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Abstract

In order to capture observed asymmetric dependence in international financial returns,
we construct a multivariate regime-switching model of copulas. We model dependence
with one Gaussian and one canonical vine copula regime. Canonical vines are con-
structed from bivariate conditional copulas and provide a very flexible way of charac-
terizing dependence in multivariate settings. We apply the model to returns from the
G5 and Latin American regions, and document two main findings. First, we discover
that models with canonical vines generally dominate alternative dependence structures.
Second, the choice of copula is important for risk management, because it modifies the
Value at Risk (VaR) of international portfolio returns.

JEL Classification codes: C32, C35, G10.

Keywords: Asymmetric dependence, Canonical vine copula, International returns, Regime-
Switching, Risk Management, Value-at-Risk.
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1 Introduction

International financial returns tend to exhibit asymmetric dependence.1 This asymmetry
means that in times of crisis returns tend to be more dependent than in good times. This
phenomenon has important implications for the risk of an international portfolio. In par-
ticular, it implies that due to increased dependence in bad times, investors might lose the
benefits of diversification when such benefits are most valuable. Hence, international port-
folios may be more risky than they seem. The presence of such asymmetric dependence
adds a cost to diversifying with foreign stocks, and therefore provides a possible explanation
for home bias.
In this paper, we provide further evidence on asymmetric dependence in international fi-
nancial returns by estimating a regime-switching copula model for the dependence of the
stock indices of the G5 and of four Latin American countries. Our contribution is threefold.
First, we use regime switching copulas, which allows us to model the dependence in a much
more flexible and realistic way than switching models based on the Gaussian distribution,
that have been previously proposed, eg. Pelletier (2006). The use of copulas makes it
possible to separate the dependence model from the marginal distributions. Copulas also
allow us to have tail dependence, which means that, unlike with the Gaussian copula, the
dependence does not vanish as we consider increasingly negative returns. Second, we ap-
ply this model in a multivariate context, a step towards making this approach feasible for
realistic applications. Third, we use a canonical vine copula, a new type of copula that
was introduced in finance by Aas, Czado, Frigessi & Bakken (2007) and which allows for
very general types of dependence. Flexibly modeling dependence is very easy with bivari-
ate data, but much more difficult for higher dimensions, given that the choice of copulas
is usually thought to be reduced to the Gaussian or the Student t. Both of these copu-
las are useful only for capturing elliptical dependence. The Gaussian copula suffers from
the drawback that it lacks tail dependence, and the multivariate Student t copula is too
restrictive in the sense that, while it can generate different tail dependence for each pair
of variables (since the tail dependence is a function of the correlation and the degrees of
freedom parameter), it restricts the upper and lower tail dependence for each pair to be
the same. While the assumption of tail independence is acceptable for positive returns it
is clearly not for negative returns. Canonical vine copulas allow us to to overcome these
limitations.

Our paper is related to extant research in at least two areas, asymmetric dependence
and regime-switching models, to which we now turn. Regarding asymmetric dependence,
Longin & Solnik (1995) analyze correlations between stock markets over a period of 30
years using the constant conditional correlation (CCC) model of Bollerslev (1990). They
find evidence that correlations are not constant and tend to increase over their sample
period. Moreover, they are typically higher during more volatile periods and depend on
some economic variables such as dividend yields and interest rates. Longin & Solnik (2001)
use extreme value theory and the method of Ledford & Tawn (1997) to document that
extreme correlation, defined as the correlation that exists between returns that are above
a certain threshold, are different for positive and negative returns. Ang & Chen (2002)

1For evidence on asymmetry, see Longin & Solnik (1995), Longin & Solnik (2001), Ang & Chen (2002),
Ang & Bekaert (2002a), Das & Uppal (2004) and Patton (2004), amongst others.
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develop a test for asymmetric correlation that is based on comparing empirical and model-
based conditional correlations. Amongst the models they compare, regime-switching models
are best at replicating this phenomenon. Ang & Bekaert (2002a) estimate a Gaussian
Markov switching model for international returns and identify two regimes, a bear regime
with negative returns, high volatilities and correlations and a bull regime with positive
mean, low volatilities and correlations. Patton (2004) finds significant asymmetry in the
dependence of financial returns both in the marginal distributions and in the dependence
structure. He finds that knowledge of asymmetric dependence leads to significant gains
for an investor with no short-sales constraints. Our model also relates to other approaches
using copulas for financial time series. Patton (2006a) and Patton (2006b) introduce theory
for the use of conditional copulas and use time-varying models of bivariate dependence
coefficients to model foreign exchange series. Jondeau & Rockinger (2006) propose to model
returns with univariate time-varying skewness Skewed-t GARCH models and then to use a
time-varying or a switching Gaussian or Student t copula for the dependence between pairs
of countries.

Regarding regime-switching models, our paper follows a long tradition in economics.
Regime-switching models were introduced in econometrics by Hamilton (1989) and have
since been widely applied in finance. For instance Ang & Bekaert (2002b), Guidolin &
Timmermann (2006a) and Guidolin & Timmermann (2006b) use regime-switching models
for interest rates. Ang & Bekaert (2002a) and Guidolin & Timmermann (2005) use a regime-
switching model for international financial returns. Pelletier (2006) uses regime switching in
the context of correlation when the marginals are modeled with GARCH, but he stays in the
Gaussian framework. His model lies between the constant conditional correlation (CCC)
of Bollerslev (1990) and the dynamic conditional correlation (DCC) model of Engle (2002).
Our model can be seen as an extension of the Pelletier (2006) model to the non-Gaussian
case. We depart from the Gaussian assumption, as it is well known that returns are not
Gaussian, while retaining the intuitively appealing features of a regime switching structure
for dependence. Instead of relying on the Gaussian assumption we use canonical vines that
are flexible multivariate copulas. We also want to separate asymmetry in the marginals
from asymmetry in dependence. This cannot be done in a Gaussian switching model.
Instead we rely on copulas and use the flexibility they provide in modeling the marginals
separately from the dependence structure. We therefore allow the marginal distributions
to be different from the normal by using the Skewed t GARCH model of Hansen (1994).

Very recently, researchers have started to combine copulas and regime switching models
in bivariate data. Rodriguez (2007) and Okimoto (2007) estimate regime-switching copulas
for pairs of international stock indices. Okimoto (2007) focuses on the US-UK pair, whereas
Rodriguez (2007) works with pairs of Latin American and Asian countries. They follow
the tradition of Ramchand & Susmel (1998) to impose a structure where variances, means
and correlations switch together. Only Garcia & Tsafak (2007) estimate a regime-switching
model in a 4-variable system of domestic and foreign stocks and bonds by using a clever
mixture of bivariate copulas to model the dependence between all possible pairs of variables.
To summarize our approach, we estimate regime-switching models with one symmetric
Gaussian copula regime and either a Gaussian, a Student t or a canonical vine copula
regime. We find that canonical vine models perform best in terms of the likelihood, but
also in terms of their ability to replicate the exceedance correlation and quantile dependence
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present in the data. Finally we compute the Value at Risk (VaR) and Expected Shortfall
(ES) of an equally weighted portfolio for all models and compare them to the all Gaussian
model. We find that the VaR and ES of the canonical vine models are substantially higher
than for the Student t or Gaussian copula models, which implies that incorrectly using the
latter models can lead to underestimating the risk of a portfolio.
The remainder of the paper is organized in the following manner. In Section 2 we present
the model. We briefly discuss copulas, general copula-based dependence measures, as well
as tail dependence and canonical vine copulas. Then we present the Markov switching
model for dependence, as well as the marginal models. Section 3 describes the two-step
estimation procedure for the model, the EM algorithm and the standard errors calculation.
Section 4 presents the data and results. In Section 5 we evaluate the performance of the
various models. Section 6 concludes.

2 The Model

In this section, we first provide a brief account of copula theory, copula-based dependence
measures and asymmetric dependence. We then discuss canonical vine copulas, which we
use to describe the asymmetric dependence regime. Finally, we introduce the Regime-
switching copula and the marginal models.

