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Abstract

The Basel Accords promote the adoption of capital adequacy requirements
to increase the banking sector’s stability. Unfortunately, this type of regulation
can hamper economic growth by shifting banks’ portfolios from more produc-
tive risky investment projects toward less productive but safer projects. This
paper introduces banking regulation in an overlapping-generations model and
studies how it affects economic growth, banking sector stability, and welfare. In
this model, a banking crisis is the outcome of a productivity shock, and banking
regulation is modeled as a constraint on the maximal share of banks’ portfolios
that can be allocated to risky assets. This model allows us to evaluate quanti-
tatively the key trade-off, inherent in this type of regulation, between ensuring
banking stability and fostering economic growth. The model implies an optimal
level of regulation that prevents crises but at the same time is detrimental to
growth. We find that the overall effect of optimal regulation on social welfare
is positive when productivity shocks are sufficiently high and economic agents
are sufficiently risk-averse.
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1 Introduction

As pointed out by Freixas and Rochet (1997), the usual justification for banking

regulation is to increase banking system stability. Specifically, the Basel committee

established a list of “best practices” for the regulation and supervision of banks. This

has been adopted by many countries in the belief that it will improve the stability

of their banking systems and promote financial development. This accord has three

pillars, the most important being capital adequacy requirements, which aim to provide

incentives for banks to hold less risky portfolios.1 Unfortunately, this regulation can

hamper economic growth by shifting banks’ portfolios from more productive risky

investment projects toward less productive safe projects.

There is now a fair amount of theoretical and empirical work on the effects of

capital adequacy requirements on the stability of the banking system. Some studies

of these requirements, as implemented under the Basel I Accord, argue that they can

end up by increasing the fragility of the banking system (see, e.g., Kim and Santomero

(1984) and Blum (1999)), but others argue that they may be effective in improving

banking system stability (see, e.g., Dewatripont and Tirole (1994), Berger, Herring,

and Szegö (1995), Freixas and Rochet (1997), Gale (2004)). An empirical assessment

of this issue by Barth, Caprio, and Levine (2004) shows that the link between capital

requirements and stability was not robust under the experience of the Basel I Accord.

The Basel II Accord attempts to account for that by improving the assessment of

the risk-weighted assets uses to compute the capital adequacy ratio. We assume

in this paper that this improvement makes capital adequacy requirements effective

for banking system stability. There are also a number of papers on the optimality

of capital adequacy requirements (see, e.g., Hellman, Murdock, and Stiglitz (2000)

Allen and Gale (2003), Gale (2003, 2004), which is an extension of Allen and Gale

(2004), and Gale and Özgür (2004)).

These welfare assessment ignore the fact that changes to banks’ portfolio com-

position have a significant impact on growth, since they are structural shifts, i.e.,

moving capital from risky assets toward safe investments. The main issue of regula-

1As pointed out by Bank for International Settlements (2003), the new Basel Accord consists of
three pillars: (1) minimum capital requirement, (2) supervisory review of capital adequacy, and (3)
public disclosure.
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tion, when studying its impact on welfare at the macroeconomic level, is to assess the

trade-off between ensuring stability and promoting economic growth. In fact, when a

regulatory scheme is effective, it improves welfare because it reduces the probability

of banking crisis, but at the same time it hampers growth—therefore, it can then be

welfare reducing.

This paper aims at providing a framework to study this trade-off. It is an

overlapping-generations model in which banks served as financial intermediaries and

banking regulation is modeled as a constraint on banks’ portfolios. In fact, Dewa-

tripont and Tirole (1994), and Gale (2004), argue that equity capital reduces incen-

tives for excessive risk taking. Consequently, banks hold less risky portfolios. There-

fore, capital requirements and portfolio restrictions end up having the same effect on

the riskiness of banks’ portfolios: They reduce the amount of the risky assets a bank

can hold.

Our model is built in a general equilibrium framework. In the setup, each young

individual has access to two types of Cobb-Douglas production technology: a risky,

highly productive technology and a risk-free, less productive one. The outcome of the

risky production process is stochastic and i.i.d. These technologies serve to produce

two intermediate goods, which are used to produce a final good via a CES technology.

When young, individuals are entrepreneurs, while elders become lenders. Not having

an initial endowment of capital, the entrepreneur borrows from the lender through a

competitive banking sector. We assume that banks can observe the state of nature,

but lenders cannot. This provides a rationale for the existence of banks. These banks

transfer resources from elders to entrepreneurs by borrowing from the former at the

equilibrium rental rate and lending to entrepreneurs using optimal lending contracts.

We derive many interesting results from this model. First, we show that when

productivity shocks are idiosyncratic, the competitive economy can achieve the first-

best allocation. We then verify that regulation hampers growth and maintains the

economy at a lower level of production than that of the unregulated banking econ-

omy. Second, in the presence of an unanticipated aggregate productivity shock, the

introduction of capital adequacy requirements has a positive effect on banking sta-

bility. In fact, in this case, bankruptcy can occur in the unregulated economy, but

adequate banking regulation can eliminate this bankruptcy outcome by providing
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more available resources when the shock occurs.

Regulation affects social welfare through four channels. The first channel is its

effect on the proportion of entrepreneurs involved in the risky project: We will refer

to this as the weight channel. The second and the third channels are its effects on

risky and risk-free entrepreneurs’ incomes. We will refer to them as type 1 and type 2

income channels, respectively. The last channel is the effect of regulation on interest,

we will refer to it as the interest channel. Some of these channels are related to the

stabilization effect of regulation while others are related to the growth effect. The

magnitude of the shock, and the behavior of individuals toward uncertainty, are key

determinants of the importance of the stabilization effect of regulation.

We find that the overall impact of the optimal level of regulation on social welfare

depends critically on the magnitude of the productivity shock, its probability, and

whether economic agents are sufficiently risk-averse. In fact, the stabilization effect

deriving from tighter regulation dominates the growth effect in these cases.

The rest of the paper is organized as follows. The model is described in section

2. In the third section, we investigate the effect of regulation on growth in the basic

model. In section 4, we study the welfare implications of regulation in an economy

with an aggregate, unanticipated shock. Section 5 provides a quantitative assessment,

and section 6 considers extensions to the basic framework. Concluding remarks are

contained in section 7.

2 Model

In this section we consider a simple extension to the standard OLG model, in which

banks serve as financial intermediaries and banking regulation is modeled as a con-

straint on banks’ portfolios. This model is a suitable framework for investigating the

effects of banking regulation on key macroeconomic variables and for assessing its

social welfare implications.

2.1 Preferences and Endowments

The economy consists of a continuum of banks, firms, and individuals. Individuals live

for two periods. When young, an individual is called an entrepreneur, and when old
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becomes a lender. The population is constant and normalized to one. Each individual

of generation t ≥ 1 is endowed with two types of technology when young, but can

implement only one, and no technology when old. Each member of generation t has

preferences over consumption streams given by

U(cy
t , c

o
t ) = E[u(cy

t ) + βu(co
t )], (1)

where cy
t and co

t are the consumptions of a young respectively of a old of generation

t, and u is strictly increasing, strictly concave, twice continuously differentiable and

satisfies Inada’s conditions, and β is a time-preference parameter. Each member of

the initial old generation is endowed with an equal share of the aggregate capital

stock k0 and enjoys only last period consumption i.e., U(co
0) = u(co

0).

2.2 Production and Investment

There are two types of technology, a high-return risky technology y1t = ztf(k1t),

and a low-return safe technology y2t = f(k2t), where k denotes physical capital, zt is

an independent and identically distributed random variable with discrete probability

distribution Prob(zt = zj) = πj , with j ∈ {h, l} and zh ≥ zl, . We assume that

the mean of zt is z and that it is greater than one.2 Let us denote πh by π. These

technologies serve to produce two intermediate goods. We assume that f is C2 and

satisfies f(0) = 0, f ′ > 0, f ′′ < 0, lim
k−→0

f ′(k) = ∞, and lim
k−→∞

f ′(k) = 0. The assump-

tion f ′′ < 0 is one way of providing a positive revenue to entrepreneurs. The random

variable zt determines the quality of the risky investment.

There are a large number of competitive firms, which produce the final good using

these two intermediate goods as inputs according to the production function

Yt = F (Y1t, Y2t) = [γY σ
1t + (1 − γ)Y σ

2t]
1
σ , (2)

where Y1t denotes the risky input and Y2t denotes the risk-free input at time t. Let

us recall that γ is the distribution parameter. It helps to explain the relative factor

shares, so it is in [0, 1]. σ, in (−∞, 1], is the substitution parameter—it helps in the

derivation of the elasticity of substitution. Assuming a CES production function for

2This is one way of making the risky technology more productive than the risk-free technology.
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the final good is one way of taking into account the fact that, in any economy in

which one sector receives a shock, other sectors may also be in trouble.

Capital is durable, and is the only way for young agents to save. One unit of

consumption placed into investment in period t yields one unit of capital in period

t + 1.

2.3 Banks

We assume that there is free entry into banking activity. This leads to a competitive

banking sector. Therefore, some banks will be specialized in the risky technology and

others in the risk-free one. In fact, if we suppose that this is not the case, then banks

can remove resources from one type of entrepreneur and give them to others. In this

case, a new bank can enter the market, specialize in the technology of the “exploited”

entrepreneurs, provide a greater amount of transfer to them, and thus capture the

entire market and make a positive profit.3

The old generation invests in the bank that promises to pay the highest interest

rate. This drives all banks to promise the same interest rate to each lender. Banks

behave as follows. They collect savings from the old cohort (with a promise to give

them some level of consumption good in the next period) and lend to entrepreneurs.

