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1 Introduction

Closed form expressions for the fundamental solution of parabolic partial differential
equations (PDE) are needed in several application domains ranging from Chemistry to
Physics, from Statistics to Finance [2, 3, 5, 6]. In this paper a closed form approximation
for the fundamental solution of the following parabolic PDE operator is derived

LU(x, t) := a(x)∂xxU(x, t) − ∂tU(x, t) = 0, (1)

on Ω = R × [0, t]. The operator is uniformly parabolic and its coefficient function a is
bounded and Hölder regular. Precisely, it is assumed that

H.1 there exists m and M such that 0 < m ≤ a(x) ≤ M < ∞, x ∈ R;

H.2 there exist α ∈ (0, 1) and C such that |a(x) − a(y)| ≤ C|x − y|α, x ∈ R.

Under H.1 and H.2 the fundamental solution Γ(z; ζ) = Γ(x, t; ξ, τ) of (1) exists and
is unique [4]. When a is constant, a(x) ≡ v, the fundamental solution is given by
Γv(x − ξ, t − τ), where

Γv(x, t) :=
1√
4πvt

exp

(

− x2

4vt

)

.

In general however, an explicit expression is not always available and approximations
need to be computed.

A method for approximating Γ(z; ζ) consists on using Levi’s parametrix series ex-
pansion, recently reconsidered as a computational method by Corielli and Pascucci for
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financial applications [3]. The parametrix expansion expresses Γ(z; ζ) in terms of the
fundamental solution Z(z; ζ) of the corresponding “frozen” PDE

a(ξ)Uxx(x, t) − Ut(x, t) = 0,

given by Z(x, t; ξ, τ) = Γa(ξ)(x− ξ, t− τ). Specifically, Γ is given by the series expansions

Γ(z; ζ) = Z(z; ζ) +
n
∑

k=1

Zk(z; ζ) + En+1(z; ζ), (2)

where

Zk(z; ζ) :=

∫ t

τ

∫

R

Z(z; z0)(LZ)k(z0; ζ)dz0, (3)

with (LZ)k defined by

(LZ)1(z; ζ) = LZ(z; ζ), (LZ)k(z; ζ) =

∫ t

τ

∫

R

LZ(z; w)(LZ)k−1(w; ζ)dw.

The error term En+1 is of the order O((t − τ)⌊
n+2

2
⌋ΓM+ǫ(z, ζ)), with ǫ > 0.

In the following Γ(z; ζ) is approximated by using the first three terms of the parametrix
series in (2):

Γ(z; ζ) = Z(z; ζ) + Z1(z; ζ) + Z2(z; ζ) + O(t2ΓM+ǫ(z; ζ)). (4)

where, for notational convenience and without loss of generality, it has been considered
only the case ζ = (ξ, 0), that is τ = 0.

The main practical limit of the parametric series consists in the fact that Zk is defined
in terms of a 2k dimensional integral which, in general, cannot be computed explicitly.
Here a closed form approximation to Z1 and Z2 is derived. That approximation has
errors not exceeding the remainder in (4).

With this purpose let rewrite

Z1(z; ζ) =

∫ t

0
I1(t0; z, ζ)dt0 and Z2(z; ζ) =

∫ t

0

∫ t0

0
I2(t0, t1; z, ζ)dt1dt0, (5)

where

I1(t0; z, ζ) =

∫

R

Z(z; x0, t0)LZ(x0, t0; ζ)dx0, (6)

I2(t0, t1; z, ζ) =

∫

R

∫

R

Z(z; z0)LZ(z0; z1)LZ(z1; ζ)dx0dx1, (7)

and zi = (xi, ti), i = 0, 1. Now, notice that some of the factors in the integrands in
(6) and (7) tend to Dirac’s deltas at the corners of the domains of the integrals in (5).
Thus, at that points the computation of I1(t0; z, ζ) and I2(t0, t1; z, ζ) reduces to simple
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function evaluations. Using these values, Z1 and Z2 are approximated by a trapezoidal
rule as follows