2.1 Copulas

Traditionally in theoretical finance, the question of the dependence between returns has
been addressed using Pearson’s correlation. This is due in part to the central role of the
normal distribution in statistics and of the Capital Asset Pricing Model (CAPM) in finance.
The CAPM assumes multivariate normality of returns and measures dependence with cor-
relation. A limitation of Pearson correlation is that it is implicitly based on the assumption
of normality, or more precisely it is only a natural measure of dependence in the elliptical
family of distributions. The most prominent members of this family are the multivariate
Gaussian and Student t distributions. Another limitation of Pearson correlation is that it
only measures linear relations and will therefore miss non-linear relations between variables.
Consider, for example two variables X and Y , where X ∼ N (0, 1) and Y = X2. In this
setup, Cov(X,Y ) = Cov(X,X2) = Skewness(X). Therefore X and Y are uncorrelated,
since their covariance is equal to the skewness of X, which is 0, by normality of X. Yet,
clearly these variables are perfectly dependent. This simple example shows that correlation
is not a good measure of dependence in all cases.2

In empirical finance, there is a vast body of literature suggesting that financial returns
are not normally distributed. Thus, financial returns might display more intricate types
of dependence than can be captured by the correlation coefficient. One way of accounting
for these more general types of dependence is through the use of copulas. Copulas are
a very flexible tool to model patterns of dependence between variables separately from
the marginal distributions, and may be used to model the observed dependence between

2For further examples, see Embrechts, McNeil & Straumann (2001) who demonstrate where Pearson
correlation fails to capture dependence adequately.
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financial returns.3 Copula theory goes back to the work of Sklar (1959), who showed
that, for continuous variables, a joint distribution can be decomposed into its n marginal
distributions and a copula, which fully characterizes dependence between the variables. This
theorem provides an easy way to form valid multivariate distributions from known marginals
that need not be of the same class. For example, it is possible to use a normal, Student
or any other marginal, combine them with a copula and get a suitable joint distribution,
which reflects the kind of dependence present in the series.4 Specifically, let H(y1, . . . , yn)
be a continuous n-variate cumulative distribution function with univariate margins Fi(yi),
i = 1, . . . , n, where Fi(yi) = H(∞, . . . , yi, . . . ,∞). According to Sklar (1959), there exists
a function C, called a copula, mapping [0, 1]n into [0, 1], such that:

H(y1, . . . , yn) = C(F1(y1), . . . , Fn(yn)) . (1)

The joint density function is given by the product of the marginals and the copula density:

∂H(y1, . . . , yn)

∂y1 . . . ∂yn
=

K
∏

i=1

fi(yi)
∂C(F1(y1), . . . , Fn(yn))

∂F1(y1) . . . ∂Fn(yn)
. (2)

This allows us to define the copula as a multivariate distribution with Uniform [0, 1] margins:

C(z1, . . . , zn) = H(F−1
1 (z1), . . . , F

−1
n (zn)) , (3)

where zi = Fi(yi), i = 1, . . . , n are the probability integral transformations (PIT) of the
marginal models.
Evidently, with the use of copulas we can map the univariate marginal distributions of
n random variables, each supported in the [0, 1] interval, to their n-variate distribution,
supported on [0, 1]n. This method applies, regardless of the type and degree of dependence
among the variables.

2.1.1 Copula based dependence measures

In order to describe dependence that exists amongst variables that are not in the class
of elliptical distributions, there exist several measures, based on ranks of the variables.
These measures are invariant with respect to any strictly increasing transformation of the
data. Rank correlations are popular distribution-free measures of the association between
variables. Unlike the traditional Pearson correlation, they work outside the range of the
spherical and elliptical distributions and can detect certain types of non-linear dependence.
The two most commonly used coefficients of rank correlation are Kendall’s τ and Spear-
man’s ρ. Both rely on the notion of concordance. Intuitively a pair of random variables
is concordant whenever large values of one variable are associated with large values of the
other variable. More formally, if (yi, xi) and (yj , xj) are two observations of random vari-
ables (Y, X), we say that the pairs are concordant whenever (yi − yj)(xi − xj) > 0, and
discordant whenever (yi − yj)(xi − xj) < 0.

3For related work on copulas as a modeling tool for returns, see Embrechts, Klüppelberg & Mikosch
(1997), and Dias & Embrechts (2004).

4A more detailed account of copulas can be found in Joe (1997), Nelsen (1999) and in Cherubini, Luciano
& Vecchiato (2004) who provide a more finance-oriented presentation.
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Kendall’s τ is defined as the difference between the probability of concordance and the
probability of discordance. In general, it can be shown that the Kendall’s τ between
variables X and Y can be obtained as τX,Y = c−d

c+d , where c is the number of concordant
pairs and d is the number of discordant pairs. By definition, we then have that the total
number of pairs is equal to the number of possible pairs with a sample of m bivariate
observations c+d = m!

(m−2)!2! . Kendall’s τ can also be expressed as a function of the copula:

τ = 4

∫

[0,1]2
C(u, v)dC(u, v) − 1 . (4)

2.1.2 Asymmetric dependence, exceedance correlation and tail dependence

An important feature of financial data is asymmetric dependence. There exist several mea-
sures that quantify this feature. In finance, it is of interest to measure both the usual sort
of dependence between returns in the center of the distribution, and dependence amongst
extreme events. The Normal distribution captures the former, but risk theory deals mostly
with the latter, as it is the negative extreme values in the distribution of asset returns
that are crucial. There is a fairly large recent literature that studies this sort of extremal
dependence. For example, Longin & Solnik (2001), Ang & Chen (2002) and Patton (2006a)
amongst others use exceedance correlation, which is defined as the correlation between two
variables y1 and y2, conditional on both variables being above or below certain thresholds
θ1 and θ2, respectively. Formally, lower exceedance correlation is defined as:

Corr(y1, y2|y1 ≤ θ1, y2 ≤ θ2) .

The main findings of these studies is that financial returns tend to exhibit excess correlation
in bear markets, but not in bull markets. A Gaussian distribution cannot reproduce this
feature. Therefore, while a Gaussian copula with Gaussian margins is unable to generate
any exceedance correlation, an asymmetric copula with the same Gaussian marginals can
produce this phenomenon. Figure 1 plots the exceedance correlation of a Gaussian and
a Rotated Gumbel copula that imply the same level of dependence, as measured by a
Kendall’s τ of 0.5. The data simulated from the Rotated Gumbel copula implies a very
different pattern of exceedance correlation than the normal data, which shows that the
copulas with lower tail dependence are able to replicate this phenomenon. Exceedance
correlation, however, is not without problems. A weakness of this measure is that, like the
Pearson correlation, it is not independent of the marginal distributions. Moreover, it is
computed only from those observations that are below (above) the threshold, which means
that, as we move further out into the tails, the exceedance correlation is measured less and
less precisely.
Quantile dependence is a somewhat different measure of the dependence in the tails of
the distribution. If X and Y are random variables with distribution functions FX and
FY , then there is quantile dependence in the lower tail at threshold α, whenever P [Y <
F−1

Y (α)|X < F−1
X (α)] is different from zero. Finally, tail dependence obtains as the limit

of this probability, as we go arbitrarily far out into the tails. The coefficient of lower tail
dependence of X and Y is:
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lim
α→0+

P [Y < F−1
Y (α)|X < F−1

X (α)] = λL ,

provided a limit λL ∈ [0, 1] exists. If λL ∈ (0, 1], X and Y are said to be asymptotically
dependent in the lower tail; if λL = 0 they are asymptotically independent. If the marginal
distributions of random variables X and Y are continuous, then the tail dependence of
these random variables is a function only of their copula, and hence the amount of tail
dependence is invariant under strictly increasing transformations. If a bivariate copula C
is such that the limit

lim
u→0+

C(u, u)/u = λL

exists, then C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence if
λL = 0. Similarly, if a bivariate copula C is such that

lim
u→1−

C̄(u, u)/(1 − u) = λU

exists, then C has upper tail dependence if λU ∈ (0, 1] and no upper tail dependence if
λU = 0. C̄(u, v) = 1 − u − v + C(1 − u, 1 − v) denotes the survivor function of copula
C. We list all the copulas we use in this paper along with their tail coefficients in the
Appendix. The Gaussian copula does not exhibit any tail dependence except in the case of
perfect correlation, where tail dependence equals unity. The Student-t copula exhibits the
same amount of upper and lower tail dependence, which is a function of both the degrees of
freedom parameter and the correlation coefficient. The Clayton and the Rotated Gumbel
have lower, but no upper tail dependence.

