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Abstract

I use a sequential-auction model to mimic the environment of Internet auction sites,

such as eBay. For a sequence of auctions, new buyers may enter the auction site after

some of the auctions has completed and only bid for the remaining auctions. Because an

incumbent buyer may have revealed their own valuation in earlier auctions while a new

entrant do not, their expectations about the future are asymmetric. As a result, a buyer

with a lower valuation may win an auction while a buyer with a higher valuation may

restrain from bidding higher, resulting an inefficient allocation. On the contrary, selling

the multiple items in a single simultaneous auction results in an efficient outcome. The

profit from selling all items together in one simultaneous auction is less than that from

selling them sequentially.

1 Introduction

Internet auctions have grown rapidly in the past decade. Although there have been many

researches focusing on Internet auctions1, one important feature of Internet auctions remain

lack of attention. Contrary to most traditional brick-and-mortar auctions, buyers do not

arrive at an Internet auction site simultaneously. For a sequence of auctions, new buyers may

enter the auction site only later in the sequence.

∗Department of Economics, National Taiwan University, Taipei, Taiwan. I would like to thank Joseph
Taoyi Wang and Jong-Rong Chen for helpful comments and discussions. Financial supports from the National
Science Council in Taiwan are gratefully acknowledged. All remaining errors are mine.

1See Bajari and Hortaçsu (2004); Ockenfels, Reiley, and Sadrieh (2006) for surveys on these studies.
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In the tradition models of sequential auctions, all buyers arrive before the first auction

takes place. (See, for example, Weber (1983); Milgrom and Weber (2000).) An auction begins

after the previous one has completed. If a buyer does not win in the previous auction, she

can participate in the next one. Because of the future options, buyers would lower their

bids in the previous auction. With independent private values, Weber (1983) shows that the

expected price of each auction is the same for both the sequential first-price and second-

price auctions because the effect of winners leaving the auction site and the effect of bidders

shading their bids in early auctions to account for future options cancel out. Huang, Chen,

Chen, and Chow (2008) propose a model to analyze Internet auctions with buyer entry. They

find parallel auctions can be viewed as sequentially auctions because buyers only bid on the

auction which is the first one to end among all remaining auctions. The allocation is efficient

even when entry is possible. Nonetheless, they only analyze independent private valuations

among buyers. In this paper, I find that the efficiency does not hold if valuations are allowed

to be affiliated.

When buyers’ valuations are affiliated, the analysis is much more complicated. There is

still no complete answer for a fully general auction model. Milgrom and Weber (2000) find

that sequential first-price auctions would have ascending expected prices because buyers are

willing to bid more in later auctions after observing the information revealed in earlier auc-

tions. As for sequential second-price auctions, Wang (2006) shows that the expected prices

also ascend in a sequential second-price auction with affiliated private values. Zeithammer

(2006) extends the model of sequential auctions from selling identical items to selling het-

erogenous items. Contrary to the theoretical findings about affiliated value auctions, empirical

studies tend to find descending prices across auctions.2

The model in this paper consists of a sequence of ascending auctions. Each of them sells an

identical good. All buyers have inelastic unit demand for the good. Buyers enter the auction

site sequentially and stay until winning a good. I characterize a perfect Bayesian equilibrium

in this game. An important result of this paper is that the allocation of the auction mechanism

2For instance, see Ashenfelter (1989).
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is not necessarily efficient. It is possible that a buyer with a lower valuation obtains the good

while a buyer with a higher valuation does not. Allowing new buyers to enter per se does

not necessarily result in inefficiency in the allocation of the items. However, when buyers’

valuations are affiliated, inefficiency results from the information asymmetry among buyers.

The driving force behind the the inefficiency is the asymmetry of buyers. While some

buyers participate in an earlier auction and reveal their own valuations to all other buyers

by submitting bids, new buyers do not. Since new buyers also know their own private val-

uations, they have better information than old buyers. Because of affiliation in valuations,

the asymmetry in turn creates different expectations about the valuations of future incoming

buyers. New buyers get information rents from their better information and bid less aggres-

sively, other things being equal. Hence, the allocation of the sequential auctions is not always

efficient.

I also find transaction prices to be identical across auctions in the sequential auction model

considered in this paper. This price is higher than the price of selling all the items together

in a single multiple-object auction. Consequently, in order to maximize the expected profit,

a seller with several identical items to sell should offer them in a sequence of single-object

auctions rather than in one multiple-object simultaneous auction.

The inefficiency remains possible if sequential ascending auctions are replaced by sequen-

tial sealed-bid second-price auctions. Information asymmetry is still a reason for inefficiency.

Nonetheless, in addition to selling the good to the less informed buyer when she has a lower

valuation, efficiency may also occur in the opposition case, selling the good to the more

informed buyer when she has a lower valuation.

The rest of the paper is organized as the following. In the next section, I introduce a model

which mimics sequential eBay auctions with buyer entries. A perfect Baysian equilibrium is

presented in Section 3. In Section 4, I compare the eBay type auction with other formats of

auctions. To provide a concrete idea of the model equilibrium, I show an numerical example

in Section 5. Concluding remarks are in the final section.
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2 Model

Consider an affiliated private value model with three auctions and four buyers. Under the

private value assumption, each buyer has perfect information about her own valuation for

the item. Under the affiliated value assumption, buyers’ valuations are positively correlated.

When there are only two auctions, the information obtained in the first auction is useless in

the second auction because it is a dominant strategy to bid one’s own valuation in the second

(final) auction. The simplest model to show the effect of asymmetric information is to have

three auctions and four buyers. The model can be extended to have more auctions without

changing the result of the information asymmetry among buyers.

