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Abstract

This paper deals with an endogenous growth model with vintage capital and,
more precisely, with the AK model proposed in [18]. In endogenous growth models
the introduction of vintage capital allows to explain some growth facts but strongly
increases the mathematical difficulties. So far, in this approach, the model is studied
by the Maximum Principle; here we develop the Dynamic Programming approach to
the same problem by obtaining sharper results and we provide more insight about the
economic implications of the model. We explicitly find the value function, the closed
loop formula that relates capital and investment, the optimal consumption paths and
the long run equilibrium. The short run fluctuations of capital and investment and
the relations with the standard AK model are analyzed. Finally the applicability to
other models s also discussed.
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fgozzi@luiss.it

1



II.1 Preliminary results on the control problem 10
II.1.1 Asymptotic behavior of admissible trajectories . . . . . . . . . . . . . . . 11
II.1.2 Finiteness of the value function . . . . . . . . . . . . . . . . . . . . . . . . 13
II.1.3 Existence of optimal strategies . . . . . . . . . . . . . . . . . . . . . . . . 14
II.1.4 Strict positivity of optimal trajectories . . . . . . . . . . . . . . . . . . . . 14

II.2 Writing and solving the infinite dimensional problem 14
II.2.1 Rewriting problem P in infinite dimensions . . . . . . . . . . . . . . . . . 14
II.2.2 The HJB equation and its explicit solution . . . . . . . . . . . . . . . . . 17
II.2.3 Closed loop in infinite dimensions . . . . . . . . . . . . . . . . . . . . . . . 19

II.3 Back to problem P 20
II.3.1 The explicit form of the value function . . . . . . . . . . . . . . . . . . . . 20
II.3.2 Closed loop optimal strategies for problem P . . . . . . . . . . . . . . . . 20
II.3.3 Growth rates and asymptotic behavior . . . . . . . . . . . . . . . . . . . . 22

III Application to the Vintage Capital Model 23

III.1 The explicit form of the value function and its consequences in the
study of the optimal paths 24
III.1.1 The study of short run fluctuations. . . . . . . . . . . . . . . . . . . . . . 24
III.1.2 The “equivalent capital” and the convergence to the standard AK model. 25

III.2 The problem of admissibility of the candidate optimal paths 26

III.3 The assumptions on the parameters 27

III.4 Numerical results 28

IV Applications to other models 30

IV.1 DP when explicit solution can be found 30

IV.2 DP approach when explicit solution is not available 31

A Appendix: The standard AK-model with zero depreciation rate of
capital 33

B Appendix: Proofs 35

Introduction

In this work we develop the Dynamic Programming (DP in the following) approach to
study a continuous time endogenous growth model with vintage capital. We focus on the
AK model proposed by Boucekkine, Puch, Licandro and Del Rio in [18] (see e.g. [15], [12]
for related models) which is summarized in Section I.1.
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In the literature continuous time endogenous growth models with vintage capital are
treated by using the Maximum Principle (MP in the following). Here we develop the DP
approach to the representative model of [18] getting sharper results. The improvements
we obtain mainly come from the fact that we are able to find the value function and solve
the optimal control problem in closed loop form, a key feature of the DP approach.

We stress the fact that the novelty of this paper is mainly on the methodological side.
In our opinion the DP approach to continuous time optimal control problems arising

in economic theory has not been exploited in its whole power. This is especially true
when the model presents some features (like the presence of Delay Differential Equations
and/or Partial Differential Equations and/or state-control constraints) that call for the
use of infinite dimensional analysis making it harder to treat with the standard theory.
However the presence of such features is needed when we want to look at problems with
vintage capital, see for instance the quoted papers [18, 15, 12], and also [10, 11], [39],[37, 38]
on optimal technology adoption and capital accumulation.

To be clear and honest we must say that in this paper the DP approach works very
well thanks to the availability of explicit solutions which happens also in other models
(see Section IV.1) but when explicit solutions are not available still something interesting
(like the points (II) and (III) below or the qualitative behavior of optimal path) can
be said, usually with more technical difficulties. What can be said and the amount of
difficulties strongly depend on the structure of the problem under study: in some cases
almost everything can be repeated, in some other ones almost nothing, at the present
stage (see Section IV.2). We also clarify that we are not saying that the DP is generally
better than the MP approach: when the difficulties are hard it is often useful to use
an integrated approach developing both the MP and the DP1. In Part IV we present a
detailed discussion on these points.

The main methodological issues treated in this paper are the following.

(I) (Explicit form of solutions).

Providing solutions in explicit form, when possible, helps the analysis of the model.
In [18] it is shown that the optimal consumption path has a specific form (i.e. it is
an exponential multiplied by a constant Λ) but none is said about the form of Λ,
the explicit expression of the capital stock and investment trajectories. Moreover
existence of a long run equilibrium for the discounted paths is established but none
is said about its form.

Here, using the fact that we can calculate explicitly the value function, we show a
more precise result on the optimal consumption path determining the constant Λ and
an equation for the optimal trajectories of the capital stock and of the investment.
This allows to find explicitly the long run equilibrium of the discounted paths; in
particular we can give more precise analysis of the presence of oscillations in the
capital and investment stock and in the growth rates comparing the model with the
standard AK model. See Section III.1 for further explanations.

(II) (Admissibility of candidate solutions).

When state/control constraints are present the necessary conditions of MP are dif-
ficult to solve. Often in studying growth models one considers the problem without

1For example such an integrated approach is used successfully in [41].
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such constraints and then checks if the optimal path for the unconstrained problem
satisfy them. This may be a difficult task and in some cases may even be not true.
Indeed, in [18] it is not proved that the candidate optimal trajectory of capital and
investment is admissible (see the discussion in Subsection 4.3, p. 60 of [18]) so a
nontrivial gap remains in the theoretical analysis of the model.

Here we prove that the candidate optimal trajectory is admissible, so fixing such a
gap: such difficult task is accomplished by changing the point of view used in [18]
(and in many papers on continuous time endogenous growth models) to find the
optimal trajectory. See Section III.2 for further explanations.

(III) (Wider parameter set).

We work under more general assumptions on the parameters that includes cases
which may be still interesting from the economic point of view. These cases are
not included in [18] and for this reason the set of parameters for which their theory
applies can be empty for some values of σ ∈ (0, 1). See Section III.3 for further
explanations.

Concerning the economic interpretation of the methodological results listed above we
underline the following.

• We have at hand a power series expansion of the investment and capital path where
the dependence of the coefficients on the initial investment path is explicit. This
means that the short run fluctuations of investment and capital and of their growth
rates (which are driven by replacement echoes) can be analyzed in terms of the
deviation of the investment’s history from the “natural” balanced growth path (see
Subsection III.1.1). Moreover the presence of explicit formulae opens the door to a
more precise empirical testing of the model.

• We provide a comparison of the model with the standard AK model with depreciation
rate of capital equal to 0. First we see that when the lifetime T of machines goes to
infinity the vintage AK model reduces to such a standard AK model. Moreover we
show that in the vintage AK model the quantity that we call “equivalent capital”
(see Subsection III.1.2 for a definition) has a constant growth rate.
This may explain two qualitative characteristic of the model: first the consumption
path has a constant growth rate since the decision of the agent is to consume a
constant share of the “equivalent capital” which is the key variable of the system
(see the closed loop relation (35)); second the agent adjusts the investments to keep
constant the growth rate of the “equivalent capital” (compare (35) and (36)) and
this gives rise to the fluctuations in the investment path (due to replacement echoes).
In this regard this is not a model of business cycle, as already pointed out in [18].

• In our setting, differently from the standard AK model with zero depreciation rate
of capital, a positive investment rate is compatible with a negative long run growth
rate. This enlarge the scenarios where the deviation between growth and investment
rates can arise (see e.g. the discussion on this given in [18]).

The paper is organized in four parts: the first (Part I) contains a brief description of
the model of [18] (Section I.1), a description of our approach to the problem (Section I.2)
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and (Section I.3) an outline of the related literature. Part II is devoted to the description
of the new mathematical results and it is composed of three sections. In Section II.1 we
give some preliminary results about the solution of the state equation, the existence of
optimal controls and the properties of the value function. The mathematical core of the
paper is Section II.2. Here we give, with complete proofs: the precise formulation of the
problem in infinite dimension (Subsection II.2.1); the formulation of the Hamilton-Jacobi-
Bellman (HJB in the following) equation and its explicit solution (Subsection II.2.2); the
closed loop formula for the optimal strategies in explicit form (Subsection II.2.3). In
Section II.3 we come back to the original problem proving, as corollaries of the results of
Section II.2, our results about the explicit form of the value function (Subsection II.3.1),
the explicit closed loop strategies (Subsection II.3.2) and the asymptotic behavior (long
run equilibrium, costate dynamics, transversality conditions, balanced growth paths) of
the optimal trajectories (Subsection II.3.3). In Part III we discuss the implications of our
results in the vintage AK model and make a comparison with the previous ones. In the
first three sectios we refer to the methodological points (I)-(II)-(III) raised above, while
in Section III.4 we present some numerical results. Part IV is devoted to the description
of the possible extensions of the described approach to others models. It contains two
sections: the first (Section IV.1) due to the models where an explicit expression for the
value function can be given and the second (Section IV.2) that describes what can be done
when this does not happen.

The last section concludes the paper. Appendix A is devoted to a quick development
of the Dynamic Programming approach to the standard AK model with zero depreciation
rate of capital. It is given here partly because we did not find it in the literature (even if it
is standard), partly for the commodity of the reader to have a sketch of the DP approach
in an easy case and to make more clear the comparison with the present model (done in
Subsection III.1.2) and the related comments. Appendix B contains the proofs.

Part I

Outline of the model and of the method

I.1 Description of the model

We deal with the vintage capital model presented in [18] as a representative continuous
time endogenous growth model with vintage capital. Vintage capital is a well known
topic in the growth theory literature of last ten years (see for instance [60], [1], [49],
[43], [12], [15]). Even in a simple setting like the one of AK models the introduction of
vintage capital involve the presence of oscillations in the short-run2 and this is one of the
main features that make the model interesting. Indeed the optimal paths in the model of
[18] converge asymptotically to a steady state but the transition is complex and involve
nontrivial dynamics. So this model can be used to study the contribution of the vintage
structure of the capital in the transition and the behavior of the system after economic
shocks.

For an in-dept explanation of the model and its background see the Introduction of

2The optimal trajectories of the standard AK models are simply exponential without transition towards
steady state and this is one of main limits of such models.
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[18] or [15]. We report here only its main features. The model presented in [18] is a
vintage version of standard AK model with CRRA (Constant Relative Risk Aversion)
utility function. (which is recalled in Appendix A in the case of zero depreciation rate of
capital).

Obsolescence and deterioration of physical capital are simply modeled assuming that
all machines have the same technology and that they have a fixed lifetime T (a constant
“scrapping time”).

The time is continuous and starts at t = 0 (the horizon is infinite as usual in growth
models). However, to introduce a delay effect in the model due to the vintage capital
structure, we assume that the economy exists at least at time −T and that its behavior
between t = −T and t = 0 is known. So all variables of the model will be defined on
[−T,+∞). Of course their paths between t = −T and t = 0 will be considered data of the
problem so we will define equations and constraints for t ≥ 0.

We denote by k(t), i(t) and c(t) the stock of capital, the investment and the consump-
tion at time t ≥ −T . All of them are nonnegative. The AK technology is the following:
the aggregate production at time t is denoted by y(t) and it satisfies, for t ≥ 0

y(t) = a

∫ t

t−T
i(s)ds a > 0. (1)

Interpreting the integral in the right hand side as the capital we then have, for t ≥ 0,
y(t) = ak(t). We have the following accounting relation, for t ≥ 0

ak(t) = y(t) = i(t) + c(t) (2)

so the non-negativity of all variables is equivalent to ask that, for t ≥ 0

i(t), c(t) ∈ [0, y(t)] = [0, ak(t)]. (3)

If the investment function i(·) is assumed to be sufficiently regular (e.g. continuous), then
the above relation (1) can be rewritten as a Delay Differential Equation (DEE in the
following) for the capital stock

k̇(t) = i(t) − i(t− T ) (4)

with initial datum k(0) given as function of the past investments by

k(0) =

∫ 0

−T
i(s)ds. (5)

Given the above relations, the only initial datum needed to set up the model is the past
of the investment strategy i(·)3: we will denote it by ῑ(·). This datum is a function from
[−T, 0) to R so it belongs to a space of functions which is infinite dimensional. Since
we want to work in Hilbert spaces (which are in some sense the best possible kind of
infinite dimensional spaces one can work with) we assume that ῑ(·) ∈ L2([−T, 0); R+) i.e.

3We use throughout the paper the notation (·) to denote a function, e.g. i(·); this notation will be
suppressed when it is clear that we are dealing with a function (e.g. in Section II.2 where we develop the
infinite dimensional setting).
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to the space of all functions from [−T, 0) to R
+ that are Lebesgue measurable and square

integrable4.
The equilibrium is the solution of the problem of maximizing, over all investment-

consumption strategies that satisfy the above constraints (1), (2), (3), the functional of
CRRA (Constant Relative Risk Aversion) type

∫ +∞

0
e−ρt c(t)

1−σ

1 − σ
dt (6)

where ρ > 0, σ > 0 (and σ 6= 1). More general set of parameters ρ and σ (e.g. σ = 1 or
some cases when ρ ≤ 0) can be treated without big effort; we avoid this for simplicity.
From the mathematical point of view this model is an optimal control problem. The state
variable is the capital k, the control variables are the consumption c and the investment i,
the state equation is the DDE (4) with the initial condition (5) (which is somehow unusual,
see the following discussion and Notation II.1.1 for more explanations); the objective
functional is (6). A control strategy c(·), i(·) defined for t ≥ 0 is admissible if it satisfies
for every such t the constraints (2) and (3). Since the two control functions i(·) and c(·)
are connected by the relation (2) then we can eliminate the consumption c(·) from the
mathematical formulation of the problem. So the only control function is i(·) giving the
present investment (as said above its ‘history’ in the interval [−T, 0) is the initial datum
ῑ(·)). Similarly to ῑ(·) we assume that i(·) ∈ L2

loc([0,+∞),R+) i.e. to the space of all
functions from [0,+∞) to R

+ that are Lebesgue measurable and square integrable on all
bounded intervals5.

Given an initial datum ῑ(·) and an investment strategy i(·) we denote by kῑ,i(·) the
associated solution (see Section II.1 for its explicit form) of the state equation (4)-(5). The
strategy i(·) will be called admissible if it satisfies the constraints (coming from (3)):

0 ≤ i(t) ≤ akῑ,i(t) ∀t ≥ 0. (7)

(note that such constraints involve both the present value of the state and of the control:
so they are called state-control constraints).

Now, using (2), we write the associated intertemporal utility from consumption as

J(ῑ(·); i(·))
def
=

∫ ∞

0
e−ρs (akῑ,i(t) − i(t))1−σ

(1 − σ)
ds

(note that we have explicitly written in the functional the dependence on the initial datum
ῑ(·)).

