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A problem of existence and charactetization of solutions of optimal growth
madels in many sector economies is studied. The social utility to be optimized
15 & generalized form of a preference depending additively on consumplion at
the different dates of the planning period, The eptirnization is restricted to a set
of admissible growth paths defined by production—investment—consumption
relations described by a system of differential equations. Sufficient conditions
are given for existence of a solution in a Hilbert space of paths, without convexity
assurnptions on either the wtilities or the technology, using techniques of
nonlinear functional analysiz. A characterization iz given of the utilities which
are continuous with respect to the Hilbert space norm, Under convexity
assumptions a charactenization is also given of optimal and efficient solutions
by competitive prices,

|. TuTrRODUCTION AND WMOTIVATION

The goal of this paper is to study certain problems of nonlinear functional
analysis and their applications to intertemporal allocation policies available
to an economy which chooses, at cach point in time, between consumption
and mvestment in different productive sectors, We start with an informal
description of the problem; for further references see, for instance, [1].

We assume that there arc initially given values of capital stocks in the n sectors
of the economy, denoted K {0) e R+, 1 = 1,..., , and an initial total population
denoted L{0) & R~ Each scctor has a given production technology that uses
as inputs capital and labor; the technology of the fth sector is described by a
production function

Fi: R, R

where F2 (L, Ky, ..., K;) represents the output of the ith sector, L, € R denotes
allocation of labor to sector 7, and K, € R denotes the allocation of type j capital
goods to sector 1. When the inputs L, and K, are positive, the output is assumed
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FIIMCTIONAL ANALYSIS AND ECONOMIC GROWTH 505

to be positive also. The total population, represented by the real variable L,
is assumed to grow at an exponential rate p £ R*7 Le., at time ¢,

L{t) = Lyevt.

The total population L(f) constraints the total available supply of labor in all
sectors of the economy through time, i.e., T L) = L), ¢ e [0, oo). Similarly,
allocation of type { capital gnods to all sectors 1s constrained bv the total amount
of available capital goods of type ¢ through time, denoted Kif)e Rt, 1e,
T Koty = Ky, te [0, o). Let C (1) denote (instantaneous) consumption
of the goods produced by the ith sector at time ¢, and let K () = (d/dt) K1)
dennte the rate of change of capital stock or investment in sector i at time £. At
cach point in time, for each sector i it is assumed that the sum Ct) + K1) (con-
sumption of goods produced by the scctor plus investment realized on that
sector) cannot exceed the production capabilities of that sector’s technology,
taking into account that capital stocks depreciate at a (linear) rate & K.
Farmally, this is represented by the inequalitics

':il:fj + EE{!} {“1 I‘.IE{L{{IL H-'Iz'll.;}w"l Kni{.i}} - '].-'K;I:i::l,
for

i =1y, m, te |0, a0,

which give implicitly a choice between present and future consumption, provided
F* increases with &£, 2

The problem is then to choose the instruments: consumption L) —
(Cyt)eer, Colt)), types of investment Ki{f) = (Kt 1 =1,,m j—1,...m
and allocation of labor L. (1) as functions of time, so as to maximize a criterion
function, which we discuss next.

The time dependent welfare or eriterion function 1s described by

W) — [ e=tu(C(e)L(), £ dt, (0

=

where, as described above, C(t) = (Cy(t),..., Cy(t)) is the vector of current
consumption level of the # types of commaodities at date ¢, and L{t) represents
the population at date ¢ u is a given real valued function on Re+l pepresenting the
(instantancous) social utility derived from per capita comsumption C(#)/L(1) at

" The pattern of growth of the population can be given different forms, or it can be
determined in part endogenously, see, for instance [9]. Criven the fact that in this model
the population growth is exponential and the welfare function W depends on per capita
consumption, the rate of growth of the population u is later embodied in the purameter 8
(see (1) and the statement of problem (P) below],

2 [f less is consumed at time ¢, more cun be invested at tune ¢ and thus more could be
produced and consumed in the future.
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time ¢, and & £ (0, 1) is a social discount factor representing choice of substitution
between future and present consumption, W{C) is a generalized form of a typical
discounted preference function which depends additively on consumption at the
different dates of the planning period, as studied, for instance, by Koopmans [7].
W(C) represents the present discounted social utility of stream of per capita
CONsLMpLion.

