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School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

Abstract

A strong correlated equilibrium is a strategy profile that is immune to joint devia-
tions. Different notions of strong correlated equilibria were defined in the literature.
One major difference among those definitions is the stage in which coalitions can
plan a joint deviation: before (ez-ante) or after (ex-post) the deviating players re-
ceive their part of the correlated profile. In this paper we prove that if deviating
coalitions are allowed to use new correlating devices, then an ez-ante strong cor-
related equilibrium is immune to deviations at all stages. Thus the set of ez-ante
strong correlated equilibria of Moreno & Wooders (1996) is included in all other sets
of strong correlated equilibria.

1 Introduction

The ability of players to communicate prior to the play, influences the set
of self-enforcing outcomes of a non-cooperative game. The communication
allows the players to correlate their play, and to implement a correlated strat-
egy profile as a feasible non-biding agreement. For such an agreement to be
self-enforcing, it has to be stable against “reasonable” coalitional deviations.
Two notions in the literature describe such self-enforcing agreements: a strong
correlated equilibrium is a profile that is stable against all coalitional devi-
ations, and a coalition-proof correlated equilibrium is a profile that is stable
against self-enforcing coalitional deviations (a deviation is self-enforcing if no
sub-coalition has further self-enforcing and improving deviation).
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Each notion has a few alternative definitions. One major difference among
them, is the stage in which coalitions can plan a deviation from a correlated
agreement. Assume that the correlated agreement is implemented by a me-
diator who privately recommends each player what to play. The definitions
in Milgrom & Roberts (1996), Moreno & Wooders (1996), and Ray (1996)
are ez-ante definitions: In their framework, players may plan deviations be-
fore receiving recommendations, and no further communication is possible af-
ter recommendations are issued. The definitions in Einy & Peleg (1995), Ray
(1998) and Bloch & Dutta (2007) are ex-post 2 definitions: In their framework,
players may plan deviations only after receiving recommendations.

However, in some frameworks coalitions can plan deviations at all stages. One
example for such framework is an extended game with cheap-talk: pre-play,
unmediated, non-biding, non-verifiable communication among the players.3 In
such a framework, the players can “mimic” a mediator, and implement a large
set of strong correlated equilibria as a strong Nash equilibria (Aumann, 1959)
in the extended game (Heller, 2008).% A coalition can plan a deviation in the
early phases of the cheap-talk when no player has received his recommendation
yet (ez-ante stage), in the late phases when all players have received their
recommendations (ez-post stage), or in an intermediate stage when some of
the players know their recommendations.

A natural question is whether any of the existing notions is appropriate to
such frameworks, or whether new definitions are needed. In this paper we
prove that the existing ex-ante strong correlated equilibrium (& la Moreno
& Wooders) is resistant to deviations at all stages. The proof is based on
three assumptions about the communication framework (which hold in the
cheap-talk framework):

(1) A deviating coalition can use new correlating devices (play a joint corre-
lated deviation).

(2) When a coalition decides to deviate, that decision is common knowledge
among its members.

(3) The players share a common prior about the possible states of the world
in an incomplete information model a la Aumann (1987).

An immediate corollary is that the set of ez-ante strong correlated equilibria

2 Referred to as “interim” in some of the referred papers.

3 For a good nontechnical introduction to some of the main issues of cheap-talk, see
the survey of Farrel & Rabin (1996).

4 The implementation presented in Heller (2008) is only as a |7/2]-strong correlated
equilibrium (an equilibrium that is resistant to deviations of coalitions with less
than n/2 players). If one assumes that the players are computationally restricted and
“one-way” functions exist, then the implementation can be as a strong correlated
equilibrium (as discussed in Lepinski et al., 2004 and Abraham et al., 2006).



is included in all other sets of strong correlated equilibria, as defined in the
literature referred above (as described in figure 1 in page 8).

One could hope that similar results might be obtained for the coalition-
proof notions. However, in Section 5 we demonstrate that the existing ez-ante
coalition-proof notion is not appropriate to frameworks in which coalitions can
plan deviations at all stages.

The paper is organized as follows: Section 2 presents our model and the main
result. The main result is demonstrated in Section 3, and proven in Section 4.
We discuss the coalition-proof notion in Section 5, and conclude in Section 6.