2.1.3 Canonical Vine copula

We now describe the family of copulas that we use in this paper for the asymmetric regime.
Bedford & Cooke (2002) introduced canonical vine copulas in statistics. These copulas were
first used in finance by Aas et al. (2007) and Berg & Aas (2007), whose presentation we
follow here. These general multivariate copulas are obtained by a hierarchical construction.
The main idea is that a general multivariate copula can be decomposed into a cascade of
bivariate copulas. It is well known that a joint probability density function of n variables
y1, . . . , yn can be decomposed without loss of generality by iteratively conditioning, as
follows:

f(y1, . . . , yn) = f(y1) · f(y2|y1) · f(y3|y1, y2) . . . f(yn|y1, . . . , yn−1) .

Each one of the factors in this product can be decomposed further using conditional copulas.
For instance the first conditional density can be decomposed as:

f(y2|y1) = c12(F1(y1), F2(y2))f2(y2) .

Similarly, one possible decomposition of the second conditional density is:

f(y3|y1, y2) = c23|1(F2|1(y2|y1), F3|1(y3|y1))f(y3|y1) .
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Further decomposing f(y3|y1) leads to:

f(y3|y1, y2) = c23|1(F2|1(y2|y1), F3|1(y3|y1))c13(F1(y1), F3(y3))f3(y3) .

Finally, combining the last expressions, one obtains the joint density of the first three
variables in the system as a function of marginals and bivariate conditional copulas:

f(y1, y2, y3) = c23|1(F2|1(y2|y1), F3|1(y3|y1))·
c12(F1(y1), F2(y2))c13(F1(y1), F3(y3))f1(y1)f2(y2)f3(y3)

Assuming that the marginals are all uniform on the [0, 1] interval, the copula can be written
as:

c(y1, y2, y3) = c23|1(F2|1(y2|y1), F3|1(y3|y1))c12(F1(y1), F2(y2))c13(F1(y1), F3(y3)) .

Conditional distribution functions are computed using (Joe (1996)):

F (y|v) =
∂Cy,vj |v−j

(F (y|v−j), F (vj |v−j)

∂F (vj |v−j)

In the development above, we have implicitly chosen to condition on y1. This choice is
arbitrary, and other ways of ordering the data when conditioning are also possible. The
choice we have made leads to a canonical vine, in which one variable plays a pivotal role,
in our example, y1. In the first stage of the copula we model the bivariate copulas of y1

with all other variables in the system. Then we condition on y1, and consider all bivariate
conditional copulas of y2 with all other variables in the system etc. For an n-dimensional
set of variables, this leads to the general n-dimensional canonical vine copula:

c(y1, . . . , yn) =
n−1
∏

j=1

n−j
∏

i=1

cj,j+i|1,...,j−1(F (yj |y1, . . . , yj−1), F (yj+i|y1, . . . , yj−1)) .

Figure 2 represents the dependence structure of a canonical vine copula graphically. The
advantages of a canonical vine copula are immediately apparent: whereas there are only
very few general multivariate copulas, there exists an almost unlimited number of bivariate
copulas. When specifying the canonical vine copula, we can therefore choose each one of
the building blocks involved from a very long list, which allows a very large number of
possible copulas. This reverses the traditional problem of not having enough parametric
multivariate copulas to a challenge of having too many to choose from.
It is important to note that some parameters of the canonical vine copula correspond to
coefficients of conditional dependence, and are not directly comparable with coefficients,
of say, the Gaussian or the Student t copula. Nevertheless, it is possible to express the
Gaussian or the Student t copulas in terms of a canonical vine. If all conditional copulas
are Gaussian, then the canonical vine coincides with the multivariate Gaussian copula. This
is true up to a reparameterization: the correlation matrix of the Gaussian copula contains
unconditional correlations, whereas some parameters of the canonical vine copula refer to
conditional correlations. One can easily go from one to another using the well-known rules
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of conditional correlation. The corresponding unconditional correlations are obtained by
normalizing the unconditional variance covariance matrix obtained via the formula:

Σx|y = Σx − ΣxyΣ
−1
y Σyx .

In the Student t copula, the conditional correlations work in the same way as for the
Gaussian, but the degrees of freedom have to be incremented by one, every time one condi-
tions on an additional variable. In order to facilitate comparison across regimes and across
models we express our results in terms of the unconditional Kendall’s τ . We use the fact
that Kendall’s τ is a known function of the copula, as in Equation (4). Furthermore, there
exist closed-form solutions for many families of copulas. With this information in hand,
we first compute the Kendall’s τ of each bivariate conditional copula implied by the esti-
mated parameter using Equation (4). Then we presume the data came from a Gaussian
copula and we compute the copula correlation that implies the same Kendall’s τ , via the
relation sin(τπ/2). Consequently, we can apply the rules of conditional variance-covariance
and compute the corresponding unconditional correlations. Finally we report the uncon-
ditional Kendall’s τ that corresponds to the unconditional correlation with the relation
2 arcsin(ρ)/π. Figure 3 illustrates this procedure. Of course this procedure involves some
approximation. 5 Alternatively one could think of transforming the conditional Kendall’s τ
to an unconditional one by applying the rules of conditional correlation directly to Kendall’s
τ . However, as shown in Korn (1984), even with a Gaussian joint distribution, where a
pair of variables is independent conditionally on the remaining variables, the conditional
Kendall’s τ calculated by applying the same rules as for the Pearson correlation is not nec-
essarily equal to zero. This is due to the nonlinear relationship between Pearson correlation
and Kendall’s τ . We follow Aas et al. (2007) in using the bivariate Gaussian, Student t,
Clayton and Gumbel as building blocks for the canonical vine copula.6

2.2 Regime Switching Copula

In order to model the dependence in our data we use a regime-switching model. We follow
Pelletier (2006) and Garcia & Tsafak (2007) in allowing for two regimes, characterized
by differing levels or shapes of dependence. Our dependence model can be thought of
as a multivariate extension of the model in Rodriguez (2007) or as an extension to more
realistic dependence of the Pelletier (2006) model. We are closer to Pelletier (2006) in the
sense that we model the marginal distributions separately from the dependence structure
and therefore do not let them depend on the regime. This is consistent with the modeling
approach underlying the DCC model of Engle (2002) and Engle & Sheppard (2001). Garcia
& Tsafak (2007) is the only other paper we are aware of that uses regime-switching copulas
for more than two series and they make the same choice that we do. In the remainder
of this section we present the copula-switching model which allows different dependence
structures over different subsamples.

5In order to get an idea of the quality of the approximation, we computed Kendall’s τ on 10000 simulations
from the canonical vines in Table 4. The difference between the two approaches appears in the second decimal
and is usually around 0.01. Note that the simulation method, besides its high computational cost, is also
an approximation.

6For the Gumbel, we use the rotated version, in order to accommodate negative tail dependence in our
data.
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Following Hamilton (1989), we assume that the n-variate process Yt depends on a latent
binary variable that indicates the economy’s current regime. In our model the regime only
affects the dependence structure. Therefore we switch between two density functions to
describe the data. The density of the data conditional on being in regime j is:

f(Yt|Yt−1, st = j) = c(j)
(

F1(y1,t), . . . , Fn(yn,t); θ
(j)
c

)

n
∏

i=1

fi(yi,t; θm,i) ,

where Yt = (y1,t, . . . , yn,t), st is the latent variable for the regime, c(j)(.) is the copula in

regime j, with parameter θ
(j)
c , fi(.) is the density of the marginal distribution of yi, with

parameter θm,i, and Fi is the corresponding distribution function. Notice that j indexes
the copula, but not the marginal densities.
As is standard in the literature we assume that the unobserved latent state variable follows
a Markov chain with transition probability

P =

(

p11 1 − p11

1 − p22 p22

)

,

where the pi,j represent the probability of moving from state i at time t to state j at time
t + 1.