Our problem is the one of maximizing the functional J(ῑ(·); i(·)) over all admissible
investment strategies i(·).

It must be noted that the model reduces to the standard AK model with zero depre-
ciation rate of capital when the delay T (i.e. the “scrapping time”) is +∞6.

4For the study of the economic implication of the model it would be enough to consider data ῑ(·) that
are piecewise continuous. Since any piecewise continuous function on [−T, 0) is also a square integrable
function our setting includes all interesting cases.

5The sign ‘loc’ in the name of the space simply means that we do not ask integrability over all interval
[0, +∞) since this would be too restrictive (e.g. constant nonzero strategies would not be included).

6Indeed in such a case k(t) =
R t

−∞
i(s)ds = k(0) +

R t

0
i(s)ds and so the DDE (4)-(5) becomes the

Ordinary Differential Equation of the standard AK model with zero depreciation rate of capital.

7



I.2 The Dynamic Programming Approach

The DP approach to optimal control problems can be summarized in four main steps (see
for instance Fleming and Rishel [40]) for the DP in the finite dimensional case and Li and
Yong [56] for the DP in infinite dimension). Before to explain how to perform them in the
vintage AK model we clarify that the two main difficulties of it:

• The state equation is a DDE while the DP approach is formulated for the case
when the state equation is an ODE. To overcome this difficulty one way (not the
only one, for other approaches on can see e.g. Kolmanovskii and Shaikhet [55]) is
to rewrite the DDE as an ODE in an infinite dimensional space which become the
new state space. This can be done in our case using the techniques developed by
Delfour, Vinter and Kwong (see Subsection II.2.1 below for explanation and Section
I.3 for references). It must be noted that the resulting infinite dimensional control
problem is harder than the ones mainly treated in the literature (see e.g. [56]) due to
the unboundedness of the control operator and the non-analyticity of the semigroup
involved (see again Subsection II.2.1).

• The pointwise constraints (7) involve both the state and the control (state-control
constraints). Their presence makes the problem much more difficult. Indeed for
such problems in infinite dimension there is no well established theory available up
to now. Only few results in special cases, (different from the one treated here),
can be found. This fact is at the basis of the theoretical problem contained in the
paper [18] and mentioned at point (II) in the introduction: show that the candidate
optimal trajectory satisfies the pointwise constraints (7) (see Section III.2 for more
on this).

The key tool to overcome such difficulties will be the explicit solution of the HJB equation
as explained in the four points below.

(i) First of all, given an initial datum ῑ(·) ∈ L2([−T, 0); R+) we define the set of admis-
sible strategies given ῑ(·) as Iῑ =

{

i(·) ∈ L2
loc([0,+∞); R+) : i(t) ∈ [0, akῑ,i(t)], a.e.

}

and then the value function as V (ῑ(·)) = supi(·)∈Iῑ

{

∫∞

0 e−ρs (akῑ,i(t)−i(t))1−σ

(1−σ) ds

}

.

The first step of DP approach recommends to write the DP Principle and the HJB
equation for the value function. The DP Principle (see for instance [40] for the finite
dimensional case and [56] for the infinite dimensional one) gives a functional equa-
tion that is always satisfied by the value function. Since this functional equation is
not easily treatable one usually considers its infinitesimal version, the HJB equation.
We do not write it here as we will be using, for technical reasons, a setting where the
initial data will be both ῑ(·) and k(0) ignoring the relation (5) that connects them.
So in Section II.2 we will consider an artificial value function depending on ῑ(·) and
k(0) and write and solve the HJB equation for it (see Subsection II.2.1). After this,
in Section II.3 we will go back to the value function defined here.

(ii) The second step of DP approach is now to solve the HJB equation. We will find
explicitly a solution of the HJB equation and prove that it is the value function (see
Propositions II.2.11 and II.3.1). The only other examples of explicit solution of the
HJB equation in infinite dimension involve, for what we know, linear state equations
and quadratic functionals (see Section I.3 below for references).
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Note that this HJB equation cannot be treated with the results of the existing
literature. This is due, as previously said, to the presence of the state/control
constraint, to the unboundedness of the control operator and the non-analyticity of
the semigroup given by the solution operator of the state equation (see the discussion
in Subsection II.2.2 for more details).

(iii) The third step will be then to write the closed loop (feedback) formula. This means
to write a formula that gives the present value of the optimal control as function
only of the present value of the state. In this case the state is infinite dimensional
and it is composed, for each t ≥ 0, by the present value of the capital k(t) and by the
past (at time t) of the investment strategy {i(t+ s), s ∈ [−T, 0)}. So the closed loop
formula will give the present value of the investment i(t) as a function of the present
value of the state and of the past of the investment itself (see equation (31) for the
feedback in infinite dimension and equation (34) for its DDE version). This formula
will be given in term of the value function and so, using its explicit expression found
in step (ii), also the closed loop formula will be given in explicit form. For details
see Theorem II.2.15 for the result in infinite dimensions and Proposition II.3.2 for
the DDE version.

(iv) The closed loop formula will be then substituted into the state equation (4)-(5) to get
an equation for the optimal state trajectory (the so-called Closed Loop Equation).
Such equation will be a DDE, as recalled at point (iii) above, and explicit solutions
cannot be given in general. However it allows to study the behavior of the optimal
paths and to perform numerical simulations. For details see Theorem II.3.4 and
Subsections II.3.3, III.1.1.

I.3 The literature on DDEs and on Dynamic Program-

ming in infinite dimensions

For DDEs a recent, interesting and accurate reference is the book of Diekmann, van Gils,
Verduyn, Lunel and Walther [33].

The original idea of writing delay system using a Hilbert space setting was first due to
Delfour and Mitter [31], [32]. Variants and improvements were proposed by Delfour [28],
[26], [27], Vinter and Kwong [64], Delfour and Manitius [29], Ichikawa [47] (see also the
references and the precise systematization of the argument in Chapter 4 of Bensoussan,
Da Prato, Delfour and Mitter [13]). Using this idea the optimal control of DDEs becomes
an optimal control problem in infinite dimension. When the state equation is linear and
the objective is quadratic (the so-called linear quadratic (LQ) case) and without state or
state control constraints the HJB equation reduces to a simpler operator (matrix in finite
dimension) equation: the so-called Riccati equation. This case is then considered a special
one and is deeply studied in the literature: see, for the DDEs case Vinter and Kwong [64],
Ichikawa [47], Delfour, McCalla and Mitter [30] and Kolmanovskii and co-authors [54],
[53], [55]. Kolmanovskii and co-authors have also given sufficient optimality conditions in
term of the value function but they did not solve HJB equation except for the LQ case
(without state or state/control constraints) and under suitable assumptions (see [54] ch.14
or [53] ch 6 or [55] ch. 2.). Out of the LQ case the infinite dimensional HJB equation
coming from the optimal control of DDEs is much more difficult to deal with.
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The study of the HJB equation in Hilbert spaces, started with the papers of Barbu
and Da Prato (see [5], [6], [7]) is a large and diversified research field. We recall that
one usually wants to find “classical” solutions of HJB equations (i.e. solutions that are
differentiable in time and state) since this allows to get a more treatable closed loop form
of the optimal strategy. This is not always possible. So there is a stream in the literature
that studies in which cases classical solutions exists and there is another stream that
studies the existence of “weak” solutions (i.e. solutions that are not differentiable)7. In
this paper we are looking for “classical” solutions8. Up to now, to our knowledge, the
existence of such solutions for the HJB equation in cases where the state equation is a
DDE has not been studied in the literature (apart from the LQ case)9.

For the study of optimal control of DDEs without DP we mention (beyond the papers of
Boucekkine and co-authors [15, 17, 18]), in the so-called overtaking literature, the works
of Carlson and co-authors [20, 22, 21] and Zaslavski [65, 66, 67]. Here some existence
results of overtaking optimal solutions, turnpike properies and optimal conditions (using
the MP) are proved but in a class of problems that does not include our case (due to the
presence of the delay in the control and state control constraints).

The presence of state and/or state control constraints, in an optimal control problem,
creates various difficulties already in finite dimensions (see e.g. [59] and [45] for MP and [8]
for DP). Concerning DP, the state control constraints oblige to define the value function in
a proper subset of the whole state space so the HJB equation becomes a PDE coupled with
boundary conditions. Such boundary conditions are non-standard (see e.g. [8]) and many
results (like verification theorems) are more difficult to get. In the infinite dimensional
case the study of PDEs with boundary condition is just at the beginning since many tools,
like the Sobolev spaces with respect to the Lebesgue measure, could not be used (see e.g.
[19], [56] and [25] for more details).

Part II

New mathematic results on the model

II.1 Preliminary results on the control problem

We first introduce a notation useful to rewrite more formally equation (4)-(5) as in (9)
below.

Notation II.1.1. We call ῑ : [−T, 0) → R
+ the initial datum, i : [0,+∞) → R

+ the control
strategy and ı̃ : [−T,+∞) → R

+ the function

ı̃(s) =

{

ῑ(s) s ∈ [−T, 0)
i(s) s ∈ [0,+∞).

(8)

7The right concept of weak solution is the one of viscosity solution, introduced by Crandall and Lions
in the finite dimensional case and then applied to infinite dimension by the same authors, see [23] for an
introduction to the topic and further references.

8Since the definition of solution we use is adapted to the features of the problem it is not exactly the
classical one, see on this Subsection II.2.2.

9In the economic literature the study of infinite dimensional optimal control problems that deals with
vintage/heterogeneous capital is a quite recent tool but of growing interest: see for instance [11], [39], and
[38].
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The state equation is now written as the DDE (on R
+)

{

k̇(t) = ı̃(t) − ı̃(t− T ), ∀t ≥ 0,

ı̃(s) = ῑ(s) for s ∈ [−T, 0), k(0) =
∫ 0
−T ῑ(s)ds,

(9)

where T ∈ R is a positive constant, ῑ(·) and k(0) are the initial conditions. We will assume
ῑ(·) ≥ 0 and ῑ(·) 6≡ 0. Moreover ῑ(·) ∈ L2([−T, 0); R+). For every i(·) ∈ L2

loc([0,+∞); R+)
and every ῑ(·) ∈ L2([−T, 0); R+) the DDE (9) admits a unique locally absolutely continuous
solution given by

kῑ,i(t)
def
=

∫ t

(t−T )∨0
i(s)ds +

∫ 0

(t−T )∧0
ῑ(s)ds =

∫ t

(t−T )
ı̃(s)ds (10)

The functional to maximize is J(ῑ(·); i(·))
def
=
∫∞

0 e−ρs (akῑ,i(t)−i(t))1−σ

(1−σ) ds over the set Iῑ
def
=

{i(·) ∈ L2
loc([0,+∞); R+) : i(t) ∈ [0, akῑ,i(t)] for a.e. t ∈ R

+}. Here a and σ are strictly

positive constants with σ 6= 1. The choice of Iῑ implies kῑ,i(·) ∈W 1,2
loc (0,+∞; R+) for every

i(·) ∈ Iῑ.

Remark II.1.2 (On the irreversibility constraint). In the definition of Iῑ we have
imposed two control constraints for each t ≥ 0: the first is of course (akῑ,i(t) − i(t)) ≥ 0
that means exactly that the consumption cannot be negative; the second is i(t) ≥ 0,
i.e. irreversibility of investments. It may be possible to consider a wider set of control
strategies without imposing irreversibility but only the positivity of the capital: k(t) ≥ 0
(or some weaker “no Ponzi game” condition). This is done e.g. in the standard AK model
recalled in Appendix A. There are some arguments to believe that irreversibility is a more
natural choice in our delay setting. First of all in the vintage model i(t) is the investment
in new capital and so the irreversibility assumption is natural from the economic point of
view. Moreover we can observe that, unlike the non-delay case, i(t) ≥ 0 does not imply
a growth of the capital (see Section III.3 on this). Finally if this constraint hold on the
datum ῑ(·) (as we assume) the set of admissible strategies is always nonempty. If we take
only the constraints k(t) ≥ 0 and (akῑ,i(t) − i(t)) ≥ 0 then there are examples of initial
data ῑ(·) (not always positive) with k(0) ≥ 0 such that the set of admissible trajectories is
empty (for instance ῑ(s) = 2χ[−T,−T/2](s) − 2χ(−T/2,0)(s) for s ∈ [−T, 0)) where χA is the
indicator function of the set A.

We will name Problem (P) the problem of finding an optimal control strategy i.e. to
find an i∗(·) ∈ Iῑ such that:

J(ῑ(·); i∗(·)) = V (ῑ(·))
def
= sup

i(·)∈Iῑ

{
∫ ∞

0
e−ρs (akῑ,i(t) − i(t))1−σ

(1 − σ)
ds

}

. (11)

We now give a preliminary study of the problem concerning the asymptotic behavior
of admissible trajectories, the finiteness of the value function, the existence of optimal
strategies and the positivity of optimal trajectories.

II.1.1 Asymptotic behavior of admissible trajectories

To find conditions ensuring the finiteness of the value function we need first to study the
asymptotic behavior of the admissible trajectories, in particular to determine which is the
maximum asymptotic growth rate of the capital.
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We introduce, as in the standard AK model (see Appendix A page 33), a first restriction
on the parameters that ensure the finiteness of the value function V at every initial datum
ῑ(·).

Proposition II.1.3. Given an initial datum ῑ(·) ∈ L2([−T, 0); R+) and a control i(·) ∈
L2

loc([0,+∞); R+), we have that the solution kῑ,i(·) of (9) is dominated at any time t ≥ 0
by the solution kM (·) obtained taking the same initial datum ῑ(·) and the admissible control
defined by the feedback relation iM (t) = akM (t) for all t ≥ 0 (that is the maximum of the
range of admissibility).

Observe now that, by its definition, kM (·) is the unique solution of

{

˙kM (t) = ı̃M (t) − ı̃M (t− T )

ı̃M (s) = ῑ(s) for s ∈ [−T, 0), kM (0) =
∫ 0
−T ῑ(r)dr > 0

(12)

and then for t ≥ T , kM (t) = h(t) where h(·) the unique solution of

ḣ(t) = a(h(t) − h(t− T )) for t ≥ T, h(s) = kM (s) for s ∈ [0, T ) (13)

For equation (13) we can apply standard statements on DDEs as follows. We define the
characteristic equation of the DDE (13) as

z = a(1 − e−zT ), z ∈ C (14)

The characteristic equation is defined for general linear DDE as described in [33] (page
27). In our case, by a convexity argument, we can easily prove the following result.

Proposition II.1.4. There exists exactly one strictly positive root of (14) if and only if
aT > 1. Such root ξ belongs to (0, a). If aT ≤ 1 then the only root with non negative real
part is z = 0.

Since, as we will see in Proposition II.1.6 and Remark II.1.7, the maximum character-
istic root give the maximum rate of growth of the solution, to rule out the cases where
growth cannot occur it is natural to require the following.

Hypothesis II.1.5. aT > 1.

We will assume from now on that Hypothesis II.1.5 holds. Note that, assuming Hy-
pothesis II.1.5 we have

g ∈ (0, ξ) =⇒ g < a(1 − e−gT )
g ∈ (−∞, 0) ∪ (ξ,+∞) =⇒ g > a(1 − e−gT ).