2 Model and Definitions
2.1 Preliminary Definitions

A game in strategic form G is defined as: G = (N, (ADien s (ui)i€N>, where N
is the finite (and non-empty) set of players with a size n = |N|, and for each
i € N, A;is player i’s finite (and non-empty) set of actions (or pure strategies),
and u' is player 4’s utility (payoff) function, a real-valued function on A =

[T A’. The multi-linear extension of u’ to A (A) is is still denoted by u’. A
iEN

member of A (A) is called a (correlated) strategy profile. A coalition S is a non-
empty member of 2. For simplicity of notation, the coalition {i} is denoted
as i. Given a coalition S, and let A% = [[ A% let —S = {i € N | i ¢ S} denote

i€s

the complementary coalition. A member of A(A®) is called a (correlated)
S-strategy profile. Given ¢ € A(A) and a® € A%, we define ¢ C A(AY)

to be q|s(a5) = > q(a®,a™¥), and for simplicity we omit the subscript:
a=SeAa—S
q(a”) = gs(a”). Given a® s.t. ¢(a®) > 0, we define g(a=|a”) = q((i’f;_)s)

2.2 An Intuitive Description of Our Framework

Assume that the players of a game G (which will be played tomorrow), have
agreed to play a correlated strategy profile ¢ € A(A). The players implement
g with the assistance of a mediator who chooses the action profile a € A with
probability ¢(a). Throughout the day, the mediator calls each player i and pri-
vately gives him his recommendation: a' € A*. The players do not necessarily
know the order in which the mediator calls the players, or which players have
already been called. During the day, the players can communicate, share in-
formation about their recommendations, and plan coalitional deviations from



the agreement. If all the members of a coalition agree to use a deviation (each,
with his own posterior information, believes that the deviation is profitable),
then it is implemented with the assistance of a deviating device - a new media-
tor who receives (at the end of the day) the recommendations of the deviating
players, and gives each of them a new recommendation. In the next day, each
player simultaneously chooses an action in G. The profile ¢ is an all-stage
strong correlated equilibrium, if for every calling order and every stage, there
is no coalition with a profitable deviation, as will be formally defined in the
next Subsection.

2.3 All-stage Strong Correlated Equilibrium

A deviating device implements a mapping from A (the original recommenda-
tions the players in S have received) to A(A®) (the set of correlated S-strategy
profiles).

Definition 1 Given a coalition S C N, a deviating device is a function
dS: A5 — A(A%),

When the members of S consider to implement a deviating device, they are in
a situation of incomplete information: each player may have the private value
of his recommendation, and may have additional private information acquired
when communicating with the other deviating players. We describe the infor-
mation structure during the communication among the deviating players in a
model based on Aumann (1976, 1987).

Definition 2 Given a coalition S C N | an information structure of S is a
5-tuple: (0, B, 1, (F'),cq, (a');c ) where:

(1) The 3-tuple (€, B, u) is a probability space.

(2) The (F'),cq are partitions of Q whose join ( A F', the coarsest common
ics
refinement of (F"), ) consists of non-null events.
(3) The (a'),., are random variables in (2, B, i), where a' : Q@ — A’

We interpret (€2, B) as the space of states of the world for the players of S (at
some stage of their consideration whether to use a deviating device), u as the
common prior (for the states of the world) for all the players in S, and F* as
the information partition of player i; that is, if the true state of the world is
w € § then player i is informed of that element F*(w) of F' that contains
w. We interpret the random variable a’(w) as the recommendation of player i
(from the original agreement) in the state w.

Remark 3 The state of the world w € Q includes a full description of the
recommendation profile, the information each deviating player has acquired



while communicating with the other deviating players, and the beliefs each
of the deviating players has about the information and beliefs of the others.
We assume that all the players share a common prior about the states of the
world. The justification of this assumption is discussed in Aumann (1987).

Given a non-null event E € B, let a®(E) € A(A®) be a random variable with
the posterior distribution of a”(w) conditioned on that w € E.

The information structure of the players must be consistent with the frame-
work:

(1) The prior distribution of a®(2) is equal to the agreement’s distribution.

(2) The deviating players have no information about the recommendations
of the non-deviating players, except the information that is induced by
their information about their recommendations.

We formalize those requirements in the following definition.

