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Abstract

In this paper, we divide the players of a large game into countable different

groups and assume that each player’s payoff depends on her own action and

the distribution of actions in each of the subgroups. Focusing on the inter-

action between Nash equilibria and the best response correspondence of the

players, we characterize the pure-strategy equilibria in three settings of such

large games, namely large games with countable actions, large games with

countable homogeneous groups of players and large games with an atomless

Loeb agent space. Furthermore, we also present a counterexample showing

that a similar characterization result does not hold for large games under a

more general setting.

1 Introduction

In this paper, we divide the players (agents) of a large game1 into countable

(finite or countably infinite) different groups and assume that each player’s payoff

depends on her own action and the distribution of actions in each of the subgroups.

Such a game model is a generalization to the games considered in Khan and Sun

∗This paper has been submitted to Journal of Mathematical Economics in October 2007.
†Department of Statistics and Applied Probability, National University of Singapore, 6 Science

Drive 2, Singapore 117546. E-mail: fuhaifeng@nus.edu.sg
‡Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore

117543. E-mail: g0403687@nus.edu.sg
§Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore

117543. E-mail: luyi.zhang@db.com
1The large games discussed here are endowed with a separate agent space and called large

non-anonymous games by some authors (see, eg, Khan and Sun (2002)).
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(2002), where there is only a finite partition on the agent space. Beyond its

own economic implications, this game model also has the motivation to connect

with Bayesian games with countable players.2 In such a large game, a pure-

strategy action profile which assigns an action to each player is called a pure-

strategy Nash equilibrium if no player has the incentive to change her assigned

action. A distribution vector on the action space, whose components are the action

distributions for respective groups, is called a pure-strategy equilibrium distribution

if it is induced by a pure-strategy Nash equilibrium of the game.

In the past few decades, there have been a lot of famous existence or nonexis-

tence results for pure-strategy Nash equilibria in different settings of large games

(see, for example, the survey Chapter in Khan and Sun (2002)). However, very

few studies focus on characterizing the pure-strategy Nash equilibria or equilib-

rium distributions. Clearly, good characterization results are also valuable since

they can help us better understand the Nash equilibria and also provide alterna-

tive ideas for proving the existence of Nash equilibria. It is the aim of this paper to

make some contributions in filling this gap. In particular, this paper presents three

characterization results and a counterexample for the equilibrium distributions in

large games.

The first result in this paper is for a large game with only countable actions. In

this case, we show that a distribution vector on the action space is an equilibrium

distribution iff for any subset or any finite subset of actions, the proportion of

players in any group playing this subset of actions is no larger than the proportion

of players in that group having a best response in this subset. A rather simple

proof is given based on Khan and Sun (1995).

Our second result characterizes the Nash equilibria in a large game with count-

able homogeneous groups of players. The actions of the players is now allowed to

be uncountable. Here, the homogeneousness of the groups means that the play-

ers in each group share a common payoff and play a common action set. Such

a setting is reasonable and useful since in many situations, the partition of the

agent space may well depend on some factors which influence or determine the

payoff functions. Under this setting, we present a characterization result for the

equilibrium distribution, which is essentially in the same form as our first result.

Both of the above two results have a countability assumption, either on the

2For example, our game model may find applications in the Bayesian games considered in

Yannelis and Rustichini (1991) and Kim and Yannelis (1997).
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action space or on the payoff space. It is surely desirable if we can obtain a similar

characterization result for a large game without any restrictions of countability.

However, it turns out that this wish cannot be granted easily. We show through a

simple counterexample that if both the payoff and action spaces are uncountable

and the agent space is a general probability space, say the Lebesgue measure space

on the unit interval, then a simple generalization of the above characterization

results does not hold in general.

However, following the insight in Khan and Sun (1996), we notice that the

countability assumption can nevertheless be removed if we define the agent space

to be some special probability space. In particular, a similar characterization

result is shown for a large game with its agent space being an atomless Loeb prob-

ability space. Supported by the nice properties of a Loeb space, this result is not

subject to any countability assumption and is shown by applying a result on the

distribution of correspondences on Loeb spaces from Sun (1996).

It is also worth mention that in this paper, we do not confine the action space to

a compact metric space. Our action space is generalized to be a Polish space and

we assume that each player’s action set is a compact subset of the whole action

space. Such a generalization is useful in that it includes some commonly used

spaces such as the natural numbers or the real numbers (see, eg, Yu and Zhang

(2007) for more motivations for such a change). Furthermore, our paper also paves

the way for proving the existence of the Nash equilibria in the above games by

showing the existence of their characterizing counterparts. This work has recently

been done by Fu (2008) where not only more general existence results are obtained

but also much simpler proofs are presented. Such an application also highlights

the value of our characterization results.

