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Abstract

In this paper, we consider a generalized large game model where the agent

space is divided into countable subgroups and each player’s payoff depends on

her own action and the action distribution in each of the subgroups. Given

the countability assumption on its action or payoff space or the Loeb as-

sumption on its agent space, we show that that a given distribution is an

equilibrium distribution if and only if for any (Borel) subset of actions the

proportion of players in each group playing this subset of actions is no larger

than the proportion of players in that group having a best response in this

subset. Furthermore, we also present a counterexample showing that this

characterization result does not hold for a more general setting.

Keywords: Large games; Pure strategy Nash equilibrium; equilib-

rium distribution; Characterization

1 Introduction

In this paper, we consider a generalized large game model where the agent space is

divided into countable (finite or countably infinite) different subgroups and each

player’s payoff depends on her own action and the action distribution in each of the

subgroups.1 In such a large game, a pure-strategy action profile that assigns an

∗Department of Statistics and Applied Probability, National University of Singapore, 6 Science

Drive 2, Singapore 117546. E-mail: fuhaifeng@nus.edu.sg. Tel: + 65 82253677.
†Department of Mathematics, National University of Singapore, Singapore.
‡Department of Mathematics, National University of Singapore, Singapore.
1The large game discussed here is a generalization to the large non-anonymous games discussed

in Khan and Sun (2002) (Section 3).
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action to each player is called a pure-strategy Nash equilibrium if no player has the

incentive to deviate. A distribution vector which records the action distributions

of all subgroups is called a pure-strategy equilibrium distribution if it is induced

by a pure-strategy Nash equilibrium of the game.

Previous studies on large games are productive on the existence or nonexistence

of the Nash equilibria.2 But very few studies pay attention to the characteriza-

tion of the Nash equilibria, or equivalently, the equilibrium distributions. This

paper aims to make some contributions in filling this gap, that is, we hope to

find some good characterization results which may broaden our understanding of

the equilibria and also provide practical and useful guidance in determining the

equilibria. In particular, this paper presents three characterization results and a

counterexample for the equilibrium distributions in large games.

Our first result characterizes the equilibrium distributions in large games with

countable actions. We show that a distribution vector on the action space is an

equilibrium distribution if and only if for any (finite) subset actions the propor-

tion of players in each group playing this subset of actions is no larger than the

proportion of players in that group having a best response in this subset.

Our second result studies large games with countable homogeneous groups of

players, where the homogeneousness assumption means that the players in each

subgroup share a common payoff function and a common action set. Our third

result is for large games endowed with atomless Loeb agent spaces. These two

results are in the same form which also parallels the first result. Both of the

results show that a given distribution vector is an equilibrium distribution if and

only if for any Borel [Open or closed] subset of actions the proportion of players

in each group playing this subset of actions is no larger than the proportion of

players in that group having a best response in this subset.

Next we show through a simple counterexample that if both actions and pay-

offs are uncountable and the agent space is a general probability space, say the

Lebesgue unit interval, then a similar characterization result does not hold any-

more for such a large game.

The proof of our first result uses Bollobas and Varopoulos (1974)’s extension of

the famous marriage theorem (or the Hall’s theorem) and the proof of the third re-

sult relies on Sun (1996)’s result on the distributional properties of correspondence

on Loeb spaces.

2For a detailed survey, see also Khan and Sun (2002)
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The paper is organized as follows. Section 2 introduces the game model and

Section 3 presents three characterization results for three settings of large games.

Section 4 gives a counterexample showing that such a characterization result fails

in a more general setting. Section 5 contains some concluding remarks and all the

proofs are given in Section 6.

2 The model

Let (T,T , λ) be an atomless probability space of agents and I a countable (finite

or countably infinite) index set. Let (Ti)i∈I be a measurable partition of T with

positive λ-measures (αi)i∈I . For each i ∈ I, let λi be the probability measure on

Ti such that for any measurable set B ⊆ Ti, λi(B) = λ(B)/αi.

