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Abstract

I empirically investigate the non-linear relationship between inequality and innovation

in a Schumpeterian setup where growth is expressed by the rate of innovations. In this

framework income distribution plays a role in determining the dynamic market sizes for

innovators and therefore is a major determinant of growth. By using two new cross-country

inequality data sets, I find support for an inverted U-shaped relationship between inequality

and innovative activities. This result is robust to two common inequality definitions and

several parametric and non-parametric estimation procedures.

JEL classification: 015,031
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1 Introduction

Since Kuznets’ (1955) seminal work, one of the widely researched and documented phenom-

enons of the late 20th century has been the relationship between inequality and growth. In

this literature, inequality a ects growth through either e ciency losses embedded in redistri-

bution, or through loss of resources and productive capacity due to rent-grabbing behavior in

social conflicts induced by inequality. Whereas there are ample empirical studies which test

such links, there have been very few works that investigate the e ect of inequality on growth

through technological progress. This is surprising since the need for such investigation is

called for on several grounds.

First, one might argue that accelerated technological progress is the main source of growth

in the long run, because it channels resources towards more e cient production and thereby

releasing them. On this reason alone, it seems natural to study the e ect of inequality on

innovation besides income growth to get a better understanding of how income distribution

a ects growth process. A relevant framework is the Schumpeterian setup where growth is

achieved through the arrival of new and more e ciently produced goods. Inequality not only

a ects market size for a new good and profitability of the e cient firm producing it, but also

income growth through ownership facility in a dynamic general equilibrium context. Second,

as recent research has shown, inequality and technological prgresss might not be exogenous

to each other. An increase in the supply of skilled labor, for instance, might direct the

technological progress to be skill-biased1. Whereas the increase in wage inequality as a

result of technological progress has been widely researched and documented, the reverse link

has rarely attracted attention and the empirical research has mostly ignored the endogeneity

problem. Third, empirical studies which look at the e ect of inequality on growth, have

provided weak support and more often than not conflicting answers2. Even though some

of this confusion can be attributed to the problems with data, the sign of the relationship

is not clear because results are not robust to estimation techniques or inequality indices3.

And finally, the observation that widening inequality is generally associated with accelerated
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technological progress indicates that a Kuznets type of nonlinear relationship might be at

hand. This requires a di erent approach to the estimation problem.

In this paper, I argue that an alternative empirical investigation based on the Schum-

peterian hypothesis might explain the incompatible empirical evidence. Assuming techno-

logical progress is driven by innovations and innovations are determined by the demand

structure based on the underlying income distribution, this paper empirically investigates

how inequality a ects the innovative activity in a cross-country setting. Using two new data

sets on inequality, I estimate several dynamic panel data models, including a non-parametric

setup, to test the validity of the hypothesis that innovation and inequality are negatively

related at high levels of inequality and positively related at low levels of inequality. The

main conclusion is that the relationship between innovative activity and inequality can be

described by a an inverted U shape. This finding is also consistent with recent theories of

inequality and growth4.

In a Schumpeterian setup, Engel’s law gives us a first clue as to what the sources of dis-

crepancies between cross-country empirical findings might be. When people have hierarchic

preferences, they first spend proportionally more on new and e ciently produced goods as

their incomes rise. At the top of hierarchy, however, there are luxuries which are produced

by more traditional and ine cient methods because of chronic low demand. Suppose now

the growth rate is determined by the number of new goods, or new firms entering into the

monopolistic sector, where new goods are produced through R&D. The entry rate is higher

if the firms face a demand increase in the near future as a result of decreasing inequality.

One such case is a redistributive scheme, which makes poor just rich enough to a ord the

innovators’ product - maybe now maybe in the near future - without making the rich poor

enough such that the rich forgoes consumption of the innovators’ product today. This is, in

e ect, a Pareto improving allocation in which resources are freed up to be used in the most

e cient sector. Such a scenario is most likely to occur when inequality is already high. On

the other hand, if the rich becomes just poor enough such that the demand for innovators’
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product falls, reducing inequality further hurts growth.The latter is likely to occur when the

inequality is already low. Moreover, if the low inequality is coupled with a high purchasing

power, a further decrease in inequality migh increase luxury consumption in equilibrium and

might shift resources away from e cient production. This analysis suggests that the rela-

tionship between inequality and innovation might be described by an inverted U - shape. A

theoretical background for this argument can be found in Zweimüller (2000) and Foellmi and

Zweimüller (2006) where a higher initial demand for an innovator increases the likelihood

that it will innovate.

The argument, that luxury producers are less e cient than the monopolists, deserves

some discussion. In general, one can assume that the level of competition among luxury

producers is lower which lead to ine ciencies in the production of such items. Moreover,

the markets for luxury goods have been traditionally small and the demand rather inelastic,

hence there are overall less incentives to innovate. The link between competition and e cient

production is highlighted by a recent line of research emphasizing the role of mergers in

monopolistic industries in increasing e ciency by reallocating resources to the more e cient

R&D sector5 Since the high end producers have little incentive to form mergers because of

brand protection concerns, they allocate less resources to R&D among other factors.

Given the above setup, the relation between innovation and inequality is expected to be

negative at high levels of inequality, and positive at low levels of inequality. In addition,

since high incomes are generally associated with lower inequality and vice versa6, we can

expect that the inequality - growth relationship to be positive in rich countries, and negative

in poor countries as shown by Barro(2000). The implication of the above analysis is that

the inequality-growth relationship is inversely U-shaped.

In the light of this discussion it is natural to look at the e ect of inequality on the

level of innovations before looking at growth, especially if the aim is to test these theories

within a Schumpeterian context in which new technologies are embodied in new goods.

Sedgley (2006), for instance, finds that innovation is a major factor in explaining the growth

4



of U.S. economy. This approach is rarely taken in the empirical literature where most

studies link inequality to the growth of real gross domestic product per capita. The e ect

of inequality on growth has been both theoretically and empirically studied by previous

researchers extensively albeit inconclusively7. The e ect of inequality on the level innovations

has also been theoretically analyzed in the literature as in Murphy, Shleifer and Vishny (1989)

and Foellmi and Zweimüller (2006). However, within the set of models where innovation is

the source of growth, e ect of inequality on innovation has rarely been empirically studied.