The paper is organized as follows. Section 2 establishes the general game model

for this paper. Section 3, 4 and 6 present three characterization results for three

settings of large games, namely games with countable actions, games with count-

able homogeneous groups of players and games with Loeb agent space, respectively.

Section 5 gives a counterexample showing the nonexistence of such a characteri-

zation result for large games falling out of the above three settings. Section 7 is

for discussion and all the proofs are given in Section 8.
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2 Game model

Let (T,T , λ) be an atomless probability space of agents and I a countable (finite

or countably infinite) index set. Let (Ti)i∈I be a measurable partition of T with

positive λ-measures (αi)i∈I . For each i ∈ I, let λi be the probability measure on

Ti such that for any measurable set B ⊆ Ti, λi(B) = λ(B)/αi.

Let A be a Polish space3 of actions, B(A) the Borel σ-algebra of A, M (A)

the set of all Borel probability measures on A endowed with the topology of

weak convergence of measures,4 and M (A)I the product space of |I| copies of

M (A) with the usual product topology. Suppose that each player t ∈ T chooses

her own action from an action set K(t) ∈ A, where K : T → A is a compact

valued measurable correspondence. Since A is Polish, M (A) is Polish5 and hence

A × M (A)I is also Polish. For easy notation, we now let Ω := A × M (A)I .

Definition 1. A large game G is characterized by a Carathéodory function U :

T × Ω → R such that for each ω ∈ Ω, the function Uω = U(·, ω) : T → R is

measurable and for each t ∈ T , the function Ut = U(t, ·) : Ω → R is continuous.6

A measurable function f : T → A is called a pure-strategy profile if f(t) ∈ K(t) for

all t ∈ T . A pure-strategy profile f is called a (pure-strategy) Nash equilibrium7 if

U [t, f(t), (λif
−1
i )i∈I ] ≥ U [t, a, (λif

−1
i )i∈I ] for all a ∈ K(t) and all t ∈ T,

where fi is the restriction of f to Ti and λif
−1
i the induced distribution on A. A

distribution vector µ in M (A)I is called a (pure-strategy) equilibrium distribution8

if µ = (λif
−1
i )i∈I for some Nash equilibrium f .

Recall that a correspondence F from T to A is said to be measurable if for each

closed subset C of A, the set F−1(C) = {t ∈ T : F (t) ∩ C 6= ∅} is measurable in

T . A function f from T to A is said to be a measurable selection of F if f is

3A Polish space is a topological space homeomorphic to some complete separable metric space.
4In the following context, we reserve the notation M (X) to denote the space of all Borel

probability measures on any topological space X.
5See, eg, Theorem 14.15 in Aliprantis and Border (1999).
6To be consistent with the existing literature, we can also define a large game to be a measur-

able function U from T to the space of all continuous real-valued functions on Ω, endowed with

its compact-open topology, which is easily seen to be a Carathéodory function.
7Throughout this paper, we deal only with pure-strategy Nash equilibrium and pure-strategy

equilibrium distribution. Thus we suppress the adjective ‘pure-strategy’ hereafter.
8More precisely, µ should be called an equilibrium distribution vector.
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measurable and f(t) ∈ F (t) for all t ∈ T . When F is measurable and closed valued,

the classical Kuratowski-Ryll-Nardzewski Theorem (see, eg, Aliprantis and Border

(1999, p.567)) says that F has a measurable selection.

Given µ ∈ M (A)I , let Bµ(t) = arg maxa∈K(t) U(t, a, µ) be the set of best re-

sponses for player t given action distribution µ. By the Measurable Maximum

Theorem in Aliprantis and Border (1999, p.570), Bµ is a measurable correspon-

dence from T to A, has nonempty compact values and admits a measurable

selection. Let Bµ
i : Ti ։ A be the restriction of Bµ to Ti. Thus, it is easy

to check that µ is an equilibrium distribution iff µ = (λif
−1
i )i∈I , where fi is

one of the measurable selections of Bµ
i . Recall that for any C ⊆ A, the set

(Bµ
i )−1(C) = {t ∈ Ti : Bµ

i (t) ∩ C 6= ∅} denotes the set of the players who are in

group i and have a best response in C.

