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Abstract

This paper investigates a simultaneous move capacity constrained

price competition game among three firms. I find that equilibria in

an asymmetric oligopoly are substantially different from those in a

duopoly and symmetric oligopoly. I characterize mixed strategy equi-

libria and show there exist possibilities of i) the existence of a contin-

uum of equilibria ii) the smallest firm earning the largest profit per

capacity and iii) non-identical supports of equilibrium mixed strate-

gies, all of which never arise either in the duopoly or in the symmetric

oligopoly. In particular, the second finding sheds light on a completely

new pricing incentive in Bertrand competitions.
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1 Introduction

While the notion of price competition is simple and of a long history, the

research of homogeneous products has been limited, i.e., full characteriza-

tions of equilibria are not generally available. That is probably because of

a mathematical difficulty, the discontinuity of payoff function, which cause

non-existence of pure equilibrium. This paper investigates a capacity con-

strained price game among three firms in a homogeneous goods market with

efficient rationing rule, and shows substantial differences between a duopoly

and (asymmetric) oligopoly.

Kreps and Scheinkman (1983) and Osborne and Pitchik (1986) analyze

the duopolistic version of my model and fully characterize the equilibrium.

Although there exist a number of subsequent papers which examine oligopoly,

all of them have some crucial additional assumptions and thus their scope

is quite restricted. Brock and Scheinkman (1985) consider a repeated price

game in a general N firms oligopoly and specify the equilibrium payoffs in

the stage game (i.e., one shot price game), but they assume all firms have

identical capacity. Vives (1986) proves that the support of equilibrium prices

converges to the competitive price, but he also assumes symmetric capacity

and takes the limit as the number of firms goes infinity. Boccard and Wauthy

(2000) and De Francesco (2003) consider a two stage game á la Kreps and

Scheinkman (1983) with finite number of asymmetric firms, but they examine

only the largest firm’s payoff and incentive in the price competition stage. 1

1The situation for price competition under convex costs is similar. Characterization of
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Thus, this paper is the first attempt to characterize the equilibrium pay-

offs of all firms in a finite and asymmetric oligopoly. The reason why such

an attempt has not been made may be as follows. The incentive of the

largest firm is easy to characterise in the same way as a duopoly, and strong

enough to investigate, for example, the subgame perfect equilibria of two

stage models á la Kreps and Scheinkman. In other words, the largest firm

has the strongest incentive to set a high price in either a duopoly or oligopoly,

since its residual demand (market demand minus opponents’ capacity) is the

largest. Thus one might expect that other properties of the duopolistic equi-

librium will also be extended to an oligopoly. In an asymmetric oligopoly,

however, I show below that the smallest firm can have a special incentive to

raise its price that never appears in the duopoly nor, of course, symmetric

oligopoly. I also prove that a continuum of equilibria can exist whereas equi-

librium is unique in the duopoly. In addition, the possibility that firms have

heterogeneous supports of equilibrium strategies is also a departure from the

duopoly. Three firms are enough to show the departures from the duopoly

and gives important insights about the oligopoly.

The rest of this paper is organized as follows: we explain our model and

introduce notations in Section 2, present the characterizations of equilibria

in Section 3, and conclude in Section 4.

equilibrium is not available, though existence of (mixed strategy) equilibrium is proved
by Dixon (1984). See Dixon (1987) and Chowdhury (2007) for examples of research with
additional assumptions.
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2 The Model

I consider the following game. The set of the firms is I = {1, 2, 3}. Firm i’s

strategy is its price, i.e., its strategy space is given by Si = R+ for all i ∈ I.

For each firm i, let Ki > 0 denote the production capacity and suppose

K1 ≥ K2 ≥ K3 without loss of generality. I assume each firm has identical

constant marginal cost, which is normalized to zero. The payoff function for

player i is given by

πi(p) = pi · max



0, min







Ki,

(

D(pi) −
∑

j|pj<pi

Kj

)



Ki/
∑

l|pl=pi

Kl













 ,

where p = (p1, p2, p3) and D is the demand function described below.2 I

impose two common assumptions on the demand function.