(15)

Proposition II.1.6. Let Hypothesis II.1.5 hold true. Given an initial datum ῑ(·) ∈
L2([−T, 0); R+) with ῑ(·) 6≡ 0 and a control i(·) ∈ L2

loc([0,+∞); R+), we have that for
every ε > 0

lim
t→+∞

kM (t)

e(ξ+ε)t
= 0.

12



Remark II.1.7 (On the Hypothesis II.1.5). Hypothesis II.1.5 has a clear economic
meaning: if there are no strictly positive root we can see, as in Proposition II.1.3, that the
maximal growth of the capital stock10 is not positive since the stock of capital always goes
to zero. So positive growth would be excluded from the beginning. Moreover Hypothesis
II.1.5 is verified when we take the limit of the model as T goes to +∞ which is “substan-
tially” the standard AK model with zero depreciation rate of capital. In this case we will
have ξ → a.

The above Proposition II.1.6 is what we need to analyze the finiteness of the value
function. Before to proceed with it we give a refinement of Proposition II.1.4 that give a
more detailed analysis of the solutions of characteristic equation (14) and so of the solution
of equation (13) that will be useful later, see the proof of Proposition II.3.5 and Subsection
III.1.1.

Proposition II.1.8. Assuming Hypothesis II.1.5 we can state that:

(a) The characteristic equation (14) has only simple roots.

(b) There are exactly 2 real roots of (14), i.e. ξ and 0.

(c) There is a sequence {λk, k = 1, 2, ...} ⊂ C such that {λk, λk k = 1, 2, ...} are the
only complex and non real roots of (14).

For each k we have T · Imλk ∈ (2kπ, (2k + 1)π).

The real sequence {Reλk, k = 1, 2, ...}, is strictly negative and strictly decreasing to
−∞. Finally

Reλ1 < ξ − a. (16)

II.1.2 Finiteness of the value function

We now introduce the following assumption that, given Hypothesis II.1.5, will be a suffi-
cient condition for the finiteness of the value function for every initial datum11.

Hypothesis II.1.9. ρ > ξ(1 − σ).

From now on we will assume that Hypotheses II.1.5 and II.1.9 hold. Now, thanks to
Proposition II.1.3 and Hypothesis II.1.9 we can exclude two opposite cases: on one hand,
when σ < 1, the existence of some ῑ(·) in which V (ῑ(·)) = +∞ (Proposition II.1.10), on the
other hand, when σ > 1, the existence of some ῑ(·) in which V (ῑ(·)) = −∞ (Proposition
II.1.11).

Proposition II.1.10. V (ῑ(·)) < +∞ for all ῑ(·) in L2([−T, 0); R+).

Proof. For σ > 1 it is obvious since J(ῑ(·); i(·)) ≤ 0 always. For σ ∈ (0, 1) we observe that
for every i(·) ∈ L2

loc([0,+∞); R+),

J(ῑ(·); i(·)) ≤
1

1 − σ

∫ +∞

0
e−ρt(akῑ,i(t))

1−σdt ≤
1

1 − σ

∫ +∞

0
e−ρt(akM (t))1−σdt.

so from the definition of the value function, Proposition II.1.3 and Hypothesis II.1.9, the
claim follows.

10That occurs re-investing all capital.
11Indeed in the standard AK model with zero depreciation rate of capital such a condition with ξ = a is

also necessary, see e.g. [42]. In our case a similar result can be proved but we avoid it for simplicity.
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Proposition II.1.11. If ῑ(·) ∈ L2([−T, 0); R+) and ῑ(·) 6≡ 0 there exists a control θ(·) ∈ Iῑ

such that J(ῑ(·); θ(·)) > −∞.

II.1.3 Existence of optimal strategies

We now state and prove the existence of optimal paths.

Proposition II.1.12. An optimal control exists in Iῑ, i.e. we can find in Iῑ an admissible
strategy i∗(·) such that V (ῑ(·)) = J(ῑ(·); i∗(·)).

II.1.4 Strict positivity of optimal trajectories

We can now prove the strict positivity of optimal trajectories that we will use in Section
II.3. Note that we have already proved the strict positivity of the capital path kM in the
proof of Proposition II.1.6.

Proposition II.1.13. Let ῑ(·) be in L2([−T, 0); R+) and ῑ(·) 6≡ 0 and let i∗(·) ∈ Iῑ be an
optimal strategy then kῑ,i∗(t) > 0 for all t ∈ [0,+∞).

II.2 Writing and solving the infinite dimensional problem

II.2.1 Rewriting problem P in infinite dimensions

Given t ≥ 0 we indicate the “history” of investments at time t with ı̃t defined as:

ı̃t : [−T, 0] → R, ı̃t(s) = ı̃(t+ s) (17)

The capital stock can then be rewritten as k(t) =
∫ 0
−T ı̃t(s)ds and so the DDE (9) can

be rewritten as

k̇(t) = B(ı̃t), (k(0), ı̃0) = (

∫ 0

−T
ῑ(s)ds, ῑ) (18)

where B is the continuous linear map B : C([−T, 0]; R) → R defined as B(f) = f(0) −
f(−T ). Equation (18) has a pointwise meaning only if the control is continuous but always
has an integral sense (as in (10)).
The link between the initial condition for k(t) and ı̃t (that is k(0) =

∫ 0
−T ı̃0(s)ds) has a

clear economic meaning but is, so to speak, nonstandard from a mathematical point of
view. We “suspend” it in this section and will reintroduce it in Section II.3 when we will
find the optimal feedback for problem (P). So we consider now initial data given by (k0, ῑ)
where k0 and ῑ have no relationship. Our problem becomes a bit more general:

k̇(t) = B(ı̃t), (k(0), ı̃0) = (k0, ῑ) (19)

Its solution is

kk0,ῑ,i(t) = k0 −

∫ 0

−T
ῑ(s)ds+

∫ t

t−T
ı̃(s)ds (20)

Clearly for every t ≥ 0, kR

0

−T
ῑ(s)ds,ῑ,i

(t) = kῑ,i(t) as defined in equation (10). Now we

introduce the infinite dimensional space in which we re-formulate the problem, it is:

M2 def
= R × L2([−T, 0); R)
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A generic element x of M2 will be denoted as a couple (x0, x1). The scalar product

on M2 will be the one on a product of Hilbert spaces i.e. 〈(x0, x1), (z0, z1)〉M2

def
=

x0z0 + 〈x1, z1〉L2 for every (x0, x1), (z0, z1) ∈M2. We introduce the operator A on M2:
{

D(A)
def
= {(ψ0, ψ1) ∈M2 : ψ1 ∈W 1,2(−T, 0; R), ψ0 = ψ1(0)}

A : D(A) →M2, A(ψ0, ψ1)
def
= (0, d

dsψ
1)

Abusing of notation it is also possible to confuse, on D(A), ψ1(0) with ψ0 and redefine

B : D(A) → R, B(ψ(0), ψ) = Bψ = ψ(0) − ψ(−T ) ∈ R

Notation II.2.1. We will indicate with F the application

F : L2([−T, 0); R) → L2([−T, 0); R), F (z)(s)
def
= −z(−T − s) (21)

and with R the application

R : L2([−T, 0); R) → R, R : z 7→

∫ 0

−T
z(s)ds.

Definition II.2.2. Given initial data (k0, ῑ) we set for simplicity y = (k0, F (ῑ)) ∈ M2

(that will be the initial datum in the Hilbert setting). Given ῑ ∈ L2([−T, 0); R+), i ∈
L2

loc([0,+∞); R+), k0 ∈ R and kk0,ῑ,i(t) as in (20) we define the structural state12 of the

system the couple xy,i(t) = (x0
y,i(t), x

1
y,i(t))

def
= (kk0,ῑ,i(t), F (̃ıt)). In view of what we have

said x0
y,i(t) ∈ R and x1

y,i(t) ∈ L2([−T, 0); R) and so xy,i(t) ∈M2.

Remark II.2.3 (On the structural state). The structural state, also called Vinter-
Kwong state, is useful in a very general setting, for example when k′(t) also depends
on “the history” of k and on a measurable f(t). In every problem the structural state
appears in a different form but it is always a new couple (y0, y1) (obtained by original
state and control variables using the so call “structural operator”) that is solution of a
simpler equation in M2 (see Delfour [28] or Vinter and Kwong [64] for details). Here we
have used the notations of Bensoussan, Da Prato, Delfour, Mitter ([13] page. 234). From
now on (in this section) we will use the structural state to describe the state of the system.

Theorem II.2.4. Assume that ῑ ∈ L2([−T, 0); R+), i ∈ L2
loc([0,+∞); R+), k0 ∈ R

y = (k0, F (ῑ)), then, for every T > 0, the structural state xy,i(t) = (x0
y,i(t), x

1
y,i(t)) =

(kk0,ῑ,i(t), F (̃ıt)) is the unique solution in

Π
def
=

{

f ∈ C(0, T ;M2) :
d

dt
j∗f ∈ L2(0, T ;D(A)′)

}

(22)

to the equation:

d

dt
j∗x(t) = A∗x(t) +B∗i(t), t > 0, x(0) = y = (k0, F (ῑ)) (23)

where j∗, A∗ and B∗ are the dual maps of the continuous linear operators13 j : D(A) →֒
M2, A : D(A) →M2, B : D(A) → R.

12See [13] and [64]. There are also alternative ways of defining the state; they can be found in [13] and
[47].

13Here j is simply the embedding, D(A) is equipped with the graph norm and D(A)′ is the topological
dual of D(A).
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Proof. This is part of a more general theory. The proof can be found in Bensoussan, Da
Prato, Delfour, Mitter ([13] Theorem 5.1 page. 258)

Remark II.2.5 (On the adjoint of the operators A and B). A∗ is the adjoint of
the linear operator A and so it is linear and continuous from M2 to D(A)′ = L(D(A),R).
The explicit expression of A∗(ψ0, ψ1) for the couples in which ψ1 is differentiable is

A∗(ψ0, ψ1)[(ϕ0, ϕ1)] = ψ1(0)ϕ1(0) − ψ1(−T )ϕ1(−T ) −

∫ 0

−T

d

ds
ψ1(s)ϕ1(s)ds

for all (ϕ0, ϕ1) ∈ D(A). Endowing D(A) with the graph norm we get that A∗ is continuous
and can be extended on all M2 by density. The expression for B∗ is simpler: B∗ : R →
D(A)′ is defined as B∗i = i(δ0 − δ−T ) where δ0 and δ−T are the Dirac deltas in 0 and −T
respectively and they are elements of D(A)′. Note that the treatment of the our optimal
control problem would be easier if the operator A∗ would generate an analytic semigroup
and if B∗ would be bounded. This is not the case so the problem is more difficult since
the known infinite dimensional theory (see e.g. [5]) cannot be applied.

Remark II.2.6 (Another choice of the state variables). The state we used is not
the only one introduced in the literature to give an infinite dimensional description of
Delay Differential Equations. It is, for example, also possible to use an extended state

x̃
def
= (k(t), kt, it) in M2 × L2. The space is bigger but the state is more intuitive. See

Ichikawa [47], and Bensoussan, Da Prato, Delfour, Mitter ([13] chapter 4) for details.

We want to formulate an optimal control problem in infinite dimensions that, thanks
to results of the previous section, “contains” the problem P. To do this we need first the
following result that extends the existence and uniqueness results of the previous Theorem
II.2.4.

Theorem II.2.7. The equation d
dtj

∗x(t) = A∗x(t)+B∗i(t) for t > 0 with initial condition
x(0) = y for y ∈M2, i ∈ L2

loc([0,+∞); R) has a unique solution in Π (defined in (22)).

Proof. The proof can be found in Bensoussan, Da Prato, Delfour, Mitter ([13] Theorem
5.1 page. 258).

Now we can formulate our optimal control problem in infinite dimensions. The state
space is M2, the control space is R, the time is continuous. The state equation in M2 is
given by

d

dt
j∗x(t) = A∗x(t) +B∗i(t), t > 0, x(0) = y (24)

for y ∈M2, i ∈ L2
loc([0,+∞); R). Thanks to Theorem II.2.7 it has a unique solution xy,i(t)

in Π (it extends the structural state defined in Definition II.2.2 only for positive initial
data and control), so t 7→ x0

y,i(t) is continuous and it makes sense to consider the set of
controls

Iy
def
= {i ∈ L2

loc([0,+∞); R+) : i(t) ∈ [0, ax0
y,i(t)] for a.e. t ∈ R

+}

The objective functional is J0(y; i(·))
def
=
∫∞

0 e−ρs (ax0
y,i(t)−i(t))1−σ

(1−σ) ds. The value function is

then V0(y)
def
= supi∈Iy

J0(y; i(·)) if Iy 6= ∅ and V0(y)
def
= −∞ if Iy = ∅.
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Remark II.2.8 (Connection with the starting problem). If we have, for some ῑ(·) ∈
L2([−T, 0); R+), y =

(

R(ῑ), F (ῑ)
)

, we find Iy = Iῑ, J0(y; i) = J(ῑ; i) and V0(y) = V (ῑ)
and the solution of the differential equation (24) is given by Theorem II.2.4.

II.2.2 The HJB equation and its explicit solution

We now describe the Hamiltonians of the system. First of all we introduce the current
value Hamiltonian: it will be defined on a subset E of M2 ×M2 ×R (the product of state
space, co-state space and control space) given by14

E
def
= {(x, P, i) ∈M2 ×M2 × R : x0 > 0, i ∈ [0, ax0], P ∈ D(A)}

and its form is the following: (note that 〈i, BP 〉R is simply the product on R):

HCV (x, P, i)
def
= 〈x,AP 〉M2 + 〈i, BP 〉R +

(ax0 − i)1−σ

(1 − σ)

When σ > 1 the above is not defined in the points in which ax0 = i. In such points we
set then HCV = −∞. Note that in this way we take HCV with values in R.

We can now define the maximum value Hamiltonian (that we will simply call Hamil-

tonian) of the system. Let G
def
= {(x, P ) ∈ M2 × M2 : x0 > 0, P ∈ D(A)}. The

Hamiltonian is given by:

H : G→ R, H : (x, P ) 7→ sup
i∈[0,ax0]

HCV (x, P, i)

The HJB equation for the value function V is ρV (x) −H(x,DV (x)) = 0 i.e.

ρV (x) − sup
i∈[0,ax0]

{

〈x,ADV (x)〉M2 + 〈i, BDV (x)〉R +
(ax0 − i)1−σ

(1 − σ)

}

= 0 (25)

As we have already noted the HJB equation (25) cannot be treated with the results
of the existing literature. This is due to the presence of the state/control constraint
(i.e. the investments that are possible at time t ≥ 0 depend on k at the same time t:
i(t) ∈ [0, ak(t)]), to the unboundedness of the control operator (i.e. the term BDV (x0, x1))
and the non-analyticity of the semigroup generated by the operator A∗. To overcome these
difficulties we have to give a suitable definition of solution. We will require the following:

(i) the solution of the HJB equation (25) is defined on a open set Ω of M2 and is C1

on such a set;

(ii) on a subset Ω1 ⊆ Ω, closed in Ω where the trajectories interesting from the economic
point of view must remain, the solution has differential in D(A) (on D(A) also the
Dirac δ and so B make sense);

(iii) the solution satisfies (25) on Ω1.