We now give a formal statement of the problem. From here on lower case
letters shall represent per capita quantities, for instance, k; = Ky/L, ¢, = C/L,
etc.; the dependence of ¢;, &;;, etc, on time will not always be indicated to
simplify notation. In per capita form the model becomes

{P) Maximize Hey .oy q),

P
where

=

ey oo ) = |° ePtuley(),-s €408, £) 4,

"0

and 8 (0, o). The real valued measurable functions ¢, ..., ¢, on which the
maximization 1s performed are restricted to a region within a function space
where conditions (a) and (b) below are satisfied, for some functions k — (&)
and I = (1) (, = 1...., #) in certain function spaces:*

o, + ko FAL L Ry s, Ry) — BRg f=1,..n §fR-, {a)
and
'}l' ke ok, P = 1,
=1
Lh=1 (b)
(=1
.IIEEI::I::I] - 'ﬁﬁ{l i II = ].,...r H,

The ¢'s, &;,’s, and I,'s which represent per capita consumption, capital stocks,
and labor path are all assumed to be positive real valued functions on [0, o),
the &,'s which represent per capita rates of change of capital stocks or investment
flows are not necessarily positive real valued functions on [0, o). The equalities
of (1) and (b} above reflect the assumption that all available resources are
utilized, and that all that is not invested 15 consumed.

In this paper we give sufficient conditions for existence of an optimal solution
to the above problemn in certain function spaces without convexity assumptions

1 ¢ iz assumed here that the production technology is a homogeneous function so
that () can be written in per capita form; the results can be immediately extended to
nonhomogeneous cases when the variable L of population s bounded by above, mstead
of growing at an exponential growth as assumed above. See also footnote 1,
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on either the technology (F) or the welfare function (7). We also prove unique-
ness of the solution and existence of competitive prices for the optimal selution
under convexity assumptions; a characterization is also given of ¢fficient paths by
competitive prices. We shall briefly discuss the meaning of the terms involved
and of the results in economic and mathematical terms. Prices in this context
are functions which assign a positive numerical (present) value to each con-
sumption path c(t); this value is assumed to be a continuous linear real valued
function, and thus prices are continuous linear funcrionals defined on the space
of consumption paths (see, for instance, [2]). When the value in a given price
system p of all consumption paths within a set 5 1s maximized at a consumption
path ¢(t), this path is called competitive in S with respeet to the given price
system fi, and p is called a competitize price for #(1)* A consumption path ¢(f)
is called efficient within a set if it is maximal in that set with respect to a given
ordering in the space of paths. (See also footnote 7 and definitions in Sect. 2.)

The question of existence of a solution of problem (P} gives methodological
validity to the economic model; it is of importance to he able to prove it for
both convex and nonconvex technologies (1) and utilities (1) (see Theorem T},
Nonconvex technologics appear typically in productive sectors which exhibit
increasing returns to scale for some values of their inputs, such as certain
public services: communications, energy, cte, The question of existence of
competitive prices for the optimal or efficient growth paths addresses a decen-
tralization problem in economic theory, Mathematically, the question 15 that of
the existence of an adequate continuous linear functional separating the set of
feasible paths from a translation of the positive cone with vertex on the feasible
element c* which optimizes the function W, Such a function will define a compe-
titive price system p* for ¢*, and if any other path is strictly larger than ¢*
(in the arder of the function space) then the value m p* will be strictly larger,
The question of existence of such a price system in connomic terms is: Under
what conditions will there exist a price p* such that the {decentralized market
mechanism of ) competitive (value maximizing) allocation of resources in such a
price system will drive the economy towards a growth path which- is optimal
from the social welfare utility W (centralized) viewpoint ? The existence of such
prices is proven here under convexity assumptions on the technology and the
social utility function . The method of the proof indicates how such prices may
fail to cxist 10 noONConyex cases.

We next discuss certain problems appearing in the choice of appropriate
function spaces for the study of problem (P). By definition, the spaces of prices
are the duals of the spaces of consumption paths on which the optimization is