The above notations will be used in the whole paper. Unless otherwise specified,

the meaning of these notations remains the same.

3 Large games with countable actions

In this section, we consider large games with countable actions. Our main result

is formulated as follows.

Theorem 1. In a large game G, if the action space A is a countable and complete

metric space, then the following statements are equivalent:

(i) µ = (µi)i∈I ∈ M (A)I is an equilibrium distribution;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every subset C in A;

(iii) for each i ∈ I, µi(D) ≤ λi[(B
µ
i )−1(D)] for every finite set D in A.

Theorem 1 is essentially saying that a distribution vector on the action space is

an equilibrium distribution iff for any subset or any finite subset of the actions,

the proportion of players in any group playing this subset of actions is no larger

than the proportion of players in that group having a best response in this subset.

Remark 1. The very special case that |I| = 1 and A is finite is the main result

in Blonski (2005). Our proof for the above theorem uses a selection theorem

in Khan and Sun (1995), which is not only much simpler than the proof for the

special case considered in Blonski (2005) but also yields a much stronger result.
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4 Large games with countable homogeneous groups of

players

Very often, our partition of the agent space is not arbitrary but dependent on some

important factors which may well influence or determine the payoff functions. In

this section, we consider a simplified case where we assume that all the players

in each group are homogeneous, that is, all the players in each subgroup share a

common payoff function and play a common action set. Under such a setting, we

can remove the restriction of the countability on the action space. We now let A

be a general Polish space.

A large game G is said to have countable homogeneous groups of players if for

each group i ∈ I, Ut and K(t) do not change for all t ∈ Ti.

Theorem 2. If a large game G has countable homogeneous groups of players, then

the following statements are equivalent:

(i) µ = (µi)i∈I ∈ M (A)I is an equilibrium distribution;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every Borel set C in A;

(iii) for each i ∈ I, µi(F ) ≤ λi[(B
µ
i )−1(F )] for every closed set F in A;

(iv) for each i ∈ I, µi(O) ≤ λi[(B
µ
i )−1(O)] for every open set O in A.

5 Large games with uncountable actions and payoffs -

a counterexample

The above two sections present characterization results for large games restricted

by either countable actions or countable payoffs. It is surely desirable to obtain a

similar characterization result for a general game without the above restrictions.

So one would like to ask the following question: can we still obtain a characteriza-

tion result in the form of Theorem 2 without the assumption of homogeneousness

of the groups? As we can see from the example below, it turns out the answer is

no, that is, such a direct generalization does not hold in general. For simplicity,

we only need to consider the case that |I| = 1, ie, there is no partition on the

agent space.
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Example 1. Consider a large game G in which the space of players is the Lebesgue

unit interval T = [0, 1] with the Lebesgue measure denoted by λ, the action set A

is the interval [−1, 1] and the payoffs are given by U(t, a, µ) = −|t − |a||9 where

t ∈ T , a ∈ A and µ ∈ M (A), which, obviously, is a Carathéodory function.

Let the uniform distribution on [−1, 1] be denoted by η. Thus, given η, the best

response set for player t is:

Bη(t) = arg maxU(t, a, η) = {t,−t}.

Let C be any Borel set in A and define C1 = C ∩ (0, 1] and C2 = C ∩ [−1, 0].

Then

λ[(Bη)−1(C)] = λ({t ∈ T : Bη(t) ∩ C 6= ∅})

= λ{t ∈ T : t ∈ C1 or − t ∈ C2}

≥max{λ(C1), λ(C2)}

≥
λ(C1) + λ(C2)

2
.

Since η is the uniform distribution on [−1, 1], η(C) = λ(C)
2 = λ(C1

⋃

C2)
2 = λ(C1)+λ(C2)

2 .

Therefore, we have

λ[(Bη)−1(C)] ≥ η(C).

Now we shall prove by contradiction that η can not be an equilibrium distribu-

tion.

Suppose η is an equilibrium distribution. Then, by definition, there exists a

measurable selection f of Bη such that λf−1 = η and f(t) ∈ Bη(t) for all t ∈ T .

Let D = f−1((0, 1]). Then

f(t) =

{

t, t ∈ D

−t, t /∈ D.