Definition II.2.9. Let Ω be an open set of M2 and Ω1 ⊆ Ω a subset closed in Ω. An
application g ∈ C1(Ω; R) is a solution of the HJB equation (25) on Ω1 if ∀x ∈ Ω1

(x,Dg(x)) ∈ G, and ρg(x) −H
(

x,Dg(x)
)

= 0.

14recall that an element x ∈ M2 is done by two components: x0 and x1, so x = (x0, x1).
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Remark II.2.10 (On the form of the Hamiltonian). If P ∈ D(A) and (BP )−1/σ ∈
(0, ax0], by elementary arguments, the function HCV (x, P, ·) : [0, ax0] → R admits a unique
maximum point given by

iMAX = ax0 − (BP )−1/σ ∈ [0, ax0) (26)

and then we can write the Hamiltonian in a simplified form:

H((x0, x1), P ) = 〈(x0, x1), AP 〉M2 + ax0BP +
σ

1 − σ
(BP )

σ−1

σ (27)

We will use (26) to write the solution of the problem (P) in closed-loop form.

We can now give an explicit solution of the HJB equation. First define, for x ∈ M2, the
quantity

Γ0(x)
def
= x0 +

∫ 0

−T
eξsx1(s)ds (28)

and then define the set X ⊂M2 (which will be the Ω of the Definition II.2.9) as

X
def
=

{

x = (x0, x1) ∈M2 : x0 > 0, Γ0(x) > 0

}

Finally
(

calling α =
ρ− ξ(1 − σ)

σξ

)

we define the set Y ⊆ X (which will be the Ω1 of the

Definition II.2.9) as

Y
def
=

{

x = (x0, x1) ∈ X : Γ0(x) ≤
1

α
x0

}

(29)

It is easy to see that X is an open subset of M2 while Y is closed in X. We are now ready
to present an explicit solution of the HJB equation (25) which, in next subsection, will be
proved to be the value function under an additional assumption.

Proposition II.2.11. Under the Hypotheses II.1.5 and II.1.9 the function

v : X → R, v(x)
def
= ν[Γ0(x)]

1−σ (30)

with ν =

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)−σ 1

(1 − σ)
·
a

ξ

is differentiable in all x ∈ X and is a solution of the HJB equation (25) on Y in the sense
of Definition II.2.9.

The reason why we expect that the value function (and so the solution of the HJB
equation) is of the form of v above comes from the following considerations:

• that the value function must be (1 − σ) homogeneous in the state variable (the
“capital” in some sense) due to the structure of the problem;

• that the term Γ0(x) inside the power (1 − σ) must be connected linearly with the
amount of capital.
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Both the above arguments rely on the similarities between the model studied in this paper
and the standard AK model with zero depreciation rate of capital (where there are no
corner solutions). See Appendix A.

What is more difficult to guess and to interpret is the form and the meaning of the
quantity Γ0(x): in Subsection III.1.2 we will give a possible interpretation of Γ0(x) as
“equivalent capital”.

Moreover the choice of Y comes from the need of avoiding corner solutions. Indeed we
know that in the standard AK model, in presence of corner solutions, the value function
is different (see Appendix A). The same would happen here. To prove that v is the value
function in next subsection we will need to prove that the closed loop strategies coming
from v are admissible and this will be true assuming another restriction on the parameters
of the model. This is a key point to solve the theoretical problem of [18] mentioned at
point (II) of the Introduction and in Section III.2.

II.2.3 Closed loop in infinite dimensions

We begin with some definitions.

Definition II.2.12. Given y ∈ M2 we will call φ ∈ C(M2) an admissible closed loop
strategy related to the initial point y if the equation.

d

dt
j∗x(t) = A∗x(t) +B∗(φ(x(t))), t > 0, x(0) = y

has an unique solution xφ(t) in Π and φ(xφ(·)) ∈ Iy. We will indicate the set of admissible
closed loop strategies related to y with AFSy.

Definition II.2.13. Given y ∈M2 we will call φ an optimal closed loop strategy related
to y if it is in AFSy and

V0(y) =

∫ +∞

0
e−ρt

(

ax0
φ(t) − φ(xφ(t))

)1−σ

(1 − σ)
dt.

We will indicate the set of optimal closed loop strategies related to y with OFSy.

We have a solution v of the HJB equation (25) only in a part of the state space (the set
Y ). To this solution is naturally associated a closed loop formula given by the maximum
point of the Hamiltonian (equation (26) where P is the gradient of v). The function v is
the value function and the associated closed loop strategies are optimal if and only if they
remain in Y 15. To guarantee this we have to impose another condition on the parameters
of the problem. As we will remark in Section III.2 such a hypothesis is reasonable from
an economic point of view as it substantially requires to rule out corner solutions.

Hypothesis II.2.14.
ρ− ξ(1 − σ)

σ
≤ a.

From now on we will assume that Hypotheses II.1.5, II.1.9, II.2.14 hold true.

15Indeed to get these results one also need that v verifies a limit condition at infinity (which may
be regarded as a kind of transversality condition) but this is ensured by the explicit form of v and by
Hypothesis II.1.9, see Remark II.3.7 on this.
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Theorem II.2.15. Given ῑ ∈ L2([−T, 0); R+) with and ῑ 6≡ 0, if we call y = (R(ῑ), F (ῑ)),
then the application

φ : M2 → R, φ(x)
def
= ax0 −

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)

Γ0(x) (31)

is in OFSy.

From the proof of Theorem II.2.4 we get the explicit expression for the value function
V0:

Corollary II.2.16. Given any ῑ ∈ L2([−T, 0); R+) and setting y = (R(ῑ), F (ῑ)) we have
that V (ῑ) = V0(y) = v(y) where v is given in Proposition II.2.11.

From Theorem II.2.15 it follows that the optimal control i∗ : R
+ → R is inW 1,2

loc (0,+∞; R+).

Moreover for every θ ∈ N we have i∗|(θT,+∞)(t) ∈W θ,2
loc (θT,+∞; R+).

II.3 Back to problem P

We now use the results we found in the infinite dimensional setting to solve the original
optimal control problem P.

II.3.1 The explicit form of the value function

First of all observe that, given any initial datum ῑ(·) ∈ L2([−T, 0); R+) and writing y =
(R(ῑ), F (ῑ)), the quantity Γ0(y) defined in (28) becomes

Γ(ῑ(·))
def
= Γ0 (R(ῑ), F (ῑ)) =

∫ 0

−T

(

1 − e−ξ(T+s)
)

ῑ(s)ds = k(0)−

∫ 0

−T
e−ξ(T+s) ῑ(s)ds (32)

A comment on the meaning of such a quantity is given in Subsection III.1.2. Now, as a
consequence of Corollary II.2.16 we have:

Proposition II.3.1. Under Hypotheses II.1.5, II.1.9, II.2.14, the explicit expression for
the value function V related to problem P is

V (ῑ(·)) = ν[Γ(ῑ(·))]1−σ = ν

(

k(0) −

∫ 0

−T
e−ξ(T+s) ῑ(s)ds

)1−σ

where ν =

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)−σ 1

(1 − σ)
·
a

ξ

II.3.2 Closed loop optimal strategies for problem P

We now use the closed loop in infinite dimension to write explicitly the closed loop formula
and the closed loop equation for problem P. First of all we recall that, given t ≥ 0,
ῑ(·) ∈ L2([−T, 0); R+) and i(·) ∈ Iῑ the “history” ı̃t(·) ∈ L2([−T, 0); R+) is defined as in
(17) and we can write

Γ(ı̃t(·)) =

∫ 0

−T

(

1 − e−ξ(T+s)
)

ı̃t(s)ds =

∫ t

t−T

(

1 − e−ξ(T+s)
)

ı̃(s)ds. (33)
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We use the ∗ for the optimal investment (and capital) so ı̃∗t (·) ∈ L2([−T, 0); R+) is the
history of the optimal investment.

Next we apply Theorem II.2.15 (in particular (31) and (65)) and (10) getting the
following result whose proof is immediate.

Proposition II.3.2. Under Hypotheses II.1.5, II.1.9, II.2.14, given an initial datum ῑ(·) ∈
L2([−T, 0); R+) in equation (9) the optimal investment strategy i∗(·) and the related capital
stock trajectory k∗(·) satisfy for all t ≥ 0:

i∗(t) = ak∗(t) −

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)

Γ(̃ı∗t (·)). (34)

so calling c∗(t) = ak∗(t) − i∗(t) we have

c∗(t) =

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)

Γ(̃ı∗t (·)). (35)

We now want to find a more useful closed loop formula.

Lemma II.3.3. Under Hypotheses II.1.5, II.1.9, II.2.14, given an initial datum ῑ(·) ∈
L2([−T, 0); R+) in equation (9), there exist constants Λ = Λ(ῑ(·)) > 0 , g ∈ R (g indepen-
dent of ῑ(·)) such that the optimal investment strategy i∗(·) for problem P and the related
capital stock trajectory k∗(·) satisfy for all t ≥ 0:

ak∗(t) − i∗(t) = Λegt (36)

(i.e. the optimal consumption path is of exponential type). Moreover

g =
ξ − ρ

σ
∈ [ξ − a, ξ) (37)

and

Λ =

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)

Γ(ῑ(·)) (38)

Using the above Lemma II.3.3 we can now write a more useful closed loop formula
with the associated closed loop equation.

Theorem II.3.4. Under Hypotheses II.1.5, II.1.9, II.2.14, given an initial datum ῑ(·) ∈
L2([−T, 0); R+) in equation (9), the optimal investment strategy for problem P i∗(·) is
connected with the related state trajectory k∗(·) by the following closed loop formula for all
t ≥ 0:

i∗(t) = ak∗(t) − Λegt (39)

where Λ = Λ(ῑ(·)) is given in (38).
Moreover the optimal investment strategy i∗(·) is the unique solution in W 1,2

loc ([0,+∞); R)
of the following integral equation:

ı̃∗(t) =a

∫ t

t−T
ı̃∗(s)ds− Λegt t ≥ 0, ı̃∗(s) = ῑ(s), for s ∈ [−T, 0). (40)

Finally the optimal capital stock trajectory k∗(·) is the only solution in W 1,2
loc (0,+∞; R+)

of the following integral equation:

k∗(t) =

∫ 0

(t−T )∧0
ῑ(s)ds+

∫ t

(t−T )∨0
[ak(s) − Λegs] ds, t ≥ 0. (41)
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II.3.3 Growth rates and asymptotic behavior

We have seen that along the optimal path the consumption is exponential. Nevertheless
the optimal investment and the capital stock have a more irregular behavior that depends
on initial data. We can anyway describe the asymptotic behavior of them. Calling c∗(t) =
ak∗(t) − i∗(t) = Λegt the optimal consumption path we have the following.

Proposition II.3.5. Under Hypotheses II.1.5, II.1.9, II.2.14, given an initial datum ῑ(·) ∈
L2([−T, 0); R+) in equation (9), defining, for t ≥ 0, the optimal detrended paths as:

kg(t)
def
= e−gtk∗(t), ig(t)

def
= e−gti∗(t), cg(t)

def
= e−gtc∗(t)

we have that the optimal detrended consumption path cg(t) =
(

akg(t) − ig(t)
)

is constant
and equal to Λ. Moreover there exist positive constants iB and kB such that

lim
t→+∞

ig(t) = iB and lim
t→+∞

kg(t) = kB.

We have, when g 6= 0, iB = Λ
a
g
(1−e−gT )−1

> 0 and kB = 1−e−gT

g · iB = Λ
a− g

1−e−gT
> 0, while,

when g = 0, iB = Λ
aT−1 > 0 and kB = T · iB = ΛT

aT−1 > 0.

Remark II.3.6 (On the costate variable in our setting). In the DP approach the
costate is (under suitable assumptions) the gradient of the value function along optimal
trajectories. In our work we treat the problem in an infinite dimensional setting so the
costate is a function of t with infinite dimensional values, more precisely its value at each
time t is an element of M2 that we call λ0(t). It has two parts: λ0

0(t) which is a real
number and λ1

0(t) which is a function for each t: the history of λ0
0(t) as introduced in

Subsection II.2.1.
Which is the relation between such a costate and the “standard” costate introduced

in [18], equations (13) and (14)) that we call it simply λ and is a real valued function?
From the definition given in [18] and from the results we have proven it can be seen

(see also Proposition 11 and equation (27) of [18]) that along optimal trajectories

λ(t) = e−ξt ·
acg(t)

−σ

σg + ρ

On the other side λ0(t) = ∇V0(R(i∗t ), F (i∗t )) and from the explicit form of V0 given in (30)
we find that (see the proof of Proposition II.2.11) λ0

0(t) = λ(t), so λ1
0 is the history of λ.

Remark II.3.7 (On the transversality condition). In the necessary and sufficient
conditions proved in [18] the following transversality condition arises limt→∞ λ(t)k(t) = 0.
This condition is verified along optimal trajectories we have found. Indeed, as observed
in Proposition II.3.5 and Remark II.3.6, λ(t) = O(e−ξt) and k(t) = O(egt).

The transversality conditions play a key role when one approaches an infinite horizon
optimal control problem with the MP: they help to select the right trajectory in the state
- costate diagram. In our DP approach, apparently, they do not play any active role. This
not true: in general the HJB equation does not have a unique solution. When a solution
(like our v) of the HJB equation is given one wants to prove a result like Theorem II.2.15
(and the consequent Corollary II.2.16) stating that v is the value function and that the
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closed loop strategies associated to v (taking the maximum point of the Hamiltonian) are
optimal. To accomplish this proof one has to add a “boundary condition” which, in the
infinite horizon case, is a limit condition for t → +∞. In our case it is (x(t) is the closed
loop trajectory)

lim
t→+∞

e−ρtv(x(t)) = 0 (42)

as it results from the proof of Theorem II.2.15, formula (71). Without this condition
optimality of closed loop strategies cannot be proved and indeed v may not be the value
function. We may say that (42) is a kind of transversality condition (see e.g. [58] Propo-
sition 2 and 3 for a study of it in the discrete time case): since it is automatically verified
for the explicit solution v of the HJB equation we do not need to impose it, so in our case
the role of the transversality conditions is hidden. When we have not explicit solutions,
(42) has to be imposed (see Section IV.2 on this). On the connection between the value
function and transversality conditions one can see e.g. [58] in the discrete time case and
[14, 57] in the continuous time case.

We now look at the existence of Balanced Growth Paths (BGP).

Definition II.3.8. We will say that an optimal couple for problem P (k∗, i∗) is a Balanced
Growth Path (BGP) if there exist a0, b0 > 0, and real numbers a1, b1 such that

ı̃∗(s) = a0e
a1s for s ∈ [−T,+∞) k∗(s) = b0e

b1sfor s ∈ [0,+∞).