+ Competitive prices for optimal paths can be alternanively defined us prices satisfying
an “interternporal profic maximization' condition, which is well defined anly in discrete
time models, i.e., when the variable takes integer values. It can be shown that these twao
definitions are eguivalent when the modcel 15 trunslated oo a2 discrete nme in our conlext,
since the spaces of consumption paths and of prices are both (dual} Hilbert spaces.
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performed. Tf the space of consumption paths was piven, for instance, a sup
norm, making 1t an L. space, certain prices given by purely finitely additive
elements in L.* would have no natural economic interpretation, since they
may assign 4 nonzero value to a whele consumption path ¢, while assigning for
each t, zero value to the current consumption at time ¢, o(f}).* For this, among
other reasons, L, spaces with | = p <7 o, and especially Hilbert spaces with
L, norms, become natural candidates for spaces of consumption paths, However,
the norms of these spaces have certain disadvantages with respect to the sup
norm, which has biased in previous works in the area the choice of comsumption
path spaces in favor of I, with the accompanying difficulties produced by the
tack of reflexivity [2]. One inconvenient feature of L, spaces is that since their
topology is weaker, it i3 harder to show conditions on u which vield Ly-continuity
of nonlinear functionals such as W. Another is that in economic theory the
admissible sets of paths on which the optimization is performed are usually
assumed to be contained in positive cones: all L o Spaces with | = p <7 oo
have natural positive cones® with no interior or internal points while a basie
tool needed to prove existence of competitive prices for optimal or efficient
programs,” the Hahn-Banach theorem, requires one of the convex sets being
separated to have an interior or an internal point [5],% so that these tools do not
apply here. However, if the ohjective function being maximized is shown to be
continuous in a weaker Ly topology, one can overcome this problem.® Thus,
the question of existence of prices is also related to the existence of appropriate
continuous functionals, if one is to work on L, . In Proposition 1, we pgive an
extension of 4 result of continuty of certain nonlinear operators on L, spaces
of Krasnoselskil [8] which provides a churacterization of continuous discounted
additive time-dependent nonlincar utilities of the form of W, defined on an L,

* This oceurs, for instance, when the function parc of v price p given by a purely
finitely additive measure on Le[0, oo is zero for all ¢ & [0, o), while £ as a functional on
L iz not identicully zera [5].

" An element fof LR, 1) s called positive if f{#) = 0 for p-almost all ¢ in &,

T Anelermnent ¢ of L{R, p) is called efficient in a subset 5 if the translation of the positive
cone with vertex ¢ intersects § only at ¢,

* The hypothesis that one of the convex sets being separated contains an interior
point can be weakened to the assumption that one of the sets has an intornal point (see [5])
relative to the leazt closed vector subspace containing the set; this hypothesis, which is
not satisfied in our model, cannat be eliminated, for a counterexample, see [3]. DMeudonné
[4] nlsa shows that, in o nonreflexive space, such us Lo, twa closed convex bounded sets
without a common point may not have any closed separating hvperplane. If the apace is
reflexive {e.g., L) such sets can be separated by a closed hvperplane, In our problem,
hawever, the two closed sets do have one point in common, namely the efficient or optimal
path, so this result also does not apply, and new toals have to be used here,

* Basically, one shows that in thia case one of the sets being separated is contained in a
convex set which 1s the inverse image of an vpen set under a continuous map and is still
digjeint from the other set beinyg sepurated. (Sce Theorem 2 of Sect. 2.
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space of consumption paths. This characterization is given here on the economic
parameters of W: the social utility function u, and the discount factor 8.

The results we obtain by use of Hilbert space techniques for existence and
characterization of solutions, and for characterization of continuous nonlinear
functions are new to the literature. In related models results in this direction
were obtained with different techniques, for instance, in one sector convex
models with discrete time, 1.e., when the variable ¢ takes integer values, and in
continuous time models (te [0, o2)), which have a more complex structure,
related results were obtained mostly by the use of optimal control methods
which require certain additional “transversality conditions” and also convexity
for existence of solutions (see, for instance, [1]). Our results represent a strong
extension of existent ones, and apply to a more general class of problems. "They
are obtained by using a different technique, which we now discuss. The weighted
L, space of admissible consumption paths (with a finite measure on [0, oc})
used here, denoted H,", contains as a dense subspace the space of hounded
paths L. which has been used in the economc hterature [2]. In arder o be
able to work in L, , given the relation between the feasible consumption and
investment paths of (a) above, the space of admissible capital accumulation
paths &,(t) is given a certain Hilbert space structure called a Sobolev space
[13]. In view of Sobolev's inequality [13] the space of capital accumulation paths
k(1) is contained in €, ie., the paths k,(t) are continuous, which is a desirable
gconomic feature.

The topology of H,* is given by an L; norm denoted | - ||, , which is related
to the discount factor & in W. This topology is, of course, weaker than the sup
norm, making it easier for sets to be compact but harder for functions to be
continuous. However, by the results of Lemmas 1 and 2, Proposition |, and
Theorem 1, it represents a useful adaptation to the model: usual feasible con-
sumption sets are || - |, compact and a wide class of welfare utility functions 1s
| - ', continuous, which allows us to prove existence of solutions without eon-
vexity assumptions. Also, the notion of distance in this space seems quite well
fitted for these types of discounted maodels. (See Proposition 1 and the following
remark.

