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Abstract

The paper studies the asymptotic efficiency and robustness of hypothesis tests

when models of interest are defined in terms of a weak convergence property. The null

and local alternatives induce different limiting distributions for a random element,

and a test is considered robust if it controls asymptotic size for all data generating

processes for which the random element has the null limiting distribution. Under weak

regularity conditions, asymptotically robust and efficient tests are then simply given

by efficient tests of the limiting problem–that is, with the limiting random element

assumed observed–evaluated at sample analogues. These tests typically coincide with

suitably robustified versions of optimal tests in canonical parametric versions of the

model. This paper thus establishes an alternative and broader sense of asymptotic

efficiency for many previously derived tests in econometrics, such as tests for unit

roots, parameter stability tests and tests about regression coefficients under weak

instruments, and it provides a concrete limit on the potential for more powerful tests

in less parametric set-ups.
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1 Introduction

A continued focus of recent the econometrics literature has been the development of as-

ymptotically optimal inference procedures for nonstandard problems: For instance, Elliott,

Rothenberg, and Stock (1996) (abbreviated ERS in the following), Elliott (1999), Müller

and Elliott (2003) and Müller (2007) derive optimal tests for an autoregressive unit root

in a univariate framework; Elliott and Jansson (2003) derive optimal tests for a unit root

with stationary covariates; Elliott, Jansson, and Pesavento (2005) derive optimal tests for

the null hypothesis of no cointegration with known cointegrating vector; Jansson (2005)

derives optimal tests for the null hypothesis of cointegration; Nyblom (1989), Andrews and

Ploberger (1994) and Elliott and Müller (2006) derive optimal tests of parameter stability;

Stock and Watson (1996) and Jansson and Moreira (2006) derive optimal inference in re-

gression models with nearly integrated regressors; and Andrews, Moreira and Stock (2006,

2007) derive optimal tests for regression coefficients in the presence of weak instruments. By

construction, these tests are optimal for a specific parametric version of the model, usually

assuming i.i.d. Gaussian disturbances, in the sense of maximizing local asymptotic power.

Furthermore, appropriate versions of these tests are robust in the sense that they yield the

same asymptotic rejection probability under the null hypothesis (and local alternatives) for

a wide range of data generating processes. The assumption of i.i.d. Gaussian disturbances

is thus a natural starting point for the development of asymptotically efficient and robust

tests.

Nevertheless, with a focus on efficiency, it is natural to ask whether there exist tests that

are as good in the Gaussian case, but have higher local asymptotic power for non-Gaussian

versions of the models. And indeed, Jansson (2007) draws on and extends the theory of

semi-parametrically efficient tests to derive such tests for the unit root null hypothesis in

the AR(1) model with i.i.d. driving errors of unknown distribution.1 Also, as for the tests

derived under Gaussianity, Jansson (2007) shows that suitably modified versions continue

to have correct asymptotic rejection probability under the null hypothesis for a range of

serial correlation structures.

This paper also considers the construction of asymptotically efficient tests for nonstan-

dard problems, but with a stronger focus on robustness. For many models and hypothesis

1Also see Rothenberg and Stock (1997) on tests of the unit root hypothesis under non-Gaussian distur-

bances.

1



tests of interest, typical data generating processes imply the weak convergence of some ran-

dom element to a limiting random element, whose distribution is different under the null and

local alternative. For instance, under the null hypothesis of a unit root, the data (suitably

scaled) converges to a Wiener process, and it converges to an Ornstein-Uhlenbeck process

under the usual local-to-unity alternative. Typically, it is relatively straightforward to think

about efficient tests in the ’limiting problem’, where the limiting random element is directly

observed. For instance, by the Neyman Pearson Lemma, the Radon-Nikodym derivative of

the distribution of an Ornstein-Uhlenbeck process (for some fixed mean reversion parame-

ter) and the distribution of a Wiener process is the best point-optimal test statistics in the

limiting version of the unit root testing problem. Now suppose one is sufficiently unsure

about the nature of the short run dynamics that one would like the test not to overreject

whenever the data converges to a Wiener process–or, more generally, whenever the random

element converges to its null limiting distribution. If one restricts attention to tests that

are robust in this sense, then it is shown that (under mild regularity conditions), the best

test statistic is simply given by the best test in the limiting problem, evaluated at sample

analogues. In the unit root testing example, this test is asymptotically equivalent to the

best unit root test under Gaussian i.i.d. disturbances, so that the test derived by ERS is

this best robust test. Any test that has higher asymptotic power than this test for some

non-Gaussian version of the model (such as Jansson’s (2007) test) necessarily lacks robust-

ness: its asymptotic rejection probability is larger than the nominal level for some model

whose suitably scaled data converges weakly to a Wiener process.

The upshot of this analysis is straightforward: to determine the asymptotically efficient

robust test in the sense described above, one only needs to consider efficient tests in the

limiting problem, where the limiting random element is assumed observed. The potentially

complicated small sample testing problem is thus replaced by a (typically) much simpler one.

This aspect of the approach makes it somewhat akin to LeCam’s Limits of Experiments–see

van der Vaart (1998) for an introduction. The arguments, however, have distinct starting

points: The Limit of Experiments approach considers a sequence of fully specified parametric

models, and derives implications from the limiting behavior of the (small sample efficient)

likelihood ratio statistics; the approach here, in contrast, defines models in terms of their

weak convergence properties, and studies efficiency by considering the implied asymptotic

properties of tests.
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The basic result holds quite generally, including for cases where tests are restricted to

satisfy some asymptotic unbiasedness or similarity constraint, or to be invariant. The results

here may thus be applied to argue for a broader asymptotic efficiency of the test statistics

derived in the 14 papers cited in the first paragraph of this introduction. In addition,

they provide a precise sense in which Sowell’s (1996) GMM parameter stability tests are

asymptotically efficient. Finally, the results of this paper also imply efficiency of some recent

nonstandard methods that take a weak convergence assumption as their starting point, such

as those suggested in Müller and Watson (2007, 2008) and Ibragimov and Müller (2007).

The remainder of the paper is organized as follows. Section 2 introduces the formal

framework and contains the main result. Section 3 discusses extensions regarding con-

sistently estimable nuisance parameters, invariance restrictions and uniformity issues. A

running example throughout Sections 2 and 3 is the problem of testing for an autoregressive

unit root in a univariate time series. Section 4 discusses the application of the approach

to three additional testing problems: Elliott and Jansson’s (2003) point-optimal tests for

unit roots with stationary covariates; Andrews, Moreira and Stock’s (2006) optimal tests

statistics for linear instrumental variable regressions; and Sowell’s (1996) tests for GMM

parameter stability. Section 4 concludes. All proofs are collected in an appendix.

2 Efficiency and Robustness under a Weak Conver-

gence Assumption

2.1 Set-up

The following notation and conventions are used throughout the paper: All limits are taken

as T → ∞. If S1 is a metric space with metric dS1 , then B(S1) is its Borel σ-algebra.

If μ is a probability measure on B(S1), then its image measure under the B(S1)\B(S2)

measurable mapping f : S1 7→ S2, where S1 and S2 are space with metrics dS1 and dS2, is

denoted fμ. If no ambiguity arises, we suppress the dummy variable of integration, that is

we write
R
fdμ for

R
f(x)dμ(x). By default, the product space S1 × S2 is equipped with

the metric dS1 + dS2 . We write μT Ã μ0 or XT Ã X0 for the weak convergence of the

random elements X0,X1, . . . with probability measures μ0, μ1, . . . on B(S1), and XT
p→ X

for convergence in probability. The R 7→ R function x 7→ bxc is the integer part of x.
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In a sample of size T , suppose we observe data YT ∈ RnT , which is the T th row of a

double-array of random variables. The distribution of YT depends on the statistical model

m with parameter θ ∈ Θ, where Θ is a metric space, so that the distribution FT (m, θ) of

YT is a probability kernel. The hypotheses of interest are

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 (1)

where Θ = Θ0 ∪Θ1.
Let hT be a sequence of measurable functions hT : R

nT 7→ S, where S is a complete and

separable metric space. Denote by PT (m, θ) the distribution of XT = hT (YT ) in model m

with parameter θ, that is PT (m, θ) = hTFT (m, θ). Suppose the typical model m satisfies

the following weak convergences under the null and alternative hypothesis

PT (m, θ) Ã P (θ) pointwise for all θ ∈ Θ0 (2)

PT (m, θ) Ã P (θ) pointwise for all θ ∈ Θ1 (3)

to some statistical model P (θ), where, for each θ1, θ2 ∈ Θ, the probability measures P (θ1)

and P (θ2) on B(S) are absolutely continuous. The parameter θ should be thought of as

describing local alternatives, such as the magnitude of the Pitman drift.

Unit Root Test Example: Consider testing for a unit root in a model with no determin-

istics against the local-to-unity alternative: We observe data YT = (uT,1, · · · , uT,T )0 from

the model uT,t = ρTuT,t−1 + νT,t and uT,0 = 0 for all T , where ρT = 1 − c/T for some

fixed c ≥ 0, and the hypotheses are H0 : c = 0 against H1 : c > 0 (so that θ = c,

Θ0 = {0} and Θ1 = (0,∞)). Let ω̂2T be a specific, "reasonable" long-run variance es-
timator. With S = D[0,1] the space of cadlag functions on the unit interval, equipped

with the Billingsley (1968) metric, a typical model m for the disturbances νT,t satisfies

T−1/2ω̂−1T uT,b·Tc = hT (YT ) = ĴT (·) Ã Jc(·) on D[0,1], where Jc is an Ornstein-Uhlenbeck

process Jc(s) =
R s
0
e−c(s−r)dW (r) with W a standard Wiener process. It is well known that

the measure of Jc is absolutely continuous of with respect to the measure of J0 =W . N

2.2 Limiting Problem

In this set-up, in the typical model m, the random element XT converges weakly to X with

distribution P (θ). It will be useful in the sequel to first consider in detail the "limiting
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problem", where X is directly observed:

H lp
0 : X ∼ P (θ), θ ∈ Θ0 against H lp

1 : X ∼ P (θ), θ ∈ Θ1. (4)

Possibly randomized tests of H lp
0 in (4) are measurable functions ϕS : S 7→ [0, 1], where

ϕS(x) indicates the probability of rejection conditional on observing X = x, so that the

overall rejection probability of the test ϕS when X ∼ P (θ) is given by
R
ϕSdP (θ). The

test ϕS is thus of level α when supθ∈Θ0
R
ϕSdP (θ) ≤ α. In many nonstandard problems,

no uniformly most powerful test exists, so consider tests that maximize a weighted average

power criterion

WAP(ϕS) =

Z µZ
ϕSdP (θ)

¶
dw(θ), (5)

where w is a probability measure on Θ1. In general, the weighting function w describes the

importance a researcher attaches to the ability of the test to reject for certain alternatives.

A point-optimal test is a special case of a weighted average power maximizing test for a

degenerate weighting function w that puts all mass at one point. Also, if a uniformly most

powerful test exists, then it maximizes WAP for all choices for w. The WAP criterion is

statistically convenient, since by standard arguments, theWAPmaximizing test equivalently

is the best test of H lp
0 in (4) against the single alternative H

lp
1,w : X ∼

R
P (θ)dw(θ).

With the WAP criterion as efficiency measure, efficient level-α tests ϕ∗S in the limiting

problem (4) thus maximize WAP subject to supθ∈Θ0
R
ϕSdP (θ) ≤ α.