Definition 4 Given an agreement ¢ € A(A) and a coalition S C N , we say
that an information structure (Q, B, i, (F'),.g, (a'),c5) s a consistent infor-
mation structure (of S) if the following conditions hold:

(1) Vb5 € A5, Pr(a®(Q) = b°) = q(b°)
(2) Yw e Q,Vie S, Vbe A,
Pr(a¥ (Fi(w)) = b) = Pr (a® (Fi(w)) = b%) - q(b~5 | b%)

When each player considers whether the implementation of a deviating de-
vice is profitable to him, he compares his conditional expected payoft (given
his information about the distribution of (a'),.q ) when playing the original
agreement and when implementing the deviating device. A player agrees to im-
plement a deviating device only if the latter conditional expectation is larger.
We now formally define the conditional expected payoffs of each player in each
state of the world w, when following the agreement and when implementing a
deviating device.

Definition 5 Given an agreement ¢ € A(A), a coalition S C N, a player i €
S, a deviating device d° : A% — A(A%), and a consistent information structure
(Q,B, 11, (F");cq» (a');cq), let the conditional expected payoffs of player i in
w € Q (given his information in w and the assumption that the players in —S
follow the agreement ¢) be:

e The conditional expected payoff when the players in S follow ¢:

W)= Y Pr(a”(Fi(w)=b%) > qb~ 6% u'(b5,b°%)

bSeAS b—ScA—S

e The conditional expected payoff when the players of S deviate (by imple-



menting d°) :

ujw)= > Pr (aS (Fl(w)) = bS) S g0 16%) Y db(c” | b5)ul(c®b0)

bScAS b=ScA—S cScAS

If the players in S decide to implement a deviating device in some state w € €2,
then it is common knowledge (in w) that each player expects to earn more from
the deviation (conditioned on his information). We now present the formal
definition of common knowledge (Aumann, 1976):

Definition 6 Given a coalition S C N, an information structure (2, B, p,
(F')seq, (a'),c ) and a state w € Q, an event E € B is common knowledge at
w if E includes that member of the meet Fmeet — '/\s]:i that contains w.
(S

We define a profitable deviating device, as a deviating device that in some
consistent information structure, it is common knowledge in some state of
the world, that each player expects to earn more if the deviating device is
implemented.

Definition 7 Given a strategy profile ¢ € A(A) and a coalition S C N, we
say that a deviating device d° : A5 — A(A%) is profitable (for S), if there
exists a consistent information structure (Q, B, p, (F'),cq, (a'),c) and a state
wo € Q such that it is common knowledge in wy that Vi € S, ujj(w) > u’(w).

We can now define an all-stage strong correlated equilibrium as a strategy
profile, from which no coalition has a profitable deviating device.

Definition 8 A strategy profile ¢ € A(A) is an all-stage strong correlated
equilibrium if no coalition S C N has a profitable deviating device.

2.4  Ezx-ante Strong Correlated Equilibrium

A profile is an ez-ante strong correlated equilibrium, if no coalition has a prof-
itable deviating device at the ez-ante stage (when the players have not received
their recommends yet). It would be useful (following Moreno & Wooders,
1996), to define first the notion of a feasible ez-ante deviation for a coalition
S, as a correlated strategy profile p € A that the coalition can induce with the
use of a deviating device at the ex-ante stage.

Definition 9 Let g € A(A) be a strategy profile and let S C N be a coalition.

We say that p € A(A) is a feasible ex-ante deviation by a coalition S from

q if there is a deviating device d° : A% — A(A%) such that for all a € A we

have p(a) = SZ Sq(bs7 a=%) - d%(a®|b®). In that case we say that p is induced
bSEA

from ¢ by the deviating device d°. Let D(q, S) C A(A) denote the set of all



feasible ax-ante deviations by a coalition S from q.

An ez-ante strong correlated equilibrium is a strategy profile from which no
coalition has a profitable ex-ante deviation.

Definition 10 A strategy profile ¢ € A(A) is an ez-ante strong correlated
equilibrium if no coalition S C N has a feasible deviation p € D(q, S), such
that for each i C S, we have u'(p) > u'(q).

2.5 Main Result

It is straightforward to see that an all-stage strong correlated equilibrium
is also an ex-ante strong correlated equilibrium, as it is possible to choose a
trivial consistent information structure, in which: Vi, F¢ = . Our main result
proves that the converse is also true, and thus the two sets of equilibria are
equal.

Theorem 11 A correlated profile ¢ € A(A) is an ex-ante strong correlated
equilibrium if and only if it is an all-stage strong correlated equilibrium.