2.3 Marginal Model

In order to take into account the dynamics of the volatility we model the marginal distrib-
utions of each one of our returns using the univariate Skewed-t GARCH model of Hansen
(1994), which we fit to the demeaned returns. Specifically, our system is expressed as

yi,t =
√

hi,t · εt, for i = 1, . . . , n.

hi,t = ωi + αihi,t−1 + βiε
2
i,t−1

εi,t ∼ Skewed − t(νi, λi)

where the Skewed-t density is given by

g(z|ν, λ) =



















bc

(

1 + 1
ν−2

(

bz+a
1−λ

)2
)−(ν+1)/2

z < −a/b

bc

(

1 + 1
ν−2

(

bz+a
1+λ

)2
)−(ν+1)/2

z ≥ −a/b

The constants a, b and c are defined as:

a = 4λc

(

ν − 2

ν − 1

)

, b2 = 1 + 3λ2 − a2, c =
Γ

(

ν+1
2

)

√

π(ν − 2)Γ
(

ν
2

)

A negative λ corresponds to a left-skewed density, which means that there is more proba-
bility of observing large negative than large positive returns. This is what we expect, since
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it captures the large negative returns associated to market crashes that are the cause of the
skewness. We group all parameters of a given country in a vector θm,i = (ωi, αi, βi, νi, λi).

3 Estimation

First we explain how we estimate the parameters in a two-step procedure that separates
the marginals from the dependence structure. Then we provide a brief account of the EM
algorithm that we use for the regime-switching copula model, and finally we show how we
compute robust standard errors for all the parameters of the model.

3.1 Two-step estimation

When estimating the model, we take advantage of the fact that the marginal densities are
not regime-dependent, in order to separate the estimation into two steps. The total log
likelihood depends on all the data Y = (Y ′

1 , . . . , Y
′
T )′, and is given by

L(Y; θ, α) =
T

∑

t=1

log f(Yt|Yt−1; θ, α) ,

where Yt−1 = (Y1, . . . , Yt) denotes the history of the full process. We can therefore de-
compose this likelihood into one part, Lm that contains the marginal densities and another
part, Lc that contains the dependence structure:

L(Y; θ, α) = Lm(Y; θm) + Lc(Y; θm, θc)

Lm(Y; θm) =

T
∑

t=1

n
∑

i=1

log fi(yi,t|yt−1
i ; θm,i)

Lc(Y; θm, θc) =
T

∑

t=1

log c
(

F1(y1,t|yt−1
1 ; θm,1), . . . , Fn(yn,t|yt−1

n , θm,n); θc

)

,

where yt−1
i = (yi,1, . . . , yi,t) denotes the history of the variable i. The likelihood of the

marginal models, Lm is a function of the parameter vector θm = (θm,1, . . . , θm,n), that
collects the parameters of each one of the n marginal densities fi. The copula likelihood

depends directly on the vector θc = (θ
(1)
c , . . . , θ

(r)
c , α). This vector collects the copula

parameters over all r regimes as well as the parameters of the Markov transition probability
matrix and the initial probabilities, α. It also depends indirectly on the parameters of the
marginal densities, through the distribution function Fi, because Fi transforms observations
into uniform [0, 1] variables that are the input of the copula. The function c denotes the
density of the regime switching copula model.
In our application of the model we have to accommodate a large number of parameters.
Consider, for example, a Student t GARCH model and a two regime switching model of the
G5 region’s stock returns, combined with a Gaussian copula in each regime. This system
results in 25 GARCH parameters (a constant, an ARCH, a GARCH parameter in addition
to the degrees of freedom and the skewness parameters of the t for each of the 5 series),
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10 pairwise copula correlation parameters for each one of two regimes and 3 parameters
for the switching regime (an initial probability and two transition probabilities), for a total
of 48 parameters. Moreover, there are strong non-linearities in the copula that increase
difficulty of estimation. In this context, it is easy to see that a full one-step maximization
of the likelihood is not feasible. Fortunately we can rely on a two-step procedure whose
properties have been studied by Newey & McFadden (1994) and that has previously been
applied in a similar context.7 In a first step, we assume that conditionally on the past, the
different series are uncorrelated. This means that there is no contemporaneous correlation:

θ̂m = argmax
θm

Lm(Y; θm)

This estimation is straightforward, as it does not depend on the regime switching, and in
addition, it can be simplified further by noting that we can actually estimate each GARCH
model separately:

θ̂m,i = argmax
θm,i

T
∑

t=1

log fi(yi,t|yt−1
i ; θm,i) .

We then collect the coefficients in a vector: θ̂m = (θ̂m,i, . . . , θ̂m,n). In a second step we
take the parameter estimates of the marginal models as given in order to estimate the
parameters of the switching copula:

θ̂c = argmax
θc

Lc(Y; θ̂m, θc) .

3.2 EM Algorithm

We now turn to the estimation of the regime switching copula model, that is conditional on
having consistently estimated the marginal models. Given the fact that the Markov chain
st is not observable we need to use the filter of Hamilton (1989).8 Specifically, the filtered
system obeys

ξ̂t|t =
ξ̂t|t−1 ⊙ ηt

1′(ξ̂t|t−1 ⊙ ηt)
, (5)

ξ̂t+1|t = P
′
ξ̂t|t , (6)

ηt =





c(1)
(

F1(y1,t|yt−1
1 ), . . . , Fn(yn,t|yt−1

n ); θ
(1)
c

)

c(2)
(

F1(y1,t|yt−1
1 ), . . . , Fn(yn,t|yt−1

n ); θ
(2)
c

)



 , (7)

7This method is also used with the multivariate Gaussian distribution in the DCC model by Engle (2002)
and Engle & Sheppard (2001), in the RSDC model of Pelletier (2006), in conditional copula modeling by
Patton (2006a), and in regime-switching copula estimation by Garcia & Tsafak (2007).

8This section is based on the presentation in Hamilton (1994), Chapter 22, adapted to our copula
switching model and to the case of r = 2 regimes.
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where ξ̂t|t is the (2 × 1) vector containing the probability of being in each regime at time
t, conditional on the observations up to time t; 1 is a (2 × 1) vector of 1s; and ⊙ denotes
the Hadamard product. The (2 × 1) vector ξ̂t+1|t gives these probabilities at time t + 1
conditional on observations up to time t. The vector ηt contains the copula density at time t,
conditional on being in each one of the two regimes. Equation (5) corresponds to a Bayesian
updating of the probability of being in either regime given present time observations (ηt).
Equation (6) consists in doing one forward iteration of the Markov chain. Iterating over
both equations from a given starting value ξ̂1|0 and parameter values θc of the copula and
α of the Markov chain, one obtains the value of the likelihood:

Lc(Y; θm, θc) =
T

∑

t=1

log
(

1
′
(

ξ̂t|t−1 ⊙ ηt

))

.

3.3 Standard errors of the estimates

In this section we show how we compute the standard errors of our estimates. We use a
two-step procedure that has been studied in a time series copula context by Patton (2006a),
but that also underlies the estimation of the DCC model as explained in Engle & Sheppard
(2001). Both cases are applications of general theorems of Newey & McFadden (1994),
which can be invoked to show that under standard regularity conditions, the following
result holds:

√
T

(

θ̂ − θ0

)

A∼N(0, A−1BA
′−1) ,

where

A =

[

∇θmθm
Lm(Y; θm) 0

∇θmθc
Lc(Y; θm, θc) ∇θcθc

Lc(Y; θm, θc)

]

=

[

A11 0
A12 A22

]

,

and

B = var

[

n
∑

t=1

(

n−1/2∇′

θm
Lm(Yt; θm), n−1/2∇′

θc
Lc(Yt; θm, θc)

)

]

=

[

B11 B12

B12 B22

]

.