Unit Root Test Example, ctd: The weak convergence ĴT (·)Ã Jc(·) leads to the limiting

problem where we directly observe the continuous time process X, and H lp
0 : X ∼ J0(·)

against H lp
1 : X ∼ Jc(·) with c > 0. As a weighting function in the WAP criterion, consider

a degenerate distribution with all mass at c1, so that we consider a point-optimal test, just

as ERS. By Girsanov’s theorem, the Radon-Nikodym derivative of the distribution of Jc1

with respect to the distribution of J0, evaluated atX, is given by L(X) = exp[−12c1(X(1)2−
1)− 1

2
c21
R 1
0
X(s)2ds]. Thus, by the Neyman Pearson Lemma, the point-optimal test in the

limiting problem is of the form ϕ∗S(X) = 1[L(X) > cv], where cv solves P (L(J0(·)) > cv) =

α. N

When Θ0 is not a singleton, that is if H
lp
0 is composite, the derivation of a WAP max-

imizing test is typically much more involved. The weighted average power maximizing

test under a composite null hypothesis is typically given by the Neyman-Pearson test of

H lp
0,Λ : X ∼

R
P (θ)dΛ(θ) against H lp

1,w : X ∼
R
P (θ)dw(θ), where Λ is the least favorable

5



distribution for θ–see chapter 3.8 of Lehmann (1986) for discussion. For many problems,

however, it is difficult to identify the least favorable distributionΛ. To make further progress,

researchers therefore often restrict the class of tests under consideration by additional con-

straints, and derive the best test in the restricted class. Sometimes, the WAP maximizing

test in the restricted class turns out to be uniformly most powerful (that is, maximizes

WAP for all weighting functions), so that the issue of how to choose an appropriate weight-

ing function is also avoided by imposing additional constraints.

We discuss invariance as a restriction in Section 3.2 below, and focus here on two other

constraints on the tests ϕS. First, consider
Z

ϕSdP (θ) ≥ π0(θ) for all θ ∈ Θ1 (6)

for some function π0 : Θ1 7→ R. The formulation (6) allows for a range of cases: with π0 = 0,

(6) never binds; with π0 = α, (6) imposes unbiasedness; with π0 equal to the power of the

locally best test for some arbitrarily small neighborhood of Θ0, (6) effectively selects ϕS to

be the locally best test.

Second, consider a (conditional) similarity constraint of the form
Z
(ϕS − α)fSdP (θ) = 0 for all θ ∈ Θ̄0 and fS ∈ FS (7)

for some Θ̄0 ⊂ Θ0, which would typically be the intersection of Θ0 with the closure of

Θ1, and FS some set of measurable and bounded functions fS : S 7→ R. With FS only

containing the zero function, (7) never binds. With FS only containing the function that is

equal to one, (7) imposes similarity. Finally, suppose ϑ : S 7→ U is a measurable function,

and fS contains all S 7→ R functions of the form fU ◦ ϑ, where fU : U 7→ R is continuous

and bounded. Then (7) amounts to the restriction that the rejection probability of ϕS for θ

on the boundary between the null and alternative hypothesis, conditional on ϑ(X), is equal

to α, so that ϕS is a conditionally similar test.

To sum up, we will refer to level-α tests ϕ∗S in the limiting problem (4) as efficient when

ϕ∗S maximizes weighted average power (5), subject to (6) and (7).

2.3 Asymptotically Efficient and Robust Tests

In the original hypothesis testing problem (1) with YT observed, tests are measurable func-

tions ϕT : R
nT 7→ [0, 1], where ϕT (yT ) indicates the probability of rejection conditional on
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observing YT = yT . The overall rejection probability of the test ϕT in model m is thus given

by
R
ϕTdFT (m, θ).

As in the discussion of the limiting problem, we consider weighted average power as the

criterion to measure the efficiency of tests ϕT . In particular, define

WAPT (ϕT ,m) =

Z Z
ϕTdFT (m, θ)dw(θ),

where the probability measure w on Θ1 has the same interpretation as discussed below (5).

Also, define the asymptotic null rejection probability of test ϕT in model m as

ARP0(ϕT ,m) = sup
θ∈Θ0

lim sup
T→∞

Z
ϕTdFT (m, θ).

With these definitions, an asymptotically powerful level-α test ϕT has large

limT→∞WAPT (ϕT ,m), while ARP0(ϕT ,m) ≤ α. A reasonable definition of an asymp-

totically robust test is to impose that ARP0(ϕT ,m) ≤ α for a large class of models m. Let

M0 be the set of models satisfying (2), i.e. M0 collects all data generating processes for

YT such that PT (m, θ) = hTFT (m, θ) Ã P (θ) for all θ ∈ Θ0. In this paper, the notion of

robustness is interpreted as imposing that a test has asymptotic null rejection probability

no larger than the nominal level for all models m ∈M0, that is formally if

sup
θ∈Θ0

lim sup
T→∞

Z
ϕTdFT (m, θ) ≤ α for all m ∈M0. (8)

Analogously, defineM1 as the set of models m that satisfy (3).

Unit Root Test Example, ctd: The literature has developed a large number of sufficient

conditions on the disturbances νT,t that imply ĴT (·) Ã Jc(·)–see, for instance, McLeish

(1974) for a martingale difference sequence framework, Wooldridge and White (1988) for

mixing conditions, Phillips and Solo (1992) for linear process assumptions, Davidson (2002)

for near-epoch dependence, and Stock (1994b) for general discussion. Arguably, when invok-

ing such assumptions, researchers do not typically have a specific data generating process

in mind that is known to satisfy the conditions; rather there is great uncertainty about

the true data generating process, and the hope is that by deriving tests that are valid for

a large class of data generating processes, the true model is also covered. The primitive

conditions are therefore quite possibly not a reflection of what researchers are sure is true

about the data generating process, but rather an attempt to assume little in order to gain

robustness. In that perspective, it seems quite natural to further strengthen the robustness
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requirement and to impose that the asymptotic rejection probability is no bigger than the

nominal level for all models that satisfy ĴT (·)ÃW (·). In fact, Stock (1994a), White (2001,

p. 179), Breitung (2002), Davidson (2002, 2007) and Müller (2006) define the unit root null

hypothesis in terms of the convergence T−1/2uT,b·T c Ã ωW (·), making the requirement (8)

quite natural for a unit root test. N

In addition to the robustness constraint (8), we allow for the possibility that tests ϕT

are restricted to possess further asymptotic properties. In particular, we consider

lim inf
T→∞

Z
ϕTdFT (m, θ) ≥ π0(θ) for all m ∈M1, θ ∈ Θ1 (9)

lim
T→∞

Z
(ϕT − α)(fS ◦ hT )dFT (m, θ) = 0 for all m ∈M0, θ ∈ Θ̄0 and fS ∈ FS. (10)

The constraints (9) and (10) are asymptotic analogues of the constraints (6) and (7) in the

limiting problem introduced above. So setting π0 = α, for instance, imposes asymptotic

unbiasedness of the test ϕT in the sense that for all models m ∈ M1, the asymptotic

rejection probability of ϕT under the alternative is not smaller than the nominal level. The

formulation (10) of "asymptotic conditional similarity" is convenient, as it avoids explicit

limits of conditional distributions; see Jansson and Moreira (2006), page 694 for discussion

and references. Also, without loss of generality, we can always impose (9) and (10), since

with π0 = 0 and FS = {0}, they do not constrain the tests ϕT in any way.

The main result of this paper is that under the robustness constraint (8), efficient tests in

the limiting problem ϕ∗S, evaluated at sample analogues with X replaced by XT = hT (YT ),

yield asymptotically efficient tests in the original problem involving the observations YT .

Theorem 1 Let ϕ∗S : S 7→ [0, 1] be a level-α test in the limiting problem (4) that maximizes

weighted average power (5) subject to (6) and (7). Suppose ϕ∗S is P (θ0)-almost everywhere

continuous for some θ0 ∈ Θ0, and define ϕ̂
∗
T : R

nT 7→ [0, 1] as ϕ̂∗T = ϕ∗S ◦ hT . Then
(i) limT→∞

R
ϕ̂∗TdF (m, θ) ≤ α for all m ∈ M0 and θ ∈ Θ0, and

limT→∞
R R

ϕ̂∗TdFT (m, θ)dw(θ) =
R R

ϕ∗SdP (θ)dw(θ) for all m ∈M1.

(ii) For any test ϕT : R
nT 7→ [0, 1] satisfying (8), (9) and (10),

lim supT→∞
R R

ϕTdFT (m, θ)dw(θ) ≤
R R

ϕ∗SdP (θ)dw(θ) for all m ∈M1.

Unit Root Test Example, ctd: The function ϕ∗S : D[0,1] 7→ [0, 1] is continuous at almost all

realizations of W , so that part (i) of Theorem 1 shows that the test ϕ̂∗T (YT ) = ϕ∗S(ĴT (·)) =

1[exp[−1
2
c1(ĴT (1)

2−1)−1
2
c21
R
ĴT (s)

2ds] > cv] has asymptotic null rejection probability equal
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to the nominal level and asymptotic weighted average power equal to P (L(Jc1) > cv) for all

models inM0 andM1, respectively, that is models that satisfy ĴT (·) = T−1/2ω̂−1T uT,b·T c Ã

W (·) and ĴT (·)Ã Jc(·). Note that ϕ̂
∗
T (YT ) is asymptotically equivalent to the efficient unit

root test statistic derived by ERS, so the contribution of part (i) of Theorem 1 for the unit

root testing example is only to point out that ϕ̂∗T has the same asymptotic properties under

the null and alternative hypothesis for all models inM0 andM1, respectively.

The more interesting finding is part (ii) of Theorem 1: For any unit root test that has

higher asymptotic power than ϕ̂∗T for any model satisfying ĴT (·) Ã Jc1(·), there exists a

model m where ĴT (·) Ã W (·) for which the test has asymptotic null rejection probability

larger than the nominal level. Any adaption to a non-Gaussian error distribution that leads

to higher asymptotic power than ERS’s test necessarily implies violation of the robustness

condition (8). In other words, ERS’s test is point-optimal in the class of all robust tests,

i.e. test with asymptotic null rejection probability of at most α for all models that satisfy

ĴT (·)ÃW (·). N

The proof of part (i) of Theorem 1 follows from the definition of weak convergence, the

continuous mapping theorem and dominated convergence. To gain some intuition for part

(ii), consider the case where the hypotheses are simple, Θ0 = {θ0} and Θ1 = {θ1}, and

(9) and (10) do not bind. Let L : S 7→ R be the Radon-Nikodym derivative of P (θ1) with

respect to P (θ0), so that by the Neyman-Pearson Lemma, ϕ
∗
S rejects for large values of L.

For simplicity, assume that Li = 1/L is continuous and bounded. The central idea is to

take the model m ∈M1, and to reweigh the probabilities according to L
i ◦ hT to construct

a corresponding model inM0. This reweighed probability distribution needs to integrate

to one, so let κT =
R
(Li ◦ hT )dFT (m, θ1) =

R
LidPT (m, θ1), and define the measure GT

on RnT via
R
A
dGT = κ−1T

R
A
(Li ◦ hT )dFT (m, θ1) for all A ∈ B(RnT ). By construction,

under GT , the function hT induces the measure QT on S, where QT satisfies
R
ϑdQT =

κ−1T
R
ϑLidPT (m, θ1) for any bounded and continuous function ϑ : S 7→ R. Further, the

S 7→ R functions ϑLi and Li are bounded and continuous, so that PT (m, θ1)Ã P (θ1) implies

κT →
R
LidP (θ1) =

R
LiLdP (θ0) =

R
dP (θ0) = 1 and

R
ϑLidPT (m, θ1) →

R
ϑLidP (θ1) =R

ϑdP (θ0), so that hTGT Ã P (θ0). Thus, by (8), lim supT→∞
R
ϕTdGT ≤ α. Furthermore,

by construction, the Radon-Nikodym derivative between GT and FT (m, θ1) is given by

κT (L ◦ hT ). Therefore, by the Neyman-Pearson Lemma, the best test of H̃0 : YT ∼ GT

against H̃1 : YT ∼ FT (m, θ1) rejects for large values of L ◦ hT , and no test can have a better
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asymptotic level and power trade-off than this sequence of optimal tests. But ϕ̂∗T also rejects

for large values of L ◦ hT and has the same asymptotic null rejection probability, and the
result follows. The proof of Theorem 1 (ii) in the appendix deviates somewhat from this

construction in order accommodate the additional constraints (9) and (10).

