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Abstract

Beckmann’s interaction model has each resident touching base in face-
to-face activity with every other resident at the other’s residence per unit
time. We re-work his resulting “interaction city” with each resident “oper-
ating with” a Cobb-Douglas utility function. Similar but somewhat “richer”
outcomes occur. We also investigate a new case with intermediate disper-
sion of face-to-face activity, one with scale economies in trip-making.

Keywords Household spatial interactions · Dispersed residential activity

JEL Classification Numbers R14 · D11

1. Introduction

Beckmann (1976) set out an interesting model of an urban area, a model based on

the interaction of each resident with each other, on a regular basis.1 One might

think of this as activity in the city based on face-to-face activity, here from home

∗Institute of Mathematics and Computer Science, Far Eastern National University, Vladi-
vostok, Russia or Department of Economics, Queen’s University, Kingston, Canada

†Department of Economics, Queen’s University, Kingston, Canada
‡Thanks from JMH to the SSHRC for financial support.
1The model is interpreted slightly differently (total cost of interaction rather than aver-

age cost) in Fujita and Thisse (2002, pp. 174-179) and re-presented clearly. We follow their
“formulation”.



to home rather than taking place in a central business district (CBD). Beckmann

in fact felt he was capturing social or non-work interaction for the most part in his

formulation but he did acknowledge that maybe his interactions combined work,

shopping and purely social activities simultaneously. Each resident travels to the

residence of every other resident, each period, in the model. An intuition for the

Beckmann model is a tiny tropical village in which each person “wanders” about

visiting each of her neighbors each period.2 We place this travel activity in the

familiar model of residential activity in space, the model in which transportation

costs must be incurred in order that work activity can take place. Hence we

gloss over the link between interactions and income earning.3 Many modern cities

exist “exporting” financial, legal and insurance services to a nearby hinterland

and these services are produced with “face-to-face” activity. The contrast here is

with older cities which grew up around a transshipment hub such as those with a

port for ships or a railyard.

We make use of the familiar Cobb-Douglas form for a resident’s utility of

2Things are similar for our “multiple interaction” model below but now at each place visited
there are in general many persons to touch base with.

3It is reasonable to infer that the volume and quality of interactions for agent i will register
as payoff in some sense. E. g., utility may be higher for an agent who interacts with more other
agents or interacts in some more usefully intense way. Helsley and Strange (2005), e. g., have
the utility of an agent higher with more interactions but at the cost of more travel. Beckmann
assumed that each agent interacts with equal intensity with every other agent per unit time and
thus the “interaction payoff” per agent is the same. This leads us to leave a variable capturing
the payoff out of our analysis in the interest of conserving cleanliness. In addition one could
envisage a macro community payoff to interacting in the sense that the larger the Beckmann
community, the more interactions there are per agent in aggregate and one might infer, the
better off each agent is. Then the utility of an agent would be a simple increasing function of
city size. This is good to keep in mind but is somewhat peripheral to our agenda here.
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home space and other consumption goods and thus depart from Beckmann’s re-

liance on a special utility function, separable in the household’s home space and

other consumption goods. We are thus placing Beckmann’s interesting interaction

model more centrally in urban economics. We obtain a closed form solution for

the special case of a household spending exactly half its after-transportation-cost

income on “housing”, s(x) and half on “other consumption goods”, c(x). In this

solution the equilibrium land rent function differs from the equilibrium density

function, in contrast with Beckmann’s solution. Departing from the 50-50 split-

ting of after-transportation-cost income leads us into an analysis without closed

form solutions. We report very briefly on this.