Before presenting the problem of a bank formed in period t, we introduce some

notation. p1 is the price of the risky intermediate good, while p2 is the price of

the risk-free intermediate good. Lending contracts are set according to the type of

technology: (k1t, τ1t(zt)) for the risky technology and (k2t, τ2t) for the risk-free, where

τit is the transfer provided to an entrepreneur implementing technology i at time t.

This may be a function of the idiosyncratic shock if the entrepreneur implements

the risky investment. The optimal contract for those operating the risky technology

(k1t, τ1t(zt)) solves the following optimization problem:

max
(k1t,τ1t(zt))

Et [v(τ1t(zt), rt+1)] (3)

3We can also obtain this result by assuming that each type of project requires specialized evalu-
ation and monitoring. These evaluations can only be performed via two types of technology with a
large fixed cost. Because of this fixed cost, each bank can have access only to one type of evaluation
technology, these technologies are not accessible to individuals.
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subject to the zero-profit constraint,

πτ1t(zh) + (1 − π)τ1t(zl) + rtk1t = p1zf (k1t) ,

where v(τit, rt+1) is the indirect utility function of each individual and is given by

v(τit(zt), rt+1) = u (τit(zt) − s (τit(zt), rt+1)) + βEt [u ((1 + rt+1)s (τit(zt), rt+1))] , (4)

where the optimal savings function s (τit(zt), rt+1) is given by

s (τit(zt), rt+1) = arg max
s

{u [τit(zt) − s] + βEt (u [(1 + rt+1)s])} . (5)

Before describing the objective function, we describe the constraint. It states

that entrepreneurs’ transfers plus the interest payment received by lenders is equal to

banks’ resources, which are the nominal value of inputs produced by entrepreneurs,

i.e., the quantity produced times the price of each unit of input. The objective func-

tion describes the expected utility of an individual implementing the risky technology

at time t.

The optimal contract for those operating the risk-free technology (k2t, τ2t) solves

the optimization problem:

max
(k2t,τ2t)

v(τ2t, rt+1) (6)

subject to the zero-profit constraint,

τ2t + rtk2t = p2f (k2t) .

This problem can be interpreted in the same way as the one above.

2.4 Individuals

At time t, each entrepreneur chooses between two types of technology. Then it borrows

from banks an amount of capital according to the type of technology chosen. It

produces intermediate goods and gives them to banks. Banks sell the intermediate

goods to firms producing the consumption good. After production takes place, lenders

receive the interest payment and their capital. They sell their capital and obtain the

consumption good. Therefore, each old agent has (1 + rt) units of consumption good

for each unit of capital owned at the beginning of the period. They consume all their
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goods and exit the economy. The entrepreneur receives a transfer and consumes and

saves according to the transfer and the anticipated interest rate. Figure 1 describes

the timing of events for an individual born at time t.

✲✉
t + 2

✉

t + 1

✉

t
✻ ✻ ✻ ✻

Borrows
k1t or k2t

Receives
τ1t(zt) or τ2t

Saves
st(τ1t(zt), rt+1)
or st(τ2t, rt+1)

Receives
(1 + rt)st(τ1t(zt), rt+1)
or (1 + rt)st(τ2t, rt+1)

❄ ❄ ❄ ❄

Chooses the type of
technology j = 1, 2

Gives to banks
ztf(k1t) or f(k2t)

Consumes
ct(τ1t(zt), rt+1)
or ct(τ2t, rt+1)

Lends
st(τ1t(zt), rt+1)
or st(τ2t, rt+1)

✉

Entrepreneur Lender

Figure 1. Timing of events for an individual born at time t

We resolve this problem recursively using indirect utility. To simplify derivation

of our model we make some further assumptions. We assume that u is a power utility

function of the form

u(c) =
c1−ρ − 1

1 − ρ
. (7)

With this assumption, we obtain (as in Castro, Clementi, and MacDonald (2004))

that v(τit(zt), rt+1) is strictly increasing, strictly concave, and a linear translation of

a log-separable function of τit(zt).

In the remainder of the paper, we assume that final goods and input markets open

at any time t. As a benchmark, we investigate the properties of banking regulation

in the simple model given above.

3 Economy without Banking Crisis

In the above model, productivity shocks are idiosyncratic, so at the aggregate level

there is no uncertainty. Although there is no market failure that can provide a

rationale for bank regulation, it has been introduced in order to assess its effects on

growth. In the remainder of this section we characterize the evolution of this economy
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in an unregulated banking environment, and then explore how the paths of variables

such as capital and output change in response to the introduction of regulation.

3.1 Unregulated Banking

Before characterizing the economy, let us define a competitive equilibrium.

Definition 1. Given k0 units of capital in period t = 0, a sequential market equilib-

rium is defined by the consumption level of the initial old generation co
0, the con-

sumption allocation for entrepreneurs who choose the risky technology (hereafter

type 1 entrepreneurs) {cy
1t(zt), c

o
1t(zt)}

∞

t=0 , the consumption allocation for those

who choose the risk-free technology (hereafter type 2 entrepreneurs) {cy
2t, c

o
2t}

∞

t=0 ,

aggregate capital {kt+1}
∞

t=0 , the proportion of the type 1 entrepreneurs {nt}
∞

t=0 ,

contracts {(k1t, τ1t(zt))}
∞

t=0 , for those operating the risky technology, and {(k2t, τ2t)}
∞

t=0

for type 2 entrepreneurs, allocation {Yt, Y1t, Y2t}
∞

t=0 for firms, and sequences of

prices {rt, p1t, p2t}
∞

t=0 , such that for all t ≥ 0 :

1. consumers optimize, i.e., c0 = k0(1 + r0), for t > 0 and for i = 1, 2, cy
it(zt) =

τit(zt) − s(τit(zt), rt+1) and co
it(zt) = (1 + rt+1)s(τit(zt), rt+1);

2. contracts are optimal, i.e., they solve the banks’ problem;

3. ex ante, entrepreneurs are indifferent between technologies, i.e.,

E [v(τ1t(zt), rt+1)] = v(τ2t, rt+1);

4. firms optimize, i.e., {Yt, Y1t, Y2t}
∞

t=0 solves the firms’ problem ;

5. aggregate capital stock equals supply , i.e.,

nt+1k1t+1 + (1 − nt+1)k2t+1 = nt [πs1t(zh) + (1 − π)s1t(zl)] + (1 − nt)s2t;

6. the risky input market clears, i.e., Y1t = ntzf(k1t);

7. the risk-free input market clears, i.e., Y2t = (1 − nt)f(k2t).
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We now characterize the portfolio of investments in this economy.

The concavity of the instantaneous utility function drives banks dealing with type

1 entrepreneurs to provide them with risk-free contracts. This result holds for the

rest of this section, so all economic variables are determined with certainty and we

will omit zt in front of variables.

Before providing the equilibrium values of the key endogenous variables, we first

find the input demands. The demands for inputs are derived from the firms’ problem

and satisfy pit = ∂F (Y1t,Y2t)
∂Yit

for i = 1, 2. We can now characterize optimal contracts.

Lemma 1. Optimal contracts offered by banks to entrepreneurs are
(

k1t = f ′−1

(
rt

zp1t

)
; τ1t = zp1t [f (k1t) − f ′ (k1t) k1t]

)
(8)

to type 1 entrepreneurs, and
(

k2t = f ′−1

(
rt

p2t

)
; τ2t = p2t [f (k2t) − f ′ (k2t) k2t]

)
(9)

to type 2 entrepreneurs.

Proof. This follows directly from the First Order Conditions (FOCs) of problems

(3) and (6). For details, see appendix A.

As expected, the optimal contracts show that the demand for capital for the risky

technology is a decreasing function of the interest rate, but an increasing function of

average productivity and the price of the risky intermediate good. The same results

hold for the demand for capital for the risk-free technology. The only difference is that

the latter is not a function of productivity. The transfer is simply the remuneration

of entrepreneurship. To obtain a closed-form solution, we assume until the end of

this paper that inputs are produced with a Cobb-Douglas production function, i.e.,

f(x) = xα with α < 1.4

Lemma 2. At equilibrium, in any period t,

(i) each entrepreneur receives the same level of capital regardless of the type of tech-

nology implemented, i.e.

k1t = k2t; (10)

4Assuming that α < 1 allows us to fulfill the condition f” < 0.
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(ii) the proportion of the type 1 entrepreneurs is a constant given by

n∗ =

[
1 +

(
1 − γ

γzσ

) 1
1−σ

]
−1

. (11)

Proof. These results are obtained using the values for optimal contracts provided

by lemma 1, the indifference between technologies condition of entrepreneurs, and the

market clearing conditions for intermediate goods. Details are provided in appendix

A.

This lemma shows that the share of banks’ portfolios used to produce the risky

input in the entire economy is time invariant, so we omit t on nt in the rest of this

subsection. It also shows that this share increases with productivity, the distribution

parameter γ, and with the substitution parameter σ.5 When the substitution param-

eter increases, the share of bank portfolios allocated to the risky technology increases,

and when this tends to 1, (i.e., the elasticity of substitution is equal to infinity), this

share tends to 1. When σ < 1, i.e., the elasticity of substitution of inputs in the

final good’s production technology is different from infinity, n∗ is strictly less than

one. This is an interesting result, because empirically in economies without capital

adequacy requirements or asset holding restrictions, the amount of safe assets held

by banks is strictly positive.6 We assume for the rest of this paper that σ ∈ (0, 1).