Comments

1. As already mentioned in the introduction, recall the standard approach for the deriva-

tion of asymptotically efficient and robust hypothesis tests in econometrics: Initially, restrict

attention to the canonical parametric version of the model of interest, usually with Gaussian

i.i.d. disturbances. Call this model m∗, so that YT ∼ FT (m
∗, θ), and for simplicity, consider

the problem of testing the simple hypotheses H0 : θ = θ0 against H1 : θ = θ1. In this

parametric model, FT (m
∗, θ1) is absolutely continuous with respect to FT (m

∗, θ0), and the

small sample Likelihood Ratio statistic LRT can be derived. The small sample optimal test

in model m∗ thus rejects for large values of LRT . Express LRT (up to asymptotically neg-

ligible terms) as a continuous function L : S 7→ R of a random element X∗
T = h∗T (YT ) that

converges weakly under the null and contiguous alternative: LRT = L(X∗
T ) + op(1), where

X∗
T Ã X with X ∼ P (θ). Thus, by the continuous mapping theorem, also the likelihood

ratio statistic converges weakly under the null and alternative, LRT Ã LR ∼ LP (θ), and

the asymptotic critical value is computed from the distribution LP (θ0). Furthermore, an

asymptotically robust test statistic is given by L(XT ), where XT = hT (YT ) is a "robusti-

fied" version of X∗
T such that XT Ã X ∼ P (θ) in many models m of interest, including m∗

(whereas typically, X∗
T = h∗T (YT ) 6Ã X for some plausible models).

Unit Root Test Example, ctd: Under i.i.d. standard normal driving disturbances, the

small sample efficient unit root test rejects for large values of LRT = exp[−12c1T−1(u2T,T −PT
t=1(uT,t − uT,t−1)2) − 1

2
c21T

−2PT
t=1 u

2
T,t−1]. With h∗T (YT ) = X∗

T = T−1/2uT,b·T c Ã Jc(·),

we thus have LRT = L(X∗
T ) + op(1) with L(x) = exp[−1

2
c1(x(1)

2 − 1) − 1
2
c21
R 1
0
x(s)2ds].

The asymptotically robustified test that allows for serially correlated and non-Gaussian

disturbances is based on L(XT ), where XT = ĴT (·) = T−1/2ω̂−1T uT,b·T c. N

The end product of this standard approach is a test based on the statistic L(XT ), with

critical value computed from the distribution LP (θ0). Now generically, this test is identical

to the test ϕ̂∗T of Theorem 1. This follows from a general version of LeCam’s Third Lemma

(see, for instance, Lemma 27 of Pollard (2001)): If the models YT ∼ FT (m
∗, θ0) and YT ∼

FT (m
∗, θ1) are contiguous with likelihood ratio statistic LRT , and under YT ∼ FT (m

∗, θ0),
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(LRT , X
∗
T ) Ã (L(X), X) with X ∼ P (θ0) and some function L : S 7→ R, then under

YT ∼ FT (m
∗, θ1), X∗

T Ã X ∼ Q, and the Radon-Nikodym derivative of Q with respect to

P (θ0) is equal to L. So if it is known that under YT ∼ FT (m
∗, θ1), X∗

T Ã X ∼ P (θ1), then

it must be the case that Q = P (θ1), and L(X) is recognized as the Neyman-Pearson test

statistic of the limiting problem H lp
0 : θ = θ0 against H

lp
1 : θ = θ1 with X ∼ P (θ) observed.

The test that rejects for large values of L(XT ) is thus simply the efficient test of this limiting

problem, evaluated at sample analogues. This explains why in the unit root example the

test ϕ̂∗T of Theorem 1 had to be asymptotically equivalent to ERS’s statistic.

2. This standard construction of tests starting from the canonical parametric model

m∗, i.e. rejecting for large values of L(XT ), is by construction asymptotically efficient in

model m∗, and by part (i), it has the same asymptotic local power for all models m ∈M1

for which XT Ã X ∼ P (θ1). This does not, however, make the test L(XT ) necessarily

overall asymptotically efficient: It might be that there exists another test with the same

asymptotic power in model m∗, and higher asymptotic power for at least some other models

m for which XT Ã X ∼ P (θ1). The semi-parametrically efficient unit root test by Jansson

(2007) is an example of a test with the same asymptotic power as ERS’s test for Gaussian

i.i.d. disturbances, and higher asymptotic power for some other driving disturbances.

Now part (ii) of Theorem 1 shows that whenever a test has higher asymptotic power than

ϕ̂∗T for some alternative model m ∈M1, then it cannot satisfy the robustness constraint (8).

So any partial adaption to models m 6= m∗, if successful, necessarily implies the existence

of a model m ∈ M0 for which the test has asymptotic rejection probability larger than

the nominal level. So in particular, Theorem 1 implies the existence of a double array

process (uT,1, · · · , uT,T )
0 satisfying T−1/2ω̂−1T uT,b·T c Ã W (·) for which Jansson’s (2007) test

has asymptotic rejection probability larger than the nominal level.

In other words, under the robustness constraint (8), Theorem 1 shows ϕ̂∗T to be an overall

asymptotically efficient test, because no test can exist with higher asymptotic (weighted

average) power for any model m ∈M1.

3. In this sense, Theorem 1 implies a particular version of an asymptotic essentially

complete class result for the hypothesis test (1): Set π0 in (9) equal to the power function

of an admissible test in the limiting problem (4), so that (9) effectively determines ϕ∗S.

The theorem then shows that no test ϕT of (1) can be robust in the sense of (8) and have

higher asymptotic local power than ϕ̂∗T uniformly over θ ∈ Θ1. As long as all admissible ϕ
∗
S
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are P (θ0)-almost everywhere continuous, the resulting tests ϕ̂
∗
T thus form an "essentially

complete class of asymptotically admissible robust tests" of the original problem (1).

In particular, if a uniformly most powerful test exists in the limiting problem, then ϕ∗S is

this test for any weighting function w, and repeated application of Theorem 1 with w having

point mass for any θ ∈ Θ1 then shows that the test ϕ̂
∗
T is correspondingly asymptotically

uniformly most powerful.

4. The appeal of the efficiency property of ϕ̂∗T depends crucially on the appropriateness

and desirability of the robustness constraint (8). One might think about the relative gain

in robustness of tests satisfying (8) rather than the more standard "correct asymptotic null

rejection probability for a wide range of primitive assumptions about disturbances that all

imply (2)" in two ways.

On the one hand, one might genuinely worry that the true data generating process

happens to be in the set of models that satisfy (2), but the disturbances do not satisfy

the primitive conditions. Whenever tests with higher power exist under the more stan-

dard assumption, this set cannot be empty. This line of argument then faces the question

whether such non-standard data generating processes are plausible. Especially in a time

series context, primitive conditions are often quite opaque (could it be that interest rate

are not mixing?), so it is not clear how and with what arguments one would discuss such a

possibility. It is probably fair to say, however, that very general forms of sufficient primitive

conditions for Central Limit Theorems and alike were derived precisely because researchers

felt uncomfortable assuming more restricted (but still quite general) conditions, so one might

say that imposing (8) constitutes only one more natural step in this progression of generality.

On the other hand, one might argue that the only purpose of an asymptotic analysis

is to generate approximations for the small sample under study. In that perspective, it is

irrelevant whether interest rates are indeed mixing or not, and the only interesting question

becomes whether asymptotic properties derived under an assumption of mixing are useful

approximations for the small sample under study. So even in an i.i.d. setting, one might

be reluctant to rely on an adaptive test–not because it wouldn’t be true that with a very

large data set, the adaptive test would be excellent, but because asymptotics might be a

poor guide to the behavior of the test in the sample under study. The robustness constraint

(8) is then motivated by a concern that additional asymptotic implications of the primitive

conditions beyond (2) are potentially poor approximations for the sample under study, and
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attempts to exploit them may lead to non-trivial size distortions.

Low Frequency Unit Root Test Example: Müller and Watson (2007) argue that in a

macroeconomic context, it makes sense to take asymptotic implications of standard models

of low frequency variability seriously only over frequencies below the business cycle. So in

particular, when uT,t is modelled as local-to-unity, then the usual asymptotic implication is

the functional convergence T−1/2uT,b·T c Ã ωJc(·). Müller and Watson (2007) instead derive

a scale invariant (we discuss invariance in Section 3.2) point-optimal unit root test that only

assumes a subset of this convergence, that is
(

T−3/2
TX

t=1

ψl(t/T )uT,t

)q

l=1

Ã

½
ω

Z 1

0

ψl(s)Jθ(s)ds

¾q

l=1

, (11)

where ψl(s) =
√
2 cos(πls) and q is chosen so that the frequency of the weight functions ψl,

l = 1, · · · , q are below business cycle frequency for the span of the sample under study. The

rationale is that picking q larger would implicitly imply a flat spectrum for uT,t − uT,t−1 in

the I(1) model over business cycle frequencies, which is not an attractive assumption for

macroeconomic data. So even if one were certain that for a long enough span of observations,

the functional convergence T−1/2uT,b·T c Ã ωJc(·) becomes a good approximation eventually,

it does not seem well-advised to exploit its implications beyond (11) for the sample under

study. N

5. Weak convergence statements of the form (2) and (3) can be viewed as a way of

expressing regularity one is willing to impose on some inference problem. Implicitly, this

is standard practice: invoking standard normal asymptotics for the OLS estimator of the

largest autoregressive root ρ is formally justified for any value of |ρ| < 1, but effectively

amounts to the assumption that the true parameter in the sample under study is not close

to the local-to-unity region. Similarly, a choice of weak vs strong instrument asymptotics

or local vs non-local time varying parameter asymptotics expresses knowledge of regularity

in terms of weak convergences.

In some instances, it might be natural to express all regularity that one is willing to

impose in this form, and Theorem 1 then shows that ϕ̂∗T efficiently exploits this informa-

tion. The i.i.d. nature of (standard) cross sectional data is not easily embedded in a weak

convergence statement, so that such a starting point is much more convincing in a time

series context. Also, interesting high level weak convergence assumptions are certainly not

entirely arbitrary, but derive their plausibility from the knowledge that there exists a range
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of underlying primitive conditions that would imply them.

If one expresses regularity of a problem in terms of weak convergences, one faces a choice

of what to assume. But not all weak convergences are relevant for deciding between H0 and

H1: Whenever the Radon-Nikodym derivative in the limiting problem remains the same,

then ϕ̂∗T of Theorem 1 retains its optimality. This holds, for instance, for any additional

convergence in probability to a constant limiting element (whose value does not depend on

θ), but is more generally true if the conditional distribution of the additional limiting element

is the same for all θ ∈ Θ. In the unit root test example, for instance, ERS’s test remains

asymptotically efficient in the sense of Theorem 1 if in addition to ĴT (·)Ã Jc(·), the average

sample kurtosis of ∆uT,t = uT,t−uT,t−1, T−1
PT

t=1(∆uT,t)
3, is assumed to converge to zero in

probability for any c ≥ 0, or that T−1/2Pb·T c
t=1 (∆uT,t)

3
ÃW∆(·) for any θ ∈ Θ, whereW∆(·)

is a Wiener process independent of Jc. Additional weak convergence restrictions of this type

strengthen the efficiency claim by weakening the robustness requirement (8) of tests, since

M0 becomes a smaller set, but, of course, the resulting efficiency correspondingly only holds

for the smaller alternative setM1.