Ẑ1(z; ζ) =
t

2

(

I1(0
+; z, ζ) + I1(t

−; z, ζ)
)

(8)

and

Ẑ2(z; ζ) =
t2

6

(

I2(0
+, 0+; z, ζ) + I2(t

−, 0+; z, ζ) + I2(t
−, t−; z, ζ)

)

, (9)

where f(x+) and f(x−) denote, respectively, the limit to x from right and left. The
errors of approximations in (6) and (7) are, respectively, of order O(t3‖I ′′1 ‖∞,(0,t)) and
O(t3‖(∂t0t0 + ∂t0t1 + ∂t1t1)I2‖∞,Dt

), where Dt = {(t0, t1)|0 < t0 < t and 0 < t1 < t0} is
the domain of the second integral in (5) 1.

The paper is structured as follows, in next section some results concerning limits of
Gaussian and parametrix functions Γv and Z1 are reported. These results will be used
in section 3 to derive expressions for the terms appearing in (8) and (9).

2 Preliminary results

The first lemma gives point-wise bounds on the non-constant parameter Gaussian func-
tion

Γ̃(x, t) := Γg(x)(x, t),

in terms of constant parameters Gaussians.

Lemma 1. Let g(x) bounded, that is 0 < m ≤ g(x) ≤ M < ∞, x ∈ R then
√

m

M
Γm(x, t) ≤ Γg(x)(x, t) ≤

√

M

m
ΓM (x, t), x ∈ R and t > 0.

Proof. See [3].

The following results characterize the limits of Γv(x, t) and Γ̃(x, t) when t → 0.

Lemma 2. Let f(x) have limit for x → 0, v > 0 and g(x) satisfying H.1 and H.2,

lim
t→0

∫

R

f(x)Γv(x, t)dx = lim
t→0

∫

R

f(x)Γ̃(x, t)dx = lim
x→0

f(x) (10a)

lim
t→0

∫

R

|x|n
vn/2tn/2

Γv(x, t)dx =
2n

√
π

γ((n + 1)/2) =

{

(2k)!/k!, n = 2k,

22k+1k!/
√

π, n = 2k + 1.
(10b)

lim
t→0

∫

R

|x|n
g(x)k/2tk/2

Γ̃(x, t)dx =











0, if k < n,

finite and positive, if k = n and

∞, if k > n.

(10c)

where γ is the gamma function [1].

1Actually, it can be proved that the errors are of order O(t3‖I ′′
1 ‖∞Z(z; ζ)) and O(t3‖I ′′

1 ‖∞Z(z; ζ)).
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Proof. By Lemma 1, equation (10c) is a direct consequence of (10b) and of the bound-
edness of g(x).

Remark 1. Notice that (10b) is valid not only at the limit t → 0 but also for any t > 0.

In the previous Lemma, (10a) characterizes the limit of Γv(x, t) and Γ̃(x, t) as a Dirac’s
delta. Equations (10b) and (10c) state that xn and tn/2 are of the same order when
integrated with a Gaussian function.

The following Lemma derives a result analogous to point 3 of Lemma 2 for Γ̃(x, t).

Lemma 3. Under the hypothesis of Lemma 2 and assuming g continuous and derivable,
with bounded first derivative near 0, then

Hn = lim
t→0

∫

R

xn

g(x)n/2tn/2
Γ̃(x, t)dx =







n!

(n/2)!
, n even,

0, n odd,
(11)

and

H̃n = lim
t→0

∫

R

1

t1/2

x2n+1

(g(x)t)n+1/2
Γ̃(x, t)dx =

(2n + 1)!

n!

g′(0)
√

g(0)
. (12)

Proof. By (10c) in Lemma 2 the limit (11) is finite, but in a 0/0 indeterminate form.
Thus, let rewrite the limit as

Hn = lim
t→0

∂t

∫

R
g(x)−n/2xnΓ̃(x, t)dx

(n/2)tn/2−1
.

