2006) and the attending discussion.

Appendix A: Some Technical Results

Let the function h : [0;1)! [0;1) be given by h(�) = [1+a exp(��2=b)]�1� where
a and b are positive real numbers. It is easy to see that h is strictly monotonously
increasing on [0;1), is continuous, satis�es h(0) = 0 and lim�!1 h(�) = 1. The
inverse g : [0;1) ! [0;1) of h clearly exists, is strictly monotonously increasing
on [0;1), is continuous, satis�es g(0) = 0 and lim�!1 g(�) = 1. In the following
lemma we shall use the natural convention that g(kyk)y= kyk = 0 for y = 0, which
makes y ! g(kyk)y= kyk a continuous function on all of Rm.
Lemma 15 Let T : Rm ! R

m be given by

T (x) =
h
1 + a exp(�kxk2 =b)

i�1
x

where a and b are positive real numbers. Then T is a bijection. Its inverse is given
by

T�1(y) = g(kyk)y= kyk
where g has been de�ned above. Moreover, T�1 is continuously partially di¤eren-
tiable and



T�1(y)


 = g(kyk) holds for all y.

Proof. If y = 0 it is obvious that T (T�1(y)) = 0 = y in view of the convention
made above. Now suppose that y 6= 0. Then

T (T�1(y)) = [1 + a exp
�
�g(kyk)2=b

�
]�1g(kyk)y= kyk

= h (g(kyk)) y= kyk = y:

Similarly, if x = 0 then T�1(T (x)) = 0. Now suppose x 6= 0. Then T (x) 6= 0 and,
observing that kT (x)k = [1 + a exp(�kxk2 =b)]�1 kxk, we have

T�1(T (x)) = g (kT (x)k)T (x)= kT (x)k

= g

�h
1 + a exp

�
�kxk2 =b

�i�1
kxk
�
x= kxk

= g (h(kxk))x= kxk = x:
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That T�1 is continuously partially di¤erentiable follows from the corresponding
property of T and the fact that the determinant of the derivative of T does never
vanish as shown in the next lemma. The �nal claim is obvious in case y 6= 0, and
follows from the convention made above and the fact that g(0) = 0 in case y = 0.

Lemma 16 Let T be as in the preceding lemma. Then the determinant of the deriv-
ative DxT is given by

h
1 + a exp

�
�kxk2 =b

�i�m�
1 + 2b�1

h
1 + a�1 exp

�
kxk2 =b

�i�1
kxk2

�

which is always positive.

Proof. Elementary calculations show that

DxT =
h
1 + a exp

�
�kxk2 =b

�i�1
�

�
Im + 2ab

�1 exp
�
�kxk2 =b

� h
1 + a exp

�
�kxk2 =b

�i�1
xx0
�
:

Since the determinate of Im + cxx
0 equals 1 + cx0x, the result follows.

Lemma 17 For g de�ned above we have

lim
�!1

g(�)=� = 1

and
lim
�!1

((g(�)=�)� 1) � = 0:

Proof. It su¢ces to prove the second claim:

lim
�!1

((g(�)=�)� 1) � = lim
�!1

(g(�)� �) = lim
�!1

(g(h(�))� h(�))

= lim
�!1

�
� �

�
1 + a exp

�
��2=b

���1
�
�

= lim
�!1

�
�
1 + a�1 exp

�
�2=b

���1
= 0:

Proof. Veri�cation of (15) in Section 5. In view of Theorem 8 it su¢ces to
show that Z

Rk

�� �fn(z)� f1(z)
�� dz ! 0

in Pn;�;�-probability as n ! 1 for every � 2 Rk where we recall that f1 is equal
to f1;1, the density of an N(0; �2Q�1)-distribution, if �2 6= 0, and is equal to f1;0
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given in (13) if �2 = 0. Now,

Pn;�;�

�Z

Rk

�� �fn(z)� f1(z)
�� dz > "

�

= Pn;�;�

�Z

Rk

�� �fn(z)� f1(z)
�� dz > "; M̂ =MR

�
+

Pn;�;�

�Z

Rk

�� �fn(z)� f1(z)
�� dz > "; M̂ =MU

�

= Pn;�;�

�Z

Rk

���fy1;0(z)� f1(z)
��� dz > "; M̂ =MR

�
+

Pn;�;�

�Z

Rk

��fy1;1(z)� f1(z)
�� dz > "; M̂ =MU

�

where we have made use of the de�nition of �fn. If � 2 MR, then clearly the event
M̂ = MU has probability approaching zero and hence the last probability in the
above display converges to zero. Furthermore, if � 2 MR, the last but one proba-
bility reduces to

Pn;�;�

�Z

Rk

���fy1;0(z)� f1;0(z)
��� dz > "; M̂ =MR

�

which converges to zero since
Z

Rk

���fy1;0(z)� f1;0(z)
��� dz ! 0

in view of pointwise convergence of fy1;0 to f1;0 and Sche¤é�s lemma. [To be able

to apply Sche¤é�s lemma we need to know that not only f1;0 but also f
y
1;0(z) is a

probability density. But this is obvious, as (13) de�nes a probability density for any
symmetric and positive de�nite matrix Q.] The proof for the case where � 2 MU

is completely analogous noting that then f1 = f1;1 holds.
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