At the same time, one might also be reluctant to impose the full extent of the ’usual’ weak

convergence assumption, and in general, this leads to less powerful inference. The efficiency

claim of Theorem 1 then shows that it is impossible to use data-dependent methods to

improve inference for more regular data while still remaining robust in the sense of (8).

Low Frequency Unit Root Test Example, ctd: Since (11) is strictly weaker than the

standard assumption T−1/2uT,b·T c Ã ωJc(·), Müller and Watson’s (2007) low-frequency unit

root test is less powerful than a standard ERS test. It is nevertheless point-optimal in the

sense of efficiently extracting all regularity contained in the weaker statement (11): Theorem

1 implies that it is impossible to let the data decide whether (11) holds for q larger than

assumed (that is, whether the local-to-unity model provides good approximations also over

business cycle frequencies), and to conduct more powerful inference if it is, without inducing

size distortions for some model satisfying (11) for c = 0. N

6. No matter how one views the desirability of the robustness constraint (8), one appeal

of Theorem 1 is that it suggests a general method for constructing reasonable tests. In

nonlinear and/or dynamic models, it might be difficult to derive the small sample likelihood

ratio statistic, even under strong parametric assumptions, while high level weak convergence

properties might be easier to think about. The problem of testing for parameter instability in
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a general GMM framework, as considered by Sowell (1996) and discussed in detail in Section

4.3 below, or the weak instrument problem in a general GMM framework, as considered by

Stock and Wright (2000), arguably fall into this class. For such problems, efficient tests of

the limiting problem, evaluated at sample analogues, are a natural starting point for sensible

tests in the original problem.

3 Extensions

3.1 Consistently Estimable Nuisance Parameters

Suppose the testing problem (1) involves an additional nuisance parameter γ ∈ Γ, where Γ

is a metric space, so that now YT ∼ FT (m, θ, γ), and the null and alternative hypotheses

become

H0 : (θ, γ) ∈ (Θ0,Γ) against H1 : (θ, γ) ∈ (Θ1,Γ). (12)

Suppose γ can be consistently estimated by the estimator γ̂T under the null and alternative

hypothesis. For a fixed value of γ = γ0, that is when Γ is a singleton, this is a special case

of what is covered by Theorem 1, as discussed in comment 5. But when Γ is not a singleton,

the analysis above is not immediately applicable, because the limiting measures of X were

assumed to be mutually absolutely continuous for all parameter values.

Thus denote by P e
T (m, θ, γ) (’e’ for extended) the distribution of (γ̂T , XT ) = heT (YT )

when YT ∼ FT (m, θ, γ), so that the weak convergence assumption analogous to (2) and (3)

now becomes

P e
T (m, θ, γ)Ã P e(θ, γ) pointwise for all (θ, γ) ∈ (Θ× Γ) (13)

where P e(θ, γ) is the product measure between the measure P (θ, γ) of X (which might

depend on γ) on B(S) and the degenerate probability measure on B(Γ) that puts all

mass on the point γ. The limiting problem now becomes testing (12) with X ∼ P (θ, γ)

observed and γ known, and optimal tests ϕe∗
S in the limiting problem are indexed by γ ∈ Γ,

ϕe∗
S : Γ × S 7→ [0, 1], so that for each γ0 ∈ Γ, ϕe∗

S (γ0, ·) is the weighted average power

maximizing test of (12) for γ = γ0, possibly subject to constraints of the form (6) and (7).

Now as long as the test ϕe∗
S is, for each γ ∈ Γ, P e(γ, θ0)-almost everywhere continuous,

the same arguments as employed in the proof of Theorem 1 part (i) imply that under (13)
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and for each γ ∈ Γ, the test ϕ̂e∗
T = ϕe∗

S (γ̂T , XT ) has the same asymptotic size and power as

ϕe∗
S does. Furthermore, for any value of γ = γ0, one can invoke Theorem 1 (ii) as above

to conclude that no test ϕ̂T can exist with better asymptotic weighted average power, for

any model satisfying P e
T (m, θ, γ0)Ã P e(θ, γ0). Problems that involve consistently estimable

parameters γ with an impact on the efficient limiting tests are thus covered by the results of

Theorem 1 under an additional assumption of the family of efficient limiting tests, indexed

by γ, to depend on γ sufficiently smoothly.

Unit Root Test Example, ctd: Instead of T−1/2ω̂−1T uT,b·T c = ĴT (·) Ã Jc(·), consider the

weak convergences heT (YT ) = (ω̂2T , T
−1/2uT,b·Tc) Ã (ω2, ωJc(·)) as a starting point. In the

limiting problem, X = ωJc(·) is observed with ω2 known, and the point-optimal test is of

the form ϕe∗
S (ω

2,X) = 1[exp[−1
2
c1(ω

−2X(1)2−1)− 1
2
c21ω

−2 R 1
0
X(s)2ds] > cv]. A calculation

shows this to be a continuous function (0,∞) × D[0,1] 7→ R for almost all realizations of

(ω2, J0), so the test ϕ
e∗
S (ω̂

2
T , T

−1/2uT,b·Tc) is asymptotically efficient among all unit root tests

with correct asymptotic null rejection probability whenever (ω̂2T , T
−1/2uT,b·T c)Ã (ω2, ωJ0(·))

against all models satisfying (ω̂2T , T
−1/2uT,b·T c)Ã (ω2, ωJc1(·)). N

3.2 Invariance

The majority of efficient tests for nonstandard problems cited in the introduction rely on

invariance considerations. In the framework here, invariance may be invoked at two levels:

On the one hand, one might consider a weak convergence as a starting point that is a

function of a small sample maximal invariant. On the other hand, invariance might instead

be employed in the limiting problem as a way of dealing with nuisance parameters. This

subsection discusses the link between these two notions, and the interaction of the concept

of invariance with the efficiency statements of Theorem 1.

The first case is entirely straightforward: suppose φT (YT ) with φT : RnT 7→ R
nT is

a maximal invariant to some group of transformations. By Theorem 1 on page 285 of

Lehmann (1968), all invariant tests can be written as functions of a maximal invariant. So

if hT of Section 2.1 is of the form hT = hφT ◦ φT , then Theorem 1 applies and yields an

asymptotic efficiency statement among all invariant tests relative to a robustness constraint

(8) in terms of the weak convergence of a function of the small sample maximal invariant.

Unit Root Test Example, ctd: Consider the problem of testing for a unit root in a model

with unknown mean, and suppose ω = 1 is known for simplicity. A maximal invariant
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is given by the demeaned data {ûT,t}Tt=1 with ûT,t = yT,t − ȳT , where ȳT = T−1
PT

t=1 yT,t

and YT = (yT,1, · · · , yT,T )0. The typical model satisfies T−1/2ûT,b·T c Ã Jμ
c (·), where J

μ
c (s) =

Jc(s)−
R 1
0
Jc(l)dl. Theorem 1 now shows that rejecting for large values of L

μ(T−1/2ûT,b·T c) is

asymptotically point-optimal among all tests whose asymptotic null rejection probability is

at most α whenever T−1/2ûT,b·T c Ã Jμ
c (·), where L

μ is the Radon-Nikodym derivative of the

probability measure of Jμ
c1
with respect to the measure of Jμ

0 .
2 We conclude that rejecting

for large values of Lμ(T−1/2ûT,b·T c) is the asymptotically point-optimal translation invariant

test among all tests that do not overreject asymptotically whenever T−1/2ûT,b·T c Ã Jμ
0 (·).

N

In the second case, one considers the typical weak convergence in a model with nuisance

parameters, and applies invariance only in the limiting problem. Formally, let g̃ : R×S 7→ S

be such that the S 7→ S functions x 7→ g̃(r, x), indexed by r ∈ R, form the group G̃.

Further, suppose φ̃ : S 7→ S is a maximal invariant to G̃, so that the efficient invariant

test in the limiting problem ϕφ∗
S is the efficient test of Hφ,lp

0 : Ξ ∼ φ̃P (θ), θ ∈ Θ0 against

Hφ,lp
1 : Ξ ∼ φ̃P (θ), θ ∈ Θ1, where Ξ = φ̃(X). It is not clear whether or in which sense this

test, evaluated at sample analogues would be asymptotically efficient.

Unit Root Test Example, ctd: In the parametrization yT,t = uT,t + T 1/2αy, we obtain

with θ = (c, αy)
0 that T−1/2yT,b·Tc Ã Jy

θ (·), where Jy
θ (s) = Jc(s) + αy. The parameter

αy is a nuisance parameters in the limiting problem. Define the transformations g̃ : R ×

D[0,1] 7→ D[0,1] as g̃(r, x) = x(·) + r, with r ∈ R = R. The limiting problem is seen to be

invariant to these transformations, and φ̃ : D[0,1] 7→ D[0,1] with φ̃(x) = x(·) −
R 1
0
x(l)dl, is

a maximal invariant. Since φ̃(Jy
θ ) ∼ Jμ

c (·), the point-optimal invariant test in the limiting

problem rejects for large values of Lμ(Jy
θ ). This test, evaluated at sample analogues, yields

Lμ(T−1/2ûT,b·T c), just as above.

Even though in this example, the efficient invariant test in the limiting problem, eval-

uated at sample analogues, is small sample invariant, one still cannot claim this test to

be the asymptotically point-optimal test among all small sample invariant tests that are

robust whenever T−1/2yT,b·T c Ã Jc(·) + αy with αy ∈ R. The reason is that the set of
2Under the assumption of uT,0 = 0 for the initial condition, Lμ(x) = L(x(·) − x(0)), where L is the

Radon-Nikodym derivative of the probability measure of Jθ1 with respect to the measure of J0, so that

rejecting for large values of Lμ(T−1/2ûT,b·Tc) leads to the same asymptotic power as without translation

invariance. This equivalence does not hold, however, when the initial condition uT,0 is of the same order of

magnitude as uT,bsTc for s > 0. See Müller and Elliott (2003) for discussion.
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models satisfying T−1/2yT,b·Tc Ã Jc(·)+αy is a proper subset of the set of models satisfying

T−1/2ûT,b·T c Ã Jμ
θ (·). The efficiency of L

μ(T−1/2ûT,b·Tc) noted above is thus relative to a

more stringent robustness constraint, and it remains unclear whether an efficiency claim

can also be made relative to the weaker constraint of asymptotic size control whenever

T−1/2yT,b·T c Ã J0(·) + αy. N

We now show how one can make an asymptotic efficiency claim when invariance is

employed in the limiting problem by relating the limiting group of transformations to a

sequence of small sample groups. So for each T , suppose the measurable function gT :

R × RnT 7→ R
nT is such that the RnT 7→ R

nT functions y 7→ gT (r, y), indexed by r ∈ R,

form the group GT . Let φT : R
nT 7→ R

nT be a maximal invariant of GT . Assume that the

small sample and limiting invariance correspond in the sense that the small sample maximal

invariant converges weakly to the maximal invariant of the limiting problem, i.e.

(hT ◦ φT )FT (m, θ) Ã φ̃P (θ) pointwise for θ ∈ Θ0 (14)

(hT ◦ φT )FT (m, θ) Ã φ̃P (θ) pointwise for θ ∈ Θ1. (15)

LetMφ
0 andM

φ
1 the set of models m satisfying (14) and (15), respectively. Since ϕφ∗

S was

assumed to be the efficient test of Hφ,lp
0 : Ξ ∼ φ̃P (θ), θ ∈ Θ0 against H

φ,lp
1 : Ξ ∼ φ̃P (θ),

θ ∈ Θ1, one can apply Theorem 1 to conclude that ϕ
φ∗
S ◦hT ◦φT is the asymptotically efficient

small sample invariant (with respect to GT ) robust test relative to the weak convergence

assumptions described by Mφ
0 and M

φ
1 . As noted in the unit root example above, however,

one cannot conclude that ϕφ∗
S ◦ hT ◦ φT is also the asymptotically efficient small sample

invariant robust test relative to the weak convergence hTFT (m, θ) Ã P (θ), i.e. relative to

the (typically strictly smaller) setsM0 andM1.