Let A be a Polish space3 of actions, B(A) the Borel σ-algebra of A, M (A) the

set of all Borel probability measures on A, endowed with the topology of weak

convergence of measures, and M (A)I the product space of |I| copies of M (A),

endowed with the usual product topology. Suppose that each player t ∈ T chooses

her own action from an action set K(t) ∈ A, where K : T → A is a compact

valued measurable correspondence. Since A is Polish, M (A) is Polish4 and hence

A × M (A)I is also Polish. For easy notation, we now let Ω := A × M (A)I .

Unless otherwise specified, any topological space discussed in this paper is tacitly

understood to be equipped with its Borel σ-algebra, i.e., the σ-algebra generated

by the family of open sets, and the measurability is defined in terms of it.

Definition 1. A large game is a Carathéodory function5 U : T × Ω → R such

that for each ω ∈ Ω, the function Uω = U(·, ω) : T → R is measurable and for

each t ∈ T , the function Ut = U(t, ·) : Ω → R is continuous. A measurable

function f : T → A is called a pure-strategy profile if f(t) ∈ K(t) for all t ∈ T . A

pure-strategy profile f is called a (pure-strategy) Nash equilibrium6 if

U [t, f(t), (λif
−1
i )i∈I ] ≥ U [t, a, (λif

−1
i )i∈I ] for all a ∈ K(t) and all t ∈ T,

3A Polish space is a topological space homeomorphic to some complete separable metric space.
4See, eg, Theorem 14.15 in Aliprantis and Border (1999).
5A large game is also often defined to be a measurable function from T to the space of payoff

functions, which is the space of all continuous real-valued functions on Ω here. Since such a

measurable function can always be transformed to be a Carathéodory function, our definition

here is more general.
6 Throughout this paper, we deal only with pure-strategy Nash equilibrium and pure-strategy

equilibrium distribution. Thus we suppress the adjective ‘pure-strategy’ hereafter.
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where fi is the restriction of f to Ti and λif
−1
i the induced distribution on A. A

distribution vector µ in M (A)I is called a (pure-strategy) equilibrium distribution7

if µ = (λif
−1
i )i∈I for some Nash equilibrium f .

Recall that a correspondence F from T to A is said to be measurable if for each

closed subset C of A, the set F−1(C) = {t ∈ T : F (t) ∩ C 6= ∅} is measurable in

T . A function f from T to A is said to be a measurable selection of F if f is

measurable and f(t) ∈ F (t) for all t ∈ T . When F is measurable and closed valued,

the classical Kuratowski-Ryll-Nardzewski Theorem (see, eg, Aliprantis and Border

(1999, p.567)) shows that F has a measurable selection.

Given µ ∈ M (A)I , let Bµ(t) = arg maxa∈K(t) U(t, a, µ) be the set of best re-

sponses for player t given action distribution µ. By the Measurable Maximum

Theorem in Aliprantis and Border (1999, p.570), Bµ is a measurable correspon-

dence from T to A, has nonempty compact values and admits a measurable se-

lection. Let Bµ
i : Ti ։ A be the restriction of Bµ to Ti. It is straightforward to

check that µ is an equilibrium distribution if and only if for each i ∈ I there exists

a measurable selection fi of Bµ
i such that µ = (λif

−1
i )i∈I .

3 The results

Our first result is for large games with countable actions and is formulated as

follows.

Theorem 1. In a large game U , if the action space A is a countable and complete

metric space, then the following statements are equivalent:

(i) µ = (µi)i∈I ∈ M (A)I is an equilibrium distribution;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every subset C in A;

(iii) for each i ∈ I, µi(D) ≤ λi[(B
µ
i )−1(D)] for every finite set D in A.

Literally, the above theorem says that a distribution vector on the action space

is an equilibrium distribution if and only if for any subset or any finite subset C

of the actions, there are less players in each group playing the actions in C than

7More precisely, µ should be called an equilibrium distribution vector.
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having a best response in C.8 The special case that |I| = 1 and A is finite in

Theorem 1 is the main result in Blonski (2005).

Our next result considers a situation where all the players in each group are

homogeneous, that is, all the players in each subgroup share a common payoff

function and a common action set. Before we state our result, let’s define the

concept of homogeneousness.