The only work, that the author is aware of is by Weinhold and Reichert (2006) who look

at the e ect of the size of the middle class on innovations by controlling for institutional

features. This paper di ers from Weinhold and Reichert’s paper in several respects. First,

it focuses on non-linearity as predicted by the previous theoretical models on inequality

and growth. Second, due to the endogenous nature of inequality it specifes the arrival of

innovations as a non-parametric Poisson process. Third, it uses a di erent and larger data

set which includes several inequality definitions such as a Gini coe cient and Theil measure

as opposed to just the size of the middle class. In this paper, the demand for innovations is

not solely determined by size of the middle class but also how relatively rich the countries

are compared to others as well as their innovative capacity.

During 1980s there has been a worldwide increase in inequality which has been linked

to the information technology revolution by a handful of researchers. One implication of

this phenomenon for an empirical study is the fact that skilled-biased technological change

will increase both inequality and innovative activities causing a spurious relation between

them. This type of endogeneity is not adequately addressed in the previous literature linking

inequality to growth. I address these issues by employing several methods. First, by making

use of robust panel data techniques, specifically a GMM estimation method by Arellano and

Bover(1995) and Blundell and Bond (2000) and a Kernel density estimator by Hausman

and Newey (1995), I control for the endogeneity and fixed e ects. Second, in line with

the traditional modeling of innovations, I introduce a hazard model to estimate arrival of

innovations as determined by the underlying income distribution to check the robustness of
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the empirical model. Finally, I estimate non-linear specifications within the original and the

non-parametric setup.

The plan of the paper is as follows. In the next section I discuss empirical issues, control

variables and the data set used. In the third section I present the empirical model and the

estimation results based on dynamic generalized method of moments (GMM) and interval

location approach. In the fourth section, I introduce nonlinearity to the model by developing

a semi-parametric hazard model. Using the hazard model and other non-linear fits to the

original model I present the parametric and the non-parametric estimation results. Section

six concludes.

2 Empirical Issues and Data

The di culty with interpreting any demand based model of innovation is to determine

whether innovative activity is pro or anti-cyclical, and whether the changes in demand are

exogenous to the process of producing and using innovations. This is also important in de-

termining the appropriate lag structure and the expected signs in the econometric model.

There are two main theories regarding the source of innovations. In supply push mod-

els, innovations are driven by exogenous shocks to scientific knowledge, whereas in demand

pull models, changes in profitability stimulates investments in R&D . There is some, albeit

not strong, empirical evidence which suggests that innovations are mostly demand driven.

For instance, Geroski and Walters(1995) show evidence that variations in economic activ-

ity Granger causes changes in innovative activity but the opposite is not necessarily true.

Similarly, using Italian data, Piva and Vivarelli (2006) show that firms’ research activities

respond to sales. In line with the demand pull theory, I use demand variables to control for

innovation. Technology push theories emphasize the importance of technological opportunity

to innovation, therefore today’s innovative activities at least partly determine future level of

innovation. Since the empirical support for a demand pull theory is not a very strong one,
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I make use of both aspects of innovative activity, i.e., both market demand variables and

lagged values for innovation are included in the empirical modeling.

Another issue concerns how innovative activities in each country are a ected by the

market size. In a simple static context the initial market size might determine the entry

rate for innovating firms and larger markets might help industries to take-o (Murphy et

al 1989) The fact that rich economies can support large markets for new products despite

large di erences of wealth among individuals, might cloud any evidence on the link between

inequality and growth. To control for such e ects.one can use variables such as income per

capita, consumption expenditures per capita and population size.

In an integrated economy one would expect not only domestic market size and domestic

income distribution to matter, but also the market size and income distribution in the rest

of the world. While there is no obvious empirical strategy to handle this problem we can

rely on the fact, that, as a property right, a patent is e ective only in the particular country

which issued the patent. This implies a firm has to file for patents in each country where

it wants protection. The entry decision by the firm into a particular market will then be

determined by the underlying demand structure and income distribution in that country. In

addition to the above, patenting abroad helps disseminating the knowledge and brings about

productivity increases in the host country. This implies that once a foreign firm files for a

patent one would expect similar domestic firms to innovate and file for patents as well.

Institutional arrangements also play a role in the level of patenting. While the e ect

of intellectual property right (IPR) regimes on innovation has attracted attention in the

literature,we do not seperately emphasize such institutional factors. This is due to several

reasons. Firstly, since in our setup innovations are determined also by past innovations, the

assumed inertia in innovations might already capture such institutional arrangements. Sec-

ondly, highly innovative countries might establish institutions which allow for higher quality

IPR protection which, in turn, might bring about an additional endogeneity bias. Thirdly,

although in theory IPRs can be adapted quickly over time, Weinhold and Reichert (2006)
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show that in practice changes occur very slowly. Fourthly, any IPR institution is subject to

the influences of greater institutional quality issues such as rule of law and independence of

the judiciary. Finally,one can also argue that GDP, another control variable, is also endoge-

nously determined by institutional quality. Although I refrain from specific structural IPR

variables I use foreign direct investment, and geographical and other dummies which might

be exogenous to innovation and inequality.

The empirical literature on innovations generally uses variables that capture market dis-

tortion, assuming innovation is determined by degree of competition8. In a cross-country

setting, the purchasing power parity of investment goods is such a measure. Finally, since

research and development sector is capital intensive and requires training and specialization,

I also use capital per worker and education variables to control for such e ects.

2.1 Inequality Data

One of the original aspects of this article is the use of two new inequality data sets provided

by the University of Texas Inequality Project. The first one is the Theil measure (THEIL)

reflecting industrial wage inequality (UTIP-UNIDO 2002) and the second one is the Gini

index (HCIN) reflecting household income inequality (Galbraith and Kum 2003) which is

based on Deininger and Squire (1998 and hereafter D&S) ’high quality’ data set . Both data

sets address many of the problematic issues associated with D&S which is frequently used

by researchers9. They are less plagued by measurement problems10 and wider in scope than

D&S.11

The first set is based on the Industrial Statistics database published annually by the

United Nations Industrial Development Organization, and it is a set of measures of the dis-

persion of pay across industrial categories in the manufacturing sector 12. Wage inequality

has been used as an alternative to income inequality in the literature. Atkinson (1997) in-

dicates that earnings and wage inequality are the main components of income inequality in
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US. However, there may be measurement errors when we proxy inequality in the income dis-

tribution of a whole country by wage inequality in the manufacturing sector, where typically

only the smaller fraction of the working population is employed. Therefore, we also use a

second set, HCIN, which includes estimates of gross household income inequality, computed

from a regression relationship between the Deininger & Squire inequality measures and the

UTIP-UNIDO pay inequality measures. By controlling for the source characteristics in the

D&S data and for the share of manufacturing in total employment, it provides over 3000

estimates which include a much larger and balanced set for the developing countries than

the Deininger and Squire data set. (156 countries, 3194 observations, 1963-1999 time-span).