Further adwvantages of these results of existence and characterizations of
solutions in Hilbert spaces, which are not exploited here, include the use of
tools for approximation of solutions by gradient methods which are available
in Hilbert spaces for computing optimal paths of economic growth. Also, other
nonlinear functional analvsis techniques which are used in the study of differ-
ential vperators defined on Sobolev's spaces (sce, for instance, [1(]) may now
become useful for the study of the Euler Lagrange differential equations
associated ro problem (P), which can also be viewed as an integro-differential
operator problem,

We proceed as follows:

In Lemmas 1 and 2, we establish compactness in H," of the set of feasible
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consumption paths, under natural economic assumptions made on the techno-
logy of the model. This requires consideration of the relationship between
different norm topologies on the set of feasible consumption and capital aceumu-
lation paths (defined in Seect. 2). Next, a necessary and sufficient condition for
continuity of welfare functions W defined by the discounted sum of time-
dependent utilities in the norm | - ||, is given (Proposition 1). These results
yield existence of a solution without requiring convexity assumptions on either
the technolopy or the welfare funetion (Theorem 1). For cancave welfare
functions and convex technologies, uniqueness follows (Theorem 1), and a
version of the Hahn-Banach theorem and certain results on continuity of
positive functionals are used to prove existence of positive competitive prices
for the optimal solution {Theorem 2). A characterization 1s also piven of efficient
optimal paths in this model by strictly positive competitive prices in cases where
the utility u 1s not necessarily increasing (Corollary 1).

2. EXISTENCE 0F SOLUTIONS

Let L0, «o) be the space of essentially bounded, real valued functions an
[0, o), with the sup norm denoted || - |, . If f and g are in L_[0, oo) define the
inner product

£y

(fgh=| ef() gl de
This inner product represents the discounted present value (at time () of the
consumption plan f in price system g, with discount factor A9
Let

.J'r'!a = {f*f}:m

The completion of L, under this norm is an L, space with the finite measure on
[0, co) given by the density function e~*. We denote this space H.°, and its
I, norm || - ]|, to bring attention to the parameter 4 in its definition. The relation
between A and the discount factor 8 of the function W of problem (P) 15 studied
in Proposition | below; in view of this proposition, although all spaces /,°
are isomorphic for any A, only certain values of A are adequate for this model.
Similarly, one defines H,1:

Let f and g be ! functions {continuously differentiable and bounded) and
define

e 1
(el =[ ™Y D) Dg(ry ar

il Fomll
and

IF IR = (R

" By definition of discounted present value.
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The completion of Cp! under the norm || - ||} is denoted H,', and it is a Hilbert
space which 1z called a (weighted) Sobolev space (see for instance, [10, 13]).
Let [ denote the vector ({, ,..., [) € R*, and m the matrix

(‘E‘u -Ef_m)
'FE;I.ﬂ- k;m.-
Let % denote the vector (&, ,..., &), and k — - (& ,--., k). Recall that %, is

defined to be ¥, k;; ((b) of pmb]em (Py).
Let F(Z, m) be a vector valued function F(l, m): B*% RraaR™ given by

F[I:' m} - {'F'Il:rl L "iall L kﬁl}?"'l bm{!ﬂ 1 '&lﬂ- LI 'Filﬂﬁ}}l

where, for each ¢, FY(I;, k¥): R*"1Y —» RV is a function representing the techno-
logy of sector i,
We make the following assumptions on the technology of the model:

Al. ¥ admits an c:l-:tn:nsmn to a real valued function Fy defined on a neigh-
borhood of R* % R** F, continuously differentiable and nondecreasing,

A2, There exists a vector & = (&, ,..., &,) such that
Fi(l, k") < Bk, , foralll=I1, k =k .

Furthermore, &y, << &; for all £ where &' = (k; ..., k,;) and k& is &,(0) as given
in (b) of problem (P). This assumption is basically a technological constraint
on production: after certain levels of capital stocks the technology is constrainted
in its per capita increases of productivity by the costs of maintenance of (per
capita) capital stock, represented by the depreciation parameter f.

Let € X K, be a set of all consumption paths in (I7,%)" and all paths of
capital accumulation or allocations of capital to sectors in (H,1)"", defined by

(c(t), mi2)) € Cp, = K,
when

(i) e(t)eL.[0, o), ie., ct) is a measurable essentially bounded non-
negative path.