If we apply the partitioned inverse formulas, it is apparent that the variance covariance
matrix for each one of the GARCH models for the marginal distributions is the usual
Bollerslev & Wooldridge (1992) robust variance covariance matrix. The variance covariance
matrix for the regime-switching copula is an expression that depends on all the parameters.
This covariance matrix can be consistently estimated by a plug-in estimator, which is what
we use to do inference on the coefficients. Our two-step estimator is obviously less efficient
than a single-step estimation, but given the size of the problem, it is the only realistically
feasible estimation strategy.
In the estimation we first use the EM algorithm to get in the neighborhood of the optimum
and then we do a few iterations of a “brute force” numerical maximization. Note that the
M-step in this estimation is no longer available in closed form, since we have to estimate
the parameters of a copula for which there is no parametric solution. Instead, even in the
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EM algorithm, we have to perform a numerical maximization for every iteration of the
algorithm, which somewhat reduces the attractiveness of the EM-algorithm compared to
direct numerical maximization. In the numerical optimization we have to reparameterize
all coefficients to lie on the real line. Correlation matrices in the multivariate Gaussian or t
copula are parameterized as in Pelletier (2006) in order to guarantee semi-definite positive
matrices with ones on the diagonal. Whenever a parameter of some copula is restricted to lie
within the [a,+∞] interval, we estimate instead the coefficient a+exp(x); if the parameter

lies in [−∞, b] we use b − exp(x); and if a coefficient lies in [a, b], we use a exp(x)+b exp(−x)
exp(x)+exp(−x) .

We also use this rule for the transition probabilities of the Markov chain, with a = 0 and
b = 1. Standard errors of coefficients are obtained with the delta method.

4 Data and Results

In this section we present the results of the estimation. First we present the results for the
marginal models, then we discuss the dependence results for the countries of the G5 and of
Latin America.

4.1 Marginal Models

We apply the Markov-Switching copula model to the weekly returns of equity indices. Our
sample comprises two groups of countries: the G5 (Germany, France, the UK, the US and
Japan) and Latin America (Brazil, Mexico, Argentina and Chile). The equity indices are
daily MSCI price series from 1995 to 2006, where all prices are in US dollars.
In order to avoid introducing artificial dependence due to the difference in closing times
of stock exchanges around the globe, we work with Wednesday to Wednesday returns.
This gives us a sample of 596 weekly returns from January 3, 1995 to May 30, 2006. We
first present some descriptive statistics in Table 1. All series show very clear signs of
non-normality with negative skewness except for Japan and Argentina, which have small
positive skewness. Further evidence of non-normality is given by the fact that all series have
a kurtosis that is well above 3. The weekly average returns range from −0.01% for Japan
to 0.23% for Mexico. The standard deviations of weekly returns are quite different for both
groups of countries. They are around 3% for the G5 and for Latin America, they range
from 3.16% for Chile to 5.30% for Brazil. Next we show the correlation matrix of the raw
data in Table 8. For the G5, the most highly correlated countries are, unsurprisingly, the
European countries: Germany-France with a correlation of 0.86, followed by UK-France and
Germany-UK. The US is also correlated with the European countries. Japan is the least
correlated to the other countries, its highest correlation being 0.43, with France. The overall
amount of correlation amongst Latin American countries is much lower than amongst the
G5 countries. The highest correlations are Brazil-Mexico (0.64) and Brazil-Chile (0.58),
followed by Argentina-Brazil and Argentina-Mexico (both with 0.56).
The results of each of the univariate skewed-t GARCH models are presented in Table 3,
columns one to four. We can see that the skew coefficient is negative and significant in all
series of the G5 with the exception of Japan. In Latin America, only Brazil has a signifi-
cantly negative skew. Our rationale for including a skew in the marginal distributions is to
ensure that any asymmetry we find in the dependence structure truly reflects dependence
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and cannot be attributed to poor modeling of the marginals. The negative skew we find
captures the fact that the tails of some of the marginal distributions are typically longer
on the left side. This means that large negative returns, as observed during a stock mar-
ket collapse, are more likely than very good positive returns of the same magnitude. This
corroborates the descriptive statistics of the unconditional distributions of our return series.
The degrees of freedom parameters of most series is around 8, which corresponds to tails of
the conditional distribution that are somewhat fatter than those of the normal distribution.
As a rule of thumb, one can say that it is very difficult to distinguish a t distribution with
more than 10 degrees of freedom from a Gaussian. In the G5, the US has the most Gaussian
looking returns of all with a degrees of freedom parameter of almost 17. France has the
fattest tails with about 8 degrees of freedom. Latin American countries have fatter tails
with coefficients ranging from 6.32 for Argentina to 10.60 for Chile.
A well specified model for the marginals is crucial, because misspecification can result in
biased copula parameter estimates, see Fermanian & Scaillet (2005). Therefore, we apply a
battery of goodness of fit (GOF) tests, including three versions of the Kolmogorov-Smirnov
test, the Anderson-Darling and Kuiper tests of uniformity of the PIT of the marginal
models. We also perform the Berkowitz test, which is a joint test of uniformity and lack of
correlation of the PIT, based on transforming the PIT to the normal and testing an AR(1)
model against the uncorrelated standard normal. The p-values of the tests are reported
in columns five to ten of Table 3. All models pass all the tests, except for the UK in the
Berkowitz test. In the same table, columns 11 to 16, we also present the p-values of the
Ljung-Box test of autocorrelation in the squared residuals of the skewed-t innovations of the
GARCH models. The table shows that each one of the marginal models is well specified,
which is not the case when considering Gaussian or Student t innovations in the GARCH
specification.

4.2 Countries of the G5

We estimate three models for the G5 data. The results are presented in Table 4, Panel
A. The first model (columns two to four) has a Gaussian copula in each regime. The
results indicate that we have a high and a low dependence regime. The copula correlation
coefficient in the more dependent regime is higher for all pairs of countries, which means
that the whole G5 together is more dependent when the economy is in that regime. This
regime is characterized by some very large correlations. For instance France and Germany
have a correlation coefficient of .92, that translates into a Kendall’s τ of 0.74, which is
very high dependence. More generally the highest correlations are between the European
countries. We also estimate a model with a Gaussian and a Student-t regime (columns five
to seven). The multivariate Student-t regime corresponds to the lower dependence regime.
We estimate the degrees of freedom at 23.95, which is quite large and does not correspond
to a qualitatively very different picture from the all Gaussian model. A likelihood ratio
would clearly reject the Student-t model, as the likelihood increases by no more than 1.44,
with only one additional parameter. The difference between the models is that, unlike the
Gaussian, the Student-t copula possesses tail dependence, but it implies equal upper and
lower tail dependence, which is clearly at odds with the stylized facts. Finally we show the
results of a switching model with a Gaussian and a canonical vine regime (columns eight to
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twelve). The class of possible canonical vines is evidently extremely large. We follow Aas
et al. (2007) for the specification of the copula. First, we order the variables by decreasing
correlations, choosing the variable with largest correlations as the first one to condition
on. This leads us to place Germany at the basis of the construction, followed by France,
the UK, the US and finally, Japan. By so doing we intend that most of the dependence
structure in the copula will be captured in the lower stages of the canonical vine, leaving
only very little dependence to be modeled as we move to copulas that are conditional on
more countries. We then start estimating models. As we expect to observe mainly lower
tail dependence, we start estimating models with all Rotated Gumbel or Clayton copulas.
We notice that the parameters of the second stage of the canonical vine are close to their
bounds, suggesting that these copulas are not appropriate. In most cases, we find that
the Gaussian or the Student-t copula perform well for the conditional copulas. We use
likelihood criteria to decide between the Gaussian and the Student-t copula, along with
the estimated parameters for the degrees of freedom. When the degrees of freedom of the
Student t are too high, we use the Gaussian. Our preferred model for the G5 has Rotated
Gumbel copulas for all the pairs of variables in the first stage and then Gaussian copulas,
except for France-Japan, conditional to Germany which is a Student t copula. Although
we can strictly speaking not use the likelihood as a criterion for selecting models that are
not nested, we nonetheless note that the canonical vine model increases the likelihood by
about 6.5 points compared to the Student t model, with the same number of parameters.
Of course we can by no means claim that we have chosen the best possible copula, since
more theoretical work is needed about model selection of vine copulas in general. But
one way of checking that the chosen model is reasonable is to see whether we can capture
the quantile dependence or the exceedance correlation that is present in the data. We
also note that in the three models all coefficients are statistically significant, except in
the conditional copulas of the canonical vine model. Even though some of the individual
conditional copula parameters are not significant, we prefer to include these terms, since
the model would otherwise unreasonably imply dependence only amongst the variables in
the first stage of the canonical vine. In order to check this, we estimate the canonical vine
model, where we restrict all the conditional copulas to be independent, and we obtain a
loglikelihood of 887.57, which implies a likelihood ratio test statistic of 31.3 for 7 degrees of
freedom, which is indicative of a strong rejection of the conditionally independent model.
All models for the G5 are characterized by very high persistence in both regimes. When
we examine the plot of the smoothed probabilities of being in the high dependence regime,
in the first row of Figure 9, we can see that the economy is mostly in the low dependence
regime until 1997, whereas the high dependence regime is the dominant one from 1997
onwards. One factor explaining this might be the increased integration between financial
markets in Europe, linked to the introduction of the Euro. More generally it seems that
since the second part of the nineties, the returns from the G5 have all become much more
highly dependent. The smoothed probabilities differ very little from one model to another
and the dependence within each regime, as measured by the unconditional Kendall’s τ
seems to change very little from one model to another.
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4.3 Latin American Countries