Definition 2. A large game U is said to have countable homogeneous groups of

players if for each group i ∈ I, Ut and K(t) do not change for all t ∈ Ti.

Theorem 2. If a large game U has countable homogeneous groups of players,

then the following statements are equivalent:

(i) µ = (µi)i∈I ∈ M (A)I is an equilibrium distribution;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every Borel set C in A;

(iii) for each i ∈ I, µi(F ) ≤ λi[(B
µ
i )−1(F )] for every closed set F in A;

(iv) for each i ∈ I, µi(O) ≤ λi[(B
µ
i )−1(O)] for every open set O in A.

Clearly, the homogeneousness assumption also implies that there are totally

countably many payoffs in the game. Thus both Theorem 1 and 2 adopt a count-

ability restriction which is either on the action space or on the payoff space. Our

third result shows that if we replace the usual agent space by an atomless Loeb

probability space,9 then we can remove all the countability restrictions.

Theorem 3. If the agent space (T,T , λ) of a large game U is an atomless Loeb

probability space, then the result in Theorem 2 is still valid.

This result is shown by applying a proposition on the distributional properties

of correspondences on Loeb spaces from Sun (1996).

Both Theorems 2 and 3 implies that a given distribution vector is an equilibrium

distribution if and only if for any Borel [open or closed] subset C of actions more

players in each subgroup have a best response in C than play actions in C.

8If µ is an equilibrium distribution, then µi(C) = λi(f
−1

i (C)) = λi{t ∈ Ti : fi(t) ∈ C}, where

fi ∈ B
µ

i , is the proportion of players playing the actions in C.
9The usage of hyperfinite Loeb spaces in modeling large games is systematically studied in

Khan and Sun (1996, 1999). For more information about Loeb spaces, see also Loeb and Wolff

(2000).
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4 A counterexample

The previous section presents characterization results for large games restricted by

the countability assumption on the action or payoff space or the Loeb assumption

on the agent space. It would be good if we can obtain a similar characterization

result for a general game without the above restrictions. However, as we can

see from the example below, a similar characterization result does not hold for a

general large game endowed with uncountable actions, uncountable payoffs and a

Lebesgue measure space of agents. For simplicity, we only need to consider a case

where there is no partition on the agent space.

Example 1. Consider a large game U in which the space of players is the Lebesgue

unit interval T = [0, 1] with the Lebesgue measure denoted by λ, the action set A

is the interval [−1, 1] and the payoffs are given by U(t, a, µ) = −|t − |a||10 where

t ∈ T , a ∈ A and µ ∈ M (A), which, obviously, is a Carathéodory function.

Let the uniform distribution on [−1, 1] be denoted by η. Thus, given η, the best

response set for player t is:

Bη(t) = arg maxU(t, a, η) = {t,−t}.

Let C be any Borel set in A and define C1 = C ∩ (0, 1] and C2 = C ∩ [−1, 0].

Then

λ[(Bη)−1(C)] = λ({t ∈ T : Bη(t) ∩ C 6= ∅})

= λ{t ∈ T : t ∈ C1 or − t ∈ C2}

≥max{λ(C1), λ(C2)}

≥
λ(C1) + λ(C2)

2
.

Since η is the uniform distribution on [−1, 1], η(C) = λ(C)
2 = λ(C1

⋃

C2)
2 = λ(C1)+λ(C2)

2 .

Therefore, we have

λ[(Bη)−1(C)] ≥ η(C).

Now we shall prove by contradiction that η can not be an equilibrium distribu-

tion.

Suppose η is an equilibrium distribution. Then, by definition, there exists a

measurable selection f of Bη such that λf−1 = η and f(t) ∈ Bη(t) for all t ∈ T .

10This payoff function is similar to a payoff function used in Khan et al. (1997).
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Let D = f−1((0, 1]). Then

f(t) =

{

t, t ∈ D

−t, t /∈ D.