It would be possible to draw this additional conclusion if for small sample invariant

tests, constraints with respect to models in Mj are implied by the analogous constraints

with respect toMφ
j , j = 0, 1: For each model m ∈Mφ

j , there must exist a corresponding

model inMj that is identical up to a transformation in GT . The following Theorem provides

conditions under which this is the case.

Theorem 2 Suppose (i) R is a separable and complete metric space; (ii) the mapping x 7→
g̃(r, x) is continuous for all r ∈ R; (iii) there exists a measurable function ρ̃ : S 7→ R such

that x = g̃(ρ̃(x), φ̃(x)) for all x ∈ S; (iv) supr∈R,y∈RnT dS(hT (gT (r, y)), g̃(r, hT (y))) → 0,

where dS is the metric on S; (v) φ̃ and φT select specific orbits, i.e. for all y ∈ RnT and
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x ∈ S, there exist ry, rx ∈ R so that φT (y) = gT (ry, y) and φ̃(x) = g̃(rx, x). Then for any

m ∈Mφ
j and θ ∈ Θj, j = 0, 1, there exists a sequence of measures GT on B(R

nT ) such that

φTFT (m, θ) = φTGT and hTGT Ã P (θ).

Unit Root Test Example, ctd: With gT (r, YT ) = (yT,1+rT
1/2, · · · , yT,T+rT

1/2)0, φT (YT ) =

gT (−ȳT,YT ), and ρ̃(x) =
R 1
0
x(s)ds, we find (hT ◦ φT )(YT ) = T−1/2ûT,b·T c Ã Jμ

c ∼ φ̃(Jc),

supy∈RT dD[0,1]
(T−1/2(ybsTc + T 1/2r) − (T−1/2ybsTc + r)) = 0, and x = φ̃(x) + ρ̃(x) =

g̃(ρ̃(x), φ̃(x)) for all x ∈ D[0,1], so that the assumptions of Theorem 2 hold. We can therefore

conclude that rejecting for large values of Lμ(T−1/2ûT,b·T c) is also the asymptotically point-

optimal test among all translation invariant tests with asymptotic null rejection probability

of at most α whenever T 1/2yT,b·Tc Ã J0(·) + αy, αy ∈ R. N
For the proof of Theorem 2, note that with x = g̃(ρ̃(x), φ̃(x)) for all x ∈ S and θ ∈ Θ,

one can construct the distribution P (θ) by applying an appropriate random transformation

g̃ to each x drawn under φ̃P (θ)–in the unit root example, the appropriate r is distributed

as Jμ
c (0), since Jc(·) = Jμ

c (·)− Jμ
c (0) a.s. The assumptions of Theorem 2 are now sufficient

to ensure a tight enough link between this construction for P (θ) and the limit of the small

sample analogously transformedMφ
j models. For each model inM

φ
j , one can thus construct

a corresponding model inMj by applying an appropriate random transformation gT ∈ GT
for each T .

While asymptotic efficiency statements about invariant tests based on Theorems 1 and

2 require a tight link between the limiting group G̃ and the small sample groups GT , the link

does not need to be perfect: Even if the distribution of the limiting maximal invariant φ̃P (θ)

does not depend a subset of the parameter θ (so that a nuisance parameter is eliminated

by invariance), it is not assumed that the small sample counterpart φTFT (m, θ) shares

this feature. Also assumption (iv) does not require the small sample and limiting group

actions to exactly coincide, which is important for, say, arguing for the asymptotic efficiency

of translation and trend invariant unit root tests with respect to the weak convergence

T−1/2yT,b·T c Ã Jc(·) + αy + ·βy.

3.3 Uniformity

The discussion so far concerned the pointwise asymptotic properties of tests ϕT , i.e. the

rejection probability as T →∞ for a fixed modelm and parameter value θ. This is standard
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practice in much of econometric theory, including in the literature on semiparametrically

efficient tests, such as Jansson (2007).

When one insists on uniform results in the set-up here, it is natural to ask whether the

pointwise robustness constraint (8) can be replaced by a uniform constraint over models,

that is to demand that for large enough T , the null rejection probability
R
ϕTdFT (m, θ) for

θ ∈ Θ0 to be close to α for all data generating processes under consideration. It is not hard

to see, however, that withM0 the set of all models satisfying (2), such a uniformity cannot

hold for non-trivial tests: for any T , the distribution FT (m, θ) of YT is entirely unrestricted,

as the convergence PT (m, θ) = hTFT (m, θ)Ã P (θ) can occur ’later’.

To generate uniform results, one must therefore reduce the set of modelsM0 and impose

a lower limit on the speed of convergence. For two probability measures μ1 and μ2 on

B(S), define ∆BL as ∆BL(μ1, μ2) = sup||f ||BL≤1 |
R
fdμ1 −

R
fdμ2|, where f : S 7→ R are

B(S)\B(R) measurable and ||f ||BL = supx∈S |f(x)| + supx,y∈S
|f(x)−f(y)|
dU (x,y)

. It is known that

∆BL metrizes weak convergence on separable metric spaces (Dudley (2002, p. 395)). Also,

let the real sequence δT be such that δT → 0. Now defineMu
0(δ) (’u’ for uniform) as the

set of models m satisfying

sup
θ∈Θ0

∆BL(PT (m, θ), P (θ)) ≤ δT ,

that isMu
0(δ) is the collection of modelsm for which the distribution PT (m, θ) = hTFT (m, θ)

of hT (YT ) differs by at most δT from its limit P (θ) as measured by ∆BL, uniformly over Θ0.

It then makes sense to ask whether the rejection probability of a test ϕT converges to the

nominal level uniformly over θ ∈ Θ0 andMu
0(δ), that is if

lim sup
T→∞

sup
θ∈Θ0,m∈Mu

0 (δ)

Z
ϕTdFT (m, θ) ≤ α. (16)

By the continuity of ϕ∗S, (16) holds for the test ϕT = ϕ̂∗T in Theorem 1, i.e. for large enough

T , the rejection probability of ϕ̂∗T is close to α for all models inM
u
0(δ), uniformly over Θ0.

3

Similar restrictions and arguments could be made regarding the constraints (9) and (10).

It is not clear, however, whether all tests that satisfy the point-wise robustness (8) also

satisfy (16), or vice versa. Theorem 1 therefore does not imply that ϕ̂∗T also maximizes

3Construct a decreasing sequence of functions cT that converge to ϕ
∗
S pointwise P (θ0)-almost everywhere

with δT ||cT ||BL → 0, as in chapter 7.1 of Pollard (2002). Then supθ∈Θ0,m∈Mu
0
(δ)

R
ϕ̂∗TdFT (m, θ) − α ≤

supθ∈Θ0,m∈Mu
0
(δ)

R
cT (dPT (m, θ) − dP (θ)) ≤ ||cT ||BL∆BL(PT (m, θ), P (θ)) → 0, where the last inequality

uses ||f1 · f2||BL ≤ ||f1||BL · ||f2||BL.
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asymptotic weighted average power in the class of all tests that satisfy (16). A partial result

in that regard is provided by the following Theorem for the case of a single null hypothesis

and without the constraints (9) and (10).

Theorem 3 Suppose Θ0 = {θ0}, let L : Θ × S 7→ R be the Radon-Nikodym derivative of

P (θ) with respect to P (θ0), define L̄(x) =
R
L(θ, x)dw(θ), let ϕ∗S : S 7→ [0, 1] be the level α

Neyman-Pearson test that rejects for large values of L̄, and define ϕ̂∗T = ϕ∗S ◦ hT . Suppose
that for all ε > 0 there exists an open set Dε ∈ B(S) with

R
Dε

dP (θ0) > 1 − ε so that

the Dε 7→ R function x 7→ L̄(x) is Lipschitz, and assume that the models m0 and m1 are

such that ∆BL(PT (m0, θ0), P (θ0))/δT → 0 and ∆BL(
R
PT (m1, θ)dw(θ),

R
P (θ)dw(θ))/δT →

0. Then for any test ϕT that satisfies (16), lim supT→∞
R R

ϕTdFT (m1, θ)dw(θ) ≤
limT→∞

R R
ϕ̂∗TdFT (m1, θ)dw(θ) =

R R
ϕ∗SdP (θ)dw(θ).

Under a stronger continuity assumption on the limiting problem, Theorem 3 shows

that no test can satisfy (16) and have higher asymptotic weighted average power than ϕ̂∗T

for alternative models whose (average) weak convergence is faster than the lower bound

δT . In other words, ϕ̂
∗
T is the efficient test in the class of test satisfying (16) against any

set of alternative models in which
R
PT (m1, θ)dw(θ) Ã

R
P (θ)dw(θ) converges faster than

the slowest convergence PT (m1, θ0) Ã P (θ0) for which the test controls asymptotic size

uniformly.

The proof of Theorem 3 follows closely the heuristic sketch of the proof Theorem 1

outlined above and exploits the linearity in both the definition of ∆BL and the reweighed

probability assignments. Dudley (2002, p. 411) shows that the Prohorov metric ∆P (which

also metrizes weak convergence) satisfies ∆P ≤ 2∆1/2
BL and ∆BL ≤ 2∆P , so that Theorem 3

could equivalently be formulated in terms of ∆P .

4 Applications

4.1 Unit Root Tests with Stationary Covariates

Elliott and Jansson (2003) consider the model

Ã
yT,t

xT,t

!

=

Ã
αy + βyt

αx + βxt

!

+

Ã
uT,t

νxT,t

!

(17)
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where YT = ((yT,1, x
0
T,1)

0, · · · , (yT,T , x0T,T ))
0 ∈ RnT is observed, αy, βy and uT,t = ρTuT,t−1 +

νyT,t are scalars, uT,0 = Op(1), ρT = 1 − c/T for some fixed c ≥ 0, and xT,t, αx, βx and

νxT,t are n − 1 dimensional vectors. The objective is to efficiently exploit the stationary
covariates xT,t in the construction of a test of the null hypothesis of a unit root in yT,t,

H0 : c = 0 against the alternative H1 : c > 0. Consider first the case with αy = αx = βy =

βx = 0 known. The approach of Elliott and Jansson (2003) is to first apply the Neyman-

Pearson Lemma to determine, for each T , the point-optimal test against c = c1 when

νT,t = (ν
y
T,t, ν

x0
T,t)

0 ∼i.i.d.N (0,Ω) for known Ω. In a second step, they construct a feasible

test that is (i) asymptotically equivalent the point-optimal test when νT,t ∼i.i.d.N (0,Ω)
and (ii) that is robust to a range of autocorrelation structures and error distributions. So

by construction, their test can only claim efficiency for the special case of i.i.d. Gaussian

disturbances.

In order to apply the results in Sections 2 and 3 of this paper, we consider the typical

weak convergence properties of model (17). Standard weak dependence assumptions on νT,t

imply for some suitable long-run covariance matrix estimator Ω̂T

Ω̂T
p→ Ω and GT (·) =

Ã
T−1/2uT,b·T c

T−1/2
Pb·Tc

t=1 ν
x
T,t

!