Note that f−1(D) = {t : f(t) ∈ D} = {t : t ∈ D} = D. Hence, λ(D) =

λf−1(D) = η(D) = λ(D)
2 , which is a contradiction. Therefore, η cannot be an

equilibrium distribution. �

9This payoff function is similar to a payoff function used in Rath et al. (1995).
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6 Large games with Loeb agent space

The usage of hyperfinite Loeb spaces in modeling large games is systematically

studied in Khan and Sun (1996, 1999). By modeling the set of players as a Loeb

space, Khan and Sun (1999) shows the existence of Nash equilibria in large games

without any countability assumption on action or payoff space, which is false when

the agent space is modeled by Lebesgue unit interval (see Khan et al., 1997). This

major success, among others, led them to argue Loeb spaces as the ‘right’ tool for

modeling games with a large number of players.

In this section, we provide a characterization result for large games with its

agent space being an atomless Loeb probability space. This result is not subject

to any countability assumption and is shown by applying a proposition from Sun

(1996) on the distribution of correspondences on Loeb spaces.

Theorem 3. In a large game G, if the agent space (T,T , λ) is an atomless Loeb

probability space , then the following statements are equivalent:

(i) µ = (µi)i∈I ∈ M (A)I is an equilibrium distribution;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every Borel set C in A;

(iii) for each i ∈ I, µi(F ) ≤ λi[(B
µ
i )−1(F )] for every closed set F in A;

(iv) for each i ∈ I, µi(O) ≤ λi[(B
µ
i )−1(O)] for every open set O in A.

Recall that Loeb probability spaces, even though constituted by nonstandard

entities, are standard probability spaces. They satisfy the assumption of countable

additivity, and hence any result proved for an abstract probability space applies

to them. For more information about Loeb spaces, see Khan and Sun (1999) or

Loeb and Wolff (2000).

7 Discussions

From Example 1, we see that although a generalized characterization result does

not hold, there does exist a probability measure η ∈ M (A) such that η(C) ≤

λ(Bη−1(C)) for all C ∈ B(A). Thus one would like to guess that the existence of

our characterizing probability measures hold in a more general sense. Furthermore,

if this is the case, one would like to infer that the proof for the existence should not
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be difficult because of the generality. If this is also the case, then Theorems 1, 2 and

3, together with the existence of their characterizing counterparts, can also lead

to the existence of the corresponding Nash equilibria. The above conjectures have

mostly been confirmed by Fu (2008), which also highlights the value of our results.

Finally, we hope that such an idea of characterization may also find applications in

other works, for example in Bayesian games, and bring more benefits to economic

research and study.

8 Proofs

8.1 Proof of Theorem 1

To prove this theorem, we need the following lemma from Khan and Sun (1995).

Lemma 1. (Khan and Sun, 1995, Theorem 5) Let (T,T , λ) be an atomless

probability space, S a countable metric space, F a measurable correspondence from

T to S and DF = {λf−1 : f is a measurable selection of F}. Then a distribution

ν ∈ M (S) belongs to DF iff for all finite D ⊆ S, ν(D) ≤ λ(F−1(D)).10

Proof of Theorem 1 For (i)⇒(ii), let µ be an equilibrium distribution. Then,

there exists a Nash equilibrium f : T → A such that µ = ((λif
−1
i )i∈I) and

fi(t) ∈ Bµ
i (t) for all t ∈ Ti and for all i ∈ I. Thus, for any i ∈ I and for every

C ⊆ A,

µi(C) = λi(f
−1
i (C)) = λi({t ∈ Ti : fi(t) ∈ C})

≤ λi({t ∈ Ti : Bµ
i (t) ∩ C 6= ∅}) = λi[(B

µ
i )−1(C)].

It is clear that (ii) ⇒ (iii).

To prove (iii) ⇒ (i), define DB
µ
i

= {λif
−1
i : fi is a measurable selection of Bµ

i }.

Recall that Bµ
i is measurable. By definition, µ is an equilibrium distribution iff

µi ∈ DB
µ
i

for all i ∈ I, but by Lemma 1, µi ∈ DB
µ
i

iff for all finite D ∈ A,

µi(D) ≤ λi[(B
µ
i )−1(D)]. �

10In the general setting of Khan and Sun (1995), S is assumed to be a countable compact

metric space. But it is also straightforward to check that the compactness assumption of S,

which is required in the other results of their work, can be removed in this result.
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8.2 Proof of Theorem 2

To prove this theorem, we need to use the following lemma which is well know in

this field and can be obtained by appropriately adjusting the proof of Theorem

3.11 in Skorokhod (1956).