Direct calculations show that prices (p1t and p2t) are time invariant. In fact, they

are simply a function of n, which is constant. This result was expected, because

input prices are a function of their relative scarcity and their complementarity in the

production process. This result holds in the rest of this section.

Finally, by replacing n with its equilibrium value (n∗) in the final good production

function, we obtain that the economy evolves exactly as a standard OLG economy of

5When σ = 0, (case of the Cobb-Douglas technology, i.e., F (Y1, Y2) = Y
γ

1
Y

1−γ

2
) n∗ = γ. In this

case, n is just equal to the share of input 1 in the production process. It is then not a function of the
inputs’productivity. When σ = −∞, (case of the Leontief technology, i.e., F (Y1, Y2) = min (Y1, Y2))
n∗ = 1

2
.

6As pointed out by Alexander (2004), in the 1970s and early 1980s, most countries did not have
minimum capital requirements for banks.
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capital accumulation, with

Yt = φ (z) kα
t , (12)

where φ (z) =
[
(γzσ)

1+σ
1−σ + (1 − γ)

1+σ
1−σ

] [
(γzσ)

1
1−σ + (1 − γ)

1
1−σ

]
−σ

.

It is obvious that the portfolio composition of banks in competitive equilibrium

is efficient. In fact, this competitive equilibrium yields the same level of transfer, the

same level of capital per entrepreneur, and also a deterministic interest rate for the

old cohort. It is then like a competitive equilibrium with a representative agent in

a deterministic environment. There is no way to have market failure, which could

provide a rationale for a planner interventing to achieve a better portfolio of assets.

Besides, the Balasko-Shell (1980) criterion for optimality is met (i.e., the indiffer-

ence curves have neither flat parts nor kinks, aggregate endowments are uniformly

bounded from above, and the infinite sum of t-period gross interest rates diverges),

thus dynamic inefficiency of the OLG model is impossible in our model.

3.2 Regulated Banking

Since the competitive equilibrium portfolio of banks is efficient, regulation cannot be

welfare improving. But what is its amplitude and its effect on the evolution of some

major macroeconomic indicators?7 To assess those effects, let us first define the new

competitive equilibrium.

Definition 2. Given k0 units of capital in period t = 0, a sequential market equi-

librium is defined by the consumption level of the initial old generation co
0, the

consumption allocation for type 1 entrepreneurs {ĉy
1t(zt), ĉ

o
1t(zt)}

∞

t=0 , the con-

sumption allocation for the type 2 entrepreneurs dealing with the risky bank

{ĉy
2t, ĉ

o
2t}

∞

t=0 , the consumption allocation for the type 2 entrepreneurs dealing with

the risk-free bank {cy
2t, c

o
2t}

∞

t=0 , aggregate capital {kt+1}
∞

t=0 , the proportion of the

type 1 entrepreneurs in the risky bank {n̂t}
∞

t=0 , the proportion of entrepreneurs

who choose the risky bank {mt}
∞

t=0 , the contracts
{

(k̂1t, τ̂1t(zt))
}

∞

t=0
, for those

7Bernanke and Gertler (1985) state that most of the original regulation was imposed on macroe-
conomic grounds. Therefore, to assess the welfare cost of regulation one needs to study its effect on
macroeconomic variables.
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operating the risky technology,
{

(k̂2t, τ̂2t)
}

∞

t=0
for entrepreneurs implementing

the risk-free technology in the risky bank, {(k2t, τ2t)}
∞

t=0 for those operating the

risk-free technology in the risk-free bank, allocation {Yt, Y1t, Y2t}
∞

t=0 for firms,

and sequences of prices {rt, p1t, p2t}
∞

t=0 , such that for all t ≥ 0 :

1. consumers optimize, i.e., c0 = k0(1 + r0), for t > 0 cy
2t = τ2t − s(τ2t, rt+1) and

co
2t = (1+ rt+1)s(τ2t, rt+1), and for i = 1, 2 , ĉy

it(zt) = τ̂it(zt)− s(τ̂it(zt), rt+1) and

ĉo
it(zt) = (1 + rt+1)s(τ̂it(zt), rt+1);

2. contracts are optimal, i.e., they solve the banks’ problem;

3. ex ante, entrepreneurs operating the risk-free technology are indifferent between

banks, i.e., v(τ̂2t, rt+1) = v(τ2t, rt+1);

4. ex ante, entrepreneurs in the risky bank are indifferent between technologies,

i.e.,

E [v(τ̂1t(zt), rt+1)] = v(τ̂2t, rt+1);

5. firms optimize, i.e., {Yt, Y1t, Y2t}
∞

t=0 solves their problem;

6. aggregate capital stock equals supply, i.e.,

mt+1n̂t+1k̂1t+1 + mt+1(1 − n̂t+1)k̂2t+1 + (1 − mt+1)k2t+1

= mtn̂t [πŝ1t(zh) + (1 − π)ŝ1t(zl)] + mt(1 − n̂t)ŝ2t + (1 − mt)s2t;

7. the risky input market clears, i.e., Y1t = mtn̂tzf(k̂1t);

8. the risk-free input market clears, i.e., Y2t = mt(1 − n̂t)f(k̂2t) + (1 − mt)f(k2t).

Before characterizing the portfolio of investments in this economy, let us define

the new bank’s problem. The regulated bank’s problem is unchanged for those im-

plementing the risk-free technology, but it is impossible for a bank to be specialized

in the risky technology. Therefore, the formerly risky bank will now deal with both

types of entrepreneurs. Since, as we stated in the previous subsection, banks pro-

vide risk-free contracts to entrepreneurs, we will not use the expected indirect utility
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function, will determine optimal contracts for entrepreneurs by solving the following

problem,

max
(k̂1t,τ̂1t,k̂2t,τ̂2t)

v(τ̂1t, rt+1) (13)

subject to,

n̂tτ̂1t + (1 − n̂t)τ̂2t + rt

(
n̂tk̂1t + (1 − n̂t)k̂2t

)
= n̂tzp1t

k̂α
1t + (1 − n̂t)p2t

k̂α
2t, (14)

v(τ̂2t, rt+1) ≥ v(τ2t, rt+1), (15)

n̂tk̂1t

n̂tk̂1t + (1 − n̂t)k̂2t

≥ θ. (16)

Let us describe the objective function and then the constraints. The objective

function is the indirect utility function of an entrepreneur implementing the risky

technology. In fact, banks specialized in risky projects only value the welfare of type

1 entrepreneurs. Equation (14) is the zero-profit condition for intermediaries, while

inequality (15) is the participation constraint for type 2 entrepreneurs. Inequality

(16) is the regulatory constraint, which states that banks’ portfolios cannot have

more than a given proportion of capital allocated to the risky technology.8 In fact, in

the presence of regulation, there is an additional constraint set for banks specialized

in the risky technology. They are forced to provide at least a given share (1 − θ) of

their portfolio to entrepreneurs operating the risk-free technology.

We now characterize this new equilibrium. It depends on the value of θ. In fact, we

have two different types of adjustment depending on the interval to which θ belongs.

Case of θ ∈ (n∗, 1)

In this case, the equilibrium allocation of capital per entrepreneur satisfies the

following property : k̂1t = k̂2t = k2t. Let us consider the following solution: The

proportion of type 1 entrepreneurs in the risky bank is n̂t = θ, while the proportion

of people in the risky bank is mt = n∗

θ
. This solution yields the same capital, transfer

and interest rate to entrepreneurs as the unregulated economy solution. In fact, the

introduction of regulation drives entrepreneurs to move only from the risk-free bank

to the risky bank. They move until the transfer in the risky bank equals that in

8We do not omit t on n̂t in the above problem because it is a new one and we cannot say at this
point if n̂t is an independent function of t.
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the risk-free bank. This will be achieved with no deterioration in welfare until this

adjustment is no longer possible. Since, the maximum proportion of entrepreneurs in

the risky bank cannot exceed 1, from mt = n∗

θ
, we obtain that this way of adjustment

is possible only if θ ≥ n∗.

Case of θ ∈ (0, n∗)

In this case, banks and entrepreneurs cannot adjust to obtain the first-best so-

lution. The following lemma provides the optimal contracts of the regulated risky

banks.

Lemma 3. Optimal contracts proposed by the regulated, risky banks are,
(

k̂1t = θ(1 − n̂t)

[
αBt

rt

] 1
1−α

; τ̂1t = (1 − α)
(1 − n̂t)

n̂t

[
n̂tB

1
1−α

t − p
1

1−α

2t

] [
α

rt

] α
1−α

)

for entrepreneurs using the risky technology, and
(

k̂2t = n̂t(1 − θ)

[
αBt

rt

] 1
1−α

; τ̂2t = (1 − α)p2t

[
αp2t

rt

] α
1−α

)

for entrepreneurs using the risk-free technology. Where

Bt = zp1tθ
α(1 − n̂t)

α−1 + p2t(1 − θ)αn̂α−1
t . (17)

Proof. This follows from the FOCs of problems (13) and (6). The details are

available in appendix B.

Lemma 4. At equilibrium, in any period t,

(i) the proportion of risky input producers (nt) is time invariant;

(ii) the ratio of risky input to risk-free input, Y1t

Y2t
denoted by Φt, is time invariant.

Proof. These results are obtained using the values of the optimal contracts, the

indifference between technologies condition of entrepreneurs, and the market clearing

conditions for intermediate goods. See appendix B for details.

Intuitively, the proportion of entrepreneurs implementing the risky technology and

the ratio of risky to risk-free inputs depend on the final good technology and on the

regulation coefficient. Since they are fixed, nt is time invariant. This lemma also

implies that input prices are time invariant, so we will omit t in the price notation.