Following the empirical findings in Zeithammer and Adams (2006), I model eBay auctions

as ascending auctions.3 Assume that three auctions, each with one identical object to be sold,

will be held sequentially in periods t = 1, 2, 3, respectively.4

One buyer enters in each period t = 0, 1, 2, 3. Let the random variable Vi represent the

valuation of the buyer who enters in period i − 1, i = 1, 2, 3, 4. The realized value of Vi is

denoted as vi. While the joint distribution of (V1, V2, V3, V4) is common knowledge among

all buyers, the realized value vi is not. The valuations Vi are affiliated in the sense that the

conditional expectation E[Vi|V−i = v−i] increases in each components of v−i, where v−i ≡

(v1, . . . , v−i, vi+1, . . . , v4). The distribution function of (V1, V2, V3, V4) is non-degenerate. The

support of each Vi is an interval [v, v]. To simplify the exposition, assume the joint distribution

of V1 and V2 are symmetric. Every buyer is risk-neutral and demands only one object. It is

costless to bid. There is no discount between periods. A buyer’s surplus is her valuation vi

less the transaction price if she wins in one of the auctions. The surplus is zero otherwise. A

buyer wants to maximize her surplus. Since all buyers has inelastic unit demand, a winning

bidder will not participate in future auctions.

Auctions are conducted as a “button auction” in each period. All buyers press on a

3They empirically test the bidding behavior on eBay and find the data are better described by ascending
auctions rather than second-price sealed-bid auctions.

4I also discuss a sequence of sealed-bid second-price auctions tower the end of paper.
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button at the beginning of a period. The standing price starts from v and keeps rising. A

buyer depresses the button once she decides to quit from the current auction. When a buyer

quits from one auction, she cannot re-enter the same auction. The standing price rises until

only one buyer left. The last remaining buyer wins the auction and pays the final standing

price. The final standing price is announced to all buyer, including future buyers.

Since buyers’ valuations are random variables, the transaction prices are also random

variables. Let P ∗

t denote the transaction price of the auction in period t. Its realized value is

represented by the lowercase p∗t .

3 Perfect Bayesian Equilibrium

In this section, I will derive a perfect Baysian equilibrium of this three-period auction game

by backward induction. Because the joint distribution of (V1, V2) is symmetric, without loss

of generality, I only need to consider subgames after the histories with V1 ≥ V2. For the

subgames after the histories V1 ≤ V2, I simply need to exchange the scripts 1 and 2 in the

analysis. Therefore, I will assume V1 ≥ V2 for the rest of the paper.

3.1 The Final Auction

As is well-known in the literature, a buyer’s dominant strategy in a second-price ascending

auction is to bid until her own valuation. The bidding strategy of a buyer with valuation v in

the final auction is to bid until the price rises to her own valuation, β3(v) = v. This strategy

is independent of information. As a result, the winner of Auction 3 is the buyer with the

higher valuation in this period. The transaction price equals to the lower valuation among

the two buyers.

3.2 The Second Auction

Consider the history after the buyer with the higher valuation in period one has won the first

auction. The two buyers active in period two have valuations v2 and v3, respectively. Since
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the dominant strategy in the final auction is to bid until a buyer’s own valuation, regardless

of other buyers’ valuations. There is no strategic concern in the second auction to conceal

one’s own valuation.

Suppose the bidding strategy in the first auction is a strictly increasing function of a

buyer’s valuation. Then the realized valuation v2 can be inferred from the transaction price

of Auction 1, p∗1, and the bidding function for the first auction β1. Denote the inferred

value of Buyer 2’s valuation by v̂2 = β−1
1 (p∗1), it is public information in this period. In

the equilibrium path, v̂2 = v2. On the contrary, the new buyer’s valuation v3 is her private

information. The two buyers process different information sets. Consequently, they would

have different expectations on the valuation about the future entrant, V4, which in turn affect

their bidding strategies.

Let Sn
2 (v3; v̂2) be the new buyer’s expected surplus of participating in the next auction,

where v3 is her own valuation and v̂2 is the inferred value of her opponent’s valuation. Note

that the current standing price p2 does not enter the expected payoff on the equilibrium path

because there is no information gain from observing the price.

Sn
2 (v3; v̂2) =

∫ v3

v

(v3 − v4)dF4(v4|V2 = v̂2, V3 = v3)

=

∫ v3

v

F4(v4|V2 = v̂2, V3 = v3)dv4. (1)

Buyer 3’s expected surplus depends on Buyer 2’s valuation v̂2 because her surplus depends

on the distribution of Buyer 4’s valuation, which is affiliated with V2.

The following lemma shows Buyer 3’s bidding strategy for the second auction.

Lemma 1. Buyer 3 keeps bidding on Auction 2 until the payoff from the Auction 2 is just

indifferent to the expected future payoff, v3 − p2 = Sn
2 (v3; v̂2).

Proof. The surplus from winning Auction 2 at price p2 is v3−p2. It decreases in the standing

price p2. Because the expected surplus of entering the next auction Sn
2 (v3; v̂2), which is

independent of the price p2. Therefore, there exists a price p∗ such that v3 − p∗ ≥ Sn
2 (v3; v̂2)
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if and only if p2 ≤ p∗. Buyer 3 prefers Auction 2 over Auction 3 if and only if p2 < p∗.

The maximal amount Buyer 3 is willing to bid on Auction 2 can be denoted as

βn
2 (v3; v̂2) = v3 − Sn

2 (v3; v̂2). (2)

Lemma 2. βn
2 (v3; v̂2) is strictly increasing in v3 for any given v̂2.

Proof. For any v′3 > v3,

βn
2 (v′3; v̂2) − βn

2 (v3; v̂2) = −

∫ v3

v

[

F4(v4|V2 = v̂2, V3 = v′3) − F4(v4|V2 = v̂2, V3 = v3)
]

dv4

+

∫ v′3

v3

[

1 − F4(v4|V2 = v̂2, V3 = v′3)
]

dv4.

Because V3 and V4 are affiliated, F4(v4|V2 = v̂2, V3 = v′3) ≤ F4(v4|V2 = v̂2, V3 = v3) for all

v4. In addition, F4(v3|V2 = v2, V3 = v′3) < 1 for v3 < v. Consequently, βn
2 (v3; v2) is strictly

increasing in v3 ∈ (0, v). By continuity, βn
2 (v3; v2) is strictly increasing in v3 on the entire

support [0, v].

Because of the monotonicity of βn
2 ( · ; v̂2), it is invertible for any given v̂2. Denote the

inverse function by

v̂3( · ; v̂2) ≡ [βn
2 ]−1( · ; v̂2),

which Buyer 2 uses to update her expectation about Buyer 3’s valuation.