We also estimate three models for the group of Latin American countries. The results are
presented in Table 4, Panel B. We estimate the same models as for the G5. By contrast,
in Latin America the high dependence regime coincides with the asymmetric one. In the
all Gaussian copula regime all correlation coefficients are higher in the first regime than
in the second one. In the high dependence regime the correlations range from 0.79 for
Brazil-Mexico to 0.59 for Argentina-Chile, while for the low dependence regime they range
from 0.30 to 0.43. We then estimate a Student t Gaussian copula model. The Student t
copula regime has a fairly low number of degrees of freedom. Unlike with G5, a likelihood
ratio test would strongly reject the all Gaussian copula model, as we increase the likelihood
by 5.74 points by adding just one parameter. Finally we show the results of a switching
model with a canonical vine and a Gaussian regime (columns eight to twelve). As in the
Student t copula model, the canonical vine copula is in the high dependence regime. In
order to select the structure of the canonical vine copula, we have followed the same rules
used for the G5. We start estimating models with all Rotated Gumbel or Clayton copulas,
then we made modifications in the structure by using different bivariate copulas, such as
the Student t, Normal and Gumbel. The final canonical vine structure is in many ways
similar to the G5, since the first stage is characterized by otated Gumbel copula for all
pairs, and then we have only Gaussian copulas for all conditional copulas. Notice that the
canonical vine model increases the likelihood by almost 18 points compared to the Student
t model with one parameter less. The transition probability matrix shows fairly high per-
sistence in both regimes for the Student t and canonical vine copula models. In the second
row of Figure 9, we plot the smoothed probabilities implied by the three models. Here,
one can observe a striking difference between the all-Gaussian model and the other two
models. This is reflected also in the transition probabilities of the all Gaussian model that
implies much less persistence than the other models. Another way to see this is by com-
paring the unconditional Kendall’s τ parameters for the three models. While the Student
t-Gaussian and Canonical vine-Gaussian models identify regimes with similar dependence,
the all Gaussian copula model has more extreme differences between the regimes. The
regime switching models with the Student t and the one with the canonical vine copulas
seem to identify a first regime, which is the predominant one. This regime features high
dependence relative to Argentina, especially in the case of Brazil and Mexico. These two
countries have a Kendall’s τ of 0.46, 0.45 in the Student-t model; and 0.43, 0.44 in the
canonical vine model, respectively. The second regime is characterized by high dependence
relative to Brazil, especially for Mexico and Chile. Now these two countries have Kendall’s
τ of 0.44 and 0.49 in model 2 (Student t); and 0.48 and 0.49 in model 3 (canonical vine),
respectively. It seems that the all- Gaussian copula model is compensating for the lack of
tail dependence in each regime by exaggerating the difference between regimes and switch-
ing very often between them depending on the observations. For the Student t and the
canonical vine copulas the smoothed probabilities and the dependence within each regime,
as measured by the unconditional Kendall’s τ seem to change very little from one model to
another.
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5 Evaluation of the models

In order to evaluate the models we first analyze their behavior in terms of exceedance
correlation and quantile dependence, and then we see what their implications are for value
at risk and expected shortfall.

5.1 Exceedance correlation and Quantile dependence

One way to evaluate the quality of the model is to provide evidence of the exceedance corre-
lation and quantile dependence implied by the model and compare it with those estimated
from the data. Instead of focusing only on tail dependence, we investigate the behavior
of the quantile dependence. Examining the behavior of quantile dependence for different
thresholds is more informative than concentrating on its asymptotic behavior. We simulate
a long series of Nb = 298000 observations from each switching copula model, which corre-
sponds to 500 times our sample size of 596. This yields observations that are uniform. In
order to compute the correlation we use the inverse normal cumulative distribution function
(cdf) to get values for each return in the real line. With this simulated data we compute
exceedance correlation for the following thresholds: from 0.1 to 0.9 by increments of 0.025.
Figures 5 and 6 plot the pairwise empirical exceedance correlations based on the inverse
normal cdf of the PIT of the marginals (data) by dots. The reason for these transformations
is to remove all asymmetry implied by the marginals. In the same figures we also plot the
exceedance correlation of the estimated models of the G5 and of Latin America respec-
tively. The dashed lines represent the all Gaussian copula model, the dot-dashed line is for
the Student t copula model, while the continuous line represents the canonical vine model.
The plots reveal the presence of asymmetry in the exceedance correlation of the data. This
is an indication that it is the underlying dependence structure that is asymmetric, since
by construction the marginals are symmetric (we use the normal). Gaussian and Student
t copula models do not fit the asymmetric pattern that we observe of the data. This is
due to the fact that both models are based on symmetric copulas. However, the canonical
vine model, which has some asymmetric bivariate copulas, does much better at replicating
the asymmetry of exceedance correlation implied by the data. For example, for Germany-
France and Brazil-Argentina the data asymmetry is not captured by the two first models,
while the canonical vine model more closely resembles the data. Generally speaking the G5
displays less asymmetry in the exceedance correlation than Latin America, Although this
asymmetry is not negligible, as the analysis of the VaR in the next section confirms.

We now proceed to assess whether the estimated models can reproduce the same pat-
terns of quantile dependence as is in the data. Figures 7 and 8 show the pairwise quantile
dependence implied by the all Gaussian and the canonical vine copula model, respectively,
for Latin America. In both figures the continuous line represents the quantile dependence
of the PIT of the marginals of the GARCH models (the data), while the dashed line is the
one calculated from simulations of the model. We also plot the 5% and 95% confidence
intervals represented by lines connecting dots. These confidence intervals are obtained from
500 bootstrap replications of the data. We use the bootstrap method proposed by Caillault
& Guégan (2005) for the selection of the best threshold to estimate tail dependence. We are
not using it to select an optimal threshold but simply to have an idea of the variability of
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the estimated quantile dependence. We also plot the average over the bootstrap sample by
a dotted line, providing a smoother estimate of the quantile dependence than the in-sample
estimate. The plots below the diagonal of each figure represent the lower quantile depen-
dence, while the ones above the diagonal are the upper quantile dependence. One notices
the asymmetry between upper and lower quantile dependence of the data (PIT). The lower
quantile dependence is in general higher than the upper quantile dependence, which is a
stylized fact of international returns. When we consider the models under study, and we
compare to the PIT, we find that the all Gaussian copula models tend to underestimate
lower quantile dependence and overestimate upper quantile dependence. This is due to the
fact that the Normal copula is symmetric while the quantile dependence in the data is not.
For example, in the case of Brazil-Mexico, the lower tail dependence implied by the all
Gaussian copula model is always below the one implied by the data and sometimes even
below the 5% percentile, while the upper tail dependence is always above the one implied
by the data. The canonical vine model tends to fit observed behavior better. For the ex-
ceedance correlation, this is due to the fact that some of the bivariate copula components of
the canonical vine model are not symmetric. The Rotated Gumbel is asymmetric, implying
more dependence in the lower quantile than in the higher quantile. The canonical vine
model sometimes overestimates the upper quantile dependence, but to a much lesser degree
than the all Gaussian copula model. We find qualitatively similar results for the G5, even
though the results are more pronounced for Latin America. There is an asymmetry in the
quantile dependence of the data that the canonical vine model is better able to capture
than the other models.