Assumption 1:

There exists P̄ such that D(p) = 0 if and only if p ≥ P̄ . D is strictly

decreasing on [0, P̄ ].

Assumption 2:

D is twice continuously differentiable and concave on [0, P̄ ].

Here I introduce some more notations. Let K := K1 + K2 + K3, K−i :=

K−Ki, Kij = Ki+Kj, p̃i := argmaxp p(D(p)−K−i), and π̃i := maxp p(D(p)−

K−i). Notice that p̃i is uniquely determined because of Assumption 2.

2The payoff function represents the so-called efficient rationing scheme. For examples of
research with non-efficient rationings, see Allen and Hellwig (1986, 1993) and Chowdhury
(2003, 2007). Again, equilibria with these rationings are characterized only in the duopoly
or limit cases.
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When there exists a pure strategy equilibrium, its properties are almost

the same as those in the duopoly and symmetric oligopoly. That is, a pure

equilibrium exists if and only if the largest firm has no incentive to raise its

price at the competitive price (D−1(min{K,D(0)})), and market demand is

fully met at that price. Since the objective of this paper is to point out sub-

stantial differences between the duopoly and asymmetric oligopoly, I make

another assumption in order to rule out pure equilibria.

Assumption 3: p̃1 > D−1(min{D(0), K}).

Even when no pure equilibrium exists, existence of mixed strategy equi-

librium is guaranteed by Theorem 5 of Dasgupta and Maskin (1986). Let

(F1(·), F2(·), F3(·)) denote an equilibrium triple of distribution functions (i.e.,

mixed strategies), and define ai = inf supp Fi, bi = sup supp Fi, a = mini ai,

and b = maxi bi. In the duopoly, Osborne and Pitchik (1986) show that i)

the equilibrium is unique, ii) the equilibrium payoffs are given by (π∗
1, π

∗
2) =

(a∗ min{D(a∗), K1}, a∗K2), where π∗
i is payoff of i at the equilibrium and a∗

is the unique solution to π̃1 = a∗ min{D(a∗), K1}, and iii) F1 and F2 have

identical supports [a, b] = [a∗, p̃1] and πi(p; Fj) = π∗
i (i, j = 1, 2 and i 6= j) for

all p ∈ [a∗, p̃1). Hence the following conjecture will seem natural in a three

firms oligopoly.

Conjecture:

i) the equilibrium is unique,

ii) the equilibrium payoffs are (π∗
1, π

∗
2, π

∗
3) = (a∗ min{D(a∗), K1}, a∗K2, a

∗K3)

where a∗ is the unique solution to π̃1 = a∗ min{D(a∗), K1}, and
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iii) F1, F2 and F3 have identical supports [a, b] = [a∗, p̃1] and πi(p; F−i) = π∗
i

(i = 1, 2, 3) for all p ∈ [a∗, p̃1).

I show below that any part of the conjecture does not generally hold.

3 Results

First we show some useful lemmas which generally hold either in the duopoly

or oligopoly. Similar results are frequently used in the literature.

Lemma 1:

There exists i such that bi = p̃i = b and π∗
i = π̃i.

Proof of Lemma 1:

Let IH := {i ∈ I|bi = b}. If IH = {i} for some i, the statement obviously

holds for that i.

Thus, consider the case where |IH | > 2. We first show b is an atom of Fi

for at most one firm. To see this, suppose b is an atom of Fi and Fj (i 6= j). By

definition of equilibrium π∗
i = πi(b; F−i), where πi(p; F−i) is i’s expected profit

given the distributions of opponents prices when it sets a price p. Firm i has

an incentive to lower its price (i.e. limpրb πi(b; F−i) > π∗
i ) if D(b) < K and

to raise its price (i.e. limpցb πi(b; F−i) > π∗
i ) if D(b) > K. Thus D(b) = K is

the only possible case. This contradicts, however, Assumption 3 that firm 1

has an incentive to raise its price at D−1(K).