Next, consider the old buyer (Buyer 2)’s decision in Auction 2. Her expected surplus of

entering the future auction is

So
2(v2; v̂3) =

∫ v2

v

(v2 − v4)dF4(v4|V2 = v2, V3 ≥ v̂3)

=

∫ v2

v

F4(v4|V2 = v2, V3 ≥ v̂3)dv4, (3)

where v̂3 = v̂3(p2; v̂2) is the inferred valuation of Buyer 3. While Buyer 3 knows both buyers’
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valuations, Buyer 2 only knows her own valuation v2 for sure and infers a lower bound for

Buyer 3’s valuation v̂3 from the current standing price p2.

For any given (v2, v̂2), define c(v2, v̂2) as the solution c to the equation.

v2 − So
2(v2; c) = c − Sn

2 (c; v̂2) (4)

I will show that c(v2, v̂2) is the critical value to determine whether Buyer 2 or Buyer 3 wins the

second auction. To prove that the function is well-defined, I impose the following assumption

on the distribution of V3.

Assumption 1. The marginal distribution of V3 conditional on V2 has increasing hazard

rates.

d

dv3

[

f3(v3|V2 = v2)

1 − F3(v3|V2 = v2)

]

> 0.

Lemma 3. In the equilibrium path, c(v2, v2) is well-defined. Moreover, c(v2, v2) ≥ v2. The

inequality holds strictly when V3 and V4 are strictly affiliated. When V3 and V4 are indepen-

dent, c(v2, v2) = v2.

Proof. In the equilibrium path v̂2 = v2, equation (4) can be rewritten as

∫ v2

v

[1 − F4(v4|V2 = v2, V3 ≥ c)] dv4 =

∫ c

v

[1 − F4(v4|V2 = v2, V3 = c)] dv4. (5)

Since V3 and V4 are weakly affiliated, I have F4(v4|V2 = v2, V3 ≥ v3) ≤ F4(v4|V2 = v2, V3 = v3)

for any v2, v3, and v4. The left hand side of equation (5) is greater than or equal to the right

hand side when c = v2. On the other hand, the integrands on both sides of (5) are identical

when c = v. Consequently, the left hand side of (5) is less than or equal to the right hand

side if c = v. As a result, by the intermediate value theorem, there exists a solution c ∈ [v2, v]

to equation (5) for any given value of v2.

When V3 and V4 are strictly affiliated, F4(v4|V2 = v2, V3 ≥ v3) < F4(v4|V2 = v2, V3 = v3).

Therefore, the solution c must be strictly greater than v2. On the contrary, when V3 and V4

are independent, the integrands are the same on both sides. As a result c(v2, v2) = v2 if V3
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and V4 are independent.

Let H(v3) ≡
∫ v2

v
F4(v4|V2 = v2, V3 = v3)dv4. Applying integration by parts, I have

H(v3) =

∫ v2

v

(v2 − v4)dF4(v4|V2 = v2, V3 = v3)

= E[max{v2 − V4, 0}|V2 = v2, V3 = v3].

Since V3 and V4 are affiliated, V3 and −max{v2 − V4, 0} are affiliated for any given v2.

Therefore, H(v3) is a decreasing function.

Next, I will show H is convex. Consider the change of variable z ≡ F4(v4|V2 = v2, V3 = v3).

I then have H(v3) =
∫ 1
0 max{v2 − F−1

4 (z|V2 = v2, V3 = v3), 0}dz. Furthermore, because

max{v2 − v4, 0} is a convex function of v4, and F4(v4|V2 = v2, V3 = v3) is a smooth function

in v3,

max
{

v2 − F−1
4 (z|V2 = v2, V3 = v3 + ε), 0

}

+ max
{

v2 − F−1
4 (z|V2 = v2, V3 = v3 − ε), 0

}

≥ 2max
{

v2 − F−1
4 (z|V2 = v2, V3 = v3), 0

}

for any z ∈ (0, 1) and for ε > 0 small enough. Integrating the both sides of the above

inequality over z, I obtain H(v3 + ε) + H(v3 − ε) ≥ 2H(v3). This is equivalent to say that H

is convex.

To show the uniqueness of the solution c in equation (5), I will compare the derivatives on

both sides of (5) with respect to c. Note that
∫ v2

0 F4(v4|V2 = v2, V3 ≥ v3)dv4 = E[H(V3)|V2 =

v2, V3 ≥ v3]. Its derivative is

dE[H(V3)|V2 = v2, V3 ≥ v3]

dv3
=

d

dv3

[
∫ v

v3
H(x)f3(x|V2 = v2)

1 − F3(v3|V2 = v2)

]

= −
H(v3)f3(v3|V2 =v2)

1 − F3(v3|V2 = v2)
+

f3(v3|V2 =v2)
∫ v

c
H(x)f3(x|V2 =v2)dx

[1 − F3(v3|V2 = v2)]2

=
f3(v3|V2 = v2)

1 − F3(v3|V2 = v2)
{E[H(V3)|V2 = v2, V3 ≥ v3] − H(v3)}
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This is negative because H is decreasing. Moreover, by the convexity of H,

0 ≥ E[H(V3)|V2 = v2, V3 ≥ v3] − H(v3) = E[H(V3) − H(v3)|V2 = v2, V3 ≥ v3]

≥ E[H ′(v3)(V3 − v3)|V2 = v2, V3 ≥ v3] = H ′(v3)E[(V3 − v3)|V2 = v2, V3 ≥ v3]. (6)

Because V3 has increasing hazard rates for given V2 = v2, the conditional distribution of V3

giving V2 = v2 and V3 ≥ v3 also has increasing hazard rates. As a result,

f3(v3|V2 = v2)

1 − F3(v3|V2 = v2)
=

f3(v3|V2 = v2, V3 ≥ v3)

1 − F3(v3|V2 = v2, V3 ≥ v3)