2.6 Relations With Other Notions of Strong Correlated Fquilibria

Other notions of ex-ante strong correlated equilibria have been presented in
Ray (1996) and Milgrom & Roberts (1996). In the framework of Ray, deviating
coalitions are not allowed to construct new correlating devices, and are limited
to use only an uncorrelated deviating device - a function d° : A% — AHSA(A"). >
In the framework of Milgrom & Roberts only some of the Coalitiorig can com-
municate and coordinate deviations. In both cases the sets of feasible coali-
tional deviations is included in our set of deviations, and thus our set of ex-ante
strong correlated equilibria is included in the sets of ez-ante correlated equi-
libria a la Ray and a la Milgrom & Roberts.

An ex-post strong correlated equilibrium is a profile which is resistant to de-
viating devices at the ez-post stage (when each player knows his recommen-
dation, i.e., Vw € Q, Vi € S, 3b° € A’ s.t. Pr(a’ (F'(w)) = b') = 1). Different
notions of ex-post strong correlated equilibria are presented in Einy & Peleg
(1995), Ray (1998) and Bloch & Dutta (2007). In the framework of Einy &

® In Ray’s setup, the original correlating device can also send an indirect signal to
each player (which may hold more information than the recommendation itself). In
that case, the uncorrelated deviating device is a function from the set of S-part of
the signals to the set of uncorrelated S-strategy profiles.



Peleg, a deviating coalition can only use deviating devices that improve the
conditional utilities of all deviating players for all possible recommendation
profiles. % In the framework of Ray, a deviating coalition S can only use pure
deviating devices - d° : A% — A% In the framework of Bloch & Dutta, a
deviating coalition S can only use deviating devices that are implemented if
and only if the recommendation profile a® is included in some set E¥ C A°
which satisfies:

(1) If @® € E®, each player earns from implementing the deviating device.
(2) If ¥ ¢ E®, then at least one player looses from implementing the devia-
tion device (by falsely claiming that a® € E¥).

It can be shown that those conditions imply that there exists a consistent
information structure of § and a state in which it is common knowledge that
a®(w) € E¥ and that Vi € S, uj(w) > u)(w). Thus our set of ex-post strong
correlated equilibria is included in the sets of ex-post correlated equilibria as
defined in any of those papers.

The inclusion relations among the different notions of strong correlated equi-
libria is described in figure 1.

Figure 1. Inclusion Relations among Different Notions of Strong Correlated Equilib-
ria

Any other ex-post SCE

Our ex-post SCE

1 Any other
| ex-anle

e

Examples for the different notions can be found in Moreno & Wooders (1996):

e An ez-ante strong correlated equilibrium in a 3-player matching pennies
(which is also an all-stage strong correlated equilibrium due to our main

6 In our formulation, it is equivalent to requiring that Vi € S, u}(w) > u}(w) in
every w € €2, and not only in every w € F™¢(wy) .



result), which is the only “reasonable” outcome of the game with pre-play
communication (as experimentally demonstrated in Moreno & Wooders,
1998).

e An ez-post strong correlated equilibrium in a 2-player chicken game, which
is not an ez-ante strong correlated equilibrium.

3 An Example of the Main Result

In the following example we present an ex-ante strong correlated equilibrium in
a 3-player game, and a specific deviating device that is considered by the grand
coalition at some intermediate stage. At first look, one may think that this
deviating device is profitable to all the players (conditioned on their posterior
information at that stage), but a more thorough analysis reveals that this is
not true. The analysis in this example gives the intuition of the formal proof
of the general case in the following Section.

Table 1 presents the matrix representation of a 3-player game, where player 1
chooses the row, player 2 chooses the column, and player 3 chooses the matrix.

Table 1
A 3-Player Game With An Ex-Ante Strong Correlated Equilibrium

1 Co C3

by by bs by by bs by by bs

ar | 10,10,10 | 5,205 | 0,0,0 || a1 | 5,5,20 | 0,0,0 | 0,0,0 || a1 | 0,0,0 | 0,0,0 | 0,0,0

as | 2055 | 0,00 |00,0] ax| 0,00 000000 || a |00,0]000]| 000

as | 0,00 | 0,00 |000] as| 0,00 |0,00 00,0 || as|00,0]000] 711,12

Let ¢ be the following profile: (i (a1,b1,c1), % (ag,b1,c1), i (a1,be,c1), % (ay, by, cg))
with an expected payoff of 10 to each player. Observe that ¢ is an ez-ante
strong correlated equilibrium:

e No single player has a unilateral deviation (¢ is a correlated equilibrium).

e No coalition of two players (say 1,2) has a profitable deviation (their un-
certainty about the recommendation of player 3 prevents them from being
able to earn together more than 20 by a joint deviation).

e The grand coalition cannot earn more than a total payoff of 30.