If b is an atom only of Fi, that i must satisfy the statement. If b is not

an atom for any Fi, the statement must hold for all i = 1, 2, 3. ¥
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Lemma 2:

If the conditions in Lemma 1 are satisfied for i, then ai = a.

Proof of Lemma 2:

Suppose there exists j such that aj < ai. Since ai ≤ bi = p̃i, it must be that

D(ai) > K−i and thus πj(p; F−j) is increasing on [0, ai), a contradiction. ¥

Lemma 3:

If the conditions in Lemma 1 are satisfied for i, then Ki = K1.

Proof of Lemma 3:

Notice that Ki is unique by lemma 1 and the definition of p̃i, though i may

not be. Suppose that Ki < K1, which implies D(ai) ≥ D(bi) > K−i > K−1.

Then, a = ai = a1 must hold, because otherwise pi ∈ [ai, a1) is strictly

dominated by pi = a1. Since πi(a; F−i) = π∗
i = πi(b; F−i), a = b(D(b) −

K−i)/Ki. Then, however,

π∗
1 − π̃i =π1(a; F−1) − π̃1

≤aK1 − b(D(b) − K−1)

=(b/Ki)(D(b) − K)(K1 − Ki) < 0,

which is a contradiction to the equilibrium condition. ¥

These Lemmas present the incentive of the largest firm that we discussed

in the previous sections. In what follows, I assume firm 1 satisfies the condi-

tions in Lemma 1 without loss of generality.

Next we characterize mixed strategy equilibria. Note that Lemmas 1-3
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imply a = a∗ and b = b∗ in any equilibrium, where a∗ is the unique solution

to π̃1 = a∗ min{a∗, D(a∗)} and b∗ = p̃1. It is clear that there exists i 6= 1 such

that ai = a1 = a∗ so that firm 1 does not have an incentive to raise its price

from a1. This condition can pin down the unique equilibrium in the duopoly,

but not in the oligopoly. We need to distribute cases by the relations among

Ki’s and D(a∗) in our oligopolistic model.

The first is the case in which K1 is very large relatively to K2 and K3.

Claim 1:

If D(a∗) < K1, we can construct a continuum of equilibria, but the equilib-

rium payoff is unique (π∗
2, π

∗
3) = (a∗K2, a

∗K3).

Proof of Claim 1:

First I show how to construct a continuum of equilibria in which (π∗
2, π

∗
3) =

(a∗K2, a
∗K3). Note that, if D(p) ≤ K1 and p is not an atom of F1,

πi(p; F−i) = (1 − F1(p))pKi (i 6= 1) (1)

which depends only on F1. Hence, taking F1(p) = 1− (a∗/p) for p ∈ [a∗, b∗),

equilibrium conditions for firms 2 and 3 are obviously satisfied. Any pair of

non-atomic F2 and F3 which satisfies

π1(p; F2, F3) = π∗
1(= a∗D(a∗))

for all p ∈ [a∗, b∗] forms an equilibrium. Since only one condition is imposed

on two variables, we can take a continuum of (F2(·), F3(·)).
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Next we prove (π∗
2, π

∗
3) = (a∗K2, a

∗K3) in any equilibrium. Notice that F1

must be non-atomic on [a∗, b∗). To see why, suppose p̄ ∈ [a∗, b∗) is an atom

of F1. It implies that, for i ∈ {2, 3}, limpրp̄ πi(p; F−i) < πi(p̄; F−i) and thus

Fi(p̄+ ǫ) = Fi(p̄) for sufficiently small but strictly positive ǫ. Then, however,

it follows by Assumption 2 that π1(p; F−1) > π1(p̄; F−1) for p ∈ (p̄, p̄+ǫ) which

contradicts the assumption p̄ is an atom of equilibrium strategy F1. There-

fore F1 is non-atomic on [a∗, b∗) and π∗
2/K2 = π∗

3/K3 since supp F2 ∩ supp F3

must not be empty by the same logic as above. Moreover, there must exist

i ∈ {2, 3} such that ai = a∗ and π∗
i = a∗Ki, and the statement on the payoffs

must hold obviously. ¥

Notice that exactly the same logic will hold even when there are more than

three firms. That is, our three firms setting is not restrictive in this result.