In the above limit, the derivative of Γ̃(x, t) is given by

∂tΓ̃(x, t) =

(

x2

4g(x)t2
− 1

2t

)

Γ̃(x, t),

so that Hn becomes

Hn = lim
t→0

∫

R

(

1

2n

xn+2

g(x)n/2+1tn/2+1
− xn

ng(x)n/2tn/2

)

Γ̃(x, t)dx =
1

2n
Hn+2 −

1

n
Hn,

and thus Hn+2 = 2(n + 1)Hn. Now, since H0 = 1 it follows that for n even Hn =
2n/2(n − 1)!! = (n)!/(n/2)!. For n odd, Hn = 0 is a direct consequence of (12).

Let thus consider (12). Proceeding as above it can be proved that H̃n = 1
4(n+1)H̃n+1−

1
2(n+1)H̃n, so that H̃n = (2n+1)!

n! H̃0. It remains to show that

H̃0 = lim
t→0

∫

R

x

t
√

g(x)
Γ̃(x, t)dx =

g′(0)
√

g(0)
.
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Since g is bounded, the limit can be rewritten as

H̃0 = lim
t→0

∫ ǫ

−ǫ

x

t
√

g(x)
Γ̃(x, t)dx,

for any ǫ > 0. Furthermore, again by assuming boundness and continuity of g, ǫ > 0
can be choosen such that x/

√

g(x) is monotone in the domain of integration.2

This allows to consider the change of variables y = x/
√

g(x),

dy

dx
=

1
√

g(x)

(

1 − x
g′(x)

2g(x)

)

and to rewrite the integral as
∫ ǫ

−ǫ

x

t
√

g(x)
Γ̃(x, t)dx =

∫ ǫ

−ǫ

x

t
√

g(x)

1
√

4πg(x)t
e
− x

2

4g(x)t dx

=

∫ ǫ

−ǫ

y

t

e−
y
2

4t

√
4πt

dy +

∫ ǫ

−ǫ

x

t
√

g(x)

(

x
g′(x)

2g(x)

)

1
√

4πg(x)t
e
− x

2

4g(x)t dx

=

∫ ǫ

−ǫ

g′(x)

2
√

g(x)

x2

tg(x)
Γ̃(x, t)dx

which, by boundedness and continuity assumptions on g, tends to g′(0)/
√

g(0) for t → 0.

Corollary 1. Under the same assumptions of Lemma 3, if g ∈ C2 with g, g′ and g′′

bounded near the origin, then

lim
t→0

∫

R

x2n+1

(g(x)t)n+1
Γ̃(x, t)dx = 0.

Proof. By hypothesis g′′ and g′ are bounded in [−ǫ, ǫ], so that, in that interval, g−1/2

and g1/2 can be approximated as g(x)−1/2 = g(0)−1/2 − 1
2g′(0)g(0)−3/2x + O(x2) and

g(x)1/2 = g(0)1/2 + O(x). Using these approximations it holds

x

g(x)t
= g(x)−

1
2

x

g(x)
1
2 t

= g(0)−
1
2

x

g(x)
1
2 t

− 1

2

g′(0)

g(0)
3
2

g(x)
1
2

x2

g(x)t
+ O(x3/t)

= g(0)−
1
2

x

g(x)
1
2 t

− 1

2

g′(0)

g(0)
3
2

g(0)
1
2

x2

g(x)t
+ O(x3/t),

thus,

lim
t→0

∫

R

x

g(x)t
Γ̃(x, t)dx = lim

t→0

∫ ǫ

−ǫ

(

g(0)−
1
2

x

g(x)
1
2 t

− 1

2

g′(0)

g(0)
3
2

g(0)
1
2

x2

g(x)t
+ O(x3/t)

)

Γ̃(x, t)dx

2 The first derivative of x/
p

g(x) is null in x = 0 if and only if lim
x→0

2g(x)− xg′(x) = 0, a case ruled out

because, by hypothesis, g > 0 and |g′(0)| < ∞.
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by Lemma 2 and 3

=
1

√

g(0)

g′(0)
√

g(0)
− 1

2

g′(0)

g(0)
· 2 = 0.

Finally, by proceeding in a manner analogous to the proof of Lemma 3, the thesis follows
for all n.