Now, consider an intermediate stage in which player 1 has received a rec-
ommendation a;, player 2 has received a recommendation as, player 3 has
not received his recommendation yet. Each player does not know whether the
other players have received their recommendations. At first look, the imple-



mentation of the deviating device d°(-) = (as, b3, c3) , which gives a payoff of
(7,11,12), may look profitable for all the players:

e Conditioned on his recommendation (a), player 1 has an expected payoff
of 6%, and thus d° is profitable to him. The same is true for player 2 as well.

e Player 3 does not know his recommendation. His exz-ante expected payoff is
10, and he would earn a payoff of 12 by implementing d°.

However, a more thorough analysis of player 3’s information, reveals that d°
is unprofitable for him. Player 1 can only earn from d° (which gives him a
payoff of 7) if he has received a recommendation ay. Thus, if player 1 agrees
to implement d°, then it is common knowledge that he has received a,. The
expected payoff of players 2 and 3, conditioned on that player 2 has received a;,
is 11%. Thus, if player 2 agrees to implement d°(with a payoff of 11), then he
must have more information: that his recommendation is ay. Therefore player
3 knows that the if the other players agree to implement d°, then their part
of the recommendation profile is(ai, az). Conditioned on that, his expected
payoff is 15, and thus d° is unprofitable for him.

4 A Proof of the Main Result

In this Section we prove our main result: (theorem 11) - A correlated profile
q € A(A) is an ex-ante strong correlated equilibrium if and only if it is an
all-stage strong correlated equilibrium. As discussed earlier, one direction is
straightforward, and we have to prove only the other direction:

Theorem 12 FEvery ez-ante strong correlated equilibrium is an all-stage strong
correlated equilibrium.

In other words: if a profitable deviating device from an agreement ¢ € A(A)
exists, then there also exists a profitable ez-ante deviation from g¢.

The theorem immediately follows from the following two propositions:

(1) Proposition 14: If an agreement ¢ is not an all-stage strong correlated
equilibrium, then there exists a “similar” agreement ¢ that is not an ex-
ante strong correlated equilibrium. The “similarity” is in the sense that ¢
is absolute continues w.r.t. ¢ when restricted to A°, and equal to ¢ when
restricted to A= and conditioned on A° (as formally defined below).

(2) Proposition 15: If such a “similar” agreement ¢ is not an ez-ante strong
correlated equilibrium, then ¢ itself is not an ex-ante strong correlated
equilibrium.

10



We now present an auxiliary definition (which will be used in the proof of
proposition 14) for the conditional expected payoffs of each player given the
information that w € E.

Definition 13 Given an agreement ¢ € A(A), a coalition S C N, a deviating
device d* : A5 — A(A®), a consistent information structure (Q, B, y1, (F%), 5,

(a');cg), and a non-null event £ € B, let ((ﬂ}(E))ZeS : (@Q(E))Z€S> denote the

conditional expected payoffs given the information that the state of the world
is in E (and given that the players in —S follow the agreement ¢):

e The conditional expected payoff of each player ¢ when the players in .S follow
the agreement ¢ (given w € E):

W(E) = X Pr(e®(B)=t%) 3 o [6%) (0% 070)

e The conditional expected payoff when the players of S deviate by imple-
menting d° (given w € E):

ay(E) =Y Pr(a®(B)=b%) > q|b%) 3 (7 [ b)ui(e”, b7

bSecAS b—ScA-5S cSeAs

Observe the difference between definition 5 and definition 13:

e In definition 5 u}(w) and uj(w) describe the conditional utility of player
i (in the state of the world w € Q) in the perspective of player i, who is
informed in w, that the state of the world in in F'(w).

e In definition 13 @%(E) and @}(E) describe the conditional utility of player

in the perspective of an outside observer, who is informed that the state of
the world is in F.