16



Lemma 5. Y1t and Φt are increasing and continuous functions of θ, while Y2t is a

decreasing function of θ.

Proof. This result is obtained by using the values of the optimal contracts, the

indifference between technologies condition of entrepreneurs, and the market clearing

conditions for intermediate goods. The details are available in appendix B.

The amount of input produced by risk-free entrepreneurs increases with the amount

of capital invested; we can refer to it as the volume effect, while the risk-free input

price decreases since it is abundant. Since σ > 0, the volume effect dominates the

price effect and therefore the anticipated transfer to type 2 entrepreneurs is an increas-

ing function of θ. Thus, entrepreneurs produce more risk-free input. The demand for

risk-free inputs by firms remains unchanged after regulation, because it is function

of the final good’s technology. However, as we have proven, its supply changes after

regulation. In fact, with regulation, more capital is available for the risk-free tech-

nology. This shifts the supply curve of capital to the right, thus reducing the price

of the risk-free input. The price reduction has a negative effect on supply (general-

equilibrium effect), but this effect is not dominant when σ > 0. We assume for the

remainder of this paper that we are under this condition.

3.3 The Effect of Regulation on Growth

This subsection investigates the implications of banking regulation on output and

growth .

Lemma 6 Given the capital supply, the equilibrium aggregate output increases with

θ.

Proof. To prove this, we differentiate the expression for aggregate production

Yt with respect to θ, using the results in lemma 4 and 5. Details are available in

appendix C.

Intuitively, when the supply of capital is given, regulation has a negative effect

on production of the risky input and a positive effect on production of the risk-free

input. Regulation thus has two opposite effects on aggregate output. This shifts

the optimal composition of inputs to the left on the transformation frontier (TF ).
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Since the isoquants of production curves are convex, the new equilibrium will be on

an isoquant with a lower level of production. This is illustrated in figure 2. Output

decreases from v1 to v2.

✲
Y1t0

✻Y2t

Y1t(θd) Y1t(θc)

Y2t(θc)

Y2t(θd)

❍❍❍❍❍❍❨

❄

Y = F (Y1, Y2) = v2

❄

Y = F (Y1, Y2) = v1

TF

✉

✉

Figure 2. Effect of regulation on output.

Proposition 1. When the instantaneous utility function is logarithmic, growth is an

increasing function of θ.

Proof. The idea underlying this proof is to differentiate the expression for growth

with respect to θ and verify that it is positive. We split this proof into two steps. The

first step provides an expression for growth as a function of θ, the second finds its

derivative with respect to θ and verifies under which conditions it is positive. Details

are available in appendix C.

This result also holds in any situation in which regulation has a negative impact

on the level of savings. Let us show that intuitively, by comparing the dynamics of

two economies differing only in terms of θ. Let θc and θd be the maximum shares

of the portfolio a bank is allowed to invest in the risky technology in economy c,

respectively economy d, and suppose θc > θd. Let us start at time t = 0. Since the

initial capital stock is given, the supply of capital by the old generation is completely

inelastic at k0. The impact of the regulation is reflected in different demand curves
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for aggregate capital. It results in a lower interest rate r0 in the economy with θd,

and the transfer received by entrepreneurs τ0 is lower.

Intuitively, since the amount of capital invested in the production of the risky

input is fixed and lower in economy d, and given that the demand for capital increases

with productivity, demand is lower and supply is unchanged, so the interest rate will

adjust, i.e., r0 is lower. On the other hand, the production of the risky input will

be lower while the production of the risk-free input will be higher. lemma 6 shows

that production is lower, i.e., Y0 (θd) < Y0 (θc). It has the same effect on prices,

that is p2 (θd) < p2 (θc) . Regulation has two opposite effects on τ20, since τ20 is an

increasing function of p20 and a decreasing function of r0. The price effect is always

dominated, because r0 is proportional to p20 and its weight is less than p20’s weight

in the expression for τ20.

Capital demand increases with θ. Therefore, economy d’s demand curve is to the

left of the economy c’s demand curve. A lower value of τ0 implies a shift in the

capital supply curve to the left at t = 1 if the substitution effect deriving from the

lower interest rate dominates the income effect. In this case, k1 (θd) < k1 (θc) . This

is always the case when ρ ≤ 1.

Finally, this means that for any pair of regulation parameters (θc, θd) with θc > θd,

τ0 (θc) > τ0 (θd) . It will also be the case that k1 (θd) < k1 (θc) , r1 (θd) < r1 (θc) , and

τ1 (θc) > τ1 (θd) . By repeating the same argument at any period t, we conclude that

capital accumulation is higher in the economy with less regulation.

The result can be generalized when the income effect dominates the substitution

effect, but in a way that causes the slope of the supply curve to be lower (in absolute

value) than the slope of the demand curve. In this case, for all t ≥ 1, kt (θd) < kt (θc) .

Therefore, even when ρ > 1, we can still have the same result.

4 The Economy with Banking Crises

To introduce a possibility of banking failure, we use the competitive equilibrium

results from section 3. Then we allow the occurrence of an unanticipated state ̟, in

which aggregate productivity in the risky sector is lower than the banking system’s

ability to meet its promise to lenders, and show that this can provide a rationale for
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regulation. We then compute the optimal level of regulation and study its welfare

implications.

4.1 Characterization of Equilibrium

With ρ ≥ 1, it is obvious that at any time t an individual must consume a positive

amount of the final good. Thus, each bank must provide a positive transfer to each

entrepreneur. This is not only a modeling assumption. In fact, Halac and Schmukler

(2004) document many ways that borrowers are bailed out in the resolution of crises:

(1) when bank loans are transferred to the central bank or an asset management

company (making it relatively easy for borrowers to default on their debts), (2) when

governments provide debt relief programs, (3) or when the central bank establishes

a preferential exchange rate for foreign-currency denominated debt, i.e., the central

bank sells dollars to debtors at a subsidized exchange rate.9 To achieve this, let us

assume in the rest of this section that banks must provide at least a minimum transfer

to each entrepreneur and denote by τ this minimum. We assume that the occurrence

of the aggregate productivity shock is very unlikely. Therefore, it is unanticipated.

Following Allen and Gale (2000), the state ̟ (zt = zw) will occur with probability

zero. We also assume that this occurs only at the steady state. Each bank is required

to meet its promise to pay a given interest rate to lenders if it can at least pay the

minimum transfer to each entrepreneur dealing with it.

We now describe the equilibrium at time t in state ̟. At t, a bank can find itself in

one of these two situations: It can be solvent, that is it provides the promised interest

rate to lenders, or it can be bankrupt, that is it cannot pay the promised interest

rate to lenders. These definitions are motivated by the assumption that lenders are

very often the ones who are protected in case of banking crisis. In many countries,

governments operate a deposit insurance fund that guarantees lenders’ deposits.10

Governments also stand ready to provide support to banks when they face difficulties,

or banks can be taken over by the government, which then guarantees that depositors

will receive all their deposits.

9The transfer to debtors tends to be large because borrowers often take advantage of the bailout
and stop paying their debts, regardless of their capacity to pay.

10In the United States of America, the Federal Deposit Insurance Corporation (FDIC) pays de-
positors the first $100,000 they deposited in the bank no matter what happens to the bank.
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Lemma 7. If the minimum transfer is strictly positive in any unregulated banking

economy, there exists a positive number z such that if zw <z, any risky bank

goes bankrupt when ̟ occurs.

Proof. We use the resource constraint of a bank specialized in the risky technology

to show that it cannot fulfill its promise to lenders. The complete proof is available

in appendix D.

When the state of nature is zt = z, the economy continues to work as in section 3.

But if the special state ̟ occurs, the risky bank in an unregulated economy cannot

both pay the promised interest to its lenders and provide the minimum transfer to

those implementing the risky technology. We assume in the rest of this section that

zw < z. Therefore, when the unexpected state of nature occurs, any bank specialized

in the risky technology goes bankrupt. In this case, the risky bank provides to

entrepreneurs the minimum transfer and to lenders an equal share of the remaining

resources. We will refer to this as the bankruptcy rule.

4.2 The Effect of Regulation on Banking Crises

As in the previous section, banking regulation forces risky banks to finance a positive

proportion of the risk-free input’s production. In the following proposition we show

that there is an adequate value of θ (the coefficient set by the regulation) such that

when the unanticipated state occurs, the regulated risky bank is able to pay the

promised interest rate to lenders and still be able to provide more than the minimum

transfer to entrepreneurs.

Proposition 2. There is a non empty set S ⊂ [0, n∗] containing an open interval of

real numbers such that, if θ ∈ S, the risky banks can always fulfill their promises

toward lenders.

Proof. This proof is based on the zero profit constraint. We show that under

regulation, banks dealing with entrepreneurs implementing the risky technology have

enough resources to provide at least the minimum transfer to entrepreneurs and pay

the promised interest to lenders. The complete proof is available in appendix D.
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It is hard to prove that S is an interval, but for all examples we computed nu-

merically we obtained that it is an interval. We thus assume until the end of this

section that S is an interval which has as upper bound θ. When θ < θ, if zt = zw,

the risky bank has enough resources to pay lenders and type 2 entrepreneurs and

provide more than the minimum transfer to type 1 entrepreneurs. It is then possible

to set a regulation coefficient such that a banking crisis cannot occur in this economy.

But as we saw in the previous section, it can have a negative impact on economic

development and growth. The next step is a welfare assessment of regulation.