2.2 Patent Data

The patent data in this study are taken from industrial property statistics published by

World Intellectual Property Organization. It is the number of patents granted each year.

This data is based on direct surveys of the statistical agencies around the world and provides

coverage for over 40 years, over 100 countries and has 2504 observations. The US patent

data is obtained from Bureau of Labor Statistics and consists of non-medical patents granted

both to domestic and foreign applicants.

Researchers have used patents and R&D as indicators in the analysis of technical change13

In the firm level, patent numbers and R&D figures are used to study a wide variety of issues

such as the productivity e ect of innovation, firm size and the nature of spillover14, whereas

in the aggregate level both measures are taken to reflect the technological capacity of indus-

tries and countries. There has been a recent improvement in the quality of both measures as

a result of the development of measurement standards and computerization of patent o ces.

Both measures capture di erent aspects of the innovation process. The number of R&D

employees or R&D can be viewed as resources devoted to innovative activity, whereas the

number of patents shows the results of innovative activity. The choice of patents in this

paper is not arbitrary. First, a patent is more likely to be obtained, if the innovated product
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faces future competition. This is related to the future market size the firm will be facing

for its new product vis-a-vis the inequality level; an important aspect of the hypothesis this

paper is trying to prove. A patent is not the only method to protect profits, nor does it

capture all the innovation output. Nevertheless, given the active e ort and trained statisti-

cians required to measure R&D expenditures, patent statistics are less prone to measurement

problems, especially in developing countries. Moreover, R&D statistics are not a measure of

innovation output but an input to the innovation process. The use of patents as an indicator

of innovation is not uncommon. Aghion et al. (2002) use patents as a proxy to innovation

in examining the relation between competition in the product market and innovation.

The main criticism of the use of patents is the fact that not all inventions will be patented.

Even though the incremental and imitative innovations represent a large and an increasingly

important part of innovation activities, they are not covered by patent statistics. The most

obvious shortcoming in this regard is the undercoverage of innovation activities in small firms.

The small firms are less likely to engage in research, but if they do, they invest more compared

to medium sized firms and less compared to large firms. In addition, other statistics su er

also from the same type of heterogeneity. Moreover, other input variables such as R&D

expenditures do not reflect the total cost of innovation. Brouwer and Kleinknecht(1994) find

that the total product innovation expenditure to be four times the amount of product-related

R&D expenditure.

2.3 Other Data

The data on educational attainment comes from two sources: Barro and Lee(1997) andWorld

Bank Development Indicators (WDI). The capital per worker data comes from Easterly and

Levine(1999). The final consumption expenditures per capita and foreign direct investment

data are taken from WDI.. The price level of investment data which is measured as the

purchasing power parity of investment/exchange rate relative to United States and the GDP

data are taken from Penn World Table Version 6.2 (Summers et. al 2006).
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2.4 Summary

An initial look at the data is provided in Table 1 where I report mean and standard deviation

for selected variables for two benchmark years. Since the purpose of this paper is to look

at non-linearities, the data is divided into subsamples such as low, middle and high. The

choice of these intervals except inequality, which is explained in the next section, uses simple

and arbitrary ranges where the upper and lower tiles represent high and low15. Note that

this table is a static picture of the indicators and does not say anything about the link

between inequality and innovation or growth. Nevertheless, one should note that innovative

activities were higher in ’high income’ countries and lower in ’high inequality’ countries in

both benchmark years. The ’medium inequality’ countries had more innovative activities

than ’low inequality’ countries in 1965 but the opposite is true in 1999 although the di erence

is not significant. ’High growth’ countries had comparably less inequality than ’low growth’

countries on the average in 1965 but not so in 1999, whereas the inequality in rich countries

is also significantly lower in average than it is in poor countries. The ’high growth’ countries

had significantly lower innovative activities in 1999 compared to 1965. This might suggest

that the ’high growth’ countries innovated in the early take o phases whereas they adopted

or imitated in the later phases.

Table 1.About Here

3 The Model

Suppose the stock of knowledge in an economy is represented by the number of innovations

up to date t, ( ). Then growth of this number is represented by =
·

( )
( ) Modeling a

growth rate of this type necessitates the calculation of the stock of knowledge in terms of

innovations, ( )16. In practical terms , this requires the summation of innovations up to

time t for each country. One major di culty with this approach is the lack of appropriate
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data starting from a specified date of historical origin. One possible remedy is to assume that

each country initially has no stock of knowledge and do the calculations from the beginning

of the available data. However, this would be quite unrealistic considering the di erences

in initial conditions between countries. On the other hand, since each arrival adds to ( ),

yearly arrivals represent the increase in the stock of knowledge, if not the growth rate17. In

fact, growth regressions on inequality have mostly used the same setup in which only changes

between two periods are recorded as growth. One can control then for the di erences in stock

of knowledge or technological opportunities by using another variable such as income per

capita.

In a broader view, one might also want to model the ’stochastic’ property of innova-

tions (i.e. current innovations being explained at least partly by past innovations). Taking

into account the nature of innovation process, we can at least control for the stock of the

knowledge. In the light of this discussion the empirical model can be written as;

= + ( ) + + + + (1)

where is the level of innovations per year proxied by the logarithm of patents granted

each year. The number of available products or the stock of knowledge is assumed to be

equal to the sum of all previous innovations,and patents granted each year represent the

increase in this number. ( ) is a function of the inequality index, are the control

variables, are country dummies, and are time dummies.

3.1 The Linear Model

In order to facilitate the spline regressions I rewrite the model by letting ( )= .This

gives us the linear model,
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= + + + + +

which can be estimated by the standard panel data techniques such as fixed e ects18 or

GMM estimation based on Arellano and Bover(1995).

As mentioned above one of the di culties in setting up an estimable model when using

patents as a proxy for innovation is the cyclical nature of innovative activities. In other

words, how does one interpret the signs of demand variables and/or determine the number

of lags, a?