≤

∫ v

v3
f3(x|V2 = v2, V3 ≥ v3)dx

∫ v

v3
[1 − F3(V3|V2 = v2, V3 ≥ v3)]dx

=
1

E[(V3 − v3)|V2 = v2, V3 ≥ v3]
, (7)

where the last equality uses integration by parts on the denominators. Combine the inequal-

ities in (6) and (7). I obtain

0 ≥
dE[H(V3)|V2 = v2, V3 ≥ v3]

dv3
≥ H ′(v3),

or, equivalently,

0 ≥
d

dv3

∫ v2

v

F4(v4|V2 = v2, V3 ≥ v3)dv4 ≥
d

dv3

∫ v2

v

F4(v4|V2 = v2, V3 = v3)dv4. (8)

Suppose there exists two solutions c and c′ to equation (5) with c′ > c > v2. Plugging c

and c′ into equation (5) respectively and taking their difference, I obtain

∫ v2

v

[

F4(v4|V2 = v2, V3 > c) − F4(v4|V2 = v2, V3 > c′)
]

dv4

=

∫ c

v

[

F4(v4|V2 =v2, V3 =c) − F4(v4|V2 =v2, V3 =c′)
]

dv4+

∫ c′

c

[

1 − F4(v4|V2 =v2, V3 =c′)
]

dv4.

However, this is a contradiction because combining this equality with the inequality (8) would
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imply

∫ v2

v

[

F4(v4|V2 = v2, V3 > c) − F4(v4|V2 = v2, V3 > c′)
]

dv4

=

∫ v2

v

[

F4(v4|V2 = v2, V3 = c) − F4(v4|V2 = v2, V3 = c′)
]

dv4

+

∫ c

v2

[

F4(v4|V2 =v2, V3 =c)−F4(v4|V2 =v2, V3 =c′)
]

dv4+

∫ c′

c

[

1 − F4(v4|V2 =v2, V3 =c′)
]

dv4

>

∫ v2

v

[

F4(v4|V2 = v2, V3 > c) − F4(v4|V2 = v2, V3 > c′)
]

dv4.

To show the monotonicity of the critical value function c(v2, v2), the affiliations between

valuations (V2, V3, V4) have to be restricted. As long as the second derivative, ∂2E[V4|V2 =

v2, V3 = v3]/∂v2∂v3, is not too negative, the following condition holds.

Assumption 2. At v3 = c(v2, v2),

∂

∂v2
E [min{v2, V4}|V2 = v2, V3 ≥ v3] ≥

∂

∂v2
E [min{v3, V4}|V2 = v2, V3 = v3] .

A sufficient condition for Assumption 2 is ∂E[V4|V2 = v2, V3 = v3]/∂v2 < 1 and ∂2E[V4|V2 =

v2, V3 = v3]/∂v2∂v3 ≥ 0. For instance, when (V2, V3, V4) are joint normal distribution with

zero mean and unit variance, E[V4|V2 = v2, V3 = v3] = ρ24v2 +ρ34v3. The sufficient condition

holds for this example.

Lemma 4. In the equilibrium path, c(v2, v2) strictly increases in v2.

Proof. Given Assumption 2, monotonicity follows from applying the implicit function theorem

to equation (5).

Lemma 5. On the equilibrium path, for any given v2, Buyer 2 prefers Auction 2 over Auction

3 if and only if the standing price of Auction 2 is less than the maximal price bid by Buyer

3 with valuation c(v2, v2).
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Proof. Buyer 2’s surplus of winning Auction 2 at price p2 is v2 − p2. I need to show that

v2−p2 ≥ So
2(v2; v̂3(p2; v2)) if and only if p2 ≤ βn

2 (c(v2, v2); v2). Since βn
2 (·; v2) is monotonically

increasing and v̂3(·; v2) is its inverse, it is equivalent to show that v2 −βn
2 (v̂3; v2) ≥ So

2(v2; v̂3)

if and only if βn
2 (v̂3; v2) ≤ βn

2 (c(v2, v2); v2). The last expression is in turn equivalent to

v̂3 ≤ c(v2, v2). Lemma 3 shows that c(v2, v2) is the unique solution to v2 − So
2(v2; v̂3) =

v̂3 − Sn
2 (v̂3; v2) on the equilibrium path and v2 − βn

2 (v̂3; v2) ≥ So
2(v2; v̂3) if and only if v̂3 ≤

c(v2, v2).

Buyer 2’s bidding strategy is to keep bidding on Auction 2 until the surplus from the

current auction is equal to the expected surplus from the future one.

v2 − p2 = So
2(v2; v̂3(p2; v̂2)).

Hence, her bidding strategy βo
2(v2; v̂2) is the solution of p2 to the above equation. Because

Buyer2 can correctly anticipate Buyer 3’s bidding strategy βn
2 , her own strategy only depends

on her own valuation v2 and the revealed valuation v̂2, but not on Buyer 3’s revealed valuation

v̂3. Lemma 5 shows that the maximal amount Buyer 2 is willing to bid on the second auction

is βo
2(v2; v2) = v2 − So

3(v2; c(v2, v2)) = βn
2 (c(v2, v2); v2) on the equilibrium path.

Lemma 6. On the equilibrium path, the winner of Auction 2 is Buyer 2 if v3 ≤ c(v2, v2) and

the winner of Auction 2 is Buyer 3 if v3 ≥ c(v2, v2)

Proof. The winner of Auction 2 is Buyer 2 if βo
2(v2; v2) ≥ βn

2 (v3; v2). On the other hand, the

winner is Buyer 3 if βo
2(v2; v2) ≤ βn

2 (v3; v2). By Lemma 5, I know βo
2(v2; v2) = βn

2 (c(v2, v2); v2)

on the equilibrium path. Since βn
2 (v3; v2) is an increasing function in v3. Buyer 3 wins Auction

2 if and only if v3 ≥ c(c2, v2).

Proposition 1. The lowest valuation for Buyer 3 to win the second auction is greater than

Buyer 2’s valuation, c(v2, v2) ≥ v2. The inequality is strict if the valuations of the last

two buyers, V3 and V4, are strictly affiliated. If V3 and V4 are independent, c(v2, v2) = v2.

Consequently, the allocation of the goods is not always efficient.
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Proof. This is the combined results from Lemma 3 and Lemma 6.