(i) m(t)e H[0, co)*~, and hence Ei(t)e H [0, co)®, for all 7. Note
that by Sobolev inequality [13], H [0, o) C Cy[0, o), i.e., the k,'s are con-
tinuous,

HH" denotes the Cartesian product of H,* with itself n times. Similarly, for H,!
and Lo .
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(i1} k(D) (denoted also k) = k&, {(0), with &,,(0) satisfying (b) of problem (I).

(iv) Constraints (a) and (b) are satished a.e. for each pair (e(t), m(1)) n
Cy, % Ky for some measurable path [t} in [L.[0, co)]™t,

(v} 0 =2 c(t) = F(I(2), m(t)) a.e?? and
(vi) For | k| <01, and all ¢t & [0, o), there exists an N == 0 such that

| delt, &) = N | AF(t, &),

where deft, k) = el | A) — e(t), and AF(¢, k) denotes a similar vanation
function of F.

Condition (vi) bounds changes in the feasible consumption paths in small
intervals of time by a constant times changes in the variation of output. This
condition is used in the proof of existence of an optimal path; it is not necessary
for existence of solutions in discrete time models, i.e., when the variable ¢ takes
integer instead of real values.

Cy, is called the set of feasible consumption paths, and K the set of all feasible
mpamf matrix paths, with initial capital stock allocation Ir The space of all
feasible capital paths A(t) corresponding to matrices in K is denoted Guo.

We also make the following assumption on the welfare function:

A3, w: R" % R Rt iz a strictly increasing function of ¢ It satishes a
Caratheodory condition, 1.e., e, t) is continuous with respect to ¢ R* for
almast all # in R, and measurable with respect to £ for all values of ¢, (see [8]), and
for all (e, t)e R® « R

| ule, ) =< B{t) + a« ¢ &
where b(#) == 0, e R and [ & (1) e~ << o0

Remark. By assumption A3 the function W of problem (P) is increasing in ¢,
and hence it suffices to restrict the maximization problem to a region satisfying
constraints (a) and (b) with an equality instead of an inequality in (a).

The next two lemmas show || - |, compactness of the sets of feasible consump-
tion paths LL . by the above remark, it suffices to show || - [|, compactness of Lk
when the constraint (a) of problem (P) is an equality. -

Levma 1. Dnder assumptions Al and A2 for each imitial capital stock alloca-
tion ky in R+ the set Cy 5 all bounded, || - |, closed subset of (H W)~

Proof. We first check uniform || - ||, boundedness of € . Since by (a) of
problem (P), for any ¢ in €,
e(t) + k() = F(i(t), m(t)) — Bkit) 4.¢. (1)

12 |t cun be shown that condition {(v) can be replaced by the weaker condition: e(t) =
[fancin. ae: F{E), mi]} de, for some real number M =0
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for some m in K, and some admissible I, where gk reprcsents the vector
(8& ,..., Gk,), and since by (v) of the definition of € % K ,

O < eft) < F(UD, mt)  ae, (2)

it is enough to show that the set of valucs of F{I1), m(£)) is bounded b}r above.
Mote that by (1) and (2)

k+pk=F(lm—ec=0 a.e.,
so that
ko) = —BR(t)  ae. (3)
Also, by assumption, ¢ is nonnegative, so that
k< Fll,m)—Bk aec (4)
By Assumption A2 there exists a & in Rn'+ with Fi(l, &) — Bk, < 0
for k = &, so that k is negative for & > &. (5)

Thus, by (3), (4), and (3),
bt Chk, (®)

i.e., the admissible &'s in G,, are bounded by above. Hence R’k 15 also bounded
by above. Also, since by {b} of problem (P) the admissible I’ s are bounded by
above in the sup norm, it follows that the right-hand side of (2) is bounded by
continuity of F, which yields a uniform || - ||, bound for Ckn'

We now show that €, is | - ||, closed. Let {c*} be a net in C; , converging in
| -, to a path e.

We shall sce that there exists an m in &, such that (¢, m) satisfies (a) and (b)
of problem (P for some admissible /. Let m* € K; and & & (7, be the capital
paths corresponding to consumption path ¢ in Eq. (a), which exist by definition
of Cy, . Note that, by (3) and (4) above, for-all «,

—Bk* < k® S F(l°, m®) — Bk*  ae, (7)
where /" is a corresponding labor allocation path. Alse, by (6) for all o
g8 = v =L A (8)

By (7) and (B) the family {k*} is equicontinuous and bounded at each point ¢
and hence so is the family {m”} by its definition, Thus, by a theorem of Ascoli
[11, p. 179, Corollary 34], {m*} contains a subsequence which converges point-
wise to a continuous function, say, m(t). By (7) and (8), both norms || ||,
and || m ||} are well defined, so that m(f) e B+, Also, (¢, m) satisfies (a) and (b)
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of problem (P) for some [, the limit of the corresponding s, which is also
bounded by (b) of problem (P). Thus the path (¢(f), m(f)) 1s in Cﬂu ® Ky,
and thus Cy is closed. This campletes the proof.