Proposition 14 Let ¢ € A(A) be a strategy profile (the agreement) that is
not an all-stage strong correlated equilibrium. Then there exists a strategy
profile § € A(A) that satisfies the following conditions:

(1) q|s is absolute continues with respect to ¢|s :
Voo € A%, q(b%) =0 = G(b°) =0
(2) Conditioned on S-part of the recommendations: ¢|_s = q|_g:
Vbo € A5 Wb € A5 G(b™° | b°) = q(b™% | b°)

(3) G is not an ex-ante strong correlated equilibrium.

11



PROOF. Let S C N be a coalition, let d° : A% — A(A%) be a deviating
device, let (Q, B, i1, (F'),cq, (a'),cn) be a consistent information structure, and
let wy € Q be a state, such that it is common knowledge in wy that Vi, u(w) >
ul(w), i.e., F(wo) C {w | uh(w) > u}(w)} Let i € S be a deviating player.
Write Ft = F™°(wy) = UF; where the F) are disjoint members of F".
Since uj(w) > u(w) throughjout Fmeet then Vj, wh(F}) > 4(F}). Observe
that if Ey, E5 € B are two disjoint non-null events then: @%(E, U Ey) = (u(E)-
U4 (Ey)+p(Ey) -t (Es)) / u(Ey+ Ey) and )y (Ey U Ey) = (u(Ey)-ty(Er)4p(Ey)-
y(Ey))/pn(Ey + Ey). Thus, it follows that aj(F™") > a’(F™"). This is true
for every player, thus Vicgs aj(F™") > a%(F™").

Let G be the following strategy profile: Vb° € A% vb=5 € A=5, G(b) = ¢(b%,b7°) =
Pr (aS(Fmeet) = bs) q(b=% | b%). We show that the three conditions are sat-
isfied:

(1)
Wb € A%, q(b%) = 0= Pr (a®(Q) = b°) =0
= Pr(a®(F™) = b%) = 0= §(b°) = 0
(2)
Voo e A% Vb5 € A5 (b7 | b°) = q(b(;;’s)

B Pr( S(Fmeet) ) (b S ‘ bS)

Pr (aS(Fmeet) = b9) = (0™ | 1°)

(3) We have to show that ¢ is not an ez-ante strong correlated equilibrium.
Observe that:

Fmeet Z PI'( (Fmeet> — bS) Z q(b—S | bS) . Ui(bs, b_S>

bSeAS p—ScA-S

=>_4(b) - u'(b) = u'(q)

beA

let p be the ex-ante feasible deviation that is induced from ¢ by the
deviating device d°.

12



Fmeet Z PI‘( (Fmeet) — bS) Z b—S | bS

bSecAS b—" €A~
> e | 1) (5, b)
cSeAs

=>q) > d3(c% | b9) - ui (e, 07%) = ' (p)
beA cSeAS
This implies that: Vi € S, af(F™") > @4 (F™*) = u'(p) > u'(q), thus g
is not an ez-ante strong correlated equilibrium. QED.

We finish our main result by the following proposition: If a “similar” agreement
G is not an ex-ante strong correlated equilibrium, then ¢ itself is not an ez-ante
strong correlated equilibrium.

Proposition 15 Let ¢, € A(A) be two strategy profiles that satisfy the
following conditions:

(1) |s is absolute continues with respect to q|g :
Voo e A%, q(b%) =0 = G(b°) =0
(2) Conditioned on S-part of the recommendations: ¢|_g = q|_g
Vbo € A5 Wb € A5 G(b™% | b°) = q(b™% | b°)
(3) G is not an ez-ante strong correlated equilibrium.

Then ¢ is not an ez-ante strong correlated equilibrium.

PROOF. For simplicity of notation, we assume w.l.o.g. that Va® € A% ¢(a®) >
0 (because g(a®) = 0 = G(a®) = 0, and those impossible action profiles
do not affect any of the utilities functions and can be omitted). Let d° :
A% — A(A®) be a deviating device, such that Vi, u’(p) > u’(G), where

p € A(A) is the feasible deviation induced from d°. Let m = max |A?| and
i€S

_ 1 a(a®
let e = - aSeArSnl}& 950 q(a . We begin by constructing an auxiliary deviating

device d5 : AS — A(AS):

\_/

ed®(a|b°) a® # b¥

1— % ed®(®p°) a® = b°
cS#bS

dZ (a®b%) =

In the deviating device Jf the players of S follow the agreement with proba-
bility 1 — ¢, and deviate according to d° with probability . Let p. € D(g, S)

13



be the feasible ez-ante deviation of S from § that is induced by d°. Observe
that p. is a profitable deviation for all the players in S: Vg, u'(q) < u'(p.)
(because u'(q) — u'(p:) = € (u*(q) — u'(p)) < 0).