This proposition shows that Buyer 2 may win the second auction even if her valuation

v2 is smaller than Buyer 3’s valuation. The intuition behind this result is the information

asymmetry between the two buyers. Buyer 3 gets an information rent from knowing more

about their valuations. Consequently, Buyer 3 drops from the second auction earlier than

Buyer 2 even if they have identical valuations.

The transaction price of the second auction in equilibrium is

p∗2 =











βn
2 (v3; v2) = v3 − Sn

3 (v3; v2) = E[min{v3, V4}|V2 = v2, V3 = v3], if v3≤c(v2, v2);

βo
2(v2; v2)=v2−So

3(v2; c(v2, v2))=E[min{v2, V4}|V2 =v2, V3≥c(v2, v2)], if v3≥c(v2, v2).

3.3 The First Auction

Because the valuations V1 and V2 are assumed to be symmetric, I only need to consider the

bidding strategy used by one of the buyers. Without loss of generality, let us consider the

buyer with valuation v2 under the condition V1 ≥ v2.

For any monotonic bidding strategy for the first auction, the loser’s valuation v2 is revealed

after the first auction completes. Therefore, buyers need to account for the effect of revealing

information on their future surplus when bidding in the first auction.

If a buyer with valuation v2 does not win the first auction and enters future auctions, she

may either win or lose in Auction 2. In the first case, she gets a surplus equal to her own

valuation minus the highest bid Buyer 3 is willing to submit for Auction2. In the later case,

she loses in Auction 2 at the price βo
2(v2; v̂2). Note that her future outcome depends on the

inferred valuation v̂2, which is determined by her bidding strategy in the first auction. Her

expected surplus of entering future auctions is

S1(v2, v̂2) =

∫ c(v2,v̂2)

v

[v2 − βn
2 (v3; v̂2)]dF3(v3|V2 = v2)

+

∫ v

c(v2,v̂2)
So

2(v2; c(v2, v̂2))dF3(v3|V2 = v2). (9)
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Note that the assumption V1 ≥ V2 has been suppressed. In the equilibrium path, the expected

surplus can also be expressed as

S1(v2, v̂2) = Pr(V3 ≤ c(v2, v̂2))E[v2 − min{V4, V3}|V2 = v2, V3 ≤ c(v2, v̂2)]

+ Pr(V3 ≥ c(v2, v̂2))S
o
3(v2; c(v2, v̂2)). (10)

Denote the bidding function in the first auction by β1(v2). It is the maximal standing

price a buyer with valuation v2 is willing to bid for Auction 1. If β1 is a strictly increasing

function, choosing the maximal price p1 to bid in the auction is equivalent to choosing the

valuation v̂2 to be inferred.

Proposition 2. For any given valuation v2, there exists a unique price β1(v2) such that a

buyer with valuation v2 prefers winning in Auction 1 over future auctions if and only if the

current price is less than β1(v2). Furthermore, β1 is strictly increasing.

Proof. Let

β1(v) = v − S1(v, v). (11)

I will show that the function β1 indeed satisfies the property stated by the lemma.

First, claim that β1 is a strictly increasing function. Define

γ(v2, v3) ≡











E[min{v3, V4}|V2 = v2, V3 = v3], if v3 ≤ c(v2, v2);

E[min{v2, V4}|V2 = v2, V3 > c(v2, v2)], if v3 ≥ c(v2, v2).

From equation (9), I have β1(v2) = v2 − S1(v2, v2) =
∫ v

0 γ(v2, v3)dF3(v3|V2 = v2). For any
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v′2 > v2, Lemma 4 implies c(v′2, v
′

2) > c(v2, v2).

γ(v′2, v3) − γ(v2, v3) =






















E[min{v3, V4}|V2 = v′2, V3 = v3] − E[min{v3, V4}|V2 = v2, V3 = v3], if v3 ≤ c(v2, v2);

E[min{v3, V4}|V2 =v′2, V3 =v3] − E[min{v2, V4}|V2 =v2, V3≥c(v2, v2)], if c(v2,v2)≤v3≤c(v′2,v
′

2);

E[min{v2,V4}|V2 =v′2,V3≥c(v′2,v
′

2)]−E[min{v2,V4}|V2 =v2,V3≥c(v2,v2)], if v3 ≥ c(v′2, v
′

2).

By affiliation and the fact v2 ≤ c(v2, v2), for each of the three cases in the above equation,

γ(v′2, v3) − γ(v2, v3) ≥ 0. In particular, there is a positive measure of v3 falling in the third

case, v3 ≥ c(v′2, v
′

2), and the inequality is strict in this case, i.e., γ(v′2, v3) − γ(v2, v3) > 0.

Moreover, because γ(v2, v3) increases in v3, affiliation also implies
∫ v

v
γ(v′2, v3)dF3(v3|V2 =

v′2) ≥
∫ v

v
γ(v′2, v3)dF3(v3|V2 = v2). Consequently,

β1(v
′

2) =

∫ v

v

γ(v′2, v3)dF3(v3|V2 = v′2) ≥

∫ v

v

γ(v′2, v3)dF3(v3|V2 = v2)

≥

∫ v

v

γ(v2, v3)dF3(v3|V2 = v2) = β1(v2).

Suppose β1 is the function used by buyers in the next auction to infer Buyer 2’s valuation.

A buyer with valuation v2 prefers winning Auction 1 at price p1 over waiting for the future

auctions if and only if v2−p1 ≥ S1(v2, v̂2), where v̂2 = β−1(p1). It is equivalent to v2−β1(v̂2) ≥

S1(v2, v̂2). In equilibrium, v2 will always be inferred from the monotonic bidding function β1.

Therefore, the maximal price a buyer with valuation v2 willing to bid in the first auction is

β1(v2) = v2 − S1(v2, v2).

The valuation of Buyer 2 will always be correctly inferred from the transaction price of

Auction 1, p∗1, from the monotonic bidding function β1. To simplify the notation, I will slightly

abuse the notation and denote the critical value in the equilibrium path by c(v2) ≡ c(v2, v2).

Lastly, the transaction price of Auction 1 is

p∗1 = β1(v2)
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3.4 Expected Transaction Prices

The ex ante expected transaction prices are identical across auctions. This is contrary to the

findings of ascending transaction prices of sequential auctions in Milgrom and Weber (2000).5

Proposition 3. The ex ante expected transaction prices are identical across auctions.