Note that we can construct equilibria so that supports of Fi’s are heteroge-

neous, i.e., not only part i) but also part iii) of Conjecture fails. See appendix

for example.

The second is the case where K1, K2 and K3 are relatively close to each

other. The symmetric capacities case, in which K1 = K2 = K3, must be

included here.

Claim 2:

If K1 + K2 ≤ D(a∗), a2 = a3 = a∗ and (π∗
2, π

∗
3) = (a∗K2, a

∗K3).

Proof of Claim 2:

If there exists i ∈ I \ {1} such that ai > a∗, firm 1 has an incentive to raise
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its price from a∗.3 Thus ai = a∗ for all i.

It is obvious that π∗
i = a∗Ki if a∗ is an atom of Fi. Even if not, combining

the equilibrium condition

lim
pցa∗

πi(p; F−i) = π∗
i ≥ lim

pրa∗
πi(p; F−i)

and the fact

lim
pցa∗

πi(p; F−i) ≤ a∗Ki = lim
pրa∗

πi(p; F−i)

also yields π∗
i = a∗Ki. ¥

Notice that this result is also expendable to a general N firms oligopoly.

Suppose there are N firms with K1 ≥ K2 ≥ · · · ≥ KN . If D(a∗) > K−N ,

ai = a∗ and π∗
i = a∗Ki for all i. Claim 2 exhibits a natural extension of the

duopoly, but equilibria quite different from Conjecture can arise even when

D(a∗) > K1.

The next is the case in which K3 is very small relatively to K1 and K2.

Parts ii) and iii) of Conjecture fail here.

Claim 3:

If K1 + K3 ≤ D(a∗) < K1 + K2, a3 > a2 = a∗ and π∗
3/K3 > π∗

2/K2 = a∗.

Proof of Claim 3:

Notice that a1 = a2 = a∗ must be satisfied in the equilibrium so that firm

1 does not strictly prefer a∗ + ǫ to a∗. In addition, a∗ is not an atom of

F1 or F2, since, if a∗ is an atom of Fi (i = 1, 2), π∗
j = limpցa∗ πj(p; F−j) <

3Even when K1 + K2 = D(a∗), Assumption 2 guarantees this.
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limpրa∗ πj(p; F−j) (j ∈ {1, 2} \ {i}).

These imply that a2 = a∗ and π∗
2 = a∗K2. If a3 = a∗ and F3 is right-

increasing at a∗,

π2(p; F−2) = π∗
2 ⇔ (1 − F1) + F1(1 − F3)

D − K1

K2

+ F1F3

D − K12

K2

=
a∗

p

π3(p; F−3) = π∗
3 ⇔ (1 − F1F2) =

a∗

p

must be satisfied for p ∈ (a∗, a∗+ǫ) where ǫ is a small positive number. Thus,

solving the second equation, we get

F1 =
1 − (a∗/p)

F2

,

for p ∈ (a∗, a∗ + ǫ). Substituting this into the first equation,

F3 =
K2

K3

F2 +
D − K12

K3

.

Since F2 ց 0 as p ց a∗, however,

lim
pցa∗

F3 =
D(a∗) − K12

K3

< 0,

a contradiction to the definition of distribution function. Therefore we can

conclude that a3 > a∗ or F3 is not right-increasing at a∗.