Proposition II.3.9. Under Hypotheses II.1.5, II.1.9, II.2.14, the only BGPs of the model
are the trajectories of the form

ı̃∗(s) = a0e
gs, for s ∈ [−T,+∞); k∗(s) = b0e

gs, for s ∈ [0,+∞); (43)

where b0 = k(0) and a0 and b0 are connected by the relation:

b0 = a0

∫ 0

−T
egsds =

a0

g

(

1 − e−gT
)

(44)

Proof. We give only a sketch of the proof avoiding standard calculations.
We know that the optimal discounted investment follows the DDE (80). If we substitute

inside such a relation the generic solution a0e
(a1−g)s we find that a1 = g. So the only

possible BGPs are the ones described in (43).
We substitute then the solution a0e

gt in (40) and we find that the solution of the form
(43) are optimal.

Note that in [18], Subsections 4.2, 4.3 it is proved that detrended consumption is
constant over time and that balanced growth path are of the form given in Proposition
II.3.9. In particular equation (44) is the analogous of equation (19) in [18]. Here we
calculate explicitly the constant Λ.

Part III

Application to the Vintage Capital Model

We now discuss the results of Sections II.1, II.2 and II.3 comparing them with the ones of
[18], emphasizing the novelties and their economic implications. We proceed by discussing
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in detail the three methodological points (I)− (II)− (III) raised in the Introduction. We
devote a section to each one of them.

III.1 The explicit form of the value function and its con-

sequences in the study of the optimal paths

In [18] it is shown that the detrended co-state path λ̂(t) := λ(t)eξt and the optimal
detrended consumption path cg(·) := e−gtc∗(t) are both constant (depending only on the
initial data) but none is said about the explicit expression of the constants. Moreover the
value function and its relation with the costate are not considered.

Here the value function is explicitly given (Proposition II.3.1) and using its closed
form, we explicitly calculate such constants16 i.e.

λ̂(t) ≡
a

ξ
Λ−σ and cg(t) ≡ Λ

where Λ is given by (38).
Moreover in [18] it is shown that the optimal detrended investment path ig(t) =

e−gti∗(t) and the optimal detrended capital path kg(t) = e−gtk∗(t) converge asymptot-
ically to a constant (respectively iB and kB) but nothing is said about their value.

Here, using (38) and the closed loop equations (40)-(41) for the optimal investment
and capital trajectories, we determine the explicit form of the constants iB and kB, given
in Proposition II.3.5. This way the dependence of the long run equilibrium on the initial
datum is explicitly calculated and a comparative statics can be easily performed.

In the following two subsections we discuss some implications of such explicit formulae.

III.1.1 The study of short run fluctuations.

The closed loop equations (40)-(41) for the optimal investment and capital cannot be
explicitly solved (apart from very special cases) but they turn out to be useful in studying
the qualitative properties of ig(·) and kg(·) and of their short run growth rates such as the
presence of oscillations and of short run deviations between saving rates and growth rates
(see [18], Subsection 5.1).

To see this we first make some remarks on the integral equation (40). From Proposition
II.3.5 and its proof we know that the optimal investment i∗(·) (that solves the DDE (40))
can be written as

i∗(t) = iBe
gt +

+∞
∑

j=1

eReλjt
[

i1j cos(Imλjt) + i2j sin(Imλjt)
]

where the λj is the sequence described in Proposition II.1.8 - (c) giving the complex and
non real roots of the characteristic equation ordered with decreasing real part. We have
Re(λj) < ξ − a ≤ g for each j and all λj ’s are simple roots. Moreover for each compact
interval I the number of λj ’s with real part in I is finite. Finally iB is known from

16To calculate the co-state λ̂(t) one has to observe that it is the gradient of the value function as in
Remark II.3.7.
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Proposition II.3.5 and, with the notation used in the proof of Proposition II.3.5, for j ∈ N

i1j = 2Re

(

αjΛg

g − λj
+ αja(Γj − Λ)

)

, i2j = −2Im

(

αjΛg

g − λj
+ αja(Γj − Λ)

)

,

can be calculated from the initial datum ῑ, the characteristic roots {λj}j∈N and the coef-
ficients {αj}j∈N. The λj ’s and the αj ’s can be calculated at least in numerical way (see
for example [33], chapters IV and VI).

So we have a main part given by iBe
gt, that determines the asymptotic behavior, and

a rest, that gives the short run fluctuations, given by the series. To get a first order
approximation of the fluctuations in the long run it is enough to take only the term with
Re(λ1).

When the initial datum ῑ is on the steady state ῑ0 no fluctuation arise so i1j = i2j = 0

for each j. Otherwise the size of the coefficients i1j , i
2
j will depend on the deviation from

the steady state, ῑ− ῑ0, through the terms Λ and Γj .
Using equation (41) (or (10)) we can moreover approximate the short run fluctuations

of the optimal capital

k∗(t) = kBe
gt +

+∞
∑

j=1

eReλjt
[

k1
j cos(Imλjt) + k2

j sin(Imλjt)
]

.

The term kB is known while k1
j , k

2
j (as i1j , i

2
j ) can be calculated from ῑ, λj and αj . Using

the above formulae we can also study the behavior of the output and investment rate

(y∗(·)′

y∗(·) = k∗(·)′

k∗(·) and i∗(·)′

i∗(·) ) in particular through the study of its first order approximation.
Finally the above formulae can be a good basis for an empirical testing of the model.

III.1.2 The “equivalent capital” and the convergence to the standard

AK model.

We compare the model treated in this paper with the standard one dimensional AK model
with zero depreciation rate of capital. The value function is given by the formula

V (ῑ(·)) = ν[Γ(ῑ(·))]1−σ (45)

where Γ(ῑ(·))
def
=

∫ 0

−T

(

1 − e−ξ(T+s)
)

ῑ(s)ds= k(0) −

∫ 0

−T
e−ξ(T+s) ῑ(s)ds (46)

and ν =

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)−σ 1

(1 − σ)
·
a

ξ
(47)

The quantity Γ(ῑ(·)) is the initial amount of capital k(0) minus a weighted integral of
the initial investment profile ῑ(·). The weight for ῑ(s), s ∈ [−T, 0), is e−ξ(T+s), a term
which is the discount, at rate −ξ, in the period from 0 to the corresponding scrapping
time T + s.

We try to interpret it in a simplified case. Take a discrete time model (or a continuous
time model with possibly atomic investments and discontinuous capital) where the past
investments are all concentrated at t = 0. Then k(0) = ῑ(0) and (46) would be simply

Γ(ῑ(·)) =
(

1 − e−ξT
)

k(0). Observe that in this case a
ξ Γ(ῑ(·)) = a

∫ T
0 e−ξr k(0)dr. The

right hand side may be interpreted as the present value (at time t = 0 of the production
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flow generated by the capital k(0) discounted at rate ξ17. Such present value will go to
k(0) as T → +∞. In this context when the capital is infinitely durable its present value
is set equal to itself, so the quantity a

ξ Γ may be seen as the initial equivalent amount of
infinitely durable capital. For T < +∞ such a quantity is strictly less than the capital
(except for the degenerate case ῑ ≡ 0). When T → +∞, such an amount tends to the
initial capital k(0).

If we take t > 0, the quantity Γ(ı̃t(·)) (recall that ı̃t(·) is the history of investments at
time t, see (17)) is the “equivalent capital” at time t. The feedback formula (35) shows
that the consumption is chosen by taking a constant share of Γ(ı̃t(·)). Moreover Lemma
II.3.3, together with formula (35) shows that Γ(ı̃t(·)) grows at constant rate g.

In view of this we may say that the key variable of the model is the “equivalent capital”
which has a constant growth rate g due to the AK nature of the model. The consumption
path is simply a constant share of the “equivalent capital” while the investment fluctuates
to keep it growing at such a constant rate. So when T < +∞ the “equivalent capital”
plays the role of the capital in the standard AK model.

The standard one dimensional AK model with zero depreciation rate of capital can be
seen as the limit case of the model treated here when T = +∞. Indeed in such standard
AK model the value function V0 depends on k(0) and is

V0(k(0)) = ν0[k(0)]1−σ (48)

where ν0 =

(

ρ− a(1 − σ)

σ

)−σ 1

(1 − σ)
(49)

Since ξ → a as T → +∞ then we clearly have, for every initial datum ῑ(·), limT→+∞ V (ῑ(·)) =
V0(k(0)). Similarly, as T → +∞ we have (calling gAK the growth rate of the optimal paths
in the standard AK model with zero depreciation rate of capital),

Λ(ῑ(·)) →
ρ− a(1 − σ)

σ
k(0), g =

ξ − ρ

σ
→

a− ρ

σ
= gAK ,

so the optimal consumption path converges uniformly on compact sets to the one of the
standard AK model. Consequently the closed loop formula (39) converges and passing to
the limit in equations (40)-(41) we get the same convergence for the optimal investment
and capital paths.

It is worth to remark that we are comparing the model treated here with an AK model
with zero depreciation rate of capital because is not easy task to connect a vintage capital
model to a model with constant and positive depreciation rate of capital.

III.2 The problem of admissibility of the candidate opti-

mal paths

In [18] it is not proved that the candidate optimal trajectory of capital and investment is
admissible (see the discussion in Subsection 4.3, p. 60 of [18]) leaving an unsolved gap in
the analysis of the model.

Here we can prove that such a candidate optimal trajectory is admissible. Indeed,
using the closed loop form given by (34) and the Hypothesis II.2.14 (i.e. (ρ−ξ(1−σ))

σ ≤ a)

17The reason why the discount rate is ξ is the fact that it is the maximum rate of reproduction of capital.
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we see, in the proof of Theorem II.2.15, that the optimal investment i∗(t) remains in the
interval (0, ak(t)) for all t ≥ 0.

The emergence of this theoretical problem comes from the strategy used in [18] (and
in much of the literature on continuous time endogenous growth models) to attack the
problem: first consider the problem without taking account of the “difficult” state-control
constraint (3) focusing on interior solutions ([18], p.54) and then check afterwards if the
optimal paths for the simplified problem also satisfy (3). Of course this may not be true,
or, even if it is true as in this case, it may be very hard to check.

In our approach we always take account of (3) and then it cannot happen that we find
a non-admissible candidate optimal trajectory. We also focus on interior solutions but we
provide an if and only if condition on parameters (Hypothesis II.2.14) for the existence of
interior solutions. This can be done explicitly since we know the explicit form of the value
function.

To understand better this point one can consider the standard AK model with zero
depreciation rate of capital where one adds the constraint i(t) ≥ 0 for t ≥ 0. In this case
interior solutions arise if and only if gAK = σ−1(a − ρ) > 0 (i.e. the economy grows at
a strictly positive rate on the optimal paths). If this is not the case then the optimal
investment path is constantly 0, so also the capital and the consumption are constant.

In the model of this paper interior solutions arise for every nonzero initial datum ῑ(·)
if and only if g ≥ ξ − a18 which is exactly (Hypothesis II.2.14) and reduces to gAK ≥ 019

when T → +∞. Differently from the standard AK model here when Hypothesis II.2.14
does not hold we do not have constant optimal paths: this depends on the shape of the
initial investments profile ῑ.

III.3 The assumptions on the parameters

In this paper we work under more general and sharper assumptions on the parameters
that include cases which are interesting from the economic point of view. Indeed the
hypotheses in [18] are:

(H1) aT > 1 ; (H2) ρ > (1 − σ)a ; (H3)
ρ− ξ

σ
< 0 .

The first (H1) is the same of Hypothesis II.1.5.
The second (H2) is strictly stronger than Hypothesis II.1.9 because ξ < a. This means

that we can prove the existence and characterize the form of the optimal trajectories in
a more general case. Moreover, in the standard AK model with zero depreciation rate of
capital, (H2) is an if and only if conditions for the finiteness of the value function and
the existence of optimal paths (see Appendix A, formula (52)). Our Hypothesis II.1.9
has “substantially” the same meaning for the AK vintage model. Indeed the maximum
rate of growth of capital is a in the standard AK model and ξ in the vintage one and it
may be proved that the value function is somewhere infinite when Hypothesis II.1.9 is not
satisfied. Note also that the range of existence for the parameter ρ is greater that in the
standard AK-model (see assumption (52) of Appendix A) and in the limit for T → +∞

18One may expect that interior solutions arise when a strict inequality is satisfied. This is not the case
here, as it comes from the proof of Theorem II.2.15.

19This is not the same of gAK > 0 that guarantees interior solutions. This comes from the passage to
the limit as T → +∞.
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the Hypothesis II.1.9 tends to ρ− a(1−σ) > 0 that the condition for the one dimensional
case.

Concerning assumption (H3) we also see that it is strictly stronger than Hypothesis
II.2.14: we can re-write (H3) as g > 0 while Hypothesis II.2.14 is g ≥ ξ−a so our results also
cover cases where negative growth rates arise. Since investments always remain positive
the occurrence of strictly negative long run growth rates in the AK vintage capital model
increases the number of cases where deviation between growth and investment rates can
arise (see [18] for a discussion on this).

It must also be noted that the assumptions (H2) and (H3) are not compatible for
certain values of σ. Indeed (H2) means ρ > (1 − σ)a while (H3) means ρ < ξ. So, when
ξ ≤ a(1 − σ), i.e. when σ ≤ e−ξT , (H2) and (H3) are not satisfied together. This means
that the results of [18] do not cover cases with small σ.

III.4 Numerical results

The results obtained in previous sections allow also to improve the numerical study of the
properties of the model. We consider in the whole subsection the set of parameters chosen
in [18] page 61: a = 0.30, σ = 8, ρ = 0.06.

The vintage capital model has a wider flexibility with respect to the standard AK
model, indeed we can choose the scrapping time T and we can vary the profile of the
initial datum ῑ(·) also maintaining the same initial stock of capital k0 =

∫ 0
−T ῑ(s)ds. Here

Figure 1: The value of g varying T

we are interested in studying how these new degrees of freedom influence the evolution
of the system, namely we will look at how the asymptotic growth rate g varies with the
scrapping time T 20 and how the long run levels of the detrended variables kB, iB and cB
are influenced by T and by the profile of the initial datum ῑ keeping the same initial initial
capital k(0). Note that the dependence of the long run dynamics on the initial profile is
a characteristic of the endogenous growth model we are studying but it is not common
to all the vintage capital literature. For example in the exogenous model of Benhabib
and Rustichini [12] (in the case of linear utility) the long run dynamics of examples 1, 2
and 3 does not depend on the initial profile, while in example 4-7 and in the non-linear

20Recall that, as in the standard AK model, g does not depend on the initial profile ῑ(·). See the works
by Kocherlakota and Yi [51, 52] for an analysis of the dependence of the growth rates on the initial profile
for non-vintage capital models.
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utility case such a dependence is not studied. Moreover such a dependence does not arise
in the Solow vintage capital model [62] and is only touched by Boucekkine, Germain and
Licandro in [17]. In our case the results of Subsection II.3.3 allow to find precise results.
Asymptotic growth rate varying T : In Figure 1 we show the relation between the
asymptotic growth rate g and the scrapping time T . The quite high value of the σ gives
a small elasticity of the g w.r.t. T .
Long-run levels of detrended variables varying the initial profile: Now we con-
sider the dependence of the long run levels of the detrended variables on the initial profile.
We fix T = 15 as in [18]. To underline the importance of the distribution of the initial
capital and not of its total amount we consider different initial profiles with same initial
total stock of capital (equal to 1): we consider initial profiles equal to ῑTη (·) where

ῑTη : [−T, 0] → R, ῑTη : s 7→
eηs

(

1
η (1 − e−ηT )

) .