The idea that the core of a city should be treated as a group of interacting

(cross-visiting) firms followed directly from Beckmann, notably in Borukov and

Hochman (1977), Imai (1982), Fujita and Ogawa (1982)4, Tauchen and Witte

(1983) and (1984), Kanemoto (1990), and more recently in Berliant, et al. (2000)

and Helsely and Strange (2005). A central focus is on the inherent market failure

associated with interactive cities. To a first approximation agent i locates to

minimize her interaction costs without reckoning the costs she is imposing on

the N-1 other firms by her choice of location. Each other firm faces a particular

cost of interacting with her. One can envisage different degrees of interaction

4Lucas and Rossi-Hansberg (2002) rework the approach of Fujita and Ogawa (1982) in a very
general model which ends up analyzable only by means of numerical simulations. Of interest is
their discovery of “the extreme sensitivity of the nature of equilibria to small changes in assumed
travel costs” (p. 1447).
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corresponding to different departures of equilibria from first best outcomes, a

topic we hope to pursue in the future.5

2. The Model

The city is located on a line with a resident at distance x from the center consum-

ing s(x) of land (“housing”). Land rent at x will be R(x). Hence a household’s

budget constraint is

y − T (x) = cp+R(x)s(x)

with c other consumption goods (with price p set at unity), T (x) interaction or

total transportation costs per period per household, and y income per period.

Consumption c will vary with distance x. The household has utility function

U = s(x)αc(x)1−α. The utility level is fixed at U by free migration between

cities (the open city assumption). Hence

s(x) =
U
1/α

c(x)(1−α)/α
.

Since c(x) = (1− α)[y − T (x)], we have s(x) = ξ
�

1

[y−T (x)](1−α)/α

�
for

ξ =
�
U
1/(1−α)

(1−α)

�(1−α)/α
and population density function n(x) = 1/s(x) in

n(x) =
1

ξ
[y − T (x)](1−α)/α . (2.1)

5Beckmann did not take up the issue of equilibria versus optima or a schedule of location
taxes and subsidies that could implement a first best. Of interest would be the result that
the first best Beckmann city was less technically complicated than the second best counterpart
which we are reporting here.
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And since R(x)s(x) = α[y − T (x)], we also have

R(x) =
α

ξ
[y − T (x)]1/α .

Consider exogenous edge rent R at edge b, positive and unspecified.6 Cobb-

Douglasness of utility gives us

α [y − T (b)] = Rs(b)

and (1− α) [y − T (b)] = c (b)

or αc(b) = (1− α)Rs(b).

In addition we have U = s(b)αc(b)1−α. Hence we can solve for edge values s(b)

(=1/n(b)) and c(b). These values then allow us to solve for T (b) :

s(b) =

#
R

α

$α−1
· ξα,

c(b) = (1− α) ·

#
Rξ

α

$α

,

T (b) = y −
#
Rξ

α

$α

. (2.2)

Observe that

R(x) =
α[y − T (x)]

s(x)

= α[y − T (x)] · n(x)

=
α

ξ
[y − T (x)]1/α (2.3)

= αξα/(1−α)[n(x)]1/(1−α).

6With Cobb-Douglas utility one worries about a zero rent at the edge leading to an extremely
large radius for a city. Hence R is treated as strictly positive.
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Given R as rent at the edge, b, we can express n(b) in terms of R. That is

n(b) = ξ−α
#
R

α

$1−α
. (2.4)

3. Monocentric City as Benchmark

We can fix ideas by appealing to the monocentric counterpart for comparison.

Then T (x) = t · |x| and all interaction occurs at one point in the center. Given

parameters α, y, ξ, t and edge rent R, we can solve for edge, b in α
ξ
[y − t · b]1/α = R

and then city size N in

b =
1

t
[y −

#
Rξ

α

$α

]

2
] b

0

1

ξ
[y − t · x](1−α)/α dx = 2α

ξt

q
y1/α − (y − tb)1/α

r
= N.

We interpret this as parameters α, ξ, y, t and R yielding geographic size b and then

b and n(x) yielding population, N.7 This sequence of links is somewhat different

for a Beckmann city.8

In Beckmann’s city, interaction occurs by one-on-one visiting of each person

to all others, one trip per person visited per period. Hence each household incurs

N − 1 trips per period. Formally, then travel costs for interacting for a person at
7Somewhat parenthetically we note that dR = Ndy − Rdb, for R = 2

U b
0
R(x)dx. Roughly

speaking, since the utility level is fixed, wage increments are fully capitalized in aggregate rent
increments. This capitalization result turns on Leibnitz’s Rule for differentiation of an integral.