Now, let resume rules for computing limits of integrals involving the parametrix Z.
These results are used in the next section together with those provided in the corollary.

Lemma 4. If a(x) satisfy H.1 and H.2 then

lim
t→τ+

∫

R

f(x, t)Z(x, t; ξ, τ)dx = lim
t→τ+

x→ξ

f(x, t), (13a)

lim
τ→t−

∫

R

f(ξ, τ)Z(x, t; ξ, τ)dξ = lim
τ→t−
ξ→x

f(ξ, τ), (13b)

provided that the limits in the RHSs exist and are unique.
Furthermore, for n even

lim
t→τ+

∫

R

(x − ξ)n

(a(ξ)(t − τ))n/2
Z(x, t; ξ, τ)dx = lim

τ→t−

∫

R

(x − ξ)n

(a(ξ)(t − τ))n/2
Z(x, t; ξ, τ)dξ =

n!

(n/2)!
.

(14a)

and, for n odd

lim
t→τ+

∫

R

(x − ξ)n

(a(ξ)(t − τ))n/2
Z(x, t; ξ, τ)dx = lim

τ→t−

∫

R

(x − ξ)n

(a(ξ)(t − τ))n/2
Z(x, t; ξ, τ)dξ = 0,

(14b)

lim
τ→t−

∫

R

|x − ξ|n
(a(ξ)(t − τ))n/2

Z(x, t; ξ, τ)dx =
2n

√
π

(

n − 1

2

)

! (14c)

and

lim
τ→t−

∫

R

|x − ξ|n
(a(ξ)(t − τ))n/2

Z(x, t; ξ, τ)dξ < +∞ (14d)

Proof. Direct consequence of Lemma 2 and Lemma 3.

Corollary 2. With the same hypothesis of Lemma 4, if f ∈ C2,1 and lim
x→±∞

f(x, t)Γ(x, t) =

0 and assuming a(x) twice diffrentiable near x = ξ, then

lim
t→τ+

∫

R

f(x, t)LZ(x, t; ξ, τ)dx = lim
t→τ+

x→ξ

∂xx

(

(a(x) − a(ξ))f(x, t)
)

(15a)
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and

lim
τ→t−

∫

R

f(ξ, τ)LZ(x, t; ξ, τ)dξ = −(a′′(x) + 2a′(x)∂x)f(x, t). (15b)

Proof. In order to prove (15a), let notice that LZ = (a(x)∂xx − ∂t)Z = a(x)∂xxZ −
a(ξ)∂xxZ so that (15a) follows by integrating by parts:

∫

R

f(x, t)LZ(x, t; ξ, τ)dx =

∫

R

f(x, t)(a(x) − a(ξ))∂xxZ(x, t; ξ, τ)dx

=

∫

R

∂xx

(

(a(x) − a(ξ))f(x, t)
)

Z(x, t; ξ, τ)dx.

The last results, equation (15b), is a bit more involving. Let rewrite LZ(z; ζ) =
A(z; ζ)Z(z; ζ), where

A(x, t, ξ, τ) :=
a(x) − a(ξ)

a(ξ)(t − τ)

(

(x − ξ)2

4a(ξ)(t − τ)
− 1

2

)

(16)

By a Taylor expansion of a(ξ) centered in x, A can be rewritten as

A(z; ζ) =

(

a′(x)
(x − ξ)

a(ξ)(t − τ)
− a′′(x)

2

(x − ξ)2

a(ξ)(t − τ)

)(

(x − ξ)2

4a(ξ)(t − τ)
− 1

2

)

+ O

(

(x − ξ)3

t − τ

)

,

so that, from the Taylor expansion f(ξ, τ) = f(x, τ)− (x− ξ)f (1,0)(x, τ) + O(x− ξ) and
defining y = (x − ξ)/

√

a(ξ)(t − τ) it gives

f(ζ)A(z; ζ) = − 1

8
a′′(x)(y4 − 2y2)f(x, τ) +

1

4
a′(x)

(y3 − 2y)
√

a(ξ)(t − τ)
f(x, τ)