This for example is the initial profile of the system if it evolved along a BGP (with growth

Figure 2: Graph of
kη

B−kg
B

kg
B

varying η

rate equal to η) until time 0. If g = η the system continue to follow the BGP-dynamics,
otherwise the dynamics is more complex. This second kind of situation happens, for
example, when we start from an equilibrium path and we have at time 0 a technological
shock21. In Figure 2 we see how the asymptotic discounted variable kB changes varying

η, in particular we represent
kη

B−kg
B

kg
B

. Note that, since the ratio iB/kB (and cB/kB) does

not depend on the initial datum the graphs for the variables iB and cB are the same.
We see that small variations in the distribution of the initial capital are significant in
the asymptotic discounted capital, for example taking, as in [18], η = 0.0282 (that is

g − 0.14%): we find22 kη
B−kg

B

kg
B

= −0.15%.

The dynamics of kη
B with η is far to be linear: we represented the limit case η → ∞

(when all the capital is new, with age 0) and we find that
k∞

B −kg
B

kg
B

= +22.74%. On the

other side if we compute the limit for η → −∞ (when all the capital has age T ) all the
asymptotic variables tend, as we expect, to zero.

21The introduction of technological shocks (see [51] and [52]) can allow to AK model being consistent
with convergence.

22We called k
η
B the asymptotic detrended capital when the initial datum is ῑT

η and the same for g.
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kB varying η and T : Last we analyze how kB depends on η and on T . More precisely
we see how the graph of Figure 2 changes with T (see Figure 3)23. For the three cases

Figure 3: Graph of
kη

B−kg
B

kg
B

varying η and T

T = 5, T = 10 and T = 15 we take the initial profiles ῑTη (·) described above. We see
that the elasticity decreases when T become relatively small, in other words the initial
condition have less influence on lung run levels. On the other hand we have already seen
that for T → ∞ the model tends to the one-dimensional AK-growth model, where the age
of capital does not influence the behavior of the system. So we expect that the elasticity
of kB decreases also for high values of T . For our choice of a, ρ and σ the elasticity is
maximal around T = 20.

Part IV

Applications to other models

We discuss here the possible extension of the ideas of the present work to other models:
first when an explicit form of the value function can be found, second when this does not
happen.

IV.1 DP when explicit solution can be found

If a model is formulated as an optimal contro problem with an optimal control problem
with a linear DDE as state equation and an intertemporal CES or linear utility function,
our technique can be applied, but the application is not strightforward at all. Indeed
one has to re-prove various results like the conditions needed for the convergence of the
utility integral, the admissibility of the optimal feedback and the behaviour of the optimal
paths that are difficult and strongly dependent on the set-up of the model (espcially the
constraints). The family of problems that can be solved using our techniques covers models
already existing in literature including for example the time-to-build model studied in [4]
and [2], the model for technological progress, obsolescence and depreciation presented in
[16], some of the cases of the model presented in [12]. Moreover, such an approach can

23Note that g depends on T as in Figure 1.
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be used to find explicit solutions of HJB equations in infinite-dimensional problems non
related with DDEs as some cases of the model presented in [39].

IV.2 DP approach when explicit solution is not available

When the solution of the HJB cannot be found the DP method can still be applied and
some insights on the model can be obtained, usually with more technical difficulties. What
can be said and the amount of difficulties strongly depend on the structure of the problem
under study.

To clarify this point we consider two variants of the model studied in the paper.

Consider first the model studied in this paper where we take a generic utility u(c)

instead of u(c) = c1−σ

1−σ . Assume u(·) has continuous second derivative and that u′ > 0,

u′′ < 0. In this case we cannot find an explicit solution of the HJB equation24; nevertheless
the problem can be treated by the DP approach. The HJB equation can be studied using
two approaches: the strong solutions approach (initiated by Barbu and Da Prato, see
e.g. [5], and applied to this case in [36]) or the viscosity solutions approach (initiated by
Crandall and Lions, see e.g. [23], and applied to this case in [35]).

With these methods we can prove (with a nontrivial amount of work) that the value
function is a solution (in a suitable weak sense that is clarified in such papers) of the HJB
equation, possibly unique when we enclose also the “boundary condition” (42) which is
indeed a transversality condition as pointed out in Remark II.3.7 . Moreover a verification
theorem can be proved that shows a closed loop relation in the same spirit of Proposition
II.3.2. Such relation depends on the gradient (or the superdifferential) of the value function
and so it cannot be transformed into an explicit form like in Theorem II.3.4. Nevertheless
many qualitative results can still be obtained.
We give a detailed description of what can be done. Concerning the results of Chapter
II.1:

• We can prove the results of Subsection II.1.1 and Lemma B.1 that do not depend
on the form of the instantaneous utility.

• Assuming some specifications on the behavior of u(c) for c → ∞ (for example u(·)
with growth of power (1 − σ) at infinity) we can find that, under conditions similar
to the one of Hypothesis II.1.5, the claim of Proposition II.1.10 holds. The same can
be done for Proposition II.1.11.

• If u′(0+) = +∞ is is possible to prove Proposition II.1.13.

• Existence of optimal solution can be proved for a quite general u(·).

The approach used in Section II.2 has to be changed in order to use one of the strong
solution or the viscosity solutions approach:

• Instead of explicit solution of the HJB equation we have a theorem that guarantee
that the value function V is a “weak” solution of the HJB equation (as in [36, 35])
included the transversality condition (42).

24Something could be done following the line of [50] but this is not known at the present stage.
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• The set Y is not defined explicitly but in terms of u(·).

• If the value function is proved to have a continuous derivative (it is not obvious but
the tools used in [37, 38, 5] can be exploited) the feedback can be given in terms of
V ′(·) and u(·).

• Proposition II.3.2 and Theorem II.3.4 can be formulated in implicit form obtaining
equation similar to (40) and (41) containing V ′(·) and u(·).

• We can not prove constant growth rate but it is possible to study qualitatively the
asymptotic behavior of i∗(·), k∗(·) and c∗(·) in terms of V ′(·) and u(·).
We show the idea to perform this study. Let z(·) be an optimal discounted variable
(for example i∗(·)) and suppose that we want to study the existence and the stability
of equilibrium points of z(·). We know by the analogous of Proposition II.3.2 and
Theorem II.3.4 that z(·) solves the closed loop equation. This is a DDE which can be
written, in the infinite dimensional notation (see Definition II.2.12) z′ = A∗z+B∗φ(z)
where φ(·) is the optimal feedback map. φ(·) now is not known explicitly but we can
write φ(z) = G(V ′(z)) where p 7→ G(p) is the function that gives the maximum point
of the current value Hamiltonian (which depends on u(·). So z0 is an equilibrium
point if and only if F (z0) = A∗z0 + B∗G(V ′(z0)) = 0. The existence of such an
equilibrium point can be proved using the properties of G and V . The properties of
G and V can also be used to study the stability of z0 that is for example guaranteed
if F ′(z0) < 0.

We consider now another variant of the model where the technology is not of AK
type but it is nonlinear. In this case the associated optimal control problem contains
a nonlinear term which makes it more difficult to study. Still the DP approach can be
used and, depending on the assumptions on the technology, some insights on the model
can be obtained. For example we can take the case where y(t) = f(k(t)) for a suitable
nonlinear map f increasing and concave. The state equation would be the same as (4) but
with the non linear constraint i(t) ∈ [0, f(k(t))]. In this case all is more difficult, but the
particular features of f (the monotonicity, the concavity and other sharper assumptions)
can be exploited to find results similar to the ones of Section II.1. The properties of f
can be also used in order to obtain an infinite dimensional formulation and to study the
HJB equation25 together with the transversality condition (42). Finally the existence of
optimal closed loop strategies and the asymptotic behavior of optimal trajectories can be
studied with the ideas depicted for the previous case.

Clearly this case is more difficult than the previous one and is less clear to which
extent the same results can be proved. In this case it is surely helpful to use also the
MP approach (or maybe the Euler equation via calculus of variation) and to see if the
integrated approach brings to deeper insights.

Conclusions and further research

In this paper the DP approach has been applied to study the AK model with vintage
capital proposed in [18] proving results not available, at the present stage, with other

25For example of the technique that can be used one can see [37, 38, 36] for the strong solution approach
and [24, 63, 48] for the viscosity solution approach.
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approaches.
This is a first step towards the treatment of other and possibly more complex models

that take into account e.g. endogenous scrapping times, exogenous fluctuations, markets
of old capital goods. We think that in these kind of models, as in the present one, the DP
can help to find the solutions and to analyze the core economic implications.

Another line of future research is to test the empirical implications of the model.

A Appendix: The standard AK-model with zero depreci-

ation rate of capital

In this appendix we briefly recall the setup of the classical linear growth model (named
AK-model with Rebelo [61]) with CRRA (Constant Relative Risk Aversion) utility function
and zero depreciation rate of capital. We show how to find the optimal paths with the
Dynamic Programming approach. This way the comparison with the AK vintage capital
model can be more clear for the reader. Another reason to write this appendix is the fact
that, in the classical literature, see e.g. the Barro and Sala-i-Martin’s book [9] this model
is treated with the maximum principle.

We call y(t) the output level at time t, which is a linear function of the stock of capital
k(t): y(t) = ak(t) for some positive constant a. c(t) and i(t) are the consumption and the
investment at time t and the system is subject to an accounting equation of the form

y(t) = i(t) + c(t).

The capital stock follows the state equation (here we use the consumption as control
variable, before we have chosen the investment, it is the same in view of the above relation)

{

k̇(t) = ak(t) − c(t),
k(0) = k0 > 0.

(50)

We want to maximize (over the set of locally integrable consumption paths) the intertem-
poral utility function given by

∫ ∞

0
e−ρs c(t)

1−σ

1 − σ
dt (51)

under the constraints c(t), k(t) ≥ 0 for all t ≥ 0. We assume

ρ− a(1 − σ) > 0 (52)

Note that hypothesis (52) is not only sufficient but also necessary to guarantee that the
finiteness of the value function and the existence of optimal strategies (see e.g. on this
[42]).

In order to compare in a proper way this standard AK model with the one treated in
the paper we analyze separately the case where investments can be negative and the case
where we impose positivity of them.

A1. The DP approach for possibly negative investments

Now we see how to perform the steps (i),..., (iv) of the Dynamic Programming approach
described in Section I.2 in this one dimensional case.
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Step (i): we write the HJB equation of the problem. It appears as

ρv(k) − sup
c≥0

(

v′(k) (ak − c) +
c1−σ

1 − σ

)

= 0.

Step (ii): we solve the HJB equation. It is easy to check that the function26

v(k) = νk1−σ (53)

with ν = 1
1−σ

(

ρ−a(1−σ)
σ

)−σ
is a solution of the HJB and it is also the value function of

the problem.
Step (iii): we use the value function to solve the optimal control problem in closed loop
form. We consider the closed loop relation given by































φ : R
+ → R

+

φ(k)
def
= arg max

c∈R+

(

v′(k) (ak − c) +
c1−σ

1 − σ

)

=

=
(

v′(k)
)−1/σ

=
ρ− a(1 − σ)

σ
· k.

Using a verification theorem it can be proved that the strategy given by such relation is
optimal.
Step (iv): We substitute c = φ(k) in the state equation:







k̇∗(t) = ak∗(t) − φ(k∗(t)) =

(

a− ρ

σ

)

k∗(t),

k∗(0) = k0.
(54)

So, calling gAK = a−ρ
σ the optimal capital and consumption path are:















k∗(t) = egAKtk0;

c∗(t) = φ(k∗(t)) =

(

ρ− a(1 − σ)

σ

)

egAKtk0.

and the investment is
i∗(t) = ak∗(t) − c∗(t) = gAKe

gAKtk0.

Note that we have positive growth rate gAK if and only if a ≥ ρ. Moreover the optimal
investment has always the same sign of the growth rate gAK .

A2. The DP approach for positive investments

We call this case the constrained case while the previous is the unconstrained one. When
a ≥ ρ the optimal path for the unconstrained case is admissible for the constrained case

26It is clear from the structure of the problem that the value function must be (1 − σ)-homogeneous;
then the constant ν is calculated substituting into the HJB equation.
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too, as i∗(·) is always positive. This does not happen when a < ρ. In such case the solution
of the HJB is different as the sup is done over c ∈ [0, ak] instead over c ≥ 0:

ρv(k) − sup
c∈[0,ak]

(

v′(k) (ak − c) +
c1−σ

1 − σ

)

= 0.

Arguing as in the unconstrained case one finds that the value function is v(k) = a
ρ (ak)−σ.

We perform the step (iii) and (iv). The optimal feedback map is φ(k) = ak so the optimal
paths are constant, i.e. for every t ≥ 0







k∗(t) = k0

c∗(t) = ak0

i∗(t) = 0

Remark A.1. We briefly point out the relations between the assumptions on the AK
vintage model and the standard one, recalling that the second is the limit of the first for
T → +∞ (see Sections III.2 and III.3 for comments).

The Hypothesis II.1.5 (i.e. aT > 1) means that strictly positive growth is possible and
in the one dimensional case reduces to ask a > 0.

The Hypothesis II.1.9 (i.e. ρ > (1−σ)ξ) is substantially an if and only if condition for
existence and is the analogous of (52) (indeed for T → ∞ they are the same).

The Hypothesis II.2.14 (i.e. ρ−ξ(1−σ)
σ ≤ a) guarantees that the optimal investment

strategy is not a corner solution. The analogous assumption in the standard AK model is
a > ρ.

B Appendix: Proofs

In this Appendix we present the main proofs.

Proof of Proposition II.1.3. The statement follows from the integral form of the DDE
(equation (10)). Indeed by the admissibility constraints (7) we have, for t ∈ [0, T ],

kῑ,i(t) =

∫ 0

t−T
ῑ(s)ds+

∫ t

0
i(s)ds ≤

∫ 0

t−T
ῑ(s)ds+

∫ t

0
akῑ,i(s)ds

while the function kM (·) satisfies, for t ∈ [0, T ], kM (t) =
∫ 0
t−T ῑ(s)ds+

∫ t
0 ak

M (s)ds. Given

these the inequality kῑ,i(t) ≤ kM (t) for t ∈ [0, T ], follows from a straightforward application
of the Gronwall inequality (see e.g. [46] page 6).