8When we speak of a Beckmann city, we mean one generated with our Cobb-Douglas utility
function, not one generated with Beckmann’s utility function u = α log s + c. We have done
no analysis with his utility function. In fact we started this analysis to see if we could re-work
Beckmann’s analysis with a Cobb-Douglas function.
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x miles from the center, at zero, are

T (x) =
] x

−b
t(x− z)n(z)dz +

] b

x
t(z − x)n(z)dz. (3.1)

The city ranges on the line from −b to b. Observe that

d2T (x)

dx2
= 2tn(x).

Hence we can substitute for n(x) and obtain the fundamental equation for a

Beckmann city,

d2T (x)

dx2
= 2t

1

ξ
[y − T (x)](1−α)/α . (3.2)

We turn to solving the model.

4. Solving the Model for α = 0.5

Since the resident in the center at x = 0 will incur the least interaction costs, we

have T �(0) = 0 and since n(x) must be positive, we know that T (x) is convex in

x. For the case α = 1/2, (3.2) is a linear nonhomogeneous equation of the second

order

d2T (x)

dx2
+
2t

ξ
T (x) =

2t

ξ
y

which solves9 to the closed form

T (x) = y − c1 cos(x
v
2t

ξ
). (4.1)

9We find a general solution Th(x) of the corresponding homogeneous equation T
33+ 2t

ξ T = 0

(see Murphy, 1960, p. 84) and the particular integral Tp(x) of the nonhomogeneous one [Murphy,
1960, p. 146], and then T (x) = Th(x)+ Tp(x), or by finding a solution of the equation with the
missing T 3(x) [Murphy, 1960, p. 160]. We use T 3(x) = 0 at 0.
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c1 is a constant of integration.

Using the definition (2.1) of n(x) we have n(x) = 1
ξ
c1 cos

�
x
t
2t
ξ

�
. Substituting

the last expression in definition (3.1) of T (x) we obtain

T (x) =
c1t

ξ

⎡
⎢⎣
x]

−b
t(x− z) cos

#
z

v
2t

ξ

$
dz +

b]

x

t(z − x) cos
#
z

v
2t

ξ

$
dz

⎤
⎥⎦

= c1

%v
2t

ξ
· b · sin

#
b

v
2t

ξ

$
+ cos

#
b

v
2t

ξ

$
− cos

#
x

v
2t

ξ

$&
. (4.2)

We equate (4.1) and (4.2) at x = 0 to get c1 as a function of the new “parameter”,

b, temporarily unspecified:

c1 =
ykt

2t
ξ
· b · sin

�
b
t
2t
ξ

�
+ cos

�
b
t
2t
ξ

�l . (4.3)

Given boundary condition, T (b) = y−
t
2Rξ, we have another nonlinear equation

in c1 and b.
10

c1 =
�
y −

t
2Rξ

�
/

%v
2t

ξ
· b · sin

#
b

v
2t

ξ

$&
, b ∈

⎛
⎝0,

π

2

v
ξ

2t

⎞
⎠ . (4.4)

Thus we have

Definition 4.1. (Beckmann interactive city equilibrium): A positive pair (c∗1, b
∗)

satisfying equations (4.3) and (4.4), given y, ξ, t and R.

10Here we must note that two different expressions for c1 show us a connection between
y,R, ξ, t, and b. See Appendix 1.
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To obtain b∗, we substitute for c1 from (4.4) in (4.3) to get a nonlinear equation

for b.

y −
t
2Rξ ·

%
1 +

v
2t

ξ
· b · tan

#
b

v
2t

ξ

$&
= 0 (4.5)

or

y −
t
2Rξ =

t
2Rξ ·

v
2t

ξ
· b · tan

#
b

v
2t

ξ

$

which can be rewritten as

a

β
= tan (β)

where β = b
t
2t
ξ
and a =

�
y −

t
2Rξ

�
/
t
2Rξ. Since tan has intersections with

the hyperbola only if a > 0, then we have a natural affordability condition11 for

the existence of positive root on b of equation (4.5), namely:

y −
t
2Rξ ≡ T (b) > 0.