Lemma 2. C, i5 precompact tn the || - ||, norm.

Proof. Tt suffices to consider the case n = 1. Note that the set C; is pre-
compact in the || + ||, norm if and only if the set

D ={g:g(t) = c(t) - e, forcin Cp 3

is precompact in Ly[0, co) with the Lebesgue measure. To prove precompactness
of D we use the results of Lemma 1.

First, note that since, by Lemma 1, € is bounded in the || - |, norm, say,
by a constant C, then if ge D

j‘m | g dt = J-n e=it | o2)|® dt = CJ”J g
“a b B
for some B = 0. Henee, [ is bounded in the Ly norm.
Next we need to verily, in view of [3, Theorem IV, Sect. §.20], the following
conditions (9) and (10):
lim | e | e{t)2dt =0 ©)

_IA]'-n.z'\__‘

uniformly for all ¢ in Ckn‘ and

]imjz | el-umittkalg(s L x) — et HBe(t) 2 dt = 0 (10)
x40 Jy
uniformly for ¢ in Oy
MNaote that
[ ettty de < | " e dt (1
A A
for ¢ in €5 , where C is the ||+ . bound of C,: Since the right-hand side of

(11) goes to zero independently uff as A goes to e, because e is in L0, oo,
then (9) is satisfied in our case.
Now, we prove that {10) is also satisfied. Let ' x| < 1.

J‘ | gl | ox) — el MBe(r))2 dt
0

\. |-ﬂc “ € A!l—:ﬁl-’?t-{! _{_ .‘r} . e{—h{t-&.::n.'zc(t:ll _|_ |€|: .il;i.'z;l;l!‘ic{t) e{—.iz]f:lc(r\,lljtl a4
‘o
(12)
< rq paerEn iz | & | xMe()|)? dt, (13)
0
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where
N = sup | eft + x) — £(t)]
EIEST
and
=W = sup | gl=ds2litra) _ g—tiedd) |
faial

The constant M is obvivusly bounded. N is bounded for the following reasons.
By Assumption Al, the derivative of the technology F” is continuous. Since the
feasible I's and &'s are contained within a hounded set, because of the assurnp-
tions on the I’s and by (6) of Lemma 1 above, then the derivative of the tech-
nology with respect to the feasible /'s and ¥'s is also bounded. Also, by (3) and (4)
of Lemma 1 above, the time derivatives & of all feasible &’s are bounded. Then,
by assumption (vi) of the definition of C %, and equality (1) of Lemma 1, the
constant AV is bounded.

Since by Lemma 1 there is a uniform ||l bound € for all ¢'s in Ctu‘ as x
Eoes to zero the expression in (13) and, hence that of (12}, go to zero uniformly
forein €y . Thus, condition {10} is also satisfied here, ‘This completes the proof,

Lemmas | and 2 show || - ||,-compactness of the feasible set of consumption
paths €, . We now turn to the continuity of the welfare function:

Let u(s, t) satisfy the Caratheodory condition of A3 above for s B" and
t<[0, oo} and let W(s) be defined by

W(s) = J:D eMu(s(e), ) dt, 1= A =0

then

FrorcsiTion 1. W defines @ continuous Junction from FL" to R, if and only if
| ufs, t)] =S a(t) + b |5 |® where a(t) =0, bir a positive constant and

Jm a(t] e~ dt < oo,
o
Proof. Note that 5= Il ¢ if and only if e 142lga(f) o e=10te1) in L, | Let

d(t) — e M8 Then the map s — W(s) is | - ||, continuous iff the map M
given by

M ,
d —v g Myfeti . g p)

is continuous from L, to L, . By [8, Theorems 2.1 and 2.3, pp. 23-28, and
remarks, p. 28] a necessary and sufficient condition for M to be continuous from
L, 10 L, is that

| e~ tu(eth@itd ¢ < alf) 4 o | d|?

for g(t)eL,;, which is equivalent to | u(s, £)] << alt) — b | 5|2, where aft) —
e*ia(t).