For t ∈ (T, 2T ] we have, arguing as above kῑ,i(t) =
∫ T
t−T i(s)ds+

∫ t
T i(s)ds ≤

∫ T
t−T akῑ,i(s)ds+

∫ t
T akῑ,i(s)ds, while the function kM (·) satisfies, for t ∈ (T, 2T ], kM (t) =

∫ T
t−T ak

M (s)ds+
∫ t
T ak

M (s)ds. Since from the first step we know that kῑ,i(t) ≤ kM (t) for t ∈ [0, T ] then we

have, calling g(t) =
∫ T
t−T ak

M (s)ds for t ∈ (T, 2T ]:

kῑ,i(t) ≤ g(t) +

∫ t

T
akῑ,i(s)ds and kM (t) = g(t) +

∫ t

T
akM (s)ds

and then the Gronwall inequality gives the claim for t ∈ (T, 2T ]. The claim for every t ≥ 0
follows by an induction argument on the same line of the above steps.
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Proof of Proposition II.1.6. First we observe that being ῑ(·) 6≡ 0, kM (t) is strictly pos-
itive for each t ≥ 0. To prove this it is enough to observe that, for t ≥ 0, kM (t) =
∫ 0
(t−T )∧0 ῑ(s)ds +

∫ t
(t−T )∨0 ak

M (s)ds and to argue by contradiction. Moreover, as we said

above, for t ≥ T , kM (t) = h(t) where h(·) the unique solution of (13). Now the solution
h(t) of (13) is continuous on [T,+∞) (see [13] page 207). Moreover (see [33] page 34)
there exist at most N < +∞ (complex) roots {λj}

N
j=1 of the characteristic equation with

real part exceeding ξ and there exist {pj}
N
j=1 C-valued polynomial such that

h(t) = o(e(ξ+ε)t) +
N
∑

j=1

pj(t)e
λjt for t→ +∞ (55)

for every ε > 0. Since kM (t) and so h(t) remain strictly positive for all t ≥ T , then all the
pj vanish. So we have proved the claim.

Proof of Proposition II.1.8. First of all we observe that z is a root of (14) if and only if
w = zT is a root of

w = aT − aTe−w. (56)

Then it is enough to apply Theorem 3.2 p. 312 and Theorem 3.12 p.315 of [33]. The only
statements which are not contained there are the fact that Reλk → −∞ as k → +∞ and
the inequality (16). To see the first observe that, from (56) it follows, calling µk = T ·Reλk

and νk = T · Imλk

aTe−µk sin νk = νk =⇒ e−µk >
νk

aT

and the claim is proved since νk → +∞ as k → +∞. The proof of inequality (16) uses
elementary arguments but it is a bit long so we give only a sketch of it. First of all by
(14) we get that, when aT > 1

ξ > a

(

1 −
1

(aT )2

)

(57)

while, for aT > 5

ξ > a

(

1 −
1

(aT )3

)

. (58)

Moreover using (56) we get that e−2µ1 − (a− µ1)
2 = ν2

1 > 4π2. Now the function h(µ) =
e−2µ − (a − µ)2 is strictly decreasing on (−∞, 0) and using (57) and (58) we get that
h(ξT − aT ) < 4π2. This gives µ1 < ξT − aT and so the claim.

Lemma B.1. Given any initial datum ῑ(·) ∈ L2([−T, 0); R+), ῑ(·) 6≡ 0 there exists an
ε > 0 and an admissible control strategy i(·) such that i(t) = ε for all t ≥ T . Moreover
there exists a δ > 0 such that the control defined by the feedback formula iδ(t) = akδ(t)− δ
for all t ≥ 0 is admissible and iδ(t) ≥ δ > 0 for all t ≥ 0.

Proof. The idea: We give a constructive proof in four steps. We first find a small α > 0

and a β < T such that the (constant) control i(t) = ε1
def
= aαβ

4 is admissible in the interval

(0, β
4 ); then we see that such a control can be lengthened defining, on the interval [β4 , T−

β
4 ),
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i(t) = ε2
def
= min{a2αβ2

32 , ε1}. Furthermore we prove that we can extend such a control on

[T − β
4 , T ) putting i(t) = ε

def
= min{aε2

2
T
4 , ε2}. Observe that in view of the “minima” in

the definitions of ε1, ε2, ε, the control is decreasing on [0, T ). Eventually (fourth step) we
see that on the interval [T,+∞) we can put our control constantly ε. The statement for
δ follows from this construction.

The proof: first step: In view of the fact that ῑ(·) 6≡ 0 we can choose a positive number
α such that

β
def
= m({s ∈ (−T, 0) s.t. ῑ(s) ≥ α} > 0

where m is the Lebesgue measure. So
∫ 0
t−T ῑ(s)ds ≥

αβ
2 for all t ∈ (0, β

2 ) and in particular

it is true for t ∈ (0, β
4 ). Now for t ∈ [0, β

4 ) we can put i(t) = ε1
def
= aαβ

4 > 0 obtaining that

a

∫ t

t−T
ı̃(s)ds ≥ a

∫ 0

−T+β
4

ῑ(s)ds ≥ aα
β

2
> aα

β

4
= i(t)

so the strategy is admissible on [0, β
4 ). Note that for such a choice of i(t) we have ak(t)−

i(t) ≥ aαβ
4 for t ∈ [0, β

4 ).

second step: Choosing i(·) in the interval [0, β
4 ) as in the first step, and for t ∈ [β

4 , T−
β
4 ),

i(t) = ε2
def
= min{a2αβ2

32 , ε1} > 0 (in view of the previous integral such a constant is in the

range of admissible control for all t in the interval) we have that for all t ∈ [β
4 , T − β

4 )

a

∫ t

t−T
ı̃(s)ds ≥ a

∫ t

0
i(s)ds ≥ a

β

4

aαβ

4
=
a2αβ2

16
> a2α

β2

32
≥ i(t)

so the strategy is admissible on [β
4 , T − β

4 ). Note that for such a choice of i(t) we have

ak(t) − i(t) ≥ aαβ2

32 for t ∈ [β
4 , T − β

4 ).

third step: In particular we have put i(t) = ε2 > 0 for t ∈ (T/2, T − β
4 ) and so,

with a step similar to the previous one, we can put i(t) = ε
def
= min{aε2

2
T
4 , ε2} > 0 for

t ∈ [T − β
4 , 0) and we have on such an interval ak(t) − i(t) ≥ ε2

2
T
4 .

fourth step: In view of the “minima” in the definition of ε1, ε2 and ε we have that
ε ≤ ε2 ≤ ε1 and that i(t) ≥ ε in the interval [0, T ). So, choosing i(t) = ε for all t ≥ T , we
get an admissible control, indeed ε > 0 and

a

∫ t

t−T
i(s)ds ≥ aTε > ε

(the last follows by (H1)), for all t ≥ T . We have that, on [T,∞), ak(t) − i(t) ≥ aT−1
2 ε.

The second statement, related to the δ constant, follows from the previous proof and
from the observation we have done during the proof with respect the term ak(t)− i(t). If
we consider the strategy of the previous proof we have that

ak(t) − i(t) ≥ δ
def
= min{ε,

aT − 1

2
ε}

and i(t) ≥ δ for all t ≥ 0. Now if we consider such a δ the strategy given by the feedback
formula iδ(t) = akδ(t) − δ satisfies the inequality iδ(t) > i(t) (where i(·) is the strategy
defined in first, second and third steps) for all t ≥ 0 arguing as in the proof of the first
statement of Proposition II.1.3. Then we get that iδ(t) ≥ i(t) ≥ δ for all t ≥ 0 so it is
admissible and the claim is proved.
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Proof of Proposition II.1.11. It is sufficient to take the control iδ(t) s.t. ak(t) − iδ(t) =
δ > 0 found in previous lemma.

Proof of Proposition II.1.12. The proof is a simple application of a direct method (see
also [18]. We will adapt the scheme of Askenazy and Le Van in [3] to our formulation.
We will indicate with µ the measure on R

+ given by dµ(t) = e(−ε−ξ)tdt where dt is the
Lebesgue measure and ε > 0 is fixed. By L1(0,+∞; R;µ), or simply L1(µ) we will denote
the space of all Lebesgue measurable functions that are integrable with respect to µ. We
consider Iῑ as subset of L1(µ). We know that on a space of finite measure µ a subset G of
L1(µ) is relatively (sequentially) compact for the weak topology if and only if: for every
ε > 0, there exists a δ > 0 such that for every set I with µ(I) < δ and for all f ∈ G we
have

∫

I f(x)dµ(x) < ε (this property is also known as Dunford - Pettis criterion see for
example [34] page 294 Corollary 11). In our case constraint (7), Proposition II.1.3 and
Proposition II.1.6 guarantee such a property for Iῑ. We choose now a maximizing sequence
in(·) ∈ Iῑ; thanks to the Dunford-Pettis criterion we can we can find a subsequence
inm(·) ∈ L1(µ) and i∗(·) ∈ L1(µ) such that inm(·) ⇀ i∗(·) ∈ L1(µ). The functional
J(ῑ(·); ·) : L1(µ) ⊇ Iῑ → R, that brings any i(·) ∈ L1(µ) to J(ῑ(·); i(·)), is concave and so it
is weakly upper semicontinuous on L1(µ) and so J(ῑ(·); i∗(·)) ≥ lim supm→∞ J(ῑ(·); inm(·)).
It remain to show that i∗(·) ∈ Iῑ, i.e. i∗(·) satisfies the constraints (7). For the positivity
constraint inm(·) ⇀ i∗(·) and inm(·) ≥ 0 imply i∗(·) ≥ 0 since nonnegativity constraints
are preserved under weak convergence. Concerning the other constraint we observe that,
thanks to (10) we know that kῑ,inm

(·) → kῑ,i∗(·) uniformly on the compact sets and so
akῑ,i∗(t) ≥ i∗(t) almost everywhere. This also implies that i∗(·) ∈ L2

loc[0,+∞; R+).

Proof of Proposition II.1.13. For simplicity we will drop the ∗ writing i(·) instead of i∗(·)
along this proof. If there exist t̄ ∈ (0,+∞) such that kῑ,i(t̄) = 0 then by (10) (and a
simple Gronwall-type argument) kῑ,i(t) = 0 for all t ≥ t̄. So if σ > 1 the statement is a
consequence of Proposition II.1.11.

Then suppose that (σ < 1) and that there exist a first t̄ > 0 such that kῑ,i(t̄) = 0.
We assume that such a t̄ is greater than T/2 but this imposition can be easily overcome
(indeed noting that t̄ > 0 we can choose n ∈ N such that t̄ > T/n and proceed in a similar
way). Note that kῑ,i(t̄) = 0 implies i = 0 in the set [t̄−T, t̄]. Thanks to the fact that kῑ,i(t)
is positive and continuous until t̄ and that i = 0 (or ı̃ = 0) in the set [t̄− T, t̄] we can say
that exist ε > 0 such that the measure of the set

Θε def
= {t ∈ [t̄− T/2, t̄] : akῑ,i − i(t) > ε}

is strictly positive (for the Lebesgue measure m): let be h = m(Θǫ) > 0. We choose ̺ < ε
and define the new strategy i̺(·):

i̺(t) =

{

i(t) + ̺ = ̺ for t ∈ Θε

i(t) otherwise

From the choice of Θε and ̺ we obtain that iε,̺(·) is in Iῑ. The following estimate is valid:

J(ῑ(·); i̺(·)) = I1 + I2 + I3 + I4
def
=

∫ t̄−T/2

0
e−ρt (akῑ,i(t) − i(t))1−σ

1 − σ
dt+
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+

∫

([t̄−T/2,t̄]−Θε)
e−ρt (akῑ,i̺(t) − i(t))1−σ

1 − σ
dt+

+

∫

Θε

e−ρt (akῑ,i̺(t) − i̺(t))
1−σ

1 − σ
dt+

∫ t̄+T

t̄
e−ρt (akῑ,i̺(t) − i̺(t))

1−σ

1 − σ
dt.

Moreover we have the following estimates (we use that i = 0 on the set [t̄− T, t̄]):

I2 ≥ I ′2
def
=

∫

([t̄−T/2,t̄]−Θε)
e−ρt (akῑ,i(t))

1−σ

1 − σ
dt

I3 ≥

∫

Θε

e−ρt (akῑ,i(t) − ̺)1−σ

1 − σ
dt ≥ (linearizing)

≥ I1
3 − I2

3
def
=

∫

Θε

e−ρt (akῑ,i(t))
1−σ

1 − σ
−

∫

Θε

e−ρtε−σ̺dt+ o(̺).

Furthermore:

I4 ≥

∫ t̄+T/2

t̄
e−ρt (akῑ,i̺(t) − i̺(t))

1−σ

1 − σ
dt ≥

∫ t̄+T/2

t̄
e−ρt (ah̺)

1−σ

1 − σ
dt

So I2
3 = a1̺ and I4 ≥ a2̺

1−σ where a1 and a2 are positive constants independent by ̺.
Summarizing:

J(ῑ(·); iε,̺(·)) ≥ (I1 + I ′2 + I1
3 ) + (−I2

3 + I4) ≥ J(ῑ(·); i(·)) + (−a1̺+ a2̺
1−σ) + o(̺)

so for ̺ small enough we have J(ῑ(·); i̺(·)) > J(ῑ(·); i(·)) and this is a contradiction.

Proof of Proposition II.2.11. The function v is of course continuous and differentiable in
every point of X and its differential in x = (x0, x1) is

Dv(x) = (ν(1 − σ)[Γ0(x)]
−σ, {s 7→ ν(1 − σ)[Γ0(x)]

−σeξs})

So Dv(x) ∈ D(A) for every x ∈ X. We can also calculate explicitly ADv and BDv getting:

ADv(x) = (0, {s 7→ ν(1 − σ)[Γ0(x)]
−σξeξs}) (59)

BDv(x) = ν(1 − σ)[Γ0(x)]
−σ(1 − e−ξT ) > 0 (60)

so, using the characteristic equation (14)

[BDv(x)]−1/σ =

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)

Γ0(x) (61)

Form the definition of X we have [BDv(x)]−1/σ > 0 for x ∈ X. Moreover if x ∈ Y then

Γ0(x) ≤
1

α
x0 (62)

and then [BDv(x)]−1/σ ≤ ax0. So we can use Remark II.2.10 and write the Hamiltonian
in the form of equation (27). Substituting (59) and (60) in (27) we find, by straightforward
calculations, the relation:

ρv(x) − 〈x,ADv(x)〉M2 − ax0BDv(x) −
σ

1 − σ
(BDv(x))

σ−1

σ = 0. (63)

The claim is proved.
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Proof of Theorem II.2.15. Part 1. We prove that φ ∈ AFSy.
We claim that

d

dt
j∗xφ(t) = A∗xφ(t) +B∗(φ(xφ(t))), t > 0, xφ(0) = y = (R(ῑ), F (ῑ)) (64)

has a unique solution in Π (defined in 22). Consider first the following integral equation
(with unknown i: along this proof we drop the “tilde” sign to avoid heavy notation).

i(t) =

(

a−
ρ− ξ(1 − σ)

σξ/a

)(
∫ t

t−T
i(s)ds

)

−
ρ− ξ(1 − σ)

σξ/a

∫ 0

−T
eξsF (it)(s)ds, t ≥ 0 (65)

with initial datum i(s) = ῑ(s) when s ∈ [−T, 0). Such equation has a solution i which is
absolutely continuous solution on [0,+∞) (see for example [13] page 287 for a proof). We
now claim that i(t) > 0 for all t ≥ 0. First we prove that i(0) > 0. Indeed

i(0) =

∫ 0

−T

[

a−
ρ− ξ(1 − σ)

σξ/a

(

1 − eξ(−T−s)
)

]

ῑ(s)ds.