4.3 Welfare Analysis of Regulation

We now turn to study the welfare implications of regulation. First, let us define

the welfare notion we will use. Since the shock is unanticipated, the appropriate

welfare notion is realized welfare. It was introduced by Starr (1973) and has been

proven to have the best properties for policy analysis. Let’s Wt(c(zt), c(zt+1)) be the

Von Neumann-Morgenstern social welfare function per generation, which depends

upon individuals’ realized utility. It represents the realized welfare of generation t

individuals and is defined by

Wt(c(zt), c(zt+1)) = ntv
r(τ1t(zt), rt+1(zt+1)) + (1 − nt)v

r(τ2t(zt), rt+1(zt+1)), with (18)

vr(τ(zt), rt+1(zt+1)) = u [τ(zt) − s (τ(zt), rt+1(z))] + β (u [(1 + rt+1(zt+1))s (τ(zt), rt+1(z))]) .

In the case in which the productivity shock occurs, the welfare implications of

regulation on generations living at that time is the result of a trade-off between the

growth effect and the stabilization effect described by the following figure.

✉

1

✉

0

No Bankruptcy Bankruptcy Bankruptcy

Reduces Growth Reduces Growth Irrelevant on Growth

✉

n∗

✉

θ

Figure 3. Effect of regulation on growth and banking Stability

22



With a regulation coefficient lower than θ, regulation helps to protect banks from

bankruptcy, but it reduces the expected output, which translates into lower growth.

We assume in the remainder of this section that θ ≤ θ, i.e., regulation helps the

banking system gain stability—it cannot go bankrupt even when the unexpected

state of nature occurs. Regulation affects social welfare through four channels:

(1) the weight channel, which is its effect through the proportion of type 1 en-

trepreneurs (nt): Regulation can reduce nt, diminishing the number of individuals

exposed to crises in the economy. It is then welfare improving in case of a crisis, but

welfare reducing in its absence.

(2) the type 1 revenue channel, which is its effect through the transfer received by

type 1 entrepreneurs (τ1t): Regulation increases τ1t in case of a crisis, since it exceeds

the minimum. The type 1 revenue channel is then welfare improving in the case of a

crisis and welfare reducing otherwise.

(3) the type 2 revenue channel, which is its effect through the transfer received by

type 2 entrepreneurs (τ2t): Regulation reduces τ2t in any case, so it is welfare reducing.

In fact, the steady state transfer to type 2 entrepreneurs is low in a regulated economy,

even in crisis periods, compared to in the unregulated economy.

(4) the interest channel, which is its effect through the interest rate, rt: Regulation

reduces the productivity of capital, resulting in a lower interest rate. This can reduce

the savings rate, or the amount saved, thus diminishing the amount of consumption

when individuals are old. Therefore, in the absence of a crisis, this channel is welfare

reducing. However, in the case of a crisis, regulation helps banks to provide the

promised interest rate. It is then welfare improving.

The type 2 revenue channel is related to the growth effect, while the interest rate

channel is related to the stabilization effect. Two others channels, the type 1 revenue

channel and the weight channel, account for both effects.

Let us assume that, at t = t1, the economy is at the steady state and the shock

occurs. Even for generation t, the overall social effect of regulation is ambiguous.

Regulation is welfare improving only if the stabilization effect dominates the growth

effect. There are two generations living in a crisis period. In fact, if the productivity

shock occurs at t1, the old (generation t1 − 1) will be affected through the interest

channel. When there is a crisis at t1, the old who are dealing with the risky bank

23



cannot obtain the promised interest rate. Thus, the crisis affects the ex post interest

rate negatively.

We assume for the rest of this section that we are in situations in which regulation

is welfare improving for generations living in a crisis period. In this case, it is obvious

that for generations living in a crisis period, the optimal regulation is less than θ,

i.e., there is an appropriate level of capital adequacy requirements that is welfare

improving.11

But there are many generations in the economy, and the above analysis has shown

that the portfolio composition of banks at time t affects future generations through

its effects on the dynamics of the capital stock. If t is an ex ante crisis period,

regulation is welfare reducing as we saw in section 3. In fact, in an ex ante crisis

period, regulation affects welfare through two channels—the revenue channels and

the interest channel. In fact, the type 1 revenue channel is exactly the type 2 revenue

channel and the weight channel is irrelevant since type 1 entrepreneurs have exactly

the same welfare as type 2. It follows from section 3 that the revenue channel and the

interest channel are welfare reducing. Therefore, the regulation is welfare reducing

for the generation living before a crisis.

What about generations living after the crisis? At t1 + i; i ≥ 1, individuals obtain

the same transfer and the same interest rate regardless of the type of technology they

implement. Therefore, the weight channel is irrelevant. After the crisis, in many cases

there is more aggregate capital in the regulated than in the unregulated economy. But

the implications for welfare are complex and depend on the technology’s parameters.

After some periods, the economy returns to the steady state and then regulation has

a negative impact on the welfare of generations living in those periods.

To take into account the welfare of future generations, we define a social welfare

measure. Unfortunately, as pointed out by Ennis and Keister (2003), there is no

clear criterion for aggregating utilities across generations. Following them, we take a

simple approach and define the realized social welfare function by

11This result helps to provide a rationale for the Barth, Caprio and Levine (2003) empirical result.
If the regulation coefficient is inappropriate i.e., θ ∈ (θ,n∗) it will end up with a negative effect on
financial and economic development.
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W (c(zt)) =
∞∑

t=0

δtWt(c(zt), c(zt+1)), (19)

with 0 < δ < 1.

To assess the welfare cost of banking regulation, we follow Lucas (1988) to define it

as the additional proportion Ω of consumption that a representative agent should pay

the planner to ensure implementation of the regulation. If this proportion is positive,

then regulation is welfare improving; if it is negative, then it is welfare reducing. We

refer to Ω as the relative welfare gain from regulation. Ω is then the solution of the

following equation:

W ((1 + Ω)c(zt)) = W (ĉ(zt)). (20)

Due to the complexity of the problem and the number of channels, it is not

possible to provide an analytical assessment of the effect of regulation on aggregate

social welfare. Thus, we will conduct a numerical assessment.

5 Numerical Analysis

We conduct a quantitative assessment of our model by simulating it with calibrated

parameters from the US economy. Let us first calibrate the model to fit the observed

data.

5.1 Calibration

The aim of calibration is to match the proportion of investment in the risky sector

and also the relative productivity of that sector. Some parameters are taken in the

literature as a priori information, others are estimated.

A priori information. We take, as is usual in the literature, the power utility

parameter ρ = 1.5, and the share of capital in the production of the inputs, α = 0.34.

Estimated and calibrated parameters. Table 1 provides the estimated aver-

age life expectancy, the annual interest rate, and the proportion of high-tech produc-

tion in total exports from these economies over the period 1960–2000.12

12This seems the best proxy for the importance of the higher productivity sector in an economy.
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Table 1. Data, average (1960–2004)

Country Life expectancy Interest rate High-Tech (%) of Exp.

(years) (%) (%)

USA 74 4.1 33

Source: WDI (2006)

Given the fact that people typically start to work at age 16, while in our model

individuals begin working at birth, we remove 16 years from the life expectancy to

obtain the life span of an individual. We obtain 58 years, so we assume that a period

represents 29 years. It follows from the annual interest rate of 4.1 per cent that a

period interest rate is r = 2.2.

To calibrate productivity in the higher productivity sector, we use a proxy for

its return. We assume that high-tech is usually financed through the stock market.

From stock market data, the long run annual rate is estimated as 6.8 per cent. This

yields a return of R = 5.7 over a period. A proxy for the return in other sectors is

the average real interest rate. Since we normalized the productivity of other sectors

to one, we have z = R
r

= 2.5. We calibrate the lower productivity to a major crisis

period, such as the episode in 2001 when the NASDAQ index lost more than 1/3

of its value. This also means that, over a period, the return in the high-tech sector

is approximately the same as the return in the other sector. This allows us to set

zw = 0.8.

The intergenerational discount rate is β = 0.3. It is equivalent to an annual

discount factor of 0.96 which is set to match the steady state interest rate of 2.2. We

calibrate σ so that the effect of a shock on prices is less than the productivity effect,

precisely σ = 0.9. We calibrate γ to obtain the proportion n∗ = 0.33, i.e., we solve

n∗ =

[
1 +

(
1−γ

γzσ

) 1
1−σ

]
−1

, and we obtain γ = 0.3.

We now need to provide a value for the minimum transfer to type 1 entrepreneurs

in case of a crisis. We use as a proxy the revenue that the creditor retains in case

of bankruptcy. It follows from Richardson and Troost (2006) that, during the great

depression, more that 50 per cent of loans were not recovered. During the 1980s and

1990s, Mason (2005) documents that the maximum rate of loan recoveries was close

to 75 per cent. We thus take τ = 0.25τ as a proxy for the minimum transfer received

by entrepreneurs. Finally, we assume that social and individual discount factors are
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the same. Table 2 summarizes the calibrated parameters.

Table 2. Benchmark Parameter Values

Symbol Value Description

Preferences
β 0.30 individual discount factor

δ 0.30 social discount factor

ρ 1.50 coefficient of relative risk aversion

Technology
α 0.34 capital’s share of income

γ 0.30 distribution parameter

σ 0.70 substitution parameter

z 2.50 anticipated productivity

zw 0.80 unanticipated productivity shock

Bankruptcy rules
τ 0.25 minimum transfer to entrepreneurs

Period
t 29 number of years in a period

5.2 Results

Using the above parameters, we obtain that the optimal level of regulation, which

can prevent the banking crisis and be welfare improving for generations living in a

crisis period, is θ∗ = 0.3, corresponding to a reduction of 10 per cent in the level of

investment devoted to the risky technology. Figure 4 in appendix E provides several

charts on the dynamics of an economy with and without regulation using the above

parameters.