Ã G(·) (18)

where Ω is positive definite, G(s) =
R s
0
diag(e−c(s−r), 1, · · · , 1)Ω1/2dW (r), and W is a n× 1

standard Wiener process. By Girsanov’s Theorem, the Radon-Nikodym derivative of the

distribution of G with c = c1 with respect to the distribution of G with c = 0, evaluated at

G = (Gy, G
0
x)
0, is given by

L(Ω, G) = exp

∙
−c1

Z 1

0

G(s)0S1Ω
−1dG(s)− 1

2
c21

Z 1

0

G(s)0S1Ω
−1S1G(s)ds

¸
(19)

= exp

∙
−1
2
c1(ω

−2
yyGy(1)

2 − 1)− c1ωyx

Z 1

0

Gy(s)dGx(s)− 1
2
c21ω

−2
yy

Z 1

0

Gy(s)
2ds

¸

where S1 is the n×n matrix S1 = diag(1, 0, · · · , 0) and the first row of Ω−1 is (ω2yy, ωyx). By

the Neyman-Pearson Lemma, the point-optimal test in the limiting problem rejects for large

values of L(Ω, G). Since
R 1
0
Gy(s)dGx(s) is not a continuous mapping, we cannot directly

apply Theorem 1. However, typical weak dependence assumptions on νT,t also imply (see,

for instance, Phillips (1988), Hansen (1990) and de Jong and Davidson (2000)) that

ΥT = T−1
TX

t=2

uT,t−1ν
x
T,t − Σ̂T Ã Υ =

Z 1

0

Gy(s)dGx(s) (20)
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for a suitably defined (n−1)×1 vector Σ̂T
p→ Σ (which equals

P∞
s=1E[ν

x
T,tν

y
T,t+s] when νT,t

is covariance stationary) jointly with (18). Clearly, the Radon-Nikodym derivative of the

measure of (G,Υ) for c = c1 with respect to the measure of (G,Υ) with c = 0, evaluated

at G, is also given by L(Ω, G) in (19), and one can write L(Ω, G) = LΥ(Ω, G,Υ) for a

continuous function LΥ. The discussion of Section 3.1 thus applies, and Theorem 1 shows

that rejecting for large values of LΥ(Ω̂T , GT ,ΥT ) is the point-optimal unit root test for the

alternative c = c1 among all tests that have correct asymptotic null rejection probabilities

whenever (18) and (20) hold.

Since the model with νT,t ∼i.i.d.N (0,Ω) satisfies (18) and (20), the test derived by
Elliott and Jansson (2003) is by construction–as explained in Comment 1 of Theorem

1–asymptotically equivalent to a test that rejects for large values of LΥ(Ω̂T , GT ,ΥT ). The

derivation here, which starts with the Radon-Nikodym derivative directly, is arguably a

more straightforward way of determining a test in this equivalence class. But the more

important insight concerns the optimality properties of this test: While Elliott and Jansson

(2003) could only claim optimality for the model with i.i.d. Gaussian disturbances, Theorem

1 shows that the test to be efficient against all alternatives satisfying (18) and (20) with

c = c1 if one imposes size control for all models satisfying (18) and (20) with c = 0. In

other words, under this robustness constraint, no test exists with higher asymptotic power

for any disturbance distribution or autocorrelation structure satisfying (18) and (20) with

c = c1.

When the deterministic terms are not fully known, i.e. the parameters αy, αx, βy,

and/or βx are not known, it is natural to impose an appropriate invariance requirement.

Specifically, considering the case where αy and αx are unconstrained and βy = βx = 0, one

might impose invariance to the transformations

{(yT,t, x
0
T,t)

0}Tt=1 → {(yT,t + ay, x
0
T,t + a0x)

0}Tt=1 ay ∈ R, ax ∈ Rn−1. (21)

A maximal invariant of this group of transformations is given by the demeaned data

{(ŷT,t, x̂0T,t)
0}Tt=1, where ŷT,t = yT,t − ȳT , x̂T,t = xT,t − x̄T , ȳT = T−1

PT
t=1 yT,t and

x̄T = T−1
PT

t=1 xT,t. Elliott and Jansson (2003) derive the limiting behavior of the like-

lihood ratio statistics of this maximal invariant when νT,t ∼i.i.d.N (0,Ω), and thus obtain
the asymptotically point-optimal invariant unit root test under that assumption. Consider-
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ing again the weak convergence properties of a typical model, we obtain

Ω̂T
p→ Ω and

⎛
⎜⎜⎝

T−1/2ŷT,b·Tc

T−1/2
Pb·T c

t=1 x̂T,t

T−1/2
PT

t=2 ŷT,t−1x̂T,t − Σ̂T

⎞
⎟⎟⎠Ã

⎛
⎜⎜⎝

Ĝy(·)

Ĝx(·)R 1
0
Ĝy(s)dĜx(s)

⎞
⎟⎟⎠ (22)

where Ĝy(s) = Gy(s) −
R 1
0
Gy(l)dl and Ĝx(s) = Gx(s) − sGx(1). For brevity, we omit an

explicit expression for the Radon-Nikodym derivative LĜ of the measure of (Ĝy, Ĝx) with

c = c1 with respect to the measure of (Ĝy, Ĝx) when c = 0. By the Neyman-Pearson Lemma

and Theorem 1, rejecting for large values of LĜ, evaluated at sample analogues, is the asymp-

totically point-optimal robust test for models defined via (22). Furthermore, in the nota-

tion of Section 3.2, with hT (YT ) = (T
−1/2yT,b·Tc, T−1/2

Pb·Tc
t=1 xT,t, T

−1PT
t=2 yT,t−1xT,t−Σ̂T ) ∈

D[0,1]×Dn−1
[0,1]×R

n−1, r = (ry, r0x)
0 ∈ R×Rn−1, gT (r, {(yT,t, x0T,t)

0}Tt=1) = {(yT,t+T 1/2ry, x
0
T,t+

T−1/2r0x)
0}Tt=1, g̃(r, (y, x, z)) = (y(·) + ry, x(·) + rx·, z + ry(x(1) − x(0)) + rx

R 1
0
y(s)ds),

φT ({(yT,t, x
0
T,t)

0}Tt=1) = {(ŷT,t, x̂0T,t)
0}Tt=1 and φ̃(y, x, z) = (y(·) −

R 1
0
y(s)ds, x(·) − ·x(1), z −

(x(1)− x(0))
R 1
0
y(s)ds), we find that Theorem 2 is applicable, and that rejecting for large

values of LĜ, evaluated at sample analogues, is also the asymptotically point-optimal in-

variant unit root test among all tests with correct asymptotic null rejection probability for

all models satisfying (18) and (20) with c = 0.

4.2 Linear Regression with Weak Instruments

As Andrews, Moreira, and Stock (2006) (abbreviated AMS in the following), consider the

problem of inference about the coefficient of a scalar endogenous variable in the presence of

weak instruments. The reduced form equations are given by (cf. equation (2.4) of AMS)

y1,t = z0tπβ + x0tζ1 + vt,1

y2,t = z0tπ + x0tζ2 + vt,2
(23)

for t = 1, · · · , T, where y1,t and y2,t are scalars, zt is k × 1 and xt is p × 1, and zt are the

residuals of a linear regression of the original instruments z̃t on xt. For further reference,

define z̄0t = (z̃
0
t, x

0
t) and v0t = (vt,1, v

0
t,2). AMS initially consider small sample efficient tests of

H0 : β = β0 (24)

for nonstochastic z̄t and vt = (v1,t, v2,t)
0 ∼i.i.d.N (0,Ω) with Ω known. A sufficiency argu-

ment shows that tests may be restricted to functions of the 2(k+p)×1 multivariate normal
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statistic
TX

t=1

Ã
zty1,t

zty2,t

!

∼ N
ÃÃ

Szπβ

Szπ

!

,Ω⊗ Sz

!

(25)

where Sz =
PT

t=1 ztz
0
t, and AMS derive weighted average power maximizing similar tests

that are invariant to the group of transformations

{zt}
T
t=1 → {Ozt}

T
t=1 for any orthogonal matrix O. (26)

For their asymptotic analysis, AMS employ Staiger and Stock (1997) weak instrument as-

ymptotics, where π = T−1/2C for some fixed matrix C. AMS then exploit their small sample

efficiency results to construct tests (i) that maximize weighted average asymptotic power

among all asymptotically invariant and asymptotically similar test when vt ∼i.i.d.N (0,Ω)
independent of {(x0t, z

0
t)}

T
t=1; and (ii) that yield correct null rejection probability under much

broader conditions (the working paper of AMS contains the details of the construction of

heteroskedasticity, and of heteroskedasticity and autocorrelation robust tests).

To apply the results from Sections 2 and 3 to this problem, consider the set of weak

convergences in the double array version of model (23)

D̂Z = T−1
PT

t=1 zT,tz
0
T,t

p→ Dz, Σ̂
p→ Σ,

XT = T−1/2
PT

t=1

Ã
zT,ty1,T,t

zT,ty2,T,t

!

Ã X ∼ N
ÃÃ

DzCβ

DzC

!

,Σ

!
(27)

where Σ̂ is some standard estimator of the long run variance of vec(ztv
0
t), and Dz and Σ

have full rank. The limiting problem in the sense of Section 2.2 above is thus the test of (24)

based on observing the random variable X distributed as in (27), with Dz and Σ known.

For k = 1, i.e. in the just-identified case, this problem is exactly equivalent to the small

sample problem (25) considered by AMS. In fact, already Moreira (2001) has shown that

for k = 1, the Anderson and Rubin (1949) statistic AR0 = (b
0
0X)

2/b00Σb0 with b0 = (1,−β0)0
yields the uniformly most powerful unbiased test ϕ∗S. The discussion of Section 3.1 and

Theorem 1 thus imply that for k = 1, rejecting for large values of (b00XT )
2/b00Σ̂b0 maximizes

asymptotic power uniformly in all models that satisfy (27) with β 6= β0 among all tests that

are asymptotically unbiased with at most nominal asymptotic null rejection probability for

all models that satisfy (27) with β = β0.

The robustness constraint here–correct asymptotic null rejection probability for all

models that satisfy (27) with β = β0–is quite stringent, since there are many ways
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T−1/2
PT

t=1 zT,tyT,t can converge to a normal vector (for instance, one could set zT,tyT,t = 0

for all t < T and zT,tyT,t = X). To the extent that one would be prepared to rule out

such models a priori, this decreases the appeal of the efficiency result. But as discussed

in comment 5 in Section 2.3 above, one can impose additional weak convergences without

necessarily affecting ϕ∗S: Supplementing (27) by the FCLT type convergence

T−1/2
b·T cX

t=1

Ã
zT,ty1,T,t

zT,ty2,T,t

!

Ã G(·) with G(s) = s

Ã
DzCβ

DzC

!

+ Σ1/2W (s),

with W (s) is a 2 × 1 standard Wiener process, for instance, rules out such pathological

cases, and yet still yields ϕ∗S to be the efficient test, since G(1) is sufficient for the unknown

parameters C and β.

For k > 1, Theorems 1 and 2 can again be invoked to yield analogous asymptotic

efficiency statements for the statistics developed in AMS under the assumption that Σ is

of the Kronecker form Σ = Ω ⊗Dz, as in (25). But this form naturally arises only in the

context of a serially uncorrelated homoskedastic model, so the resulting efficiency statements

are of limited appeal. The approach here thus points to a general solution of the limiting

problem without the constraint Σ = Ω⊗Dz as an interesting missing piece in the literature

on efficient inference in linear regressions with weak instruments.