− 1

4
a′(x)(y4 − 2y2)f (1,0)(x, τ) + O((x − ξ)3/(t − τ))

Now, since by (14a)

lim
τ→t−

∫

R

(y4 − 2y2)Z(x, t; ξ, τ)dξ = 8,

and, by Corollary 1,

lim
τ→t−

∫

R

y2n+1

√

a(ξ)(t − τ)
Z(x, t; ξ, τ)dξ = 0, n = 0, 1,

it follows that

lim
τ→t−

∫

R

f(ζ)A(z; ζ)Z(z; ζ)dξ = −2a′(x)∂xf(x, t) − a′′(x)f(x, t),

assuming continuity of f and f (1,0) near (x, t). The latter requirement can be weakened
by replacing f(x, t) and f (1,0)(x, t) with the corresponding limits and assuming existence
and unicity of these.
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3 Approximating Z1 and Z2

In the following it is assumed that the coefficient a(x) satisfies assumptions H.1 and
H.2 and has enough regularity near x or ξ.

3.1 Computing I1(t
−) and I1(0

+)

By rule (13b) of Lemma 4 it follows that

I1(t
−;x, t; ξ, 0) = lim

t0→t−

∫

R

Z(x, t;x0, t0)LZ(x0, t0; ξ, 0)dx0 = LZ(x, t; ξ, 0), (17)

for t > 0. The second limit

I1(0
+;x, t; ξ, 0) = lim

t0→0+

∫

R

Z(x, t; x0, t0)LZ(x0, t0; ξ, 0)dx0, t > 0,

is computed by using rule (15a) in Corollary 2, which gives

I1(0
+;x, t; ξ, 0) = a′′(ξ)Z(x, t; ξ, 0) + 2a′(ξ)∂ξZ(x, t; ξ, 0)

=

(

a′′(ξ) + 2
(a′(ξ))2

a(ξ)

(

(x − ξ)2

4a(ξ)t
− 1

2

)

+ a′(ξ)
x − ξ

a(ξ)t

)

Z(x, t; ξ, 0). (18)

3.2 Computation of I2(t
−, t−) and I2(t

−, 0+)

Let consider the limit lim
t0→t−

I2(t0, t1), by Lemma 2 it follows that

I2(t
−, t1) = lim

t0→t−

∫

R

∫

R

Z(x, t;x0, t0)LZ(z0; z1)LZ(z1; ζ)dx0dx1

=

∫

R

LZ(z; z1)LZ(z1; ζ)dx1.

Now, the limits lim
t1→0+

I2(t
−, t1) and lim

t1→t−
I2(t

−, t1) are tackled by means of Corollary 2,

equations (15a) and (15b), respectively. That is,

I2(t
−, 0+) = lim

t1→0+

∫

R

LZ(x, t;x1, t1)LZ(x1, t1; ξ, 0)dx1

=
(

a′′(ξ) + 2a′(ξ)∂ξ

)

LZ(x, t; ξ, 0)

=

(

a′′(ξ) + 2
(a′(ξ))2

a(ξ)

(

(x − ξ)2

4a(ξ)t
− 1

2

)

+ a′(ξ)
x − ξ

a(ξ)t

+ 2a′(ξ)
∂ξA(x, t; ξ, 0)

A(x, t, ξ, 0)

)

LZ(x, t; ξ, 0) (19)

and

I2(t
−, t−) = lim

t1→t−

∫

R

LZ(x, t;x1, t1)LZ(x1, t1; ξ, 0)dx1

= −
(

a′′(x) + 2a′(x)∂x

)

LZ(x, t; ξ, 0) (20)
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Now, since

∂xLZ(x, t; ξ, τ) = L∂xZ(x, t; ξ, τ) + a′(x)∂xxZ(x, t; ξ, τ)

= −L
x − ξ

2a(ξ)t
Z(x, t; ξ, τ) +

a′(x)

a(x) − a(ξ)
LZ(x, t; ξ, τ)

= − x − ξ

2a(ξ)t
LZ(x, t; ξ, τ) − 1

t

x − ξ

2a(ξ)t
Z(x, t; ξ, τ) +

a′(x)

a(x) − a(ξ)
LZ(x, t; ξ, τ),

the limit in (20) can be rewritten as

I2(t
−, t−) = −

(

a′′(x) − a′(x)
x − ξ

a(ξ)t
+ 2

a′(x)2

a(x) − a(ξ)

)

LZ(x, t; ξ, 0)

+
a′(x)

t

x − ξ

a(ξ)t
Z(x, t; ξ, τ),

3.3 Computing I2(0
+, 0+)

Before deriving an expression for I2(0
+, 0+) it is convenient to prove the following

Lemma.