Next suppose that a3 > a∗ and π∗
3 = a∗K3. Solving π1(a; F−1)/K1 =

11



π2(a; F−2)/K2 = a∗, we get

F1F2 = K1K2

(

1 − (a∗/p)

K12 − D

)2

,

for p ∈ (a∗, a∗ + ǫ). If firm 3 sets p3 = p , it can earn

π3(p; F−3) = (1 − F1F2)pK3.

Equilibrium condition π3(p; F−3) ≤ π∗
3 = a∗K3 implies that

1 − F1F2 ≤ (a∗/p)

must be satisfied for p ∈ (a∗, a3). Since 1 − (a∗/p) > 0 for p > a∗, the

inequality is equivalent to

1 ≤ F1F2

1 − (a∗/p)
= K1K2

1 − (a∗/p)

(K12 − D)2
,

which cannot hold as p ց a∗. That is, if π∗
3 = a∗K3 firm 3 has an incentive

to set a price lower than a3, a contradiction. Thus a3 > a∗ and π∗
3 > a∗K3,

or a3 = a∗ and F3 is not right-increasing at a∗.

If a3 = a∗ and F3 is not right-increasing at a∗, a similar contradiction

(firm 3 has a strict incentive to set higher price than a∗) occurs since F1 and

F2 will be smaller than the above specification. ¥

The intuition behind Claim 3 is simple, but completely new in the liter-
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ature. The smallest firm cannot sell a lot even if it charges the lowest price.

Thus the ratio of residual demand (D−K−i) to capacity (Ki) is the largest for

the smallest firm. This property gives the smallest firm an incentive to raise

its price despite raising price also raises the probability of being undercut.

Such an incentive can never appear in a duopoly, because the smaller firm’s

behavior is determined solely by the equilibrium condition for the larger firm.

Following Claims 4 and 5 on intermediate cases are just combinations of

Claims 1-3.

Claim 4:

If K1 < D(a∗) < K3 and K2 > K3, a3 > a2 = a∗ and π∗
3/K3 > π2/K2 = a∗ or

there exists a continuum of equilibria in any of which π∗
2/K2 = π∗

3/K3 = a∗.

Proof of Claim 4:

First we show that a3 > a∗ if a2 = a∗. By way of contradiction, suppose

a2 = a3 = a∗. Notice that a∗ cannot be an atom of any Fi in this case. The

same as in the proof of Claim 3,

π2(p; F−2) = π∗
2 ⇔ (1 − F1) + F1(1 − F3)

D − K1

K2

=
a∗

p

π3(p; F−3) = π∗
3 ⇔ (1 − F1) + F1(1 − F2)

D − K1

K2

=
a∗

p

must hold for p ∈ (a∗, a∗ + ǫ). Solving the second equation and substituting

into the first, we get

F3 =
K2

K3

F2 +
K2

D − K1

(

K1 − D

K3

+
D − K1

K2

)

.
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Again, as p ց a∗,

F3 →
K2

D(a∗) − K1

(

K1 − D(a∗)

K3

+
D(a∗) − K1

K2

)

< 0,

a contradiction.

Next we consider the case in which a2 > a∗. Then it must be satisfied

that a3 = a∗ and π∗
3 = a∗K3. By way of contradiction, suppose D(a2) < K1.

Equilibrium condition for firm 3 implies

π3(a2; F−3) = a2[(1−F1(a2))K3 +F1(D(a2)−K1)] ≤ a∗K3 = lim
pրa∗

π3(p; F−3).

However,

π2(a2; F−2) < a2[(1−F1(a2))K2 +F1(D(a2)−K1)] < a∗K2 = lim
pրa∗

π2(p; F−2).

That is, firm 2 has a strict incentive to set a∗ (or slightly below), a contradic-

tion. Therefore we can conclude that if a2 > a∗ in equilibrium, D(a2) ≤ K1.