5.2 Value at Risk

In order to compare the implications of an all Gaussian copula model with a Student t
copula and canonical vine model, we compare simulated values of Value at Risk (VaR) and
of Expected Shortfall (ES). VaR is one of the most commonly used risk measures for a
portfolio. For a given threshold α, V aR(α) is the α percentile point of the portfolio loss
function, and the expected shortfall ES(α) is the expected loss conditional on observing a
return below the VaR. Formally, The VaR of a portfolio at the confidence level α is

V aR(α) = inf{l : Prob(L > l) ≤ 1 − α} ,

and Expected Shortfall (ES) is

ES(α) = E[L|L ≥ V aR(α)] ,

where L is the loss of the portfolio. We use the same simulated series for each model
that we have used in the previous section to calculate exceedance correlation. As for the
exceedance correlation, we use the inverse normal cdf to obtain values for each return in the
real line.9 We then form an equally weighted portfolio of all countries in each of our two
groups. We use an equally weighted portfolio both for simplicity and because this means
that we put equal weight in the bivariate tails for each pair of countries. We thus assign

9This approach means that the VaR that we calculate is not directly comparable to the one obtained
from the real data, but it still allows comparisons between models.
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the same weight to the tails of pairs of countries that we model directly in the vine (like
dependence with Brazil for Latin American countries), for which one might expect that the
model would do better. We do the same for other country pairs. We compute VaR for
thresholds between 90% and 99% and plot the VaR of the Student-t copula and canonical
vine models relative to the all Gaussian switching model. The results, displayed for Latin
America in Figure 10, show that use of the all-Gaussian model underestimates the VaR by
up 6% in the empirically relevant case of a 99% VaR. The Student-t copula model performs
close to the all-Gaussian one. Therefore, failing to model the tail dependence in a flexible
way can lead to seriously underestimating the VaR for a portfolio. We repeat this analysis
with ES, and a similar pattern emerges. Again at a level of 99%, the ES for the canonical
vine model is higher by 7% with respect to the all Gaussian copula model. We find a similar
qualitative picture for the G5, although the results are not quite as dramatic. For the G5,
In Figure 9, VaR at 99% is underestimated by 3%, while ES is around 4.5% higher with
the canonical vine copula model.

6 Conclusion

We provide further evidence on asymmetric dependence in international financial returns by
estimating a regime-switching copula model for the dependence of the stock indices in the
G5 and four Latin American countries. We use regime switching copulas, which allows us
to model dependence in a much more flexible and realistic way than previously-suggested
switching models based on the Gaussian copula. Moreover, we apply this approach in
a multivariate context, thereby taking a step towards making this framework feasible for
realistic portfolio applications. In order to model dependence we use a canonical vine copula,
which was recently introduced in finance by Aas et al. (2007) and which accommodates
general types of dependence. It is based on decomposing a multivariate copula into a
product of bivariate iteratively conditional copulas, each of which can be chosen from a
long list, producing a large, flexible class of models. Our approach has both econometric
and financial aspects, which we summarize.
Regarding econometric implementation, our class of empirical models includes one symmet-
ric Gaussian copula regime combined with either a Gaussian, a Student-t or a canonical
copula regime. We find that the canonical vine model dominates, on the basis of the like-
lihood. The canonical vine models we estimate contain asymmetric copulas in the first
level and symmetric copulas (Gaussian or Student t) for the conditional level. We evaluate
the models in terms of their ability to replicate the pairwise exceedance correlation and
quantile dependence of the data. The canonical vine models are better able to replicate the
exceedance correlation in the data. They also dominate in terms of replicating the upper
and lower pairwise quantile dependence of the data.
Regarding financial implications, we compute the Value-at- Risk (VaR) and Expected
Shortfall (ES) of an equally weighted portfolio for all models and compare them to the
all-Gaussian model. We discover that the VaR and ES of the canonical vine models are
substantially higher than for the Student-t or Gaussian copula models. This discovery
implies that use of our class of models can lead to better estimation of a portfolio’s risk.
Therefore, in addition to a superior econometric fit, our regime-switching copula approach
may yield enhanced performance for financial risk management with relatively large port-
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folios.
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7 Appendix

7.1 Copulas

7.1.1 Gaussian copula

The distribution function of the Gaussian copula is:

CN (u1, . . . , un; Σ) = ΦΣ(Φ−1(u1), . . . ,Φ
−1(un)) ,

where Φ−1 denotes the inverse cumulative density of the standard normal and ΦΣ(x1, . . . , xn; Σ)
denotes the standard multivariate normal cumulative distribution:

ΦΣ(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞

1

(2π)n/2|Σ|1/2
exp

(

−1

2
v′Σ−1v

)

dv,

where v = (v1, . . . , vn) and Σ is a correlation matrix, that is symmetric, semi-definite posi-
tive with ones on the diagonal and off diagonal terms between −1 and 1. The corresponding
density is:

cN (u1, . . . , un; Σ) = |Σ|−1/2exp

[

−1

2

(

x′Σ−1x − x′x
)

]

,

where x = (Φ−1(u1), . . . ,Φ
−1(un)). The bivariate version that we use in the canonical vine

copulas is:

cρ(u1, u2) =
1

√

1 − ρ2
exp

[−[Φ−1(u1)
2 + Φ−1(u2)

2 − 2ρΦ−1(u1)Φ
−1(u2)]

2(1 − ρ2)
+

Φ−1(u1)
2 + Φ−1(u2)

2

2

]

,

where ρ is a correlation coefficient that lies between −1 and 1.
The Gaussian copula has zero upper and lower tail dependence, λU = λL = 0, except in
the case of perfect correlation, ρ = 1.

7.1.2 Multivariate Student t copula

The distribution function of the Student t copula is:

CT (u1, . . . , un; Σ, ν) = TΣ,ν(T
−1
ν (u1), . . . , T

−1
ν (un)) ,

where T−1
ν (v) is the inverse of the cumulative distribution function of the univariate Student

t with ν degrees of freedom and TΣ,ν is given by:

TΣ,ν(x1, . . . , xn; ) =

∫ x1

−∞
. . .

∫ xn

−∞

Γ
(

ν+n
2

)

Γ
(

ν
2

) √

(πν)n|Σ|

(

1 +
v′Σ−1v

ν

)
−ν+n

2

dv ,

where v = (v1, . . . , vn) and Σ is a correlation matrix, that is symmetric, semi-definite posi-
tive with ones on the diagonal and off diagonal terms between −1 and 1. The corresponding
density is:
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cT (u1, . . . , un; Σ, ν) =
Γ

(

ν+n
2

)

Γ
(

ν
2

) √

(πν)n|Σ|
1

∏n
i=1 fν(T

−1
ν (ui))

(

1 +
x′Σ−1x

ν

)
−ν+n

2

dv ,

where x = (Φ−1(u1), . . . ,Φ
−1(un)) and fν(.) is the density of the Student t distribution

with ν degrees of freedom, ρ ∈ (−1, 1) and ν > 2. The bivariate version that we use in the
canonical vine copulas is:

cT (u1, u2; ρ, ν) = Γ

(

ν + 2

2

) 1 +
(

T−1
ν (u1)2+T−1

ν (u2)2−2ρT−1
ν (u1)T−1

ν (u2)
ν(1−ρ2)

)−( ν+2
2 )

fν(T
−1
ν (u1))fν(T

−1
ν (u2))νΠΓ(ν

2 )
√

1 − ρ2
.