Lemma 2. (Skorokhod, 1956, Theorem 3.11)11 Let (T,T , λ) be an atomless

probability space and S a Polish space. Then for any ν ∈ M (S) there exists a

measurable function f : T → S such that λf−1 = ν.

Proof of Theorem 2. Let µ = (µi)i∈I be an element of M (A)I . Firstly,

we want to make sure that for each i ∈ I and every C ∈ B(A), (Bµ
i )−1(C) is

measurable. Now fix any i ∈ I. The fact that Ut and K(t) do not change for all

t ∈ Ti implies that Bµ
i (t) also does not change for all t ∈ Ti. Thus we can let

Ci := Bµ
i (t) for all t ∈ Ti. Then, for any C ∈ B(A), we have

(Bµ
i )−1(C) = {t ∈ Ti : Bµ

i (t) ∩ C 6= ∅} =

{

Ti if Ci ∩ C 6= ∅;

∅ otherwise,

which is measurable.

To see (i)⇒(ii), let µ = (µi)i∈I be an equilibrium distribution. By assumption,

there exists a Nash equilibrium f : T → A such that µ = (λif
−1
i )i∈I ∈ M (A)I

and f(t) ∈ Bµ(t) for all t ∈ T . Therefore, for any C ∈ B(A),

µi(C) = λif
−1
i (C) = λi({t ∈ Ti : fi(t) ∈ C})

≤ λi({t ∈ Ti : Bµ
i (t) ∩ C 6= ∅})

= λi[(B
µ
i )−1(C)].

It is clear that (ii) ⇒ (iii).

To see (iii) ⇒ (iv), let O be an open set in A. Then there is an increasing

sequence {Fn}
∞
n=1 of closed sets in A such that O =

∞
⋃

n=1
Fn. For each n, we

have (Bµ
i )−1(Fn) ⊆ (Bµ

i )−1(O), which implies that µi(Fn) ≤ λi[(B
µ
i )−1(Fn)] ≤

λi[(B
µ
i )−1(O)]. Thus, µi(O) ≤ λi[(B

µ
i )−1(O)].

It remains to show (iv) ⇒ (i).

11This lemma is indirectly implied in the Theorem 3.11 in Skorokhod (1956). If any reader want

to have a direct and separated proof for this lemma, please feel free to contact the corresponding

author.
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Recall that for all i ∈ I, the set Ci := Bµ
i (t) for any t ∈ Ti is compact and hence

also complete and separable. Fix any i ∈ N. By the fact that the set (A − Ci) is

open, we have that

1 − µi(Ci) = µi(A − Ci) ≤ λi[(B
µ
i )−1(A − Ci)] = 0, (1)

which gives µi(Ci) = 1 for all i. Therefore, by Lemma 2, there exists a measurable

function fi : Ti → Ci such that µi = λifi
−1. By definition, fi ∈ Bµ

i .

Define f : T → A by letting f(t) = fi(t) for all t ∈ Ti and all i ∈ I. Thus f

is a measurable selection of Bµ and µ = (µi)i∈I = (λif
−1
i )i∈I is an equilibrium

distribution. �

8.3 Proof of Theorem 3

To prove this theorem, we need to use the following lemma in Sun (1996).

Lemma 3. (Sun, 1996, Proposition 3.5) Let Γ be a closed valued measurable

correspondence from an atomless Loeb probability space (Ω,F , P ) to a Polish space

X. Let ν be a Borel probability measure on X. Then the following are equivalent:

(i) there is a measurable selection f of Γ such that Pf−1 = ν;

(ii) for every Borel set C in X, ν(C) ≤ P (Γ−1(C));

(iii) for every closed set F in X, ν(F ) ≤ P (Γ−1(F ));

(iv) for every open set O in X, ν(O) ≤ P (Γ−1(O)).

Proof of Theorem 3. For any i ∈ I, notice that Bµ
i is a compact valued (and

hence closed valued) measurable correspondence from an atomless Loeb probabil-

ity space (Ti,Ti, λi) to the Polish space A. Thus, by applying Proposition 3.5 in

Sun (1996) to Bµ
i , we see that µi = λif

−1
i for some fi being a measurable selection

of Bµ
i iff for every Borel (closed, or open) set H in A, µi(H) ≤ λi[(B

µ
i )−1(H)].

Since the above result holds for all i ∈ I, thus µ = (µi)i∈I is an equilibrium

distribution iff for each i ∈ I and every Borel (closed, or open) set H in A,

µi(H) ≤ λi[(B
µ
i )−1(H)]. �
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