This implies that π∗
2/K2 = π∗

3/K3 = a∗ by the same logic as Claim 1. Fur-

thermore, if D−1(K1)(K1 − K3) < π∗
1, we can construct a continuum of

equilibria in the same way as Claim 1. 4
¥

Claim 5:

If K1 < D(a∗) < K3 and K2 = K3, there can exist a continuum of equilib-

rium, but (π∗
2, π

∗
3) = (a∗K2, a

∗K3) in any equilibrium.

4If D
−1(K1)(K1 − K3) = π

∗

1
, we can construct only one equilibrium in which a2 > a

∗,
but this is a degenerate case and a continuum of equilibrium generically exists.
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Proof of Claim 5:

By the same logic as in the proof of Claim 4, a contradiction occurs if

ai > aj and D(ai) > K1 (i, j = 2, 3 i 6= j). Thus we can conclude that

a2 = a3 = a∗ or ai > aj and D(ai) ≤ K1. In either case, it is obvious that

π∗
2 = π∗

3 = a∗K2 = a∗K3. If D−1(K1)(K1 − K3) < π∗
1, we can construct a

continuum of equilibria again, by the same way as Claims 1 and 4. ¥

4 Concluding Remarks

This paper investigates a model of price competition in an oligopolistic ho-

mogeneous goods market. Our main contributions are presented in Claims

1 and 3, which clearly exhibit the differences between a duopoly and asym-

metric oligopoly. I find the possibilities of i) the existence of a continuum

of equilibria, ii) the smallest firm earning the highest per capacity profit,

and iii) heterogeneous supports of equilibrium strategies. All of them seem

interesting in the sense that they cannot arise in the duopoly. In particu-

lar, the second possibility (Claim 3) sheds new light on pricing incentives in

Bertrand competition. That is, small capacity has relatively small loss in

demand by setting a higher price and thus relatively higher incentive to set

a higher price.

In addition, Claim 3 implies an interesting comparative statics. Suppose

the condition of Claim 3 holds. That is, in the equilibrium, firm 3 earns

the greatest per capacity profit. Then, it will not be strange that firm 2
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considers to merge firm 3 in order to compete with firm 1. However, when

they actually merge the joint profit will be strictly smaller than before the

merger if K1 > K2 + K3.

Finally we note on the limitation of our setting. We only consider the

oligopoly among three firms. As mentioned in the previous section, Claims

1 and 2 can be easily extended to a general N firms oligopoly. However, it

is hard to generalize Claims 3-5, because how to distribute cases depends on

each specific N . Though it remains for future research to explore a new logic

to characterize equilibria in a more general setting, three is enough to show

the departure from the duopoly.

A. 1 Example of A Continuum of Equilibria

D(p) = 1−p, K1 = 1 and K2 = K3 = 1/4. Then (a∗, p̃1) = ((2−
√

3)/4, 1/4)

and π̃1 = 1/16. For example, a triple (F1, F2, F3) such that

F1(p) =















1 − a1

p
for p ∈ [2−

√
3

4
, 1

4
)

1 for p = 1

4

F2(p) =















1

4p
(−16p2 + 16p − 1) for p ∈ [2−

√
3

4
, 3−

√
5

8
]

1 for p ∈ [3−
√

5

8
, 1

4
]
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F3(p) =















0 for p ∈ [2−
√

3

4
, 3−

√
5

8
]

1

4p
(−16p2 + 12p − 1) for p ∈ [3−

√
5

8
, 1

4
]

consists an equilibrium.

[INSERT FIGURE 1 HERE]

For another example, the same F1 as above and F2 = F3 = F such that

F (p) =
1

8p
(−16p2 + 16p − 1) for p ∈ [

2 −
√

3

4
,
1

4
] ,

i.e., the solution to the equilibrium condition for firm 1

p

[

(1 − p)(1 − F )2 + 2

(

3

4
− p

)

F (1 − F ) +

(

1

2
− p

)

F 2

]

=
1

16
,

consist another equilibrium.

[INSERT FIGURE 2 HERE]
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Figure 1: Distribution functions of the first equilibrium.
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Figure 2: Distribution functions of the second equilibrium.
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