We denote the solution of (4.5) as b∗.Then c∗1 =
�
y −

t
2Rξ

�
/
kt

2t
ξ
· b∗ · sin

�
b∗
t
2t
ξ

�l

from (4.4). We use this expression for c1 in T (x)
12 to get T (x; b∗) and then get

n(x; b∗) = μ cos(x
t
2t/ξ) for μ = 1

ξ

�
y −

t
2Rξ

�
/
kt

2t
ξ
· b∗ · sin

�
b∗
t
2t
ξ

�l
. The in-

tegral for total population, N is then 2μ
U b∗
0 cos(x

t
2t/ξ)dx which works out to

be

1

tb∗
(y −

t
2Rξ) ≡ T (b∗)

tb∗
= N. (4.6)

11y − T (b) is income available for housing and c(b) at b and
s
2Rξ is the cost of achieving

utility level U at b.
12T (x; b∗) = y −

qk
y −

s
2Rξ

l
/
kt

2t
ξ · b

∗ · sin
�
b∗
t

2t
ξ

�lr
cos
�
x
t

2t
ξ

�
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Figure 4.1: Beckmann b equation.

We plot the function on the left of (4.5) in Figure 4.1 for parameter values y = 10,

ξ = 1 = t = R.

It follows directly that db
dy
> 0, db

dR
< 0,db

dt
< 0, and db

dξ
> 0. The edge increases

with income, decreases with edge rent, transportation cost and increases with the

open city utility level.

Given T (x; b∗) immediately above we have R(x; b∗) defined in terms of x and

b∗. Thus, we have

10



Figure 4.2: Beckmann density (+) and rent (o) functions.

Definition 4.2. (Beckmann Interactive City): Functions T (x; b∗), n(x; b∗), R(x; b∗)

with positive values over (−b∗, b∗), and population N in (4.6), given b∗ an equi-

librium value for b.

Here is an example with y = 10, ξ = 1 = t = R, which yields b = .9558 (see

Fig. 4.1), and then N = 8.98. The functions T (x), n(x), and R(x) come out as:

T (x) = 10− 6.5 · cos(x
√
2),

n(x) = 6.5 · cos(x
√
2),

R(x) = 21.2 · cos(x
√
2)2.

T (x) plots as a strictly convex function i.e. U shaped over (−b∗, b∗), n(x) as

11



strictly concave (inverted U shaped) and R(x) is generally bell-shaped with two

points of inflection (see Fig. 4.2). The total transportation cost for this example

is 43.002.

5. α 9= 0.5

For α not 1/2 we can solve for T (x) for an approximate solution by series meth-

ods.13 In this case, we obtain

T (x) = T (0) +
t(y − 1) 1−αα

ξ
x2 +

(α− 1)
�
t(y − 1) 1−αα

�2

6ξ2α(y − 1) x4 +O(x6) (5.1)

For the case of α = 1
2
this solution tracks a plot of our exact solution above well in

the neighborhood of x = 0 (see Fig. 5.1, with T (x) analytical (circles) and T (x)

in form (5.1)(crosses)).

Comparison of T (x) for different α is on Fig. 5.2 (α = .5 - solid line, α = .45

- crosses, and α = .55 - circles). We do not pursue further analysis with α 9= 1
2

since we cannot obtain closed form solutions.

6. Scale Economies in Visiting

One could imagine scale economies in interaction costs. Once person i was at

a site for a visit, she could visit all households there on just one trip from her

home. This leads to a different “interaction city”. We suppose that a resident

travels each period to every other location in the city and once at a site, interacts

13This solution is a Taylor Series expansion in the neighborhood of x = 0.
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Figure 5.1: Taylor series (+) and analytical (o) solutions.

Figure 5.2: T(x), Taylor series: 0.45 (+), 0.5 (-), 0.55 (o).
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or touches base with every resident at the site. Much transportation cost is thus

economized on. We will call this type of city a “Spatial Multiple Interaction city”

(MI), since any person from area x is able to interact with all persons at any place

z ∈ [−b, b] per single visit no matter what is the density n(z). We depart from

Beckmann, for a moment, by considering explicit costs of doing the interaction,

once at the location.