Table 3 provides a social welfare assessment as a function of the arrival time of

the productivity shock and the relative risk-aversion coefficient of individuals.
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Table 3. Relative Welfare Gain (%)

T/∗ 1 2 3 4 5
ρ
1.5 0.2 −8.4 −10.8 −11.6 −11.8
2.5 13.4 −3.7 −9.4 −11.1 −11.7
3.5 37.0 7.2 −5.5 −9.9 −11.3
4.5 65.3 27.0 4.2 −6.3 −10.1
5.5 90.4 51.4 21.5 2.6 −6.7
6.5 101.0 74.0 42.5 18.0 1.7

/∗ is the number of periods before the shock occurs

Source: Simulation results

The benchmark simulation shows that the relative welfare gain from regulation is

a decreasing function of the time of the crisis. More specifically, if the crisis occurs

at the beginning of the steady state, the relative gain from regulation is close to 0.2

per cent. This relative gain declines to a negative value if the shock occurs later. It

also increases with the power utility function parameter, ρ. In fact, an increase in ρ

improves the stabilization effect of regulation.

We conduct another assessment assuming that the regulator is not aware of the

time of the productivity shock. For that purpose, we assume that the likelihood of a

shock occuring at any time in the steady state is constant. The results are presented

in figure 5 in appendix E. The benchmark simulation shows that the relative welfare

gain of regulation is a decreasing function of ρ. More specifically, when the relative

risk aversion coefficient is lower than 4.7, the stabilization effect of regulation is

dominated by the growth effect and therefore the regulation is not needed. But when

the coefficient is greater than 4.7, the stabilization effect is dominant. Specifically,

when ρ = 5.5, the relative welfare gain from regulation is evaluated at 15 per cent.

However, when ρ < 4.7, the regulation is welfare reducing: e.g., when ρ = 1.5, the

relative welfare gain is evaluated at -13 per cent—it is then a cost. The result that

the welfare gain of regulation increases with the risk-aversion coefficient is robust to

changes to some parameters of the model.

The first parameter which may be relevant, but which has not be calibrated, is

the discount factor of the regulator. Let us assume now that the regulator discounts

the future more than individuals (this has sometimes been viewed as a rationale for
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regulating by the regulator). Suppose that the time preference for the planner is

0.98 per year, which corresponds to 0.55 for a period. The qualitative results do

not change, but quantitatively the risk-aversion coefficient is now lower than before.

When ρ = 4, the welfare improvement is up to 7.5 per cent. As before, when ρ = 1.5,

the welfare gain is evaluated at –11 per cent.

Another parameter of interest is the minimum transfer received by entrepreneurs

(τ). Let us assume that entrepreneurs receive less; for example, suppose τ= 0.23τ .

The result of the simulation is that a decrease in the minimum transfer to en-

trepreneurs induces a greater welfare improvement from regulation. In fact, when

entrepreneurs receive less, they save less, so the stock of capital in an unregulated

economy is lower when τ= 0.23τ than when τ= 0.25τ. This raises the importance of

bankruptcy rules or liquidation rules in the welfare-gain analysis of regulation.

6 Discussion

In the above development we have not taken into account the fact that banking crises

often have associated costs. Four main costs are highlighted by Hoeslcher and Quintyn

(2003). Three of these costs are fiscal, so are irrelevant when we are studying the

economy without modeling government, but the macroeconomic cost attributable to

the fact that bankruptcy can impair the intermediation function of banks is relevant

to our analysis.13 Taking this into account increases the welfare gain of regulation

on generations living after the crisis. In fact, after the crisis, banks specialized in

the risky technology can suffer under-financing, so risky investments will be lower

than usual. This can lead to a transitional or permanent structural change in the

magnitude of inputs into the final good production process. In any case, it will reduce

the growth effect of unregulated banking in the post-crisis period—thereby enhancing

the welfare effect of regulation. This does not change the qualitative result obtain

previously. It extends the maximum period of time during which the shock can occur

and regulation continues to be welfare improving, and increases the relative welfare

improvement in all periods.

13According to Bernanke and Gertler (1989), and Mishkin (2000), a banking crisis reduces the
amount of financial intermediation undertaken by banks and therefore leads to a decline in investment
and aggregate economic activity.
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Also, in the previous developments, two key assumptions explain why the economy

is subject to banking crises: the productivity shock and the fact that entrepreneurs

must receive a minimum transfer in any case. A third assumption presented above is

the fact that the shock is unanticipated. Although we have not provided an assessment

of the case in which the shock occurs with a positive probability, we believe we

can obtain the same results without this assumption. In fact, under the second

assumption, type 1 entrepreneurs have a kind of insurance in the case of a banking

crisis, therefore their expected utility is higher than the effective expected utility.

Since banks maximize only the expected utility of entrepreneurs, they will end up

with more risky portfolios, and thus be subject to banking crises.

7 Conclusion and Policy Implications

In the first part of this paper we introduced banking regulation in the familiar two-

period OLG model of capital accumulation, in which technological shocks are id-

iosyncratic. The level of regulation is measured by capital adequacy requirements—

the main quantitative component of Basel Accords. In this environment, our model

produces several interesting implications. First, the portfolio of banks in competi-

tive equilibrium is efficient. Second, banking regulation is detrimental to economic

growth. In fact, it constrains banks to adjust their portfolio of investments towards

safer, less productive assets. This structural change reduces output and also individ-

uals’ incomes. It then results in decreased savings and, therefore, investment.

In the second part we introduced an unanticipated sectorial shock, equivalent to

overall lower productivity in the risky sector. We found that the economy will be

subject to banking crises. In this event, there is an optimal capital adequacy require-

ment coefficient that can prevent crises. Although it is generally welfare improving for

generations living in the crisis period, it is generally welfare reducing for populations

living outside of this period.

We calibrated the model to reflect an economy such as the United States. We

found that it is socially optimal to regulate when the regulator thinks that a shock will

occur soon. This shows that, even when banking crises are due to real productivity

shocks and impose no extra cost, there still exists a rationale for regulation when
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the magnitude of the productivity shock is sufficiently large and the likelihood of the

shock is high. When there is no information available on the likelihood of shocks,

regulation is welfare improving only with a greater level of risk aversion—levels that

are higher than the usual acceptable level of risk aversion for the US economy. We

also found that parameters on the bankruptcy rule, preferences, and technologies have

a significant effect on the welfare improvements attributable to regulation.

Some policy implications can be drawn from this paper. First, since the welfare

gain is a function of when the shock occurs, it is important for regulators to predict

this time with a great degree of accuracy and raise capital requirements only when

they believe that a crisis is imminent. Therefore, we advocate for a time variant

regulation scheme. Second, since bankruptcy rules matter and are country variant,

we advocate for country-variant regulation.
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8 Appendix

8.1 Appendix A

Proof of Lemma 1

τ1t is obtained from the risky bank’s problem, and since banks provide a risk-free

transfer to entrepreneurs, this problem is now set as:

max
(k1t,τ1t)

v(τ1t, rt+1)

subject to the zero-profit constraint τ1t + rtk1t = p1tzf (k1t) .

Also, τ2t is obtained from the risk-free bank’s problem:

max
(k2t,τ2t)

v(τ2t, rt+1)

subject to the zero-profit constraint τ2t + rtk2t = p2tf (k2t) .

From the zero-profit conditions, transfers are given by τ1t = p1tzf (k1t)−rtk1t and

τ2t = p2tf (k2t)− rtk2t. Then, by strict monotonicity, banks will simply choose capital

to maximize transfers. The optimal capital levels derived from the bank’s problem

are

(k1t) : zp1tf
′ (k1t) = rt (21)

(k2t) : p2tf
′ (k2t) = rt (22)

From (21), we have k1t = f ′−1
(

rt

zp1t

)
, and from (22), k2t = f ′−1

(
rt

p2t

)
Finally,

substituting rt by its value yields

τ1t = zp1t [f (k1t) − f ′ (k1t) k1t]

τ2t = p2t [f (k2t) − f ′ (k2t) k2t] .

Proof of Lemma 2

(i) With assumption 2, at equilibrium each entrepreneur receives the same level of

capital at any time t regardless the technology implemented. In fact, from lemma 1,

rt = zp1tf
′ (k1t) = p2tf

′ (k2t) , which implies the following relationship between input

prices:
zp1t

p2t

=
f ′ (k2t)

f ′ (k1t)
. (23)
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On the other hand, the monotonicity of v(τt, rt+1) in its first argument yields that the

indifference condition between technologies is given by τ1t = τ2t. Substituting (23)

in this indifferent condition yields f ′(k2t)
f ′(k1t)

= f(k2t)−f ′(k2t)k2t

f(k1t)−f ′(k1t)k1t
. Given assumption 2, the

above equation is equivalent to
[

k1t

k2t

]α−1

=
[

k1t

k2t

]α

. This implies that

k1t = k2t.

(ii) From k1t = k2t, equation (23) yields zp1t

p2t
= 1. But this is just a relation

between prices. To obtain nt, we must go further and provide an expression for prices

as a function of nt. For that purpose, we use the market clearing conditions for

intermediate goods; i.e., Y1t = ntzk
α
1t, and Y2t = (1− nt)k

α
2t. We recall that p1t = F1t,

p2t = F2t, and F (Y1t, Y2t) = [γY σ
1t + (1 − γ)Y σ

2t]
1
σ . Therefore,

zp1t

p2t

=
zF1t

F2t

=
zσγ

1 − γ

(
nt

1 − nt

)σ−1

. (24)

Substituting the above equality in zp1t

p2t
= 1 yields nt =

[
1 +

(
1−γ

γzσ

) 1
1−σ

]
−1

.