We continue by constructing the following deviating device (of S) d° : A% —

A(A5):

q(v%) ~J§(a51b5) s £ bS
1= 5 300 d5(cSp%) a® = b5

We first show that d° is a valid deviating device by validating that Va®,b° €
A5 0 < d%(a”b®) < 1.

S 418 SSS_C](bS)-NSaSS—Q(bS),Nsass
Va® # b, d°(a®[b )—q(bs) d(a®|b )_q(bs) ed (a5 ]5°)
_ae®) 1 < min q(a5)> 35 (a568
_Q(bs) m \aSeAs,j(a5)>0 ¢(a®) d”(a”[b”)
g o )
8 ZEIIZS; - Ziisi (B = o ) <1

And using the inequality (which is a part of the last chain of inequalities):

Q(b®) ss, sips
q(bs) ds (CL |b )S

- d®(a®|b%)

1
m

We get:

(b%)
(6%)

@ 21—~ Y E@pH)=1-130.
aS#b5

B’y =1- 3 ¢
aS;ﬁbS q

Let p € D(q,S) be the feasible ez-ante deviation that is induced by d°. We
finish the proof by showing that p is a profitable deviation from g¢: i.e.,

Vi € S, u'(q) < u'(p)), and thus ¢ is not an ez-ante strong correlated equi-
librium. Let i € S. We show: ui(p) — ui(q) = w'(p.) — ui(§) > 0. Observe
that:

w(q) =Y qla)-w(a)= > q(@®) Y qla®a”) u'(a)

acA aSeAS a=SeA-S

14



u'(p) =D _pla)-w'(a) = > > q(b%)-d*@p%) > q(a™p%) - u'(a)
acA aSeAShSeAS a—SeA-S

Therefore:

u(p) —u(q)= > > q®®)-d°@b®) > qla”®b%) - u'(a)

aScAS bSeAS a=SeA-S
— > q(@®) > q(a%|a®) - u'(a)
aSeAS a=SeA-S
- Z Z q(b°) - d%(a®|b°) Z q(a™°|b%) - u'(a)
aS€AS bS+#£aS a—S€A-S
— Z q(aS)-(l—dS(aS|aS)> Z q(a™*|a®) - u'(a)
aSeAS a—SeA-5S
= > > a0 @) Y q(a %) - ui(a)
aS€AS bS#£aS a—S€A-S
- Y @) (1-d(@le%)) Y gla[a®)-ui(a)
aSGAS a*SEA*S

Last equality is due to the following two equalities:

S £ pS o (hSY. 45(nSIHS) — sfj(bs),~sss:~s.~sss
va© £ % q(b7) - dab) = g(b7)° gy - de (a7 lo7) = (b7 - de (a7

We finish the proof by showing that the last expression is equal to u*(p.)—u'(q).
Observe that:

u'(po) = pe(a) - u'(a)

acA
= > > G- @) > qla TP - u(a)
aS€AS bScAS a=ScA—S
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u'(@) =Y dla) - wi(a) = > qa®) > qla ) u(a)
acA aSeAS a—SeA-S
Therefore:

wps) —d @)= Y > a0%) - dZ@p%) 30 alaCp®) - u'(a)

aS€AS bSecAS a=SeA-S
- > q@®) > qla™®la®)u'(a)
aSeAS a=S€A—S
= > Y q0%)-da®p®) Y qla” %) - ui(a)
aSE€AS bS+£ad a=S€A—S
= X @) (1-d@e®) ¥ alala)u(a)
aSeAS a=SeA-S

QED.

5 Coalition-Proof Correlated Equilibria

In the last Section we show that an ez-ante strong correlated equilibrium a
la Moreno & Wooders is also appropriate to frameworks in which players can
plan deviations at all stages. A natural question is whether a similar result
holds for their notion of coalition-proof correlated equilibrium.” In this Sec-
tion we show that the answer is negative, by presenting an example (adapted
from Bloch & Dutta, 2007), in which there is an ez-ante coalition-proof cor-
related equilibrium that is not self enforcing agreement in a framework in
which communication is possible at all stages. Table 2 presents the matrix
representation of a two-player game and an ex-ante coalition-proof correlated
equilibrium.