Suppose that the interaction expenses of person from x, visiting z can be

divided between a travel cost t1 |x− z| and a cost of actual interaction t2 · n(z)

with all residents at site z, where t1 - travel cost per unit distance roundtrip and

t2 - cost of interaction at site per person. Since we assume that each resident has

the same interaction field, i.e. IN(x) ≡ IN , then the total cost of interaction is

also the same for each customer and depends only on N . We can think that it is

already included into IN and don’t consider it further. Then we will set t2 = 0

and denote t ≡ t1. Hence we now have for the resident at x

T (x) =
] x

−b
t(x− z)dz +

] b

x
t(z − x)dz

= t(x2 + b2).

As above, T �(0) = 0 and T ��(x) = 2t > 0.

We can draw on our derivations above for the case of our utility function

Cobb-Douglas. Hence now

n(x) =
1

ξ
[η − t · x2] 1−αα

14



and R(x) =
α

ξ
[η − t · x2] 1α

for η = y − tb2, a constant. As we observed for the case of the monocentric city,

we can obtain edge value b from R(b) = R. The basic equation is

b =

yxxwy −
�
Rξ
α

�α

2t

which has a plot between −b and b similar to that for the Beckmann case in

Figure 4.1. Existence of a positive b follows from condition y−
�
Rξ
α

�α
≡ T (b) > 0.

For α = 0.5, we use this b to integrate 2
U b
0 n(x)dx to get population for the city

N = 2b
ξ

�
y − 4

3
tb2
�
or substituting b we have N = 2

3ξ

�
y−
√
2Rξ

2t

� 1
2

·
�
y + 2

t
2Rξ

�
.

Sometimes visits can be very time consuming and resident from site x is not

able to interact with all the people at site z during one trip (one business day).

For this case we can use a generalization of the model, where, as usual, the rule

of transportation cost calculation reflects organization of the city:

T (x) =
] b

−b
[t1|x− z|n(z)γ + t2n(z)] dz,

where γ ∈ [0, 1]14 - parameter of interaction activity. Note that for γ = 0 we have

Multiple Interaction city and for γ = 1 - Beckmann (or Single Interaction) city.

When we have no total time restrictions for interactions and the interaction field

IN(x) is the same for all residents, we can neglect the term t2n(z), otherwise it

must depend on IN(x).

14γ can be greater then 1 if visiting a resident from z is so time consuming that takes more
than one trip.
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Example for MI city with ξ = 1 = t = R, and y = 6.035 yields b = 1.52 and

the same population as in Beckmann city N = 8.98. The functions T (x), n(x),

and R(x) are:

T (x) = x2 + 2.31,

n(x) = 3.725− x2,

R(x) = 0.5 · n(x)2.

The total transportation cost is 26.23. At the first glance it looks obvious that

population of the same size N must always enjoy in MI city more vast area and

totally spend less on transportation than in the Beckmann city (note that to have

the same fixed utility U = sαc1−α with increased per capita area s we must adjust

(decrease) level of income y to decrease c).

The scale economies (Multiple Interaction) approach to interaction really strikes

us as a more plausible, quasi-empirical formulation than the alternate “many trip”

version set out by Beckmann and the former is somewhat easier to analyze since

one can work out the interaction-transportation cost function more easily. But of

interest is the following comparison of total interaction costs for two cities of dif-

ferent types but the same population (and basic parameters, y, ξ, t, and R). The

parameters, ξ = 0.05, R = 0.01, t = 0.01, and y = 0.0916, yield bBeck = 1.6777

and bMI = 1.7324 and the same population, N = 3.58. When we compare total

transportation costs for these two distinct cities we observe that TBeck = 1.1304

16



Figure 6.1: Density gradients: Beckmann (+) and MI (-).