8.1.1 Appendix B

Proof of Lemma 3

The bank provides capital for both types of technology. The optimal capital supply

must satisfy the regulatory constraint with equality. The regulatory constraint can

then be reset as

k̂2t =
nt(1 − θ)

θ(1 − nt)
k̂1t. (25)

Therefore, to obtain the optimal capital offered by the bank for each type of contract,

we simply need to maximize the objective function according to k̂1t. Furthermore,

we have seen that the indirect utility function is a strictly increasing function of its

first argument, given the zero-profit constraint and the free entry assumption for any

type of bank in the economy, the bank will provide τ2t = τ̂2t to type 1 entrepreneurs.

Given that there is no uncertainty and that the indirect utility of individuals is

an increasing function of the transfer, the optimal choice of capital for the risky tech-

nology will be one that maximizes the amount of transfer provided to entrepreneurs.
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i.e., k̂1t ≡ arg max
k

{τ1t(k)}. Where τ1t(k) is obtained by substituting k̂2t and τ̂2t with

their expressions in the zero-profit condition. Then,

τ̂1t =
Bt

θα(1 − nt)α−1
k̂α

1t −
rt

θ
k̂1t −

(1 − nt)

nt

τ̂2t. (26)

From the FOC, capital demand for the risky technology is given by,

k̂1t = θ(1 − nt)

[
αBt

rt

] 1
1−α

. (27)

Given (25), and replacing k̂1t by its value in (27), we obtain k̂2t = (1− θ)nt

[
αBt

rt

] 1
1−α

.

Substituting for k̂1t and τ̂2t in the zero-profit condition yields,

τ̂1t = (1 − α)
(1 − nt)

nt

[
ntB

1
1−α

t − p
1

1−α

2t

](
α

rt

) α
1−α

. (28)

τ̂2t is obtained from the participation constraint τ2t = τ̂2t and from lemma 1 (in case

of assumption 2).

Proof of Lemma 4

(i) The proof when θ ∈ (n∗, 1) is straightforward. We now investigate when

θ ∈ (0, n∗) .

The equilibrium proportion of entrepreneurs using the risky technology in the bank

is obtained from the indifference between technologies condition, τ̂1t = τ̂2t. Using the

optimal transfers given by lemma 3, this condition is equivalent to

[(1 − n̂t)n̂t]
1−α Bt = p2t. (29)

To complete the determination of n̂t, we must determine p2t and Bt.

1. Computation of p2t :

From the market clearing conditions, we have Y1t = mtn̂tzk̂α
1t; and Y2t = mt(1 −

n̂t)k̂
α
2t + (1 − mt)k

α
2t. In this case we know that mt = 1, so n̂t = nt. Substituting for

k̂1t and k̂2t in the above equations yields

Y1t = ntzθ
α(1 − nt)

α

[
αBt

rt

] α
1−α

, and (30)

Y2t = (1 − nt)n
α
t (1 − θ)α

[
αBt

rt

] α
1−α

. (31)
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Let us recall that, in the proof of lemma 2, we found that zp1t

p2t
= zγ

1−γ

(
Y1t

Y2t

)σ−1

.

Substituting Y1 and Y2 in the above expression yields,

p2t = p1t

(1 − γ)

γ

[
ntzθ

α(1 − nt)
α

(1 − nt)nα
t (1 − θ)α

]1−σ

(32)

2. Computation of Bt.

We know from (17) that

Bt = zp1tθ
α(1 − nt)

α−1 + p2t(1 − θ)αnα−1
t .

We will express this as function of p2t. From (32) we have p1t = γp2t

1−γ

[
n1−α

t θαz

(1−nt)1−α(1−θ)α

]σ−1

.

Substituting p1t in the expression of Bt yields

Bt =

[
γ

1 − γ

zθα

(1 − nt)1−α

(
n1−α

t θαz

(1 − nt)1−α(1 − θ)α

)σ−1

+ (1 − θ)αnα−1
t

]
p2t. (33)

We now substitute the above expression of Bt into (29) and obtain

γzσθασ

1 − γ
n

(1−α)σ
t (1 − nt)

(1−α)(1−σ) (1 − θ)α(1−σ) = 1 − (1 − θ)α(1 − nt)
1−α. (34)

This is also equivalent to G(nt) = 0 where

G(x) =
γzσθασ

1 − γ
x(1−α)σ(1 − x)(1−α)(1−σ) (1 − θ)α(1−σ) − 1 + (1 − θ)α(1 − x)1−α.

Since no term in G(.) depends on t , ñt (which is the solution to G(nt) = 0) is

independent of t , therefore it will be denoted ñ.

(ii) The ratio of the aggregate risky input to the aggregate risk-free input is

Φt =
Y1t

Y2t

. (35)

Substituting Y1t and Y2t by their respective values from (30, resp. 31) yields Φt =

z
(

nt

1−nt

)1−α (
θ

1−θ

)α
. Since nt is time invariant, it follows that Φt is time invariant.

Proof of Lemma 5

(1) We use the logarithmic transformation to study the monotonicity of Y1t with

respect to θ. We obtain
∂ log(Y1t)

∂θ
=

1 − α

n

∂n

∂θ
+

α

θ
.
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It follows that
∂ log(Y1t)

∂θ
> 0 ⇔

∂n

∂θ
> −

αn

θ(1 − α)
. (36)

(2) We use the logarithmic transformation to study the monotonicity of Φ with

respect to θ. The transformation is equivalent to

log(Φ) = log(z) + (1 − α) log(n) − (1 − α) log(1 − n) + α log(θ) − α log(1 − θ).

This implies that

∂ log(Φ)

∂θ
=

(1 − α)

n(1 − n)

∂n

∂θ
+

α

θ(1 − θ)
,

and it follows that

∂ log(Φ)

∂θ
≥ 0 ⇐⇒

∂n

∂θ
≥ −

αn(1 − n)

θ(1 − θ)(1 − α)
.

(3) Following the same method we obtain that

∂ log(Y2t)

∂θ
= −

(1 − α)

1 − n

∂n

∂θ
−

α

1 − θ
.

which implies
∂ log(Y2t)

∂θ
< 0 ⇔

∂n

∂θ
> −

α(1 − n)

(1 − θ)(1 − α)
. (37)

(1), (2), and (3) are verified if

∂n

∂θ
> −

α

(1 − α)

[
min

{
(1 − n)

(1 − θ)
,
n(1 − n)

θ(1 − θ)
,
n

θ

}]
.

It follows that
∂n

∂θ
>

{
− α

(1−α)
n
θ

if n < θ

− α
(1−α)

(1−n)
(1−θ)

if not
.

So, we now need to compute ∂n
∂θ

to complete this proof.

We differentiate the logarithm of (34) with respect to θ and obtain

∂n

∂θ
=

αn(1 − n)

(1 − α)θ(1 − θ)

[−θ + σ (1 − (1 − θ)α(1 − n)1−α)]

[n − σ (1 − (1 − θ)α(1 − n)1−α)]

= −
αn(1 − n)

(1 − α)θ(1 − θ)

[θ − σC]

[n − σC]
, (38)

with C = 1 − (1 − θ)α(1 − n)1−α.

It follows from direct calculations that the lemma holds under this condition
{

[θ−σC]
[n−σC]

> (1−θ)
(1−n)

if n < θ
[θ−σC]
[n−σC]

< θ
n

if not
.
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• When n < θ, [θ−σC]
[n−σC]

> (1−θ)
(1−n)

implies σ < 1
C

which is obvious since C < 1;

• When n < θ, it is obvious that [θ−σC]
[n−σC]

< θ
n
.

It follows that, in any case, this lemma holds unconditionally.

8.2 Appendix C

Proof of Lemma 6

The idea of this proof is to differentiate the expression for aggregate production

(Yt) with respect to θ and verify that it is a positive quantity. We can split this proof

into three steps. The first step provides an expression for aggregate production as a

function of θ, the second provides the derivative of Yt with respect to θ, and the third

verifies under which conditions this is a positive quantity. We assume in this proof

that kt is given .

Step 1. the accurate expression of Yt.

Let us start with the aggregate production expression

Yt = [γY σ
1t + (1 − γ)Y σ

2t]
1
σ .

In the case of regulation, we have found that Y1t = n1−αθαzkα
t and Y2t = (1 −

n)1−α(1 − θ)αkα
t .

Substituting Y1t and Y2t into Yt = [γY σ
1t + (1 − γ)Y σ

2t]
1
σ yields

Yt =
[
γ

(
n1−αθαz

)σ
+ (1 − γ)

(
(1 − n)1−α(1 − θ)α

)σ] 1
σ kα

t . (39a)

But n is a function of θ. We now use this fact to simplify the above expression for

Yt. From (34), we have that

γ
(
n1−αθαz

)σ
=

(1 − γ) [1 − (1 − θ)α(1 − n)1−α]

[(1 − θ)α(1 − n)1−α](1−σ)
.

Substituting the above expression into (39a) yields,

Yt = (1 − γ)
1
σ

[
(1 − θ)α(1 − n)1−α

] (σ−1)
σ kα

t . (40)

Step 2. Derivative of Yt.
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It is appropriate, given the above expression for Yt, to use logarithmic differenti-

ation:
∂log(Yt)

∂θ
=

(1 − σ)

σ

[
α

(1 − θ)
+

(1 − α)∂n
∂θ

(1 − n)

]
. (41)

Step 3. Discussion.