Note that f−1(D) = {t : f(t) ∈ D} = {t : t ∈ D} = D. Hence, λ(D) =

λf−1(D) = η(D) = λ(D)
2 , which is a contradiction. Therefore, η cannot be an

equilibrium distribution. �

5 Concluding remarks

The three characterization results presented in this paper are all in the same

form and the characterizing counterparts are easy to understand. Therefore these

results could be served as a practical tool to determine the pure-strategy Nash

equilibria, and they also provide an alternative way of showing the existence of

Nash equilibria by showing the existence of their characterizing counterparts. The

counterexample shows that our characterization results are actually quite sharp.

6 Proofs

6.1 Proof of Theorem 1

To prove this theorem, we need the following lemma from Bollobas and Varopoulos

(1974), which is an extension of the famous marriage theorem.

Lemma 1 (Bollobas and Varopoulos (1974)). Let (T,T , λ) be an atomless prob-

ability space, I a countable index set, (Ti)i∈I a family of sets in T , and (αi)i∈I a

family of non-negative numbers. Then the following two statements are equivalent

(i) λ(
⋃

i∈D Ti) ≥
∑

i∈D αi for all finite subsets D of I;

(ii) there is a family (Si)i∈I of sets in T such that for all i, j ∈ I, i 6= j, one has

Si ⊆ Ti, λ(Si) = αi and Si ∩ Sj = ∅.

Proof of Theorem 1 For (i)⇒(ii), let µ be an equilibrium distribution.

Then by definition, there exists a Nash equilibrium f : T → A such that µ =
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((λif
−1
i )i∈I). Notice that for each i ∈ I, fi(t) ∈ Bµ

i (t) for all t ∈ Ti. Thus, for any

i ∈ I and for every C ⊆ A,

µi(C) = λi(f
−1
i (C)) = λi({t ∈ Ti : fi(t) ∈ C})

≤ λi({t ∈ Ti : Bµ
i (t) ∩ C 6= ∅}) = λi[(B

µ
i )−1(C)].

It is clear that (ii) ⇒ (iii).

It remains to prove (iii)⇒(i). To see this, fix any i ∈ I. Let A := {aj}j∈N. For

each j ∈ N, let βj = µi({aj}) and T j
i := (Bµ

i )−1({aj}) = {t ∈ Ti : aj ∈ Bµ
i (t)}. Let

D be an arbitrary finite subset of N. Observe that (Bµ
i )−1(

⋃

j∈D{aj}) =
⋃

j∈D T j
i .

By assumption, we have
∑

j∈D βj = µi(
⋃

j∈D{aj}) ≤ λi(
⋃

j∈D T j
i ). Thus we can

apply Lemma 1 to assert that there exist, for all j ∈ N, Sj ⊆ T j
i such that

λi(Sj) = βj and Sj ∩ Sk = ∅ for all k 6= j.

Now we define a measurable function hi : Ti → A such that for all j ∈ N and

for all t ∈ Sj , hi(t) = aj. Since, for any j ∈ N, t ∈ Sj implies that aj ∈ (Bµ
i )(t),

we have hi(t) ∈ Bµ
i (t) for all t ∈ T . Furthermore, λi(h

−1
i ({aj})) = λi(Sj) = βj =

µi({aj}) for all j ∈ N, which implies λih
−1
i = µi. Repeat the above arguments

for all i ∈ I and define a measurable function h : T → A by letting h(t) = hi(t)

if t ∈ Ti. Thus it is clear that h is a pure strategy Nash equilibrium and µ =

(µi)i∈N = (λih
−1
i )i∈N is the equilibrium distribution induced by h. �

6.2 Proof of Theorem 2

To prove this theorem, we need to use the following lemma which is well know in

this field and can be obtained by appropriately adjusting the proof of Theorem

3.11 in Skorokhod (1956).

Lemma 2. (Skorokhod, 1956, Theorem 3.11) Let (T,T , λ) be an atomless prob-

ability space and A a Polish space. Then for any ν ∈ M (A) there exists a mea-

surable function f : T → A such that λf−1 = ν.