Lemma 5. Let assume f(x) ∈ C2 on B = [ξ − ǫ, ξ + ǫ], then

lim
t→τ

∫

R

f(x)∂ξZ(x, t; ξ, τ)dx = f ′(ξ). (21)

Proof. Firstly,

∂ξZ(x, t; ξ, τ) =

(

a′(ξ)

a(ξ)

(

(x − ξ)2

4a(ξ)(t − τ)
− 1

2

)

+
x − ξ

2a(ξ)(t − τ)

)

Z(x, t; ξ, τ).

Then, from f(x) = f(ξ) + (x− ξ)f ′(ξ) + O((x− ξ)2‖f ′′‖∞,B) it follows that (21) can be
rewritten as

lim
t→τ

∫

B
f(x)∂ξZ(x, t; ξ, τ)dx = lim

t→τ

∫

B

a′(ξ)

a(ξ)

(

(x − ξ)2

4a(ξ)(t − τ)
− 1

2

)

f(ξ)Z(x, t; ξ, τ)dx

+ lim
t→τ

∫

B

(x − ξ)2

2a(ξ)(t − τ)
f ′(ξ)Z(x, t; ξ, τ)dx.

where it has been used the fact that integral of odd terms is null and that the remaining
omitted terms vanish for t → τ by virtue of Lemma 4, equation (14a). The result in
(21) follows by noting that by (14a) the first limit converges to 0 and the second one to
f ′(ξ).

Let consider now the computation of I2(0
+, 0+). From (15a) it follows that

I2(t0, 0
+) = lim

t1→0

∫

R

∫

R

Z(x, t; x0, t0)LZ(z0; z1)LZ(z1; ζ)dx0dx1

=

∫

R

Z(z; z0)(a
′′(ξ) + 2a′(ξ)∂ξ)LZ(z0; ζ)dx0.
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so that,

I2(0
+, 0+) = lim

t0→0

∫

R

a′′(ξ)Z(z; z0)LZ(z0; ζ)dx0. + lim
t0→0

∫

R

2a′(ξ)Z(z; z0)∂ξLZ(z0; ζ)dx0

= a′′(ξ)

[

∂x0x0(a(x0) − a(ξ))Z(z;x0, 0)

]

x0=ξ

+ 2a′(ξ)C

where

C = lim
t0→0

∫

R

Z(z; z0)∂ξLZ(z0; ζ)dx0.

Now, since LZ(z0; ζ) = (a(x0) − a(ξ))∂x0x0Z(z0, ζ), C can be rewritten as

C = − lim
t0→0

∫

R

a′(ξ)Z(z; z0)∂x0x0Z(z0; ζ)dx0

+ lim
t0→0

∫

R

Z(z; z0)(a(x0) − a(ξ))∂x0x0∂ξZ(z0; ζ)dx0

= −a′(ξ)∂ξξZ(z; ζ) + lim
t0→0

∫

R

(

∂x0x0(a(x0) − a(ξ))Z(z; z0)

)

∂ξZ(z0; ζ)dx0

= −a′(ξ)∂ξξZ(z; ζ) +

[

∂x0x0x0(a(x0) − a(ξ))Z(z;x0, 0)

]

x0=ξ

.

Thus,

I2(0
+, 0+) =

[

(a′′(ξ) + 2a′(ξ)∂x0)∂x0x0(a(x0) − a(ξ))Z(z;x0, 0)

]

x0=ξ

− 2a′(ξ)2∂ξξZ(z; ζ).

(22)
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