516 GRACIELA CHICHILNISKY

Remark. Let 0= § = A, then if &= ="y = —llis Alse, H02 HO
Therefore if Wi H®— R is || ||, continuous, then W | H: H* =R is || - [;
continuous. Thus, for all 0 =2 § = A, and positive valued u, the function

o
W) = [ euls(e), 1) dt
0
is || - |, continuous, or, equivalently, for all { = A, the function
-4
W) = [ eCtuse), ) d

“Q

1s H,"-continuous.
In view of Proposition | we now assume A = 8, where 8 is the discount factor
of the definition of the social welfare function .

Tueorem 1. Under assumptions Al, A2 and A3, there exists a solufion c*
to problem (P) in the set of fearible paths C .
If u is strictly concave, and ¥ concave, ™ is also untque.

Proof. Existence follows from Lemmas 1 and 2 and Proposition 1. Unique-
ness can be established in a straightforward way using concavity assumptions
on u and on the technology (A1), since €, is a convex set if F is concave:

Let ¢ and ¢* be in € . Consider

Pl (1—Xe, 0<Asl.

Then £ = 0. Define i as dmt — (1 — A)m? and T as M* 4 (1 — &) %, where
mb, m®, I' and I are the paths associated to ¢! and & in problem (P), which exist
by definition of € . Similarly, define A and A2 the corresponding paths in Gy,
and & Then # and [ satisfy (b} of prablem (P). Since F is concave,

F(I, ) = AF(D, mY) 4 (1 — ) F(EE, m?).
Thus
F(l, #) = & -+ Bk + k.
Dehne )
d = F(l, m) — Bk — R.
Then d 2 & = 0. Also, by definition of ¢ and i,
8F = k = AF(IL, mY) = (L — N F(t,m?) — ¢ =0

so that since d =2 & = 0 and by the above, F(I, ) = d Z 0. Therefore, d is in
Cy, by definition and hence  is in €y also. Thus C; s a convex set.
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Also, if two paths ¢! and ¢® differ on a set of positive measure, since u is
strictly concave, they cannot bath be optimal, since W() = min[Wig), Wie)].
This completes the proof.

3. CHARACTERIZATION OF SOLUTIONS BY PRICES

Defimitions.  HJ'[0, co) is the cone of positive paths in H,9[0, o0), ie.
ce Hy*0, o) (also denoted ¢ 2 0) when ¢{t) = O a.e. for t & [0, 2o}, ¢ = B when
czz0ande(f) > 0 ae. on some set of positive measure, and ¢ % (1 when
o{t) = 0ae in [0, co). A function f: JT,%—» R is increasing when Ffle) = f(c) if
¢ — ¢ = 0. Since by Assumption A3 u is strictly increasing, W (J1"" -+ Ris
an increasing function also.

We next prove existence of strictly positive competitive prices for ¢*, First
we give a definition of prices in this model.

A price p is an element of the dual space of (H,%)"-, i.e., a continuous linear
real valued functional defined on (H,")" which is positive on positive elements of
(71,°)"; p(c) € R* is called the walue of ¢ in price system p. Since H,?is 2 Hilbert
space, by definition the space of prices has the following properties:

(i) A nonzero price p must be nonzero at some period of time, i.e., p =0
and p =0 = p(t) =0 on seme set of positive measure of B, and

(i) a price p well defines a (finite, nonnegative) value for any path of
commodities ¢ in the space, and the value of ¢ is given by the inner product

-f"x e (L) - eft) drd

We can now prove:

Tueorem 2. Under the assumptions of Theorem |, when u and F are concave,
* 05 an optimal path in Cy, with veipect fo W if and only if there exists a price
svstem p* such that

(i) p= well defines a present value for all positive corsumption paths ¢ in
{(H,M)" piven by

) = I‘m e Mp¥(1) < eft) dt,
b 1}
(iy fp=l =1, p¥50, and

i) ¥ &5 compelitive in price svstem p¥ fe, © maximizes the value o
P .} L
pHe), for all ¢ in Cx“ .

" Both these properties are, of course, not necessarily true, for instance, for positive
prices in Lo %,
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Proof. Let A, be the set of all paths ¢ in (H,")" with
Wic) = W(e*).