First, there is a time period between a firm foresees a demand jump in the near future

due to decreasing inequality until the demand jump actually occurs. This time lag is not

easy to distinguish from the period during which a firm’s undertake of research leads to a

patent and during which direction of the cycle this activity occurs. Moreover, firms generally

do not file for patents and innovate simultaneously. If, during a recession, the value of

existing profits falls faster than the value to be attained by innovating net of research costs,

then firms will turn to R&D during cyclical downturns. This makes the innovative activity

countercyclical. This argument fails, however, when there are complementaries in innovation.

Zweimüller(2000) and Foellmi and Zweimüller (2006) argue that more resources are diverted

to research when a demand jump is to occur in the nearer future. This implies that research

activity and patenting are more likely to occur in upturns. Moreover, the firms’ incentive to

utilize full benefits of patenting causes them to file before downturns.

The markets ability to absorb new markets at any time is limited. When a wave of

imitative or ’me too’ products arrive, the profitability of each of them falls during a re-

cession. Innovative activities will increase only if growth is high enough to create demand

expansion making them procyclical. Product innovations are likely to cluster during eco-

nomic booms which generate enough income to absorb these products. Finally, there are

also strong incentives to make investments in organizational capital during recessions which
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reduce innovation output. Hence a cyclicality between innovations and growth is expected.

The empirical literature gives more support to the procyclical nature of innovations (Geroski

and Walters 1995). The second discussion involves the determination of the number of lags

in the empirical model. In this setup, it should not take too long for market expansions to

be exploited by innovating firms. The choice of lag length is then a compromise between

the Akaike information criterion and the modeling criteria imposed by the procyclicality as

above. In the light of this discussion, I suggest the following base model.

= 0 2 + 1 2 + 2 2+ (2)

3 2 + 4 2 + 5 2 + 6 2 + + +

For the base specification I choose the control variables to be the the price level

of investment (PPINV), capital per worker (CPW), population (POP), final consumption

expenditures per capita (FCE) and per capita income(GDP). I further include the level

of foreign direct investment(FDI), education variables such as percentage of labor force

with a college education (SETETGR),male secondary education (ME),and female secondary

education (FE).

In Table 2, I report the linear estimation results using the base specification and adding

di erent control variables. The estimations are run for two di erent inequality indices,

THEIL and HCIN and using several methods19. The coe cient of inequality remains neg-

ative and significant with respect to di erent choices of control variables and estimation

reports except in two cases. The estimation is repeated for di erent choices of lags which do

not a ect the sign of inequality or other coe cients but income. With fixed e ects, the sign

of income is positive and significant when I choose a lag of 5 or less years. It is insignificant

with GMM except for 3 or 4 years of lags. With pooled OLS and random e ects, the sign

is positive and significant at all levels. The education variables are insignificant and their

inclusion does not have a significant e ect on other variables in almost all of the estimations,
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therefore they are dropped. A Hausman chi-squared test for fixed e ects based on Wald

statistics with 6 degrees of freedom results in 25.32 which rejects the random e ects model.

Table 2 About Here.

To facilitate GMM estimation, identification of the model requires restrictions on the

serial correlation properties of the error term In these models it is assumed that if

the error term was originally autoregressive, the model has been transformed so that coef-

ficients satisfy a set of common factor restrictions. Therefore only serially uncorrelated or

moving average errors are explicitly allowed. Generally, the are assumed to be indepen-

dently and identically distributed across individuals with zero mean, but arbitrary forms

of heteroskedasticity across units and time are also possible. The assumption of no serial

correlation in is crucial for the consistency of the estimators, since they instrument the

lagged dependent variable with further lags of the same variable, therefore they are reported

for each GMM estimation.

3.2 Threshold Identification

I address the issue of non-linearity first by identifying thresholds above or below which the

sign of the relationship reverses sign. A relevant procedure is to employ spline regressions

within the established dynamic panel data methods20. In order to facilitate the spline speci-

fication, it is useful to identify the locations of the thresholds. I run spline regressions using

a dummy variable within the main specification of ( 1 ) and I estimate multiple parameters

by systematically changing the initial value of the dummy along the range of inequality

values. I expect the path of the slopes from these regressions to indicate the possible struc-

tural changes on the coe cient of inequality. Moreover, the estimated slopes from these

regressions should hint to the location and size of the ranges where inequality and growth

are positively or negatively related.

15



If the inequality and growth are indeed positively related as we move from complete

equality to low levels of inequality as the theory predicts, the coe cient on inequality should

be positive and statistically significant along the low inequality values. As we move further

away from equality, the slope should start to decrease, and after a certain threshold it should

become again negative and statistically significant.

I use a second approach in which I run the regressions for each interval separately and

contrast the coe cients with the full sample. I check if the coe cients obtained from these

regressions are significantly di erent from the ones obtained for the full sample. For instance,

I expect the slopes for the outer regions to be alternating in sign and to be significantly higher

in absolute terms than those in the full sample, if the relation between inequality and growth

is indeed non-monotonic.

I also check the consistency of the inequality coe cient by systematically changing the

size of the identified low, middle and high inequality intervals. I expect to find that as

intervals get wider, the coe cient of inequality should start to decrease in absolute terms.

Since this methodology might be plagued by a sample selection bias, I also use a restricted

approach in which I use the full sample in all regressions but place two dummy variables

at the beginning of these conjectured intervals. I further check for consistency again by

changing the size of the intervals.

Table 3 reports the estimations using the interval location approach explained above.

I place a dummy variable to the benchmark specification (2). The initial values of the

dummy are placed along the inequality values starting from 0.022 for THEIL and 20

for HCIN which replaces THEIL in the benchmark specification. Estimation results using

fixed e ects lend support to the hypothesis that as inequality increases the inequality and

growth relation reverses sign from positive to negative. The slope for the range of THEIL

values, 0.022 to 0.0325, are positive and significant. The slopes become insignificant and

negative for the THEIL values from 0.035 to 0.06 and become negative and significant again.

The striking result is that the slopes follow a smooth line monotonically decreasing from
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positive to negative. If only for sample biases one would expect the slopes to remain positive

even though they should decrease. With GMM estimation the reversal of the sign remains,

although the threshold above which this change occurs is now higher. The slopes remain

both positive and significant until 0.045 and become both negative and significant at 0.075.

When HCIN instead of THEIL is used as an alternative inequality index results remain the

same. With fixed e ects, the slopes remain positive for HCIN values from 20 to 32. For the

range, 41 to 56, the slopes are increasingly negative and significant which again supports the

hypothesized inverse U shape. When GMM is used, the threshold again shifts upward but

slopes follow the same pattern.