Since for every s ∈ (−T, 0), 1−eξ(−T−s) < ξ
a (in view of the fact that ξ is a positive solution

of equation (14)) then we get by Hypothesis II.1.9 i(0) >
∫ 0
−T

[

a− ρ−ξ(1−σ)
σ

]

ῑ(s)ds, so,

using Hypothesis II.2.14 we obtain i(0) > 0. Now, if there exists a first point t̄ in which
the solution is zero then we have:

0 = i(t̄) =

∫ 0

−T

[

a−
ρ− ξ(1 − σ)

σξ/a

(

1 − eξ(−T−s)
)

]

it̄(s)ds

but, arguing as for t = 0, we can see that the right side is > 0 so we have a contradiction.
Now we consider the equation

d

dt
j∗x(t) = A∗x(t) +B∗(i(t)), t > 0, x(0) = y = (R(ῑ), F (ῑ)). (66)

We know, thanks to Theorem II.2.4, that the only solution in Π of such an equation is
x(t) = (η(t), F (it)) where η(t) is the solution of

{

ż(t) = B(it)
(z(0), i0) = (R(ῑ), ῑ)

(

that is η(t) =
∫ t
t−T i(s)ds

)

(67)

We claim that x(t) is a solution of (64). Indeed

φ(x(t)) = aη(t) −

(

ρ− ξ(1 − σ)

σξ/a

)(
∫ 0

−T
eξsF (it)(s)ds+ η(t)

)

(68)

and so (by (65)):

φ(x(t)) = η(t)

(

a−
ρ− ξ(1 − σ)

σξ/a

)

+ i(t) −

(

a−
ρ− ξ(1 − σ)

σξ/a

)(
∫ t

(t−T )
i(s)ds

)

and by (67) we conclude that φ(x(t)) = i(t) and so x(t) = xφ(t) is a solution of (64) and
is in Π. Moreover thanks to the linearity of φ we obtain that xφ(t) is the only solution in
Π. We have now to show that i(·) = φ(xφ(·)) ∈ Iy. The previous steps of the proof gives

xφ(t) = (x0
φ(t), x1

φ(t)(·)) =
(

R(it), F (it)
)
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where i is absolutely continuous and so in L2
loc([0,+∞); R). We claim that φ(xφ(t)) =

i(t) ∈ (0, ax0
φ(t)). In view of the fact that i(t) > 0 for all t ≥ 0 it is enough to prove that

i(t) < ax0
φ(t). Indeed by (65)

ax0
φ(t) − i(t) =

(

ρ− ξ(1 − σ)

σξ/a

)

(

R(it) +

∫ 0

−T
eξsF (it)(s)ds

)

≥

≥

(

ρ− ξ(1 − σ)

σξ/a

)(
∫ 0

−T
it(s)(1 − eξ(−T−s))d

)

s > 0.

The last inequality is strict due to Hypothesis II.1.9 and to the fact that i(t) > 0 for all
t > 0. So i(t) < ax0

φ(t) and we know that φ is an admissible feedback strategy related to
y = (R(ῑ), F (ῑ)).

Part 2. We prove now that φ ∈ OFSy.
We consider v as defined in Proposition II.2.11. It is easy to see from the first part of
the proof that xφ(t) remain in Y as defined in (29) and so the Hamiltonian (as in the
proof of Proposition II.2.11) can be expressed in the simplified form of equation (27). We
introduce the function:

v0(t, x) : R ×X → R, v0(t, x)
def
= e−ρtv(x) (v is defined in (30))

Using that (Dv(xφ(t))) ∈ D(A) and that the application x 7→ Dv(x) is continuous with
respect to the norm of D(A), we find:

d

dt
v0(t, xφ(t)) = −ρv0(t, xφ(t)) + 〈Dxv0(t, xφ(t))|A∗xφ(t) +B∗i(t)〉D(A)×D(A)′ =

= −ρe−ρtv(xφ(t)) + e−ρt
(

〈ADv(xφ(t)), xφ(t)〉M2 + 〈BDv(xφ(t)), i(t)〉R
)

(69)

Integrating on [0, τ ] we get:

v0(τ, xφ(τ)) − v0(0, xφ(0)) =

=

∫ τ

0
e−ρt

(

− ρv(xφ(t)) + 〈ADv(xφ(t)), xφ(t)〉M2 + 〈BDv(xφ(t)), i(t)〉R
)

dt. (70)

Now we observe now that, since in the first part of the proof we have seen that φ ∈ AFSy,
we have that i(t) ≤ ax0

φ(t). So, by Proposition II.1.3 we know that i(t) ≤ akM (t) and
then

Γ(it)
1−σ =

(
∫ 0

−T

(

1 − e−ξ(T+s)
)

it(s)ds

)1−σ

≤

≤

(
∫ 0

−T

(

1 − e−ξ(T+s)
)

akM (t+ s)ds

)1−σ

≤

(
∫ 0

−T
akM (t+ s)ds

)1−σ

so, by Proposition II.1.6 and Hypothesis II.1.9 we have that

v0(τ, xφ(τ)) = e−ρtv(xφ(τ)) = e−ρtνΓ(it)
1−σ τ→0

−−−→ 0 (71)
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So we can pass to the limit in (70) obtaining

− v(y) = −v0(0, xφ(0)) =

=

∫ +∞

0
e−ρt

(

− ρv(xφ(t)) + 〈ADv(xφ(t)), xφ(t)〉M2 + 〈BDv(xφ(t)), i(t)〉R
)

dt. (72)

Now we write (note that J0(y; i) = J0(y;φ(xφ))):

v(y) − J0(y; i) = v(xφ(0)) −

∫ ∞

0
e−ρt

(ax0
φ(t) − φ(xφ)(t))1−σ

(1 − σ)
dt =

Then, using (72) (we use Proposition II.1.3 and Hypothesis II.1.9 to guarantee that the
integral is finite), we obtain

=

∫ ∞

0
e−ρt

(

ρv(xφ(t)) − 〈ADv(xφ(t)), xφ(t)〉M2 − 〈BDv(xφ(t)), i(t)〉R

)

dt−

−

∫ ∞

0
e−ρt

(

(ax0
φ(t) − i(t))1−σ

(1 − σ)

)

dt =

∫ ∞

0
e−ρt

(

ρv(xφ(t)) − 〈ADv(xφ(t)), xφ(t)〉M2−

− 〈BDv(xφ(t)), i(t)〉R −
(ax0

φ(t) − i(t))1−σ

(1 − σ)

)

dt =

=

∫ ∞

0
e−ρt

(

H(xφ(t), Dv(xφ(t))) −HCV (xφ(t), Dv(xφ(t)), i(t))

)

dt (73)

The conclusion follows from Remark II.2.8 and by the three observations listed below.

1. Noting that H(xφ(t), Dv(xφ(t))) ≥ HCV (xφ(t), Dv(xφ(t)), i(t)) the (73) implies that,
for every admissible control i, v(y) − J0(y; i) ≥ 0 and then v(y) ≥ V0(y).

2. The original maximization problem is equivalent to the problem of finding a control
i that minimizes v(y) − J0(y; i)

3. The feedback strategy φ achieves v(y)− J0(y; i) = 0 that is the minimum in view of
point 1.

Proof of Lemma II.3.3. By Proposition II.3.2, equation (34), along the optimal trajecto-
ries we have, for t ≥ 0:

ak∗(t) − i∗(t) =

(

ρ− ξ(1 − σ)

σ
·
a

ξ

)

Γ(ı̃∗t (·)).

Now let us note that Γ(ı̃∗t (·)) =
∫ 0
−T e

ξsF (ı̃∗t (·))(s)ds + k∗(t) = 〈ψ, x(t)〉 where ψ =

(ψ0, ψ1) ∈ M2 with ψ0 = 1, ψ1(s) = eξs and x(t) is the structural state as in Defini-
tion II.2.2 . We calculate now the derivative of such an expression: it is easy to see that
ψ ∈ D(A). So we have (by Theorem II.2.4)

d

dt

(
∫ 0

−T
eξsF (ı̃∗t (·))(s)ds+ k∗(t)

)

=
d

dt
〈ψ, x(t)〉M2 =
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(by equation (23) and by the definitions of A and B)

= 〈Aψ, x(t)〉M2 + 〈Bψ, i∗(t)〉
R

=
〈

(0, ξψ1(s)), x(t)
〉

M2 +
〈

(1 − e−ξT ), i∗(t)
〉

R

=

(finding x(t), the scalar products and using the (34))

=

[

ξ

(
∫ 0

−T
eξsF (ı̃∗t (·))(s)ds

)]

+

[

(1 − e−ξT )

(

ak∗(t) −

(

ρ− ξ(1 − σ)

σξ/a

)(
∫ 0

−T
eξsF (ı̃∗t (·)) (s)ds+ k∗

))]

=

=

(

ξ−
ρ− ξ(1 − σ)

σ

)(
∫ 0

−T
eξsF (ı̃∗t (·))(s)ds+k

∗(t)

)

= g

(
∫ 0

−T
eξsF (ı̃∗t (·))(s)ds+k

∗(t)

)

(74)

and so we have the claim. The bounds for g simply follows by Hypotheses II.1.9 and
II.2.14. Finally, since, from (36) Λ = ak∗(0) − i∗(0) from (34) for t = 0 we find (38)
observing that ı̃∗0(·) = ῑ(·).

Proof of Proposition II.3.5. The proof of existence of the limits is proved also in [18] using
the transversality conditions. Here we use the integral equation (40) and the explicit form
of Λ given in (38).

From(40) we can easily find that i(t) satisfies, for t ≥ 0 the following DDE

{

i′(t) = a(i(t) − i(t− T )) − Λgegt, ∀t ≥ 0,

i(s) = ῑ(s), ∀s ∈ [−T, 0), i(0) = a
∫ 0
−T ῑ(s)ds− Λ,

(75)

The solution of this linear non homogeneous DDE is the sum of the solution of the asso-
ciated linear homogeneous DDE plus a convolution term (see [44] page 23). In our case it
means that the solution of equation (75) can be written as:

i(t) =

∫ t

0
−γ(t− s)Λgegsds+ γ(t)i(0) − a

∫ 0

−T
γ(t− T − s)ῑ(s)ds (76)

where γ(t) is the solution of the following DDE:

{

γ′(t) = a(γ(t) − γ(t− T )) ∀t ≥ 0,
γ(s) = 0, ∀s ∈ [−T, 0), γ(0) = 1

(77)

We observe that equation (77) is similar to the DDE we have seen in equation (13). In
particular the characteristic equation is the same and it is (like in (14))

a(1 − e−zT ) − z = 0 (78)

From Proposition II.1.8 such a characteristic equation has only simple roots: the only real
roots are ξ and 0 and all other complex roots have real part in (−∞, ξ−a) so, even if g < 0
we have Reλj < g for each j = 1, 2, .... Applying Corollary 6.4 of [33], page 168 we see that

the solution of (77) can be written as γ(t) = αξe
ξt + α0 +

∑+∞
j=1

[

αje
λjt + αje

λjt
]

where
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the series converges uniformly on compact subsets of (0,+∞), αξ, α0 are real numbers and
αj are complex numbers.

We have now only to substitute such an expression in (76). In view of the linearity of
(76) with respect γ we can analyze the contribution of three parts of γ in three steps: first
we estimate the term due to αξe

ξt, second we consider the term α0 and then the series.
We start with αξe

ξt: its contribution to i(t) is (in view of (76) is (using (32) and (38))

∫ t

0
−αξe

ξ(t−s)Λgegsds+ a

∫ 0

−T
ῑ(s)dsαξe

ξt − Λαξe
ξt − a

∫ 0

−T
αξe

ξ(t−T−s)ῑ(s)ds =

= eξtαξ

(

Λg

g − ξ
+ aΓ(ῑ) − Λ

)

+ egtαξ

(

−
Λg

g − ξ

)

=

= eξtαξ

(

Λg

g − ξ
+ aΛ

ξ

a

σ

ρ− ξ(1 − σ)
− Λ

)

+ egtαξ

(

−
Λg

g − ξ

)

=

= eξtαξΛ

(

ξ−ρ
σ

ξ−ρ
σ − ξ

+
ξσ

ρ− ξ(1 − σ)
− 1

)

+ egtαξ

(

−
Λg

g − ξ

)

= egtαξ

(

−
Λg

g − ξ

)

(79)

Then the part αξe
ξt gives in i(t) a contribution of egtαξ

(

− Λg
g−ξ

)

. The contribution of the

term α0 is −
∫ t
0 α0Λge

gsds+aα0

∫ 0
−T ῑ(s)ds−Λα0−aα0

∫ 0
−T ῑ(s)ds = −α0Λe

gt. Now to an-
alyze the contribution of the series we use the dominated convergence theorem that allows
to exchange the series and the integral. Then for each term αje

λjt we can develop the inte-

grals as above obtaining the sum of two terms −
αjΛg
g−λj

egt+
[

αjΛg
g−λj

+ αja(Γj − Λ)
]

eλjt where

Γj :=
∫ 0
−T (1−e−λj(T+s))ῑ(s)ds. Since Reλj < g for each j, then the second term is of order

smaller or equal to the first. The same can be done for the terms αje
λjt. So the solution

can be written in the form Cegt + o(egt) where C = −Λg
[

αξ

g−ξ + α0

g +
∑+∞

j=1 Re
(

αj

g−λj

)]

.

This proves the first statement of the Proposition: there exist positive constants iB and
kB such that limt→+∞ ig(t) = iB and limt→+∞ kg(t) = kB. We now calculate such iB and
kB. From(40) we find that ig(t) satisfies, for t ≥ 0 the following integral equation:

ig(t) = a

∫ 0

−T
egsig(t+ s)ds− Λ (80)

and then iB has to satisfy iB = aiB

∫ 0
−T e

gsds − Λ, so we use the (80) to find the value
of iB and kB. Note that the fact that iB > 0 follows, for g 6= 0 from the fact that g < ξ
(Hypothesis II.1.9) and from (15); for g = 0 from Hypothesis II.1.5.
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[14] L. M. Benveniste and J. A. Scheinkman. Duality theory for dynamic optimiza-
tion models of economics: The continuous time case. Journal of Economic Theory,
1(27):1–19, 1982.

[15] R. Boucekkine, D. de la Croix, and O. Licandro. Modelling vintage structures with
ddes: principles and applications. Mathematical Population Studies, 11(3-4):151–179,
2004.

[16] R. Boucekkine, F. Del Rio, and B. Martinez. Technological progress, obsoles-
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[54] V. Kolmanovskĭı and A. Myshkis. Introduction to the theory and applications of
functional-differential equations, volume 463 of Mathematics and its Applications.
Kluwer Academic Publishers, Dordrecht, 1999.
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