Proof of Theorem 2. Let µ = (µi)i∈I be an element of M (A)I . Firstly, we

need to show that for each i ∈ I and every C ∈ B(A), (Bµ
i )−1(C) is measurable.

To see this, fix any i ∈ I. The fact that Ut and K(t) do not change for all t ∈ Ti

implies that Bµ
i (t) also does not change for all t ∈ Ti. Thus we can let Ci := Bµ

i (t)

8



for all t ∈ Ti. Then, for any C ∈ B(A), we have

(Bµ
i )−1(C) = {t ∈ Ti : Bµ

i (t) ∩ C 6= ∅} =

{

Ti if Ci ∩ C 6= ∅;

∅ otherwise,

which is measurable.

To see (i)⇒(ii), let µ = (µi)i∈I be an equilibrium distribution. By assumption,

there exists a Nash equilibrium f : T → A such that µ = (λif
−1
i )i∈I ∈ M (A)I

and f(t) ∈ Bµ(t) for all t ∈ T . Therefore, for any C ∈ B(A),

µi(C) = λif
−1
i (C) = λi({t ∈ Ti : fi(t) ∈ C})

≤ λi({t ∈ Ti : Bµ
i (t) ∩ C 6= ∅})

= λi[(B
µ
i )−1(C)].

It is clear that (ii) ⇒ (iii).

To see (iii) ⇒ (iv), let O be an open set in A. Then there is an increasing

sequence {Fn}
∞
n=1 of closed sets in A such that O =

∞
⋃

n=1
Fn. For each n, we

have (Bµ
i )−1(Fn) ⊆ (Bµ

i )−1(O), which implies that µi(Fn) ≤ λi[(B
µ
i )−1(Fn)] ≤

λi[(B
µ
i )−1(O)]. Thus, µi(O) ≤ λi[(B

µ
i )−1(O)].

It remains to show (iv) ⇒ (i).

Recall that for all i ∈ I, the set Ci := Bµ
i (t) for any t ∈ Ti is compact and hence

also complete and separable. Fix any i ∈ N. By the fact that the set (A − Ci) is

open, we have that

1 − µi(Ci) = µi(A − Ci) ≤ λi[(B
µ
i )−1(A − Ci)] = 0, (1)

which gives µi(Ci) = 1 for all i. Therefore, by Lemma 2, there exists a measurable

function fi : Ti → Ci such that µi = λifi
−1. By definition, fi ∈ Bµ

i .

Define f : T → A by letting f(t) = fi(t) for all t ∈ Ti and all i ∈ I. Thus f

is a measurable selection of Bµ and µ = (µi)i∈I = (λif
−1
i )i∈I is an equilibrium

distribution. �

6.3 Proof of Theorem 3

To prove this theorem, we need to use the following lemma in Sun (1996).

Lemma 3. (Sun, 1996, Proposition 3.5) Let Γ be a closed valued measurable

correspondence from an atomless Loeb probability space (Ω,F , P ) to a Polish space

X. Let ν be a Borel probability measure on X. Then the following are equivalent:

9



(i) there is a measurable selection f of Γ such that Pf−1 = ν;

(ii) for every Borel set C in X, ν(C) ≤ P (Γ−1(C));

(iii) for every closed set F in X, ν(F ) ≤ P (Γ−1(F ));

(iv) for every open set O in X, ν(O) ≤ P (Γ−1(O)).

Proof of Theorem 3. For any i ∈ I, notice that Bµ
i is a compact val-

ued (and hence closed valued) measurable correspondence from an atomless Loeb

probability space (Ti,Ti, λi) to the Polish space A. Thus, by applying Propo-

sition 3.5 in Sun (1996) to Bµ
i , we see that µi = λif

−1
i for some fi being a

measurable selection of Bµ
i if and only if for every Borel (closed, or open) set H

in A, µi(H) ≤ λi[(B
µ
i )−1(H)].

Since the above result holds for all i ∈ I, thus µ = (µi)i∈I is an equilibrium

distribution if and only if for each i ∈ I and every Borel (closed, or open) set H

in A, µi(H) ≤ λi[(B
µ
i )−1(H)]. �
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