Table 3 About Here.

The fixed e ects and GMM slope patterns for both types of inequality indices are shown

in Figures 1-4. Figure 1 shows the slopes above and below conjectured thresholds for THEIL

under fixed e ects estimation . The lower end coe cients tend to drop sharply as threshold

increases and become flat again when the threshold is further increased. The upper threshold

smoothly declines and becomes negative. The combined changes in upper end and lower

end slope coe cients support a non-monotonic, possibly inversed U-shape pattern. GMM

estimation results for THEIL are graphed in Figure 2. They show a slightly di erent pattern

in which the upper end coe cients decline vaguely and are always negative , whereas there

is a sharp drop in lower end coe cients.

Figures 1-4 About Here

Similar results are obtained when HCIN is used instead of THEIL. Figure 3 and Figure

4 show that the drops in lower end coe cients are not smooth with occasional jumps at

the lower inequality levels. The upper end coe cients become eventually negative in both

estimation methods as the threshold is further increased.
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Having established these thresholds the main equation is tested using the regression

results for each subsample as determined by above analysis against the regression results

from the full sample. All slopes are significantly di erent.

I use the identified intervals to further explore the non-linearity using the main specifica-

tion of (1) . I run both fixed e ects and GMM regressions for the subsamples as determined

by these intervals and test for the di erences in slopes21. These results are reported in Table

4 and they show again a non-monotonic pattern. For the lower subsample the slopes are pos-

itively significant and for the upper subsamples they are negatively significant, except the

fixed e ects estimation using HCIN. As a simple way to check for local consistency, I allow the

subsamples to change in both directions. In this case one expects the coe cients to increase

in absolute terms, if thresholds are decreased for the lower subsample or if thresholds are

increased for the upper sample. For example, if the THEIL inequality threshold is lowered

to 0.028 for the fixed e ects estimator, I obtain a coe cient that is higher than the original

conjectured threshold of 0.033. Similarly, if I increase the upper THEIL threshold to 0.07

for the fixed e ect estimator, I obtain a higher coe cient in absolute terms. This exercise is

repeated for GMM estimators and HCIN inequality indicator. The results are similar. The

signs of the coe cients are also as expected, i.e., for the low inequality sample, the slopes

are positive and significant in both types of estimation and for both inequality indicators.

They are also significantly di erent from the coe cients of high inequality sample.

Table 4.About Here

Since the division of the whole sample to subsamples brings about a sample bias prob-

lem, I re-run the spline regressions using the whole sample, but placing dummies on the

conjectured thresholds. The results are reported in Table 5. By using the same locations

as in the unrestricted model, I estimate three slopes within the identified intervals22. This

model is restricted in the sense that it is continuous across all intervals, i.e., there is no jump

in the constant coe cient. Slope 1 is the estimated coe cient from the lowest value of the
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inequality index to the first threshold. Slope 2 is the estimated coe cient within the shown

interval and Slope 3 is the estimated slope between the second threshold and upper limit.

The middle columns of the left and the right hand side of the table are the identified intervals

in previous methods. Reading the table from top to bottom, we see that except the fixed

e ects estimation of HCIN , the slopes within these identified intervals generally support the

previous results. Slopes are decreasing across intervals. To see if this methodology is locally

consistent, I increase and decrease the intervals by either keeping the lower threshold or the

upper threshold fixed. Now, reading the table from left to right it is clear that increasing

the higher threshold more often than not produces a lower Slope 3. In the same manner,

increasing the lower threshold produces a lower Slope 1 in most cases. For slope 2, the same

conclusion can not be fully confirmed. In both types of estimations using HCIN, the middle

interval slope is higher, i.e., increasing the upper threshold does not decrease the middle

slopes. The right and left columns at both sides of the table are also consistent in the above

sense; the slopes are decreasing along the inequality level.

Table 5.About Here

4 Non-linear estimation and non-parametric methods

The purpose of this section is to investigate how much inequality can explain the evolution

of innovative activity under the hypothesis that firms globally respond directly to changes

in inequality. Specifically, the focus is on the direct e ect of inequality on the nature of

innovative activity rather than the e ect on growth within a Schumpeterian context. If there

is a relation between inequality and innovation, how can it be described? The empirical

modeling of innovations has generally assumed that the data generating process underlying

the arrival of patents can be described by a Poisson density. In the framework of this article

we can write this process as:
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Pr( = | ) =
( ) ( )

!
(3)

where y is the number of patents, f(h) is a function of inequality level and ( ) is the

hazard rate. In the panel data setting we can specify the first moment condition as23

[ | ] = ( ) (4)

Now, if we specify a parametric linear function for ( ) then we obtain the usual loglin-

ear form employed in the literature for poisson estimation by maximum likelihood methods.

The above inequality is then simply a conditional moment restriction of the classical model.

The problem here is that it is not clear that inequality is exogenous to innovation. Recent

literature consistently points out to the inequality creating e ect of technological advances.

Skilled biased technological progress is shown to create inequality both within and across

industries in developed countries by several authors24 Any increase in the supply of skilled

labor might induce skill-biased technological change which then feeds back into employment

choices and causes changes in inequality (Acemoglu, 1998). Increases in the supply of skilled

labor on the other hand might be the result of sustained skilled biased technological progress

which prevents the profitability of education or the skilled wage di erential to fall. This en-

dogeneity of the model necessitates a more robust procedure. A convenient way to approach

this problem is to let ( ) be a non-parametric specification under which it identifies

the innovation hazard. This specification permits dependence of the parameters in ( ) on

other unknown functions as well as on unobserved variables.

Given the above setup, the data in hand is treated like a micro data panel, although the

individual firm characteristics are absent. It should be noted that the di erences among firms

are ignored because of the extensive data requirement in a cross-country setup. However,

country e ects, time e ects or other policies can be fully captured by the model. To further

avoid spurious correlation, we can also control for time and individual country e ects by
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estimating the following:

[ | ] = ( )+ 0

(5)

where represents time and country dummies. This new moment condition is now semi-

parametric in the sense that ( ) is unknown and can be estimated in several ways.