The sign of the above derivative is positive if ∂n
∂θ

≥ − α
(1−α)

(1−n)
(1−θ)

; which is exactly

condition (37). It follows then from the proof of lemma 5 that this is always the case.

Therefore, ∂log(Yt)
∂θ

≥ 0.

Proof of Proposition 1

The idea of this proof is to differentiate the expression for growth with respect

to θ and verify that it is positive. We will split this proof into two steps. The first

step provides an expression for growth as a function of θ, the second provides the

derivative of economic growth with respect to θ, and verifies under which conditions

this is positive. We assume in this proof that kt is given.

Step 1. Expression for growth as a function of θ

We start with Yt = [γY σ
1t + (1 − γ)Y σ

2t]
1
σ , and obtain, as in the proof of lemma 5,

that Yt = (1 − γ)
1
σ [(1 − θ)α(1 − n)1−α]

(σ−1)
σ kα

t . Therefore, Yt+1

Yt
=

(
kt+1

kt

)α

. From the

definition of equilibrium we have kt+1 = st, but

st(τt, rt+1) = b(rt+1))τt (42)

with b(rt+1) =
1

1 +
[
β (1 + rt+1)

1−ρ
]−1

ρ

. (43)

Since, at equilibrium, τt = τ2t, from lemma 3, τt = (1 − α)p2t

[
αp2t

rt

] α
1−α

. Besides,

kt = nk̂1t + (1−n)k̂2t. Using the expressions for k̂1t and k̂2t provided by lemma 3, we

obtain

kt = n(1 − n)

[
αB

rt

] 1
1−α

. (44)

Furthermore, the indifference between technologies condition of entrepreneurs yields

n(1 − n)B
1

1−α = p
1

1−α

2 . (45)

Substituting (45) into (44) yields kt =
[

αp2

rt

] 1
1−α

. We observe that τt = (1 − α)p2k
α
t .

Then kt+1 = b(rt+1)(1−α)p2k
α
t , which implies that the growth rate of capital is given
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by
kt+1

kt

= (1 − α)b(rt+1)p2k
α−1
t . (46)

With the logarithmic utility function b(rt+1) = β

1+β
, so (46) is equivalent to

kt+1

kt

=
(1 − α)β

1 + β
p2k

α−1
t .

Step 2. Differentiating growth with respect with θ.

Since, at t, kt is given,
∂
[

kt+1
kt

]

∂θ
has the sign of ∂p2

∂θ
. We will now focus on p2.

We obtain from direct calculation that

p2 = (1 − γ)

[
Yt

Y2t

]1−σ

.

Substituting Yt and Y2t by their values in the above expression yields

p2 = (1 − γ)
1
σ

[
(1 − θ)α(1 − n)1−α

]σ−1
σ =

Yt

kα
t

.

Therefore, ∂p2

∂θ
has the sign of ∂Yt

∂θ
. Under the conditions of lemma 6, ∂Yt

∂θ
is always

positive.

8.3 Appendix D

Proof of Lemma 7

The idea underlying this proof is to use the resource constraint of a bank special-

ized in the risky technology to show that it cannot fulfill its promise to lenders. At

the steady state, the promised interest rate is given by r = αp2k
α−1, it has a constant

value, the minimum transfer to entrepreneurs is a positive number τ , and τ1t has a

constant positive value. Banks cannot meet their promises toward lenders when the

unexpected state of nature occurs if resources are less than the promised interest (rk)

plus the minimum transfer. i.e.,

p1(zw)zwkα < τ + rk. (47)

Since τ> 0, there exists a positive number κ such that τ = κτ1, where τ1 = (1 −

α)p1(z)zkα and rk = αp2(z)kα = αp1(z)zkα. Substituting r and τ by their values in

(47) yields the following price-ratio inequality,

p1(zw)zw

p1(z)z
< κ(1 − α) + α.
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Furthermore, the price of the risky intermediate good is given by p1 = γY σ−1
1 [γY σ

1 + (1 − γ)Y σ
2 ]

1−σ
σ ;

with Y1 = nzwkα and Y2 = (1− n)kα. Substituting Y1 and Y2 in the above expression

for p1(zt) yields,

p1(zt) = γ (nzt)
σ−1 [γ (nzt)

σ + (1 − γ)(1 − n)σ]
1−σ

σ .

So the price ratio can be rewritten as,

p1(zw)zw

p1(z)z
=

(zw

z

)σ
(

γ (nzw)σ + (1 − γ)(1 − n)σ

γ (nz)σ + (1 − γ)(1 − n)σ

) 1−σ
σ

.

It follows that (47) is now equivalent to

(zw

z

)σ
(

γ (nzw)σ + (1 − γ)(1 − n)σ

γ (nz)σ + (1 − γ)(1 − n)σ

) 1−σ
σ

< κ(1 − α) + α. (48)

We obtain from n =

[
1 +

(
1−γ

γzσ

) 1
1−σ

]
−1

that γnσ−1zσ = (1 − γ)(1 − n)σ−1. It then

follows by direct calculations that (48) is equivalent to

zσ
w((nzσ

w + zσ(1 − n)))
1−σ

σ < (κ(1 − α) + α)z.

Since zw < z, when σ > 0, we have zσ
w < nzσ

w + zσ(1 − n) < zσ. Therefore,

zσ
w((nzσ

w + zσ(1 − n)))
1−σ

σ < zσ
wz1−σ.

If zσ
wz1−σ < (κ(1 − α) + α)z, a bank specialized in the risky technology will fail to

fulfill its promise. This condition is equivalent to zw < (κ(1−α)+α)
1
σ z. We can then

take z = (κ(1−α)+α)
1
σ z

1+ǫ
where ǫ is any small positive number.

Proof of Proposition 2

This proof is based on the zero profit constraint. We show that under regulation,

banks dealing with the type 1 entrepreneurs have enough resources to provide at least

the minimum transfer to entrepreneurs and pay the promised interest to lenders.

When the aggregate shock occurs, the total resources of the regulated risky bank

is given by p1(zw)nzwk̂α
1 + p2(zw)(1 − n)k̂α

1 ≡ Y r(zw). From the expressions for k̂1

and k̂2 given by lemma 3 and direct calculations, we obtain k̂1 = θ
n
k2 and k̂2 =

(1−θ)
(1−n)

k2. Therefore, nk̂1 + (1 − n)k̂2 = k2. The overall interest promised to lenders,
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r(nk̂1 +(1−n)k̂2) is then equal to αp2(z)kα
2 , while the promised transfers are τ2 (z) =

τ1 (z) = (1 − α)p2(z)kα
2 .

We need to make explicit the expressions for p2(z) and p1(zw)nzwk̂α
1 + p2(zw)(1−

n)k̂α
1 in order to use them in the zero profit constraint analysis. Direct calculations

yield

p2(z) = (1 − γ)
[
(1 − n)1−α(1 − θ)αkα

2

]σ−1
Y (z)1−σ, and

Y r(zw) =
[
γ

(
n1−αθαzw

)σ
+ (1 − γ)

(
(1 − n)1−α(1 − θ)α

)σ] 1
σ kα

2 .

Therefore, saying that when the state ̟ occurs the promised transfers and inter-

ests will be less than the available resources (i.e., rk2 < Y r(zw) − (1 − n)τ2 − nκτ1),

is equivalent to the following inequality,

α + (1 − α) [(1 − n) + nκ] <
Y r(zw)

p2(z)kα
2

. (49)

The explicit form of the right-hand side of the above inequality is,

Y r(zw)

p2(z)kα
2

=
[(1 − n)1−α(1 − θ)α]

1−σ [
γ (n1−αθαzw)

σ
+ (1 − γ) ((1 − n)1−α(1 − θ)α)

σ] 1
σ

(1 − γ)
[
[γ (n1−αθαz)σ + (1 − γ) ((1 − n)1−α(1 − θ)α)σ]

1
σ

]1−σ
.

We now use functional analysis to obtain a set of regulation coefficients under which

no banking crisis can occur. For that purpose, we use inequality (49) to define G, a

continuous function of θ, as follows:

G(θ) =
(1 − γ) [α + (1 − α) [(1 − n) + nκ]]

[(1 − n)1−α(1 − θ)α]1−σ
−

[
γ (n1−αθαzw)

σ
+ (1 − γ) ((1 − n)1−α(1 − θ)α)

σ

[γ (n1−αθαz)σ + (1 − γ) ((1 − n)1−α(1 − θ)α)σ]
1−σ

] 1
σ

.

(50)

We also recall that in the proof of lemma 4 (in appendix B), n solves

γzσθασ

1 − γ
n(1−α)σ(1 − n)(1−α)(1−σ) (1 − θ)α(1−σ) = 1 − (1 − θ)α(1 − n)1−α. (51)

Using equations (50) and (51) we obtain that G(0) = −γ and G(n∗) > 0. Since G is

a continuous function of θ, there exists at least one θ0 such that G(θ0) = 0. Let us

denote by S ≡ {θ ∈ [0, n∗]/G(θ) ≤ 0} and by θthe minimum of θ such that G(θ) = 0,

then (0, θ) is an open interval included in S.

Given the fact that there is no explicit result for n, it is very hard to prove that

G is a monotonic function of θ, but for all examples we computed numerically we

obtained that G is monotonic. Thus, we assume until the end of this section that G

is monotonic.
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8.4 Appendix E

Figure 4. Comparative Dynamic of a Regulated and an Unregulated Banking Economies
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