By the assumptions on W, A.,. is a convex subset of (H,")". Since W is continu-
ous on f," by Proposition 1, 4,. has a nonempty interior. Since « is strictly
increasing by A3, if d > ¢*, de A, i.e., the cone {(HO" + ¢% C 4... Also
since ¢* is aptimal in Ci,+ Ce, M A = @ By [5, Theorem 12, p. 412], there
exists a nongero linear functmnal #* which separates C',, and ... Since
{(H")™ + e} C 4., p= can be taken to be a positive linear functional. By
[12, Theorem 5.5, p. 228], this implies that $* is continuous. Suppose now that
there exists an open set L' C [0, c0) such that p*/I/ = 0. Since p* = 0, then
for some open set 17 C [0, wo), p*/F = 0; define

z=c" _E'#’V—i_‘ll'[’b':
where ¢ and ¢, denote the characteristic functions of the sets {7 and T, res-
pectively, in (H")". For « sufficiently small z e 4., , but
Pt.z=Px.f# 3k fpg'ﬁilp{P*'f:'.

which 1s a contradiction. Ience, p* 3 0. Note that the same reasoning is valid
for p*l| p= |, . Sufficientcy follows from the convexity of the set C’fu and A3,

DEFINITION, A feasible cnnsumpcmn path cin ' is called efficient™ if there
exists no o, in {,k with ¢, = ¢,
From Theorem 2 one obtains immediately

CorOLLARY 1. Assume that © 15 an effictent path in Cy, , which i5 also optimal
with respect to a welfare function

o

W e~ tule(t), ) dt,

“u

where u satisfies the Carathesdory conditions (see A3) and is concave (not necessartly
increasing) and Wic) assumes at least one value strictly larger than W(c*). Then
there exists @ price system p such that.

(i) P well defines a present value for all positive consumption paths ¢ in
{(F,Mt srven by

P
Ble) = |' e Mty - o) di,
9
M Note that an optimal path may not be efficient, unless the welfare criterion W is

increasing, e, ¢ = ¢ = Wic") > W(c). Also note that for a given welfare function W,
an efficient path may not be optimal with respect to W,
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(i) |Pl=1and|p] >0
(i) If e, = & Pley) = pl(c), and
(iv) & maximizes the value of p(c) in C"n §

Proof. This corollary is an immediate consequence of Theorem 2. In view
of the topological structure of the space H,", we only need to point out that, in
this case, unlike the case in Theorem 1, f is given by a nonzero linear functional
which separates €, and the mmimum convex set B, in H,® which contains
both A,. and the set {H!"" + ¢} (as defined in Theorem 2). Note that since B;
contains A.., it has a nonempty interior.

Remark. Note that because of the Hilbert space structure of the space of
consumption paths, if & is an efficient path in Cy_, which maximizes in Cy, the
value of a price system p (as defined above), then this price is given by a positive
function p(t) with

50 = [ enpte) - ey

for all consumption paths c(2).

ACKNOWLEDGMENTS

1 thank Kenneth Arrow, Richard Dudley, Michéle Vergne, and Olof Widlund for
specific suggestions that improved the paper, and Andrew Gleason, Andrew Majda,
Stanley Osher, Irving Segal, and Luc Tartar for helpful discussions,

REFERENCES

I. K. Asrow avp M. Kuez, “Public Investment, The Rate of Rerurn and Optimal
Fiscal Policy,”" Johns Hopking Press, Baltimore, 1970

2. G, Deeret, Valuation Equilibrium and Pareto Optimum, Proc. Nat. Acad. Sei. (1954).

3. J. DievponnE, Sur le Théoréme de Hahn-Banach, Rev, Ser. (1941

4. J. DigrposNE, Sur la séparation des ensembles convexes dans un espace de Banuch,
Rev, Sei. (1943).

5. N. Duneann anD ], ScHwantz, "Linear Operators,”” Interscience, New York, 1958,

6. L.V, Kantorovicu axp G. P. Awitov, “Functional Analysis in Normed Spaces,”
Pergamon Pres and Macmillan Co., New York, 1964,

7. T. C. Koopvans, Stationary ordinal utility and impatience, Econometrica {1960).

8. M. A. KrasnoseL'skn, “Topological Methods in the Theory of Nonlinear Integral
Equations,”” Macmillan Co., New York, 1964,

5, J. 5. Lang, A synthesis of the Ramsey-Meade problem when population change is
endogenous, Rew. Econ. Studies {1975), )

10, .. NIRENEERG, '"Topics in nonlinear functional analysis," Notes, Courant Institute
of Mathematical Sciences, New York University, 1973-1974.



520 GRACIELA CHICHILNISKY

11. H. L. Roypen, “Real Analysis,” Macmillan, Canada, Lid., Torento, Ontario, 1969,
12. H. Scuasrer, “'Topolegical Vector Spaces,” Springer-Verlag, Betlin/New York,
1970

5. L. Sosormv, "“Applications of Functional Analysis in Mathematical Physics,”

Translations of Mathematical Monegraphs, Amer. Math. Soc., Providence, R. L.,
1963.

13.

FPrinted by the 5t Catherine Press Ltd., Tempelhof 37, Bruges, Belgium.