E[p∗1] = E[p∗2] = E[p∗3]

Proof. The transaction price of the final auction is determined by the lower valuation among

the two buyers participating in this auction.

p∗3 =











min{v3, v4}, if v3 ≤ c(v2);

min{v2, v4}, if v3 ≥ c(v2).

Therefore, its expected value is

E[P ∗

3 ] = Pr(V3 ≤ c(V2))E[min{V3, V4}|V3 ≤ c(V2)] + Pr(V3 ≥ c(V2))E[min{V2, V4}|V3 ≥ c(V2)]

= Pr(V3 ≤ c(V2), V4 ≤ V3)E[V4|V3 ≤ c(V2), V4 ≤ V3]

+ Pr(V3 ≤ c(V2), V4 ≥ V3)E[V3|V3 ≤ c(V2), V4 ≥ V3]

+ Pr(V3 ≥ c(V2), V4 ≤ V2)E[V4|V3 ≥ c(V2), V4 ≤ V2]

+ Pr(V3 ≥ c(V2), V4 ≥ V2)E[V2|V3 ≥ c(V2), V4 ≥ V2].

Recall that Sn
3 (v3; v2) = v3 − E[min{V4, v3}|V2 = v2, V3 = v3] and So

3(v2; v3) = v2 −

E[min{V4, v2}|V2 = v2, V3 > c(v2)].

5In my model, the effect of information revelation is intentionally abstracted away.
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The expected transaction price of the second auction is

E[P ∗

2 ] =Pr(V3 ≤ c(V2, V2))E[V3 − Sn
2 (V3;V2)|V3 ≤ c(V2)]

+ Pr(V3 ≥ c(V2, V2))E[v2 − So
2(V2; c(V2))|V3 ≥ c(V2)]

=Pr(V3 ≤ c(V2, V2))E {EV4 [min{V4, V3}|V2, V3]|V3 ≤ c(V2)}

+ Pr(V3 ≥ c(V2, V2))E {EV4 [min{V4, V2}|V2, V3 > c(V2)]|V3 ≥ c(V2)}

=Pr(V3 ≤ c(V2), V4 ≤ V3)E[V4|V3 ≤ c(V2), V4 ≤ V3]

+ Pr(V3 ≤ c(V2), V4 ≥ V3)E[V3|V3 ≤ c(V2), V4 ≥ V3]

+ Pr(V3 ≥ c(V2), V4 ≤ V2)E[V4|V3 ≥ c(V2), V4 ≤ V2]

+ Pr(V3 ≥ c(V2), V4 ≥ V2)E[V2|V3 ≥ c(V2), V4 ≥ V2].

Finally, the transaction price of the first auction can be written as

p∗1 =v2 − S1(v2, v2)

=

∫ c(v2,v2)

v

βn
2 (v3; v2)dF3(v3|V2 = v2) +

∫ v

c(v2)
[v2 − So

3(v2; c(v2))] dF3(v3|V2 = v2)

= Pr(V3 ≤ c(v2), V4 ≤ V3)E[V4|V3 ≤ c(v2), V4 ≤ V3]

+ Pr(V3 ≤ c(v2), V4 ≥ V3)E[V3|V3 ≤ c(v2), V4 ≥ V3]

+ Pr(V3 ≥ c(v2)) [v2 − So
3(v2; c(v2))] ,

where the second equality comes from βn(v3; v2) = E[min{V4, v3}|V2 = v2, V3 = v3]. Taking

expectation on the valuation V2, I have

E[P ∗

1 ] = Pr(V3 ≤ c(V2), V4 ≤ V3)E[V4|V3 ≤ c(V2), V4 ≤ V3]

+ Pr(V3 ≤ c(V2), V4 ≥ V3)E[V3|V3 ≤ c(V2), V4 ≥ V3]

+ Pr(V3 ≥ c(V2), V4 ≤ V2)E[V4|V3 ≥ c(V2), V4 ≤ V2]

+ Pr(V3 ≥ c(V2), V4 ≥ V2)E[V2|V3 ≥ c(V2), V4 ≥ V2].
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Consequently, E[P ∗

1 ] = E[P ∗

2 ] = E[P ∗

3 ].

4 Comparisons

In this section, I consider two alternative ways to sell the items. The first one is to sell all

item togethers in one single auction. The second one uses a sequence of sealed-bid second

price auctions.

4.1 Single Multiple-Object Auction

Suppose the sellers can cooperate and sell all the items in a single multiple-object English

auction. Instead of auctioning them sequentially, the auction takes place until all buyers

have arrived. Then, the three items are sold by a simultaneous multiple-object auction.

Specifically, there is a single standing price which starts at zero and keeps rising. At any

standing price, a buyer may either stay in the auction or drop out. Once dropping out, it

is not allowed to re-enter the auction. The standing price rises until only three buyers left.

Each of these three remaining buyers can get one item and pay the final standing price.

Under the assumption of affiliated private valuation, a buyer knows her personal valuation

for sure. There is no information updating during the course of the auction. A buyer’s

dominant strategy is to stay in the auction if and only if the current standing price is less

than her valuation.

In equilibrium, the standing price stops at the fourth-highest valuation among all four

buyers. Consequently, the equilibrium transaction price, denoted by psim, equals to the lowest

valuation among the four buyers. That is, psim = min{vi}.