To estimate the model, I first implement the Kernel method discussed in Robinson(1988)

and applied to estimation of demand curves in Hausman and Newey(1995)25. The results of

this estimation for THEIL measure are shown in Figure 5 and for the HCIN index in Figure

626. In both cases an inverse U relation is again evident. In Figure 7., I compare a quadratic

specification for ( ) in the base specification(1) and a Kernel estimation of the original

model. Note the similarity of both curves despite the fact that they are based on two di erent

modeling approaches. Figure 8 shows the parametric estimation of the quadratic fit to the

original hazard model. The inverted U shape has shifted right with inequality-innovation

relationship being now negative at both ends. The coe cient of the squared term is -1.39

with a t statistic of -4.84 . The coe cient of the linear term is -0.05 with a t statistic of

0.04. Both time and country dummies are significant.

Figures 5-8 About Here

5 Conclusion

I study empirically the link between inequality and growth within a Schumpeterian frame-

work. This amounts to taking growth as the increase in the stock of knowledge, specifically

the number of new products. I find support for the hypothesis that inequality - innova-

tion relationship is inversely U-shaped. The innovative activities of firms which drives the

growth process depend on the demand structure vis-a-vis inequality. Departing from pre-

vious empirical literature on inequality, two new data sets were used. The overall relation
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between inequality and innovation is negative and negativity result is robust to definitions of

inequality and estimation procedures .The non-linearity results extend to a non-parametric

and a semi-parametric setup as well. The findings in this paper overall are consistent with

recent theoretical approaches to inequality - growth relationship which generally suggest a

non-linear relationship.

I apply a systematic method which identifies the thresholds below or above which in-

novation and inequality positively or negatively related. The method involves an interval

location approach which conjectures such thresholds and verifies them by using spline GMM

regressions. I employ several estimation methods and two recent inequality indices that are

less prone to statistical problems than the widely used Deininger and Squire Data Set. An

unrestricted approach is employed by dividing the whole sample into subsamples and com-

paring the slopes between subsamples. The results obtained from the unrestricted approach

are similar to the spline method. The consistency checks are made by locally expanding

and contracting the samples and examining the resulting slopes. Since this approach brings

about a sample selection bias, I run the spline regressions for the whole sample by placing

two dummies. The results are similar to those obtained from the unrestricted approach.

Finally, I look at the e ect of inequality on innovation within the empirical methodology

established in the innovation literature. Specifically, I take into consideration that patents

are count data and their arrivals can be described by a Poisson process. This hazard model

is estimated using both non-parametric and semi-parametric approaches. I compare these

results to a non-linear fit of the base model. The results point again to an inverted U shape.

By controlling for income and other institutional e ects, I again find that in high inequality

countries, decreasing inequality causes more resources to be diverted to innovation, but the

same is not true for low inequality countries.

Using a cross-country data on patents has some drawbacks. For instance, countries

di er greatly with respect to their policies toward innovation, and not all innovations are

patented. Since institutions play a role in the amount of patents issued, it might be the case
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that R&D expenditures is a better choice. However, in a wide cross-country study, R&D

expenditure data may not be entirely reliable, as it requires trained statisticians to collect

such data. The author believes that patents capture the innovation output also better than

R&D expenditures, and it is overall a better proxy for incentives to innovate in an empirical

Schumpeterian setup, where new technologies are embodied in new goods and inequality

a ects innovative activity through future profits vis-a-vis dynamic demand distributions.

This paper does not answer the more fundamental question if the inequality is really bad

for growth. Overall estimations point to a negative relation between inequality and innova-

tive activities and it suggests that reducing inequality is beneficial for innovative activities

especially in countries where inequality is high.

To have a better understanding of the e ect of income distribution on the innovation

process a further study is needed where institutional features can be more accurately captured

and controlled for in the empirical model. As the technological gap between the leaders and

the followers declines it becomes less costly to imitate and patenting process becomes more

prone to the underlying institutional characteristics such as enforceability of property rights.

In fact, recent literature on innovations has shown some progress in this direction and to

establish a well defined theoretical link between the institutional features of innovation and

the e ect of inequality on innovation might be useful.
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Endnotes:

1. Whether the information technology revolution directly lead to rising inequality favoring

the skilled, or the increased supply of skilled workers induced skill-biased technological change

rising inequality, is still a puzzle. Nevertheless,the implications on inequality remain the same. See

Acemoglu (98), Galor and Moav (00) and Violante (01) for respective arguments.

2. Among the many conflicting recent reports one can cite Forbes (2000) who argues that

the relationship between inequality and subsequent growth is positive at least in the short run.

Barro (2000) finds a negative relationship between inequality and growth in developing countries

and a positive relationship between inequality and growth in developed countries. Banerjee and

Duflo(2003) argue that fitting linear models is inappropriate for explaining this relationship. They

argue that any change in inequality will cause subsequent growth to fall.

3. Deininger and Squire (1998) have provided an extensive data set on inequality used in most of

the subsequent studies. Atkinson and Brandolini(2001), Banerjee and Duflo(2003), Forbes(2000),

Dollar and Kraay(2001) and Galbraith and Kum (2003) argue that the Gini coe cients in this data

set are not fully reliable.

4. See Murphy, Shleifer and Vishny(1989), Baland and Ray(1991), Zweimuller(2000), Ben-

habib(2003), Foellmi and Zweimüller (2006).

5. See Jovanovic and Rousseau (2001), Carol and Hanan (2000), Faria(2002)

6. The empirical support for this association is extensive. See Galbraith(2002), for instance.

7. For a survey of this literature see Aghion,Caroli, and Penalosa (1999)

8. The idea goes back to Fellner (1951) and Arrow (1962). For empirical applications see

Geroski(1990,1995) and Aghion et. al. (2002).

9.See Atkinson and Brandolini(2001) and Galbraith and Kum(2003) for criticisms on D&S data.
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10. UTIP-UNIDO data set is based on the source data.

11. Luxembourg Income Study(LIS) and World Income Inequality Data Set(WIID) are well

known alternative data sets. LIS is restricted to wealthy western countries and WIID is built on

D&S data and therefore they are not used in this study.

12. Note that incomes outside of manufacturing are generally not covered in this data set and

transfers and taxes are not covered at all. Therefore any changes in the structure of the employment

is likely to bias the Theil statistic.

13.. See Pavitt (1985), Griliches (1990).

14. See Lach (1995)

15. Even though the choice of intervals is rather arbitrary, the comparative results obtained

are robust to the changes in intervals within acceptable distances.

16. Other measures of stock of knowledge based on R&D flows and international trade exist

in Coe and Helpman(1995) and Keller (2001) which are not applicable within the context of this

paper.

17. One drawback with applying the traditional methodology here is that it allows negative

growth, which does not reflect the nature of knowledge creation.