and TMI = 1.1376. Population density at the edge for each city is of course the

same for the both cases at n(b) = 0.6325. (The density gradient for the Beckmann

city dominates the one for MI in the absolute value, see Fig. 6.1). Hence a para-

dox of sorts: the total transportation costs are higher for the MI city, the city

allowing for multiple visits per trip. The “paradox” goes away when one realizes

that with t2 = 0, the MI model reduces to a pure site-visiting model in contrast

with the Beckmann model which is a combination site-visiting and person-visiting

model. In brief, a visit in the Beckmann model is to a site weighted by a number

of residents and with say 3 residents, this becomes 3 identical visits. In our numer-

ical runs, virtually all sites have less than one person resident. Average density

of residents is N/2b or 3.58/3.3554 for our Beckmann run and 3.58/3.4648 for our

17



MI run. Hence while for the MI case, every site is visited by every resident, for

the Beckmann case most sites receive a fraction, less than one, of a visit, given

the low density of residents on land. We certainly do not expect our “paradox”

to be observed for cases in which Beckmann’s households were all located in den-

sities at or above unity.15 However, we have not been able to generate examples

with identical parameters ξ, R, t, y, N, for the both cities and with the required

“high” densities (see Appendix 2).

7. Concluding Remark

We have brought the Beckmann model into mainstream urban economics by mak-

ing use of a Cobb-Douglas utility function. We observed interesting density and

rent functions for the case of a Cobb-Douglas utility function. The Beckmann

model strikes one as highly inefficient since each visit by resident i to j requires

a separate costly trip. Hence our introduction of the Multiple Interaction model,

with scale economies in visiting. However when we compared numerically a Beck-

mann city and an MI city, we in fact observed the Beckmann city to have lower

aggregate visiting (transportation) costs. This curious result turned on densities

of residents being less than unity over much of space in the two models. Resi-

dential density less than unity is associated with a visiting scale economy in the

Beckmann model.

15The paradox is rooted in the very low density phenomenon, not directly in the choice of
form for the utility function.
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Appendix 1: Parameter Choice

Note, that besides natural limitations on the choice of parameters like b ∈
�
0, π

2

t
ξ
2t

�
, (since we can have sin

�
b
t
2t
ξ

�
and cos

�
b
t
2t
ξ

�
in denominators) which

can be important for creating an example with fixed b, ξ, and t in Beckmann’s case,

there are some implicit links between parameters which are somewhat different

for different models.

Note also, that to obtain c1 from (2.2): T (b) = y −
t
2Rξ we can also use the

expression (4.1) and then

c1 =
t
2Rξ/ cos

#
b

v
2t

ξ

$
. (7.1)

With the use of (7.1) definition (3.1) becomes

T (x) =
t
2Rξ

⎡
⎣
v
2t

ξ
· b · tan

#
b

v
2t

ξ

$
+ 1−

cos
�
x
t
2t
ξ

�

cos
�
b
t
2t
ξ

�

⎤
⎦ , (7.2)

which in a similar way to monocentric city does not contain y explicitly and then

R(x) =
0.5

ξ

⎧
⎨
⎩y −

t
2Rξ

⎡
⎣
v
2t

ξ
· b · tan

#
b

v
2t

ξ

$
+ 1−

cos
�
x
t
2t
ξ

�

cos
�
b
t
2t
ξ

�

⎤
⎦
⎫
⎬
⎭

2

.

Thus, from different expressions for c1 in Beckmann city we can see intercon-

nection between y,R, ξ, b, and t :

y =
t
2Rξ

%
1 +

v
2t

ξ
· b · tan

#
b

v
2t

ξ

$&
.

For monocentric city dependence between these parameters is

y =
t
2Rξ + tb,
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and for Multiple Interaction city

y =
t
2Rξ + 2tb2.

Appendix 2: Comparison of Beckmann and MI

Cities for n(b) ≥ 1
Since for each model of the city we have some variables such as y, N, and

b which are connected with each other via different expressions for T (x), we

must take it into account comparing cities with different organization (different

T (x)). Thus the problem of comparison of Beckmann and MI cities with the same

ξ, R, t, N, and y (with different b) can be formulated as a problem of searching

such a set of parameters ξ, R, t, for which the system of equations

yMI = yBeck,

NMI = NBeck

has at least one positive root (y > 0, N > 0). Substituting corresponding expres-

sions we have

2tb2MI = 2
t
Rt · bBeck · tan(bBeck ·

v
2t

ξ
),

2bMI
ξ

�
yMI −

4

3
tb2MI

�
= 2

v
R

t
· tan(bBeck ·

v
2t

ξ
).