4.3 GMM Parameter Stability Tests

Following Sowell (1996), suppose we are interested in testing the null hypothesis that a

parameter β ∈ Rk in a GMM framework is constant through time. Parametrizing βT,t =

β0+T−1/2θ(t/T ), where θ ∈ Dk
[0,1] and θ(0) is normalized to zero θ(0) = 0, this is equivalent

to the hypothesis test

H0 : θ = 0 against H1 : θ 6= 0. (28)

Denote by gT,t(β) ∈ Rp with p ≥ k the sample moment condition for yT,t evaluated at β, so

that under the usual assumptions, the moment condition evaluated at the true parameter

value satisfies a central limit theorem, that is T−1/2
PT

t=1 gT,t(βT,t) Ã N (0, V ) for some

positive definite p×pmatrix V . Furthermore, with β̂T the usual full sample GMM estimator

of β with optimal weighting matrix converging to V −1, we obtain under typical assumptions
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that for some suitable estimators ĤT and V̂T (cf. Theorem 1 of Sowell (1996))

GT (·) = T−1/2
b·T cX

t=1

gT,t(β̂T )Ã G(·) and ĤT
p→ H, V̂T

p→ V (29)

where the convergence to G is on Dp
[0,1], G(s) = V 1/2W (s)−sH(H 0V −1H)−1H 0V −1/2W (1)+

H
³R s

0
θ(l)dl − s

R 1
0
θ(l)dl

´
withW a p×1 standard Wiener process andH some p×k matrix

full column rank matrix (which is the probability limit of the average of the partial deriv-

atives of gT,t). Andrews (1993), Sowell (1996) and Li and Müller (2007) discuss primitive

conditions for these convergences. Sowell (1996) goes on to derive weighted average power

maximizing tests of (28) as a function of G (that is, he computes ϕ∗S in the notation of

Theorem 1), and he denotes the resulting test evaluated at GT (·), ĤT and V̂T (that is, ϕ̂
∗
T

in the notation of Theorem 1), an "optimal" test for structural change.

Without further restrictions, however, such tests cannot claim to be efficient: As a

simple example, consider the scalar model with yT,t = β+θ(t/T )+εt, where εt is i.i.d. with

P (εt = −1) = P (εt = 1) = 1/2. This model is a standard time varying parameter GMM

model with gT,t(β) = yT,t − β = θ(t/T ) + εt satisfying (29), yet in this model, the test ϕ
∗∗
T

that rejects whenever any one of {yT,t − yT,t−1}Tt=1 is not −2, 0 or 2 has level zero for any
T ≥ 2 and has asymptotic power equal to one against any local alternative.
Theorem 1 provides a sense in which the tests derived by Sowell (1996) are asymptoti-

cally optimal: they maximize asymptotic weighted average power among all tests that have

correct asymptotic null rejection probability whenever (29) holds with θ = 0. Tests that

exploit specificities of the error distribution, such as ϕ∗∗T , to gain higher power necessarily

do not lead to correct asymptotic null rejection probability for all stable models satisfying

(29).

5 Conclusion

This paper analyzes a new notion of asymptotic efficiency. The starting point is the idea

that models of interest can be delineated in terms of a weak convergence property, so that

under the null and alternative hypothesis, an observed random element converges weakly

to a limiting random element. It is shown that if one restricts attention to tests that have

nominal asymptotic rejection probability for all models that satisfy the weak convergence
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under the null hypothesis, then efficient tests in the original problem are simply given by

efficient tests in the limiting problem (that is, with the limiting random element observed),

evaluated at sample analogues. These efficient tests generically coincide with robustified

versions of efficient tests that are derived as the limit of small sample efficient tests in

canonical parametric versions of the model. The results of this paper thus provide an

alternative and broader sense of asymptotic efficiency for many previously derived tests in

econometrics, and provides a concrete limit how far these tests can be improved upon in

less parametric set-ups.

It is a severe restriction to force tests to have correct asymptotic null rejection prob-

ability for all models that satisfy the weak convergence, because there are typically many

such models. Relative to the semi-parametrically efficient testing literature, the issue of as-

ymptotic efficiency is thus approached here with a stronger focus on robustness of inference.

This allows for the application of a different set of arguments, and we accordingly obtain a

different (negative) result: it is impossible to even partially adapt to non-canonical versions

of the model. Given this focus on the robustness of inference, the results derived here are

most naturally to applied in time series econometrics, where often there is substantial un-

certainty over the joint distribution of the data (and where semiparametric considerations

face serious challenges).

Given the difference in focus, the approach considered here complements rather than

substitutes the approach based on semiparametric efficiency. It seems an interesting topic

for future research to more deeply explore the relationship between the two approaches.
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6 Appendix

Proof of Theorem 1:

(i) We prove the second claim, the first is proved analogously.

Since ϕ∗S is P (θ0)-almost everywhere continuous, it is also P (θ)-almost everywhere con-

tinuous for any θ ∈ Θ1, and by the Continuous Mapping Theorem, PT (m, θ)Ã P (θ) implies
R
ϕ∗SdPT (m, θ) →

R
ϕ∗SdP (θ) for all θ ∈ Θ1. Since 0 ≤ ϕ∗S ≤ 1, the result follows by domi-

nated convergence.

(ii) Pick any m ∈ M1. Define F̄T =
R
FT (m, θ)dw(θ), P̄T =

R
PT (m, θ)dw(θ) and

P̄ =
R
P (θ)dw(θ). For any bounded and continuous function ϑ : S 7→ R,

R
ϑdPT (m, θ) →

R
ϑdP (θ) for all θ ∈ Θ1 by the continuous mapping theorem, so that by dominated con-

vergence, also
R
ϑdP̄T →

R
ϑdP̄ . Thus, hT F̄T = P̄T Ã P̄ . Let Dn

[0,1] be the space of

n-valued cadlag functions on the unit interval, equipped with the Billingsley (1968) met-

ric, and define the mapping χT : R
nT 7→ Dn

[0,1] as {yt}
T
t=1 7→ T−1ΦZ(yb·T c), where ΦZ is

the c.d.f. of a standard normal applied element by element. Note that χT is injective,

and denote by χ−1T a Dn
[0,1] 7→ R

nT function such that χ−1T (χT (y)) = y for all y ∈ RnT .

Since sups∈[0,1] ||χT (s)|| ≤ 1/T → 0, the probability measures (hT , χT )F̄T on the complete

and separable space S × Dn
[0,1] converge weakly to the product measure P̄ × δ0, where

δ0 puts all mass at the zero function in Dn
[0,1]. Let T1 → ∞ be any subsequence of

T such that limT1→∞
R
ϕT1dF̄T1 = lim supT→∞

R
ϕTdF̄T . Since the probability measures

(hT1 , χT1, ϕT1)F̄T1 on the complete and separable space S ×Dn
[0,1] × [0, 1] are tight, by Pro-

horov’s Theorem (see, for instance, Theorem 36 on p. 185 of Pollard (2002)), there exists a

subsequence T2 of T1 such that (hT2 , χT2, ϕT2)F̄T2 Ã ν̄ as T2 →∞, where (πX , πY )ν̄ = P̄×δ0,

and πX , πY and πϕ are the projections of S×Dn
[0,1]×[0, 1] on S, D

n
[0,1] and [0, 1], respectively.

For notational convenience, write T for T2 in the following. By Theorem 11.7.2 of Dudley

(2002), there exists a probability space (Ω∗,F∗, P ∗) and functions ηT : Ω
∗ 7→ S×Dn

[0,1]×[0, 1]

such that ηTP
∗ = (hT , χT , ϕT )F̄T , η0P

∗ = ν̄ and ηT (ω
∗)→ η0(ω

∗) for P ∗-almost all ω∗ ∈ Ω∗,

and by Theorem 11.7.3 of Dudley (2002), we may assume Ω∗ to be complete and separable.

In this construction, note that for P ∗-almost all ω∗, hT ◦χ−1T ◦πY ◦ηT (ω∗) = πX ◦ηT (ω∗) and
ϕT ◦χ−1T ◦πY ◦ηT (ω∗) = πϕ◦ηT (ω∗). Furthermore, (πX ◦ηT )P ∗ = P̄T , (χ

−1
T ◦πY ◦ηT )P ∗ = F̄T

and
R
ϕTdF̄T =

R
(πϕ ◦ ηT )dP ∗ →

R
(πϕ ◦ η0)dP ∗, where the convergence follows from the

dominated convergence theorem, since πϕ ◦ ηT (ω∗) ∈ [0, 1] for all ω∗ ∈ Ω∗.We need to show

that
R
(πϕ ◦ η0)dP ∗ ≤

R
ϕ∗SdP̄ .
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Note that P (θ) is absolutely continuous with respect to P̄ for any θ ∈ Θ, and denote by

L(θ) the Radon-Nikodym derivative of P (θ) with respect to P̄ , so that for all A ∈ B(S),
R
A
dP (θ) =

R
A
L(θ)dP̄ (existence of L is ensured by the Radon-Nikodym Theorem; see, for

instance, page 56 of Pollard (2002)). Define Q∗(θ) to be the probability measure on F∗,

indexed by θ ∈ Θ, as
R
A
dQ∗(θ) =

R
A
(L(θ) ◦ πX ◦ η0)dP ∗ for all A ∈ F∗. By construction,

(πX ◦ η0)Q∗(θ) = P (θ), since for all A ∈ B(S),
R
A
(πX ◦ η0)dQ∗(θ) =

R
A
L(θ)dP̄ =

R
A
dP (θ).

Consider the hypothesis test

H∗
0 : ω

∗ ∼ Q∗(θ), θ ∈ Θ0 vs H
∗
1 : ω

∗ ∼ Q∗(θ), θ ∈ Θ1. (30)

Because the Radon-Nikodym derivative between Q∗(θ1) and Q∗(θ2) is given by

(L(θ1)/L(θ2)) ◦ πX ◦ η0, the statistic πX ◦ η0 : Ω∗ 7→ S is sufficient for θ by the Fac-

torization Theorem (see, for instance, Theorem 2.21 of Schervish (1995)). Thus, for any

test ϕΩ : Ω
∗ 7→ [0, 1], one can define a corresponding test ϕS : S 7→ [0, 1] via ϕS(x) =

E[ϕΩ|(πX ◦ η0)(ω∗) = x], which satisfies
R
ϕΩdQ

∗(θ) =
R
(ϕS ◦ πX ◦ η0)dQ∗(θ) =

R
ϕSdP (θ)

for all θ ∈ Θ (cf. Theorem 3.18 of Schervish (1995)), and also
R
(fS◦πX◦η0)(ϕΩ−α)dQ∗(θ) =R

fS(ϕS −α)dP (θ) for any fS ∈ FS. Since the level α test ϕ
∗
S : S 7→ [0, 1] of H0 : X ∼ P (θ),

θ ∈ Θ0 against H1 : X ∼ P (θ), θ ∈ Θ1 maximizes weighted average power subject to (6)

and (7), the level α test ϕ∗S ◦πX ◦ η0 : Ω∗ 7→ [0, 1] of (30) maximizes weighted average power
R R

ϕΩdQ
∗(θ)dw(θ) among all level α tests ϕΩ : Ω

∗ 7→ [0, 1] of (30) that satisfy
Z

ϕΩdQ
∗(θ) ≥ π0(θ) for all θ ∈ Θ1 (31)

Z
(fS ◦ πX ◦ η0)(ϕΩ − α)dQ∗(θ) = 0 for all θ ∈ Θ̄0 and fS ∈ FS, (32)

and it achieves the same weighted average power
R R
(ϕ∗S ◦ πX ◦ η0)dQ

∗(θ)dw(θ) =
R R

ϕ∗SdP (θ)dw(θ).