18.Note that if 6= 0 then the OLS, random and fixes e ects estimationsa are biased.

19. See Appendix I for a brief discussion of the GMM estimator used in this study.

20. See Chong and Zanforlin(02) for a similar treatment.

21. The lower sample includes observations where THEIL(HCIN) is less than 0.033(33) for fixed

e ects and THEIL(HCIN) is less than 0.045(31) for GMM. The upper sample has observations where

THEIL(HCIN) is greater than 0.06(41) for fixed e ects and THEIL(HCIN) is less than 0.075(52)

for GMM.

25



22. See Appendix for a formal presentation of the procedure.

23. See Aghion et. al. (2005) for a similar treatment of the arrival of innovations.

24. See Aghion(2001) for a version of this argument in a Schumpeterian setup.

25. See Appendix for a for a formal presentation of the procedure.

26. A bandwidth of 0.05 is used for the Kernel estimator
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Appendix A. Estimation procedures

A.1. Gmm estimation for dynamic panel data

This section closely follows Doornik, Arellano and Bond(2002) The dynamic panel model

can be written as:

=
P

=1
( ) +

0( ) + + + = + 1 ; = 0

where and are respectively individual and time special e ects and is a vector of

explanatory variables. N is the number of cross-section observations. The idea here is if we

can find variables which are not correlated with we can use it as instruments for equation

in levels regardless of 0 being correlated with error term. and are candidates

for such instruments. There are many such instruments at hand including di erent lags,

di erent combinations of lags, deviation from the means etc. which substantially increase

the information set that can be utilized thus increasing the consistency of estimates. Then

( ) equations for individual i can be written in the form

= + +

where is a parameter vector including the ’s and ’s and the time e ects, and

is a data matrix containing the series of the lagged dependent variables, the 0 and time

dummies. is a ( )× 1 vector of ones.

=

μ
P 0

¶ μ
P 0

¶¸ 1μP 0

¶ μ
P

¶

where

=

μ
1 P

¶ 1

and 0 and denote selected transformations of and (e.g. levels, first di erences,

orthogonal deviations, combinations of first di erences (or orthogonal deviations) and levels,

deviations from the means.
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A.2. Interval Location

The procedure of interval location starts by estimating the following equation

= + + 1 1( 1 1) + 2 2( 2 2) + + + +

where 1 1 and 2 2 and 2 1 by keeping 1 fixed and increasing 2

and vice versa.

A.3. Non-parametric Estimation

The idea here is to find an estimator for ( ) = ( ) + 0 . First an estimator

for parameters can be found by estimating

( ) = [ln | ] [ | ] . The estimator for . is then given by

.= [
P

=1

P

=1
( ( | )( ( | )0] 1

×
P

=1

P

=1
[( ( | )(ln (ln | )]

where = ( ) is a trimming function which leaves a .95 quantile in the sample

by leaving out the symmetric 5% of the outliers. If we want to estimate ( ) non-

parametrically we use and a Kernel of bandwidth such that ( ) = 0

+
P

6=
[ln 0 ] ( )Á

P

6=
( ) where = 1<( ) and <( ) is a

Kernel function with the property
R
<( ) = 1 Interested readers can consult to Hausman

and Newey (1995) for an application to demand estimation.
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Table 1. Descriptive Statistics

Mean and Standart Deviation

Income
1

Inequality
2

Growth
3

Low Middle High Low Medium High Low Medium High

Real GDP per Capita

1965 1098.9 4243.9 9740.0 6178.0 2528.7 2087.2 3394.2 3673.28 3306.5

(459.4) (1908.56) (8365.03) (2902.18) (2451.39) (1791.55) (7335.4) (2831.695) (2912.86)

1999 1118.5 4011.2 15142.0 13588.6 11508.0 5441.4 5823.2 7007.9 7791.5

(493.9) (1705.2) (3780.2) (4524.0) (5195.1) (5930.0) (5576.4) (6555.9) (7649.68)

Real GDP per Capita Growth

1965 .021 .040 .028 .049 .037 .020 -.025 .033 .095

(.070) (.049) (.054) (.028) (.072) (.061) ( 0.04) (.006) (.044)

1999 .026 .015 .035 .028 .0311 .024 -.005 0.03 .055

(.033) (.036) (.022) (.008) (.040) (.032) ( .028) ( .005) (.016)

Patents Granted   

  1965
4

1093.5 9070.1 13156.3 6096.0 8040.2 636.0 6638.0 6927.6 10376.3

(1530.2) (12743.6) (19913.3) (7513) (16448) (576) (10788) ( 11529.01) ( 18819.09)

1999 270.9 1288.5 13046.2 13627.0 12611.4 5660.7 12456.1 12084.3 1579.3

(562.9) (2068.6) (31440.9) (15912) (25380) (22125) ( 33435.0) ( 30055.6) ( 3781.86)

HCIN

1965 44.5 39.0 33.3 31.8 41.3 46.8 43.8 38.5 40.3

(5.11) (7.08) (7.37) (3.88) (3.63) (1.67) (6.07) ( 7.41) ( 7.785)

1999 48.1 43.2 38.8 33.7 39.1 46.3 41.5 41.7 40.8

(3.02) (4.08) (5.87) (2.28) (3.38) (4.08) (5.67) ( 5.83) ( 5.65)

Theil Measure

1965 0.047 0.039 0.022 0.011 0.0342 0.073 0.053 0.033 0.040

(.023) (.028) (.032) (.0045) (.009) (.019) ( .035) ( .022) ( .027)

1999 0.096 0.066 0.036 0.016 0.034 0.079 0.061 0.047 0.049

(.006) (.021) (.020) (.0018) (.009) (.012) (.027) (.028) (.027)

Number of Countries

1965 51 41 9 17 26 14 37 32 30

1999 24 32 26 4 12 11 31 37 14
1

Economies are divided according to 1999 GNI per capita, calculated  using the World Bank Atlas method. The groups

are: low income; less than$2000 , middle income; between $2,000 and $8,000, and high income; more than $8,000 in 1999.
2

Inequality is taken to be low, medium or high when it is respectively less than 0.02, between 0.02 and  0.06, and higher 

than 0.06
3

Growth is taken to be low, medium or high when it is respectively less than 0.02 , between 0.02 and 0.05, and higher

than 0.05
4

Japan excluded



                  Table 2. Overall Relationship Between Income Inequality and Patents Cited

Dependent Variable : Patents Coefficient of Inequality

Model Pooled OLS Fixed Effects Random Effects GMM(Arellano-Bover)