Proposition 4. The expected transaction price under sequential auctions is less than or equal

to the expected transactio price under simultaneous auctions. The inequality is strict if and

only if the valuations of the last two buyers are strictly affiliated.
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Proof. The expected transaction price under simultaneous auctions is

E[psim] =E[min{vi}]

= Pr(V3 ≤ V2, V4 ≤ V3)E[V4|V3 ≤ V2, V4 ≤ V3]

+ Pr(V3 ≤ V2, V4 ≥ V3)E[V3|V3 ≤ V2, V4 ≥ V3]

+ Pr(V3 ≥ V2, V4 ≤ V2)E[V4|V3 ≥ V2, V4 ≤ V2]

+ Pr(V3 ≥ V2, V4 ≥ V2)E[V2|V3 ≥ V2, V4 ≥ V2]. (12)

On the other hand, the expected transaction price under simultaneous auctions is

E[P ∗

1 ] = E[P ∗

2 ] = E[P ∗

3 ] = Pr(V3 ≤ c(V2), V4 ≤ V3)E[V4|V3 ≤ c(V2), V4 ≤ V3]

+ Pr(V3 ≤ c(V2), V4 ≥ V3)E[V3|V3 ≤ c(V2), V4 ≥ V3]

+ Pr(V3 ≥ c(V2), V4 ≤ V2)E[V4|V3 ≥ c(V2), V4 ≤ V2]

+ Pr(V3 ≥ c(V2), V4 ≥ V2)E[V2|V3 ≥ c(V2), V4 ≥ V2]. (13)

By Proposition 1, I know c(v2) ≥ v2. Since v2 < v3 for v3 ∈ (v2, c(v2)), equations (12) and

(13) imply E[psim] ≤ E[P ∗

1 ] = E[P ∗

2 ] = E[P ∗

3 ].

Furthermore, when V3 and V4 are strictly affiliated, c(v2) > v2. As a result, E[psim] <

E[P ∗

1 ] = E[P ∗

2 ] = E[P ∗

3 ].

This proposition implies a profit-maximizing seller should not to bundle all items together

into a single multiple-object auction. Instead, if items are sold sequentially, the aggregate

expected profit would be higher. Even though the allocation of sequential auctions is socially

inefficiently, sellers can exploit information asymmetry to gain their profit.

4.2 Sequential Sealed-Bid Auctions

Instead of treating Internet auctions as ascending auctions, the model can to apply to a

sequence of sealed-bid second price auction. The main difference from ascending auctions is
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the information available to buyers during the bidding process. For a sealed-bid auction, a

buyer cannot revised her belief from observing the current standing price.

The analysis of the final auction is unchanged since it is still a dominant strategy to bid

one’s own valuation, βs
3(v) = v. (I use the superscript, s, to denote sealed-bid auctions.) For

the second auction, the bidding strategy of the new buyer is also unchanged.

βns
2 (v3; v̂2) = v3 −

∫ v3

v

F4(v4|V2 = v̂2, V3 = v3)dv4.

Nevertheless, the biding function of the old buyer changes to

βos
2 (v2) = v2 −

∫ v2

v

F4(v4|V2 = v2)dv4.

The critical value cs(v2, v̂2) to determine whether Buyer 3 is the winner of the second

auction or not is the solution c to the equation,

v2 −

∫ v2

v

F4(v4|V2 = v2)dv4 = c −

∫ c

v

F4(v4|V2 = v̂2, V3 = c)dv4.

It is easy to see that cs(v2, v̂2) is well-defined since the right hand side of the above equation

is strictly increasing. Because F4(v4|V2 = v2) ≤ F4(v4|V2 = v2, V3 = v3) when v2 and v3 are

both closed to v, but F4(v4|V2 = v2) ≥ F4(v4|V2 = v2, V3 = v3) when v2 and v3 are both

closed to v. Consequently, on the equilibrium path, both cs(v2, v2) ≤ v2 and cs(v2, v2) ≥ v2

are possible. The allocation of the auctions are still not always efficient, but two inefficient

allocations are possible: Either selling the good to Buyer 2 when v3 > v2 or selling it to

Buyer 3 when v3 < v2.

Proposition 5. The lowest valuation for Buyer 3 to win the second auction is greater than

Buyer 2’s valuation cs(v2, v2) ≥ v2 when v2 and v3 are both closed to v. On the contrary,

the lowest valuation for Buyer 3 to win the second auction is less than Buyer 2’s valuation

cs(v2, v2) ≤ v2 when v2 and v3 are both closed to v. Consequently, the allocation of the goods

could be inefficient.
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The intuition behind this result is clear. When both buyers have high valuations, Buyer

3 has better information than Buyer 2. As a result, she has a stronger incentive to bid more

aggressively to avoid facing Buyer 4, who is likely to have high valuation due to affiliation. On

the other hand, when both buyers have low valuations, Buyer 3’s better information would

help her to bid less since the price of the final auction is likely to be low.

5 Numerical Example

In this section, I present a simple example which has a closed-form formula for the expected

surplus functions.

Suppose only V3 and V4 are affiliated, but V1 and V2 are independent of any other val-

uation. In addition, assume that V3 = ρX0 + (1 − ρ)X3 and V4 = ρX0 + (1 − ρ)X4 for

0 ≤ ρ ≤ 1/2, where X0, X3, and X4 are drawn independently from the uniform distribution

UNIF (0, 1). The parameter ρ is a measure of the affiliation between V3 and V4. In fact, the

correlation between the two random variables is ρ2. The valuations of the first two buyers, V1

and V2, are also drawn independently from UNIF (0, 1). Although the distribution functions

of V1 and V2 are smooth on the entire support [0, 1], the distribution functions of V3 and V4

both have kinks at ρ and 1 − ρ.

Because of the independence of V1 and V2, the conditional distributions can be written

as F4(v4|V2 = v2, V3 = c(v2)) = Pr(V4 ≤ v4|V3 = c(v2)) and F4(v4|V2 = v2, V3 ≥ c(v2)) =

Pr(V4 ≤ v4|V3 ≥ c(v2)) in this example. For the purpose of solving for the critical value c(v2)

for any v2 ∈ (0, 1), I need to know Pr(V4 ≤ v4|V3 = v3) and Pr(V4 ≤ v4|V3 ≥ v3) for any

v4 ≤ v3.

To compute Buyer 3’s expectation on Buyer 4’s valuation, I need Pr(V4 ≤ v4|V3 = v3).

There are three cases. When v3 ≤ ρ,

Pr(V4 ≤ v4|V3 = v3) =
v2
4

2(1 − ρ)v3
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for v4 ≤ v3. When ρ ≤ v3 ≤ 1 − ρ,

Pr(V4 ≤ v4|V3 = v3) =











v2
4

2(1−ρ)ρ , if v4 ≤ ρ;

2v4−ρ
2(1−ρ) , if ρ ≤ v4 ≤ v3.