Xa%ffo%Player Game and an Ez-ante Coalition-Proof Correlated Equilibrium
b | by | by by | by | by

ai | 6,6 |-2,00,7 a; | 1/2] 0 |0

as | 22| 2,2 10,0 as | 1/41/4 ] 0

as | 0,0 | 0,0 |33 as| 0 | 0 |0

We first show that the profile presented in table 2 is an ex-ante coalition-
proof equilibrium. First, observe that the profile is a correlated equilibrium:

7 Recall (Moreno & Wooders, 1996) that an ez-ante coalition-proof correlated equi-
librium is a strategy profile from which no coalition has a self-enforcing and im-
proving ez-ante deviation. An ez-ante deviation is self enforcing, if no proper sub-
coalition has a further self-enforcing and improving deviation.
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no player has a profitable unilateral deviation. Moreno & Wooders (1996) have
proved that in a two-player game, every correlated profile which is not Pareto-
dominated by another correlated equilibrium is a coalition-proof correlated
equilibrium. Our profile gives each player a payoff of 4. Thus we prove that
the profile is an ezr-ante coalition-proof correlated equilibrium, by showing
that any correlated equilibrium ¢ gives player 1 a payoff of at most 4. Let
x = q (a1, b1). Observe that g (ag, b1) > x/2 because otherwise player 1 would
have a profitable deviation: playing b3 when recommended b;. This implies
q (az,by) > x/2, because otherwise player 2 would have a profitable deviation
(playing a; when recommended as). Thus the payoff of ¢ conditioned on that
the recommendation profile is in A = ((a1,b1), (az,b1), (ag, b)) is at most 4,
and because the payoff of ¢ conditioned on that the recommendation profile
is not in A is at most 3, then the total payoff of ¢ is at most 4.

We now explain why this profile is not a self-enforcing agreement in a frame-
work in which the players can communicate and plan deviations also at the
ex-post stage.® Assume that the players have agreed to play the profile, and
player 1 has received a recommendation ay. In that case, he can communicate
with player 1 at the ez-post stage, tell him that he received ay (and thus if
the players follow the recommendation profile they would get a payoff of 2),
and suggest a joint deviation - playing (as, b3). As player 1 has no incentive
to lie (to make a false claim that his recommendation is as when it is ay),
then player 2 would believe player 1, and they would both play (as, b3). This
ez-post deviation is self-enforcing: (as, b3) is a Nash equilibrium, and thus no
player has a profitable sub-deviation.

Observe that the same deviation is not self-enforcing in the ez-ante stage. If
the players agree at the ez-ante stage to implement a deviating device that
changes (a9, b1) into (as, bs), then player 2 will have a profitable sub-deviation:
playing b3 when recommended b,. Similarly, if they agree to implement a
deviating device that changes (ag, by) into (ag,bs), then player 1 will have a
profitable sub-deviation - playing a; when recommended as,.

6 Concluding Remarks

(1) Bayesian games: Moreno & Wooders (1996) present a notion of ez-ante
strong communication equilibrium in Bayesian games. Our result can be

8 The profile is not an ez-post coalition-proof correlated equilibrium according to
the definitions of Bloch & Dutta (2007) and Ray (1998). The profile is an ez-post
coalition-proof correlated equilibrium according to the definition of Einy & Peleg,
due to their requirement that an ez-post deviation would be strictly profitable to
each player given all recommendations he may receive.
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extended to this framework as well, to show that an ez-ante® strong
communication equilibrium is also resistant to deviations at all stages.
k-strong equilibria: In Heller (2008) an ez-ante notion of k-strong corre-
lated equilibrium is defined as a strategy profile that is resistant to all
coalitional deviations of up to k players. Our result can be directly ex-
tended to this notion as well: an ex-ante k-strong correlated equilibrium
is resistant to deviations of up to k£ players at all stages.

Related Literature:

(a) The question of existence of strong and coalition-proof correlated
equilibria is discussed in Moreno & Wooders (1996), Milgrom &
Roberts (1996), Ray (1996), Holzman & Law-Yone (1996), and Bloch
& Dutta (2007).

(b) Applications of strong and coalition-proof equilibria are presented
and discussed in Bernheim & Whinston (1986, 1987), Einy & Peleg
(1996) and Delgado & Moreno (2004).
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