We can reduce it to one equation for bBeck using expression for yMI :

bBeck
ξ

%t
2Rξ +

2

3

t
Rt · bBeck · tan(bBeck ·

v
2t

ξ
)

&
=

yxxw
v
R

t
· bBeck · tan(bBeck ·

v
2t

ξ
).
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Denote ∆(bBeck) a difference between the left and the right hand sides of this

equation. Examination of the equation ∆(bBeck) = 0 shows that when ξ, R are

such that n(b) =

u
2R
ξ
< 1, it always has two real roots: bBeck1 = 0 and one positive

root bBeck2 ∈
�
0, π

2

t
ξ
2t

�
. Choosing sequence of ξ, R such that n(b)→ 1− 0 (from

the left) we obtain sequence of bBeck2 → 0, and correspondingly yMI = yBeck → 0,

NMI = NBeck → 0. For parameters ξ, R such that n(b) ≥ 1 we have only one

trivial root bBeck = 0.

Therefore in order to compare Beckmann and MI cities for larger amounts of

population we can interpret the value of n(x) as a number of tens, hundreds, or

other groups of people. Then we must correct transportation cost function for MI

city by dividing on correspondent factor (number of people in a group).

Note that we can not compare transportation costs of spatial continuous mod-

els with the monocentric one, which is discrete, because of difference in measure

units (see Appendix 3).

Appendix 3: Correctness of Comparison
with Monocentric City

Following Beckmann we compared shapes of density functions for different

types of city given population N and edge of the city b. But we must note that

generally speaking comparisons of the continuous models for the Beckmann’s and

the Multiple Interaction (MI) cities with the Monocentric one are inappropriate

since in both spatial interaction cities (Beckmann’s and MI) t is a cost of a travel
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not in some distance units but rather in areal units what can be seen from MI’s

transportation cost function T (x) = t(x2 + b2).

Let’s consider it on an example of a discrete model of the MI city. Assume

that we have m internal points (buildings to visit) in a range from 0 to b, the cost

of actual interaction t2 is zero (t ≡ t1), and t = 1. Since the city is symmetric, we

can calculate travel expenses only for the right part of the city from 0 to b. For

person in the center (x = 0) and for different m we have T (0) =

m T (0)
0 b
1 b+ b

2
= 1.5b

2 b+ 2b
3
+ b

3
= 2b

3 b+ 3b
4
+ 2b

4
+ b

4
= 2.5b

... · · ·

In common case T (0) = b+ m
2
b = b(1 + m

2
). Letting m to infinity we have T (0) =

∞. Hence even for countable infinite number of buildings m MI city becomes

incomparable with the monocentric one.

As to calculating T (0) for continuous case for the whole range [−b, b], we can

consider the process in the next way. At first we take a distance from the resident

place (x = 0) to the right edge (b), then our trip will be to the point next to the

edge, which we denote b − ε, and let the next trip will be to the left side of the

city with “address” −ε. Sum of the last two trip distances is again b. Therefore,

to calculate T (0) means to summarize uncountable amount of ranges with the

length b, which are the result of shifting of the original range [0, b] to the left
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exactly on one point each time. The turn to use of areal units of measure after

integrating for calculation of T (x) in this case becomes more illustrative if we will

shift these ranges not to the left but upward. Then we can imagine that in order

to calculate all travel expenses for the person with address x = 0 we must take

into consideration all points of the square with area b× b.

Therefore, since the subset of points in a range [0, b] which is the way for

any person from monocentric city is a set of a measure null comparatively with

measures of areas in spatial continuous models, we can compare these cities with

very different organization only conditionally, taking into account their incompa-

rable travel expenses. The comparison can be completely correct if to construct a

discrete analogies of correspondent continuous models which will depend on one

more parameter m - number of places for interaction (buildings).
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