When v3 ≥ 1 − ρ,

Pr(V4 ≤ v4|V3 = v3) =























0, if v4 ≤ v3 − 1 + ρ;

(1−ρ−v3+v4)2

2(1−ρ)(1−v3) , if v3 − 1 + ρ ≤ v4 ≤ ρ;

2v4−v3+1−2ρ
2(1−ρ) , if ρ ≤ v4 ≤ v3.

To compute Buyer 2’s expectation on Buyer 4’s valuation, I need Pr(V4 < v4|V3 > v3).

When v3 ≤ ρ,

Pr(V4 ≤ v4|V3 ≥ v3) =
v2
4

[

1 − v3
1−ρ

+ v4
3(1−ρ)

]

2ρ(1 − ρ) − v2
3

for v4 ≤ v3. When ρ ≤ v3 ≤ 1 − ρ,

Pr(V4 ≤ v4|V3 ≥ v3) =















v
2
4

2ρ(1−ρ)

h
1−

v3
1−ρ

+
v4

3(1−ρ)

i
1−

v3
1−ρ

+ ρ

2(1−ρ)

, if v4 ≤ ρ;

(v4−
ρ

2)(1−ρ−v3)+ ρ

2(v4−
2
3
ρ)

(1−ρ)2−v3(1−ρ)+ 1
2
ρ(1−ρ)

, if ρ ≤ v4 ≤ v3.

When v3 ≥ 1 − ρ,

Pr(V4 ≤ v4|V3 ≥ v3) =























0, if v4 ≤ v3 − 1 + ρ;

(1−ρ−a+v4)3

3(1−ρ)(1−v3)2
, if v3 − 1 + ρ ≤ v4 ≤ ρ;

v4−ρ
1−ρ

+ 1−a
3(1−ρ) , if ρ ≤ v4 ≤ v3.

Buyer 3’s expected surplus of entering the third auction is

Sn
2 (v3, v̂2) =























v2
3

6(1−ρ) , if v3 ≤ ρ;

ρ2+3v2
3−3ρv3

6(1−ρ) , if ρ ≤ v3 ≤ 1 − ρ;

(1−v3)2

6(1−ρ) − ρ
2 + v3

2 , if v3 ≥ 1 − ρ.
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Buyer 2’s inferred valuation, v̂2, has no effect on the expected surplus because V2 and V4 are

independent.

Buyer 2’s expected surplus depends on Buyer 3’s valuation, which can be inferred from

the current standing price by the inverse of Buyer 3’s bidding function v̂3(p2).

So
2(v2; v̂3) =







































































[1−
v̂3

1−ρ
]
v
3
2
3

+
v
4
2

12(1−ρ)

2ρ(1−ρ)−v̂2
3

, if v̂3 ≤ ρ;

[1−
v̂3

1−ρ
]
v
3
2
3

+
v
4
2

12(1−ρ)

2ρ(1−ρ)−2ρv̂3+ρ2 , if ρ ≤ v̂3 ≤ 1 − ρ, v2 ≤ ρ;
ρ
2

3
−

ρ
2

v̂3
3(1−ρ)

+ ρ
3

12(1−ρ)

2−2v̂3−ρ
+

(v2−ρ)[v2(1−ρ−v̂3)+ρ( v2
2
−

ρ

6)]
2(1−ρ)(1− ρ

2
−v̂3)

, if ρ ≤ v̂3 ≤ 1 − ρ, ρ ≤ v2 ≤ v̂3;

0, if a ≥ 1 − ρ, v2 ≤ v̂3 − 1 + ρ;

(1−ρ−v̂3+v2)4

12(1−ρ)(1−v̂3)2
, if v̂3 ≥ 1−ρ, v̂3−1+ρ ≤ v2 ≤ ρ;

(1−v̂3)2

12(1−ρ) +
v2
2

2(1−ρ) + 1−v̂3−3ρ
3(1−ρ) v2 +

ρ
2

2
−

(1−v̂3)ρ
3

1−ρ
, if v̂3 ≥ 1 − ρ, ρ ≤ v2 ≤ v̂3.

The function c(v2) is implicitly defined in equation (4). Consequently, for a given value

of v2, the function c(v2) is equal to the solution c in the following equations.

v2 − So
3(v2; c) = c − Sn

3 (c; v2).

The solid line in Figure 1 shows the graph of c(v2) for the cases with ρ = 0, ρ = 0.25 and

ρ = 0.5. When ρ = 0, the graph of c(v2) coincides with the 45◦ line. For positive correlation

between V3 and V4 (ρ > 0), the graph of c(v2) is above the 45◦ line for all v2 ∈ (0, 1). As a

result, there is a positive probability of inefficiency in the sense of selling the good to Buyer 2

in Auction 2 when Buyer 3 has a higher valuation than Buyer 2. The allocation is inefficient

in these cases.

The expected transaction prices for sequential auctions are slightly higher than those for

simultaneous auctions. Figure 2 shows the transaction prices for these two types of auctions

at different correlation levels between the two valuations V3 and V4. When the correlation

coefficient between these two random variables is 0.25 (i.e. ρ = 0.5), the expected transaction

price of simulation auctions is 0.22% lower than that of sequential auctions.
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Figure 1: The minimal valuation for Buyer 3 to win in Auction 2
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6 Conclusion

One important feature of Internet auctions which is ignored in the traditional auction lit-

erature is the entry of new buyers. In this paper, I show that, when multiple items of an

identical good are sold in sequential auctions and buyers have affiliated private valuation

over the good, entry would result in inefficient allocation of the goods. A less informed buyer

may win an auction even if her valuation is lower than other buyers. The inefficiency is a

consequence of information asymmetry between buyers. On the contrary, if all items are sold

in one multiple-object auction. The allocation is efficient, but sellers on average receive less

joint profit. The inefficiency remains possible if the mechanism is changed from a sequence

of ascending auctions to a sequence of sealed-bid second-price auctions.

This paper consider a simple situation to demonstrate the inefficiency due to entry to

sequential auctions. I conjecture the result to hold in a more general model, but rigid analysis

remains to be done in the future extension.
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