Theil 1 -0.141(0.060) -0.182(0.085) -0.39(0.085) -0.483(0.227)

2 -0.147(0.051) -0.281(0.087) -0.302(0.086) -0.496(0.128)

3 -0.167(0.035) -0.209(0.227) -0.520(0.22) -0.101(0.065)

4 -0.116(0.050) -0.337(0.019) -0.399(0.181) -0.275(0.277)

5 -0.12(0.051) -0.135(0.022) -0.398(0.135) -0.472(0.266)

6 -0.15(0.035) -0.191(0.022) -0.625(0.216) 0.450(0.368)

HCIN 1 -0.080(0.010) -0.024(0.008) -0.036(0.009) -0.041(0.014)

2 -0.100(0.011) -0.016(0.009) -0.031(0.008) -0.042(0.014)

3 -0.111(0.023) -0.023(0.099) -0.056(0.018) -0.02(0.01)

4 -0.075(0.024) -0.054(0.037) -0.059(0.018) -0.03(0.02)

5 -0.106(0.036) -0.028(0.019) 0.055(0.058) -0.03(0.02)

6 -0.078(0.024) -0.021(0.019) -0.065(0.02) 0.045(0.03)

Number of Observations: 1285 1047 1285 881

Explanations:  Standard errors shown in parenthesis. Both country and time dummies are included in the fixed effects 

estimation. PATENT, GDP and their lags are used as instruments in GMM estimation.For 3-6 the available number of

observations for the GMM estimation ranges from 108 to 1047.  The controls are as follows:  1)PPINV, FCE, POP, 

CPW, GDP 2) CPW, GDP, FCE, SETETGR 3) PPINV, CPW, FDI, SETETGR 4) PPINV, CPW, GDP, FCE, FE 5) PPINV,  

FCE, CPW, GDP, ME 6) PPINV, CPW, GDP, ME



Table 3. Interval Location

Threshhold 0.022 0.024 0.025 0.026 0.028 0.03 0.0325 0.035 0.0375 0.04

Fixed Effects

Dummy THEIL 0.575 0.534 0.496 0.447 0.340 0.198 0.058 -0.063 -0.118 -0.151

(2.679) (2.652) (2.722) (2.574) (2.014) (2.270) (2.082) (-1.908) (-1.624) (-1.772)

Number of Observations    881(74 Countries) GMM (Arellano&Bover)
1

Dummy THEIL 1.101 0.988 0.964 0.953 0.863 0.652 0.454 0.241 0.129 0.06

(2.676) (2.629) (2.637) (2.646) (2.603) (2.462) (2.326) (2.175) (2.103) (2.044)

Sargan Test 0.019 0.022 0.010 0.004 0.008 0.025 0.009 0.002 0.005 0.008

Number of Observations    842(73 Countries)

Threshhold 20 23 25 26 27 28 29 31 32 33

Fixed Effects

Dummy HCIN 0.0025 0.0541 0.0431 0.0129 0.0324 0.0161 0.0039 0.0016 0.0004 -0.0002

(3.411) (5.534) (4.569) (2.889) (1.838) (1.305) (0.496) (0.307) (0.085) (-0.047)

Number of Observations    871(74 Countries) GMM (Arellano&Bover)
2

Dummy HCIN 0.0104 0.4844 0.1154 0.0408 0.0178 0.0124 0.0078 -0.0054 -0.0098 -0.0092

(5.095) (6.395) (1.294) (0.877) (0.502) (0.481) (0.479) (-0.726) (-0.784) (-0.795)

Sargan Test 0.013 0.004 0.012 0.011 0.005 0.020 0.032 0.004 0.008 0.040

Number of Observations    834 (73 Countries)

1  Autocorrelation tests of order one range from -0.082 to -0.0012. Second order autocorrelation tests range from

0.021 to 0.342.

2  Autocorrelation tests of order one range from -1.173 to -0.079. Second order autocorrelation tests range from

1.021 to 2.045.



Table 3. Interval Location (continued)

Threshhold 0.0425 0.045 0.0475 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085

Fixed Effects

Dummy THEIL -0.181 -0.2076 -0.23815 -0.26527 -0.30531 -0.32078 -0.32399 -0.31878 -0.32482 -0.33115 -0.33712

(-1.723) (-1.477) (-1.623) (-1.573) (-1.789) (-1.969) (-1.943) (-1.989) (-2.014) (-2.431) (-2.414)

Number of Observations   881(74 Countries) GMM (Arellano&Bover)

Dummy THEIL 0.017 0.005 -0.028 -0.084 -0.176 -0.218 -0.202 -0.172 -0.180 -0.193 -0.218

(2.013) (2.003) (-1.978) (-1.935) (-1.865) (-1.832) (-1.843) (-1.864) (-1.858) (-1.847) (-1.826)

Sargan Test 0.007 0.039 0.010 0.008 0.012 0.004 0.003 0.006 0.010 0.005 0.006

Number of Observations   842(73 Countries)

Threshhold 34 35 36 37 39 41 43 48 52 54 56

Fixed Effects

Dummy HCIN -0.0062 -0.0089 -0.0088 -0.0096 -0.0126 -0.0144 -0.0163 -0.0171 -0.0176 -0.0177 -0.0179

(-1.446) (-1.616) (-1.593) (-1.972) (-1.913) (-2.343) (-3.032) (-6.502) (-6.1554) (-5.719) (-6.841)

Number of Observations    871(74 Countries) GMM (Arellano&Bover)

Dummy HCIN -0.0085 -0.0071 -0.0066 -0.0067 -0.0066 -0.0064 -0.0063 -0.0061 -0.0060 -0.0059 -0.0087

(-1.801) (-1.710) (-1.708) (-1.761) (-1.791) (-1.811) (-1.834) (-1.850) (-1.869) (-1.886) (-1.896)

Sargan Test 0.010 0.006 0.006 0.007 0.016 0.006 0.027 0.003 0.001 0.014 0.005

Number of Observations    834 (73 Countries)
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Figure 1. Interval Location: Fixed Effects.
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Figure 2. Interval Location: GMM.
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Figure 3. Interval Location: Fixed Effects.
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Figure 4. Interval Location: GMM.
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Figure 5. Kernel Regression(Gaussian Weights).
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Figure 7. Nonlinear Fit and Semiparametric Estimation with Country and Time Effects.
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