Now define the sequence of measures GT (θ) on B(R
nT ), indexed by θ ∈ Θ, via GT (θ) =

(χ−1T ◦ πY ◦ ηT )Q∗(θ), which induce the measures hTGT (θ) = (hT ◦ χ−1T ◦ πY ◦ ηT )Q∗(θ) =
(πX◦ηT )Q∗(θ) onB(S). By construction of ηT and absolute continuity of Q∗(θ) with respect
to P ∗, we have ηT (ω

∗)→ η0(ω
∗) for Q∗(θ)-almost all ω∗, and since almost sure convergence

implies weak convergence, hTGT (θ)Ã (πX ◦ η0)Q∗(θ) = P (θ) pointwise in θ ∈ Θ. Thus, for

any test that satisfies (8), (9) and (10), we have lim supT→∞
R
ϕTdGT (θ) ≤ α for all θ ∈ Θ0,

lim infT→∞
R
ϕTdGT (θ) ≥ π0(θ) for all θ ∈ Θ1 and limT→∞

R
(ϕT−α)(fS◦hT )dGT (θ) = 0 for

all θ ∈ Θ̄0 and fS ∈ FS. By the dominated convergence theorem and the construction of
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GT ,
R
ϕTdGT (θ) =

R
(ϕT ◦ χ−1T ◦ πY ◦ ηT )dQ∗(θ) =

R
(πϕ ◦ ηT )dQ∗(θ) →

R
(πϕ ◦ η0)dQ∗(θ)

for all θ ∈ Θ and
R
(ϕT − α)(fS ◦ hT )dGT (θ) =

R
((πϕ ◦ ηT ) − α)(fS ◦ πX ◦ ηT )dQ∗(θ) →R

((πϕ ◦ η0)− α)(fS ◦ πX ◦ η0)dQ∗(θ) for all θ ∈ Θ̄0 and fS ∈ FS. We can conclude that the

test πϕ ◦η0 : Ω∗ 7→ [0, 1] of (30) is of level α and satisfies (31) and (32). Its weighted average

power
R R
(πϕ◦η0)dQ∗(θ)dw(θ) is therefore smaller or equal than the weighted average powerR R

ϕ∗SdP (θ)dw(θ) of the test ϕ
∗
S ◦ πX ◦ η0 : Ω∗ 7→ [0, 1]. The result now follows from noting

that
R R
(πϕ ◦ η0)dQ∗(θ)dw(θ) =

R R
(L(θ) ◦ πX ◦ η0)(πϕ ◦ η0)dP ∗dw(θ) =

R
(πϕ ◦ η0)dP ∗,

since
R
L(θ)dw(θ) = 1, and the change of the order of integration is allowed by Fubini’s

Theorem.

Proof of Theorem 2:

For notational convenience, write F0,T = FT (m, θ), PT = hTF0,T , P
φ
0,T = (hT ◦ φT )F0,T ,

P0 = P (θ) and P φ
0 = φ̃P0. Proceed in analogy to the proof of Theorem 1 part (ii) to argue

for the existence of a probability space (Ω∗,F∗, P ∗) with complete and separable Ω∗ and

functions ηT : Ω
∗ 7→ S×Dn

[0,1] such that ηTP
∗ = (hT ◦φT , χT )F0,T , η0P ∗ = P φ

0 ×δ0, where the

probability measure δ0 puts all mass on the zero function Dn
[0,1] 7→ R, and ηT (ω

∗)→ η0(ω
∗)

for P ∗-almost all ω∗ ∈ Ω∗. In particular, (πX ◦ ηT )P ∗ = P φ
0,T and (χ

−1
T ◦ πY ◦ ηT )P ∗ = F0,T ,

where πX and πY are the usual projections of S ×Dn
[0,1] on S and Dn

[0,1], respectively. Also,

for almost all ω∗, hT ◦ φT ◦ χ−1T ◦ πY ◦ ηT (ω∗) = πX ◦ ηT (ω∗).
Let ν be the probability measure on B(R × S) induced by (ρ̃, φ̃) : S 7→ R × S under

P0, i.e. ν = (ρ̃, φ̃)P0. Since x = g̃(ρ̃(x), φ̃(x)) for all x ∈ S, P0 = g̃ν. By Proposition

10.2.8 of Dudley (2002) there exists a probability kernel νx from (S,B(S)) to (R,B(R))

such that for each A ∈ B(S) and B ∈ B(R), ν(A× B) =
R
A
νx(B)dP

φ
0 (x). Note that the

Ω∗ × B(S) 7→ [0, 1] mapping defined via (ω∗, B) 7→ νπX◦η0(ω∗)(B) is a probability kernel

from (Ω∗,F∗) to (R,B(R)). We can thus construct the probability measure μ∗ on (Ω∗×R),

(F∗ ⊗B(R)) via μ∗(C ×B) =
R
C
νπX◦η0(ω∗)(B)dP

∗(ω∗), and by construction, the mapping

(ω∗, r) 7→ g̃(r, πX ◦ η0(ω∗)) induces the measure P0 under μ∗.
Now from assumptions (iv), for μ∗-almost all (ω∗, r), hT ◦ gT (r, φT ◦χ−1T ◦πY ◦ ηT (ω∗)) =

g̃(r, hT ◦ φT ◦χ−1T ◦ πY ◦ ηT (ω∗)) + o(1) = g̃(r, πX ◦ ηT (ω∗)) + o(1)→ g̃(r, πX ◦ η0(ω∗)) where
the convergence follows from the continuity of g̃. But almost sure convergence implies

weak convergence, so that the measures GT on B(R
nT ) induced by the mapping (ω∗, r) 7→

gT (r, φT ◦χ−1T ◦ πY ◦ ηT (ω∗)) under μ∗ satisfy hTGT Ã P0. Finally, from φT ◦ gT (r, φT (y)) =
φT (y) for all r ∈ R and y ∈ RnT , it follows that φTGT = (φT ◦ χ−1T ◦ πY ◦ ηT )P ∗ = φTF0,T .
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Proof of Theorem 3:

The equality limT→∞
R R

ϕ̂∗TdFT (m1, θ)dw(θ) =
R R

ϕ∗SdP (θ)dw(θ) follows as in the proof

of Theorem 1 part (i).

For the inequality, write P0 = P (θ0), P̄ = L̄P0, F0,T = FT (m0, θ0), P0,T = hTF0,T ,

F̄T =
R
FT (m1, θ)dw(θ) and P̄T = hT F̄T , so that P0,T Ã P0 and P̄T Ã P̄ by assumption.

Pick 1/2 > � > 0 such that P0(L̄ = �) = 0 and define B� = {x ∈ S : L̄ > �}. Note that
R
S\B�

dP̄ =
R
S\B�

L̄dP0 ≤ �
R
S\B�

dP0 ≤ �, so that
R
B�
dP̄ ≥ 1 − �. The assumption about

L̄ in the statement of the theorem also implies the existence of an open set B̄� such thatR
B̄�
dP̄ > 1− � and L̄ : B̄� 7→ R is Lipschitz, since P̄ is absolutely continuous with respect

to P0 (cf. Example 3 on page 55 of Pollard (2002)). With B = B� ∩ B̄�, L̄
i : B 7→ R with

L̄i = 1/L̄ is thus bounded and Lipschitz. Furthermore, since S\B is closed, there exists a

Lipschitz function c : S 7→ [0, 1] that is zero on S\B and for which
R
cdP̄ ≥ 1 − 3� (see

Pollard (2002), p. 172-173 for an explicit construction). For future reference, define B and

B� to be the indicator functions of B and B�, respectively, and note that Bc = B�c = c.

Define the scalar sequence

κT =

Z
(c ◦ hT )dF0,T/

Z
(c ◦ hT )(L̄i ◦ hT )dF̄T

=

Z
cdP0,T/

Z
cL̄idP̄T

and note that κT → 1 because
R
cdP0,T →

R
cdP0 and

R
cL̄idP̄T →

R
cL̄idP̄ =

R
BcL̄iL̄dP0 =

R
cdP0 by the Continuous Mapping Theorem. Further, define the proba-

bility distribution GT on B(R
nT ) via

Z

A

dGT = κT

Z

A

(c ◦ hT )(L̄i ◦ hT )dF̄T +

Z

A

((1− c) ◦ hT )dF0,T

for any A ∈ B(RnT ). Then by construction, hT induces the probability distribution QT

under GT , where QT satisfiesZ

A

dQT = κT

Z

A

cL̄idP̄T +

Z

A

(1− c)dP0,T

for any A ∈ B(S). Now

∆BL(QT , P0) = sup
||ϑ||BL≤1

|

Z
ϑ(dQT − dP0)|

≤ sup
||ϑ||BL≤1

|

Z
ϑcL̄i(κTdP̄T − dP̄ )|+ sup

||ϑ||BL≤1
|

Z
ϑ(1− c)(dP0,T − dP0)|

≤ ||cL̄i||BL(∆BL(P̄T , P̄ ) + |κT − 1|) + ||1− c||BL∆BL(P0,T , P0)
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where the manipulations after the first inequality use
R
ϑcdP0 =

R
ϑcL̄idP̄ and the second

inequality exploits that || · ||BL is a submultiplicative norm on the set of bounded Lipschitz

functions S 7→ R (cf. Proposition 11.2.1 of Dudley (2002)). Also,

|κT − 1| = |

R
cdP0,TR
cL̄idP̄T

−
R
cdP0R
cL̄idP̄

|

≤ ||cL̄i||BL∆BL(P̄T , P̄ ) + ||c||BL∆BL(P0,T , P0)R
cL̄idP̄T

.

Thus, limT→∞∆BL(QT , P0)/δT = 0, so that for large enough T , (16) implies

lim supT→∞
R
ϕTdGT ≤ α.

Now define the probability measures F̃T via
Z

A

dF̃T = κ̃T

Z

A

(B� ◦ hT )(L̄ ◦ hT )dGT

= κ̃TκT

Z

A

(c ◦ hT )dF̄T + κ̃T

Z

A

(B�(1− c)L̄ ◦ hT )dF0,T

for any A ∈ B(RnT ), where κ̃T = 1/(κT
R
(c ◦ hT )dF̄T +

R
(B�(1 − c)L̄ ◦ hT )dF0,T ) → κ̃ =

1/
R
(c + B� − B�c)dP̄ = 1/

R
B�dP̄ and 1 ≤ 1/

R
B�dP̄ ≤ 1 + 2�. By the Neyman-Pearson

Lemma, the best test of H̃0 : YT ∼ GT against H̃1 : YT ∼ F̃T thus rejects for large values of

(B�L̄) ◦ hT , i.e. L̄ ◦ hT .
For any T , denote by ϕ̃∗T : RnT 7→ [0, 1] the test that rejects for large values of L̄ ◦ hT

of level
R
ϕ̃∗TdGT = max(

R
ϕTdGT , α), so that

R
(ϕ̃∗T − ϕT )dF̃T ≥ 0 for all T . By LeCam’s

First Lemma (Lemma 6.4 in van der Vaart (1998)), F̃T is contiguous to GT , since under GT ,

the Radon-Nikodym derivative κ̃T (B�L̄) ◦ hT converges weakly to the distribution κ̃B�L̄P0

by the Continuous Mapping Theorem, and
R
κ̃B�L̄dP0 = 1. Since both ϕ̃∗T and ϕ̂∗T reject

for large values of L̄ ◦ hT and are of asymptotic level α, we have
R
|ϕ̃∗T − ϕ̂∗T |dGT → 0, so

that by contiguity, also
R
|ϕ̃∗T − ϕ̂∗T |dF̃T → 0. Thus lim supT→∞

R
(ϕT − ϕ̂∗T )dF̃T ≤ 0. To

complete the proof, note that the total variation distance between F̃T and F̄T is bounded

above by
Z
|1− κ̃TκT (c ◦ hT )|dF̄T ≤ |1− κ̃TκT |+ |κ̃TκT

Z
(1− c)dP̄T |

→ 1/

Z
B�dP̄ − 1 + (1−

Z
cdP̄ )/

Z
B�dP̄ ≤ 8�

so that lim supT→∞
R
(ϕT − ϕ̂∗T )dF̄T ≤ 8�, and the result follows, since the choice of 1/2 >

� > 0 was arbitrary.
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