The Student t copula has the same lower and upper tail dependence for every pair of

variables: λU = λL = 2tν+1

(

−
√

ν + 1
√

1−ρ
1+ρ

)

.

7.1.3 Bivariate Gumbel and Rotated Gumbel copula

The Gumbel copula has the following distribution:

CG(u1, u2, θ) = exp
(

−((− log u1)
θ + (− log u2)

θ)1/θ
)

,

and the following density:

cG(u1, u2, θ) =
CG(u1, u2, θ)(log u1. log u2)

θ−1

u1u2((− log u1)θ + (− log u2)θ)2−1/θ

(

((− log u1)
θ + (− log u2)

θ)1/θ + θ − 1
)

,

where θ ∈ [1,∞).
We use the rotated version of the Gumbel defined as: CRG(u1, u2, θ) = u1 + u2 − 1 +
CRG(1− u1, 1− u2, θ) and cRG(u1, u2, θ) = cG(1− u1, 1− u2, θ). For the rotated version of
the Gumbel, λL = 2 − 21/θ, λU = 0.

7.1.4 Bivariate Clayton copula

The Clayton copula has the following distribution

CC(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ ,

and the following density:

cC(u1, u2; θ) = (1 + θ)(u1u2)
−θ−1(u−θ

1 + u−θ
2 − 1)−2−1/θ ,

where θ ∈ [−1,∞)\0.
The Clayton copula has lower but not upper tail dependence: λL = 2−1/θ, λU = 0.
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8 Tables

Mean Standard Deviation Skewness Kurtosis Min Max

Germany 0.14 3.27 -0.53 6.23 -17.73 15.17
France 0.18 2.83 -0.34 5.73 -12.26 13.07
UK 0.13 2.29 -0.52 5.61 -11.05 10.02
US 0.17 2.38 -0.13 6.25 -12.13 12.61
Japan -0.01 3.07 0.26 3.66 -10.99 11.18

Brazil 0.15 5.30 -0.47 4.80 -22.02 22.25
Mexico 0.23 4.45 -0.34 6.17 -23.89 18.89
Argentina 0.13 5.26 0.13 5.62 -21.81 25.03
Chile 0.03 3.16 -0.19 4.31 -13.10 10.23

Table 1: Summary Statistics
Descriptive statistics of weekly index returns for the five countries of the G5 and the four countries of Latin

America. All returns are expressed in US dollars from January 3, 1995 to May 30, 2006, which corresponds

to a sample of 596 observations
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Germany France UK US Japan

Germany 1.00
France 0.86 1.00
UK 0.74 0.77 1.00
US 0.67 0.65 0.64 1.00
Japan 0.41 0.43 0.38 0.36 1.00

Brazil Mexico Argentina Chile

Brazil 1.00
Mexico 0.64 1.00
Argentina 0.56 0.56 1.00
Chile 0.58 0.54 0.45 1.00

Table 2: Unconditional Correlation, G5 and Latin America
Unconditional Pearson correlation between the weekly index returns for the five countries of the G5 as well

as the four countries of Latin America.
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Ljung-Box

α β ν λ KS KS+ KS- Berk AD K 1 2 3 4 8 12

Germany 0.11 0.89∗∗ 8.25∗∗ -0.15∗ 0.73 0.74 0.38 0.31 0.99 0.72 0.38 0.50 0.36 0.48 0.81 0.93
(0.06) (0.06) (2.90) (0.06)

France 0.08∗ 0.90∗∗ 8.18∗∗ -0.12∗ 0.99 0.68 0.66 0.09 0.99 0.93 0.34 0.31 0.31 0.36 0.30 0.47
(0.04) (0.04) (2.73) (0.06)

UK 0.08 0.88∗∗ 8.23∗∗ -0.21∗∗ 0.86 0.56 0.48 0.02 0.99 0.62 0.78 0.95 0.98 0.99 0.99 1.00
(0.06) (0.10) (2.80) (0.06)

US 0.14 0.85∗∗ 16.76 -0.21∗∗ 0.95 0.58 0.58 0.47 0.99 0.76 0.80 0.23 0.31 0.08 0.29 0.39
(0.07) (0.08) (10.87) (0.06)

Japan 0.05 0.93∗∗ 14.35∗ 0.05 0.99 0.72 0.69 0.93 0.99 0.96 0.72 0.92 0.95 0.98 0.99 1.00
(0.03) (0.03) (7.14) (0.07)

Brazil 0.12 0.85∗∗ 8.28∗∗ -0.29∗∗ 0.97 0.76 0.62 0.96 0.99 0.95 0.68 0.90 0.97 0.93 0.92 0.96
(0.07) (0.08) (2.47) (0.05)

Mexico 0.06 0.92∗∗ 7.14∗∗ -0.09 0.92 0.54 0.61 0.77 0.99 0.75 0.67 0.88 0.84 0.85 0.72 0.67
(0.04) (0.05) (1.81) (0.06)

Argentina 0.12 0.81∗∗ 6.32∗∗ -0.04 0.90 0.62 0.52 0.98 0.99 0.74 0.45 0.33 0.44 0.52 0.82 0.65
(0.09) (0.15) (1.41) (0.06)

Chile 0.07 0.89∗∗ 10.60∗∗ -0.05 0.90 0.52 0.74 0.17 0.99 0.86 0.85 0.98 0.79 0.90 0.92 0.40
(0.05) (0.08) (3.64) (0.06)

Table 3: GARCH estimates, Goodness of fit Statistics and Ljung-Box of Squared Results
Columns two to five are parameter estimates of univariate skewed-t GARCH(1,1) models of Hansen (1994), with the mean omitted. Standard deviations

of the parameters are in brackets. The symbols ∗∗ and ∗ mean that we reject the hypothesis that the parameter is equal to zero at the 1% and 5%

percent levels, respectively. Columns six to eleven report p-values of Goodness of Fit (GoF) statistics of the Probability Integral Transformation (PIT)

of the marginal models. We present the p-values for the following tests. The Kolmogorov-Smirnov (KS) test evaluates the alternative hypothesis that

the population cdf is different from a Uniform [0, 1]. KS+, tests the alternative hypothesis that the population cdf is larger than a Uniform [0, 1], while

KS−, tests the alternative hypothesis that the population cdf is smaller than a uniform [0, 1]. Berk reports the p-value of a test proposed by Berkowitz

(2001). The test consists in transforming the PIT of the data into a normal variate with the inverse cdf of the normal, Φ−1, and to test uniformity and

lack of correlation, which corresponds to zero mean, variance one and zero correlation against the alternative of and an AR(1) model with unrestricted

mean and variance. AD is the Anderson-Darling test for uniformity. K is Kuiper’s test for uniformity, which puts more weight on the tails of the

distribution than the other tests. Columns 12 to 17 report the p-values of the Ljung-Box statistics for tests of lack of correlation of squared residuals

from the Skewed-t GARCH(1,1) models for numbers of lags 1, 2, 3, 4, 8, 12.
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Panel A: G5

Normal Normal Normal

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ
Ger,Fra 0.92 103.03 0.74 0.92 98.46 0.74 0.92 107.49 0.74 0.74
Ger,UK 0.80 41.79 0.59 0.80 40.06 0.59 0.80 36.86 0.59 0.59
Ger,US 0.71 18.45 0.50 0.71 17.89 0.50 0.71 18.68 0.50 0.50
Ger,Jap 0.48 11.70 0.32 0.48 11.74 0.32 0.48 12.04 0.32 0.32
Fra,UK 0.83 18.67 0.63 0.83 18.59 0.63 0.84 18.49 0.63 0.63
Fra,US 0.70 14.83 0.49 0.70 14.03 0.49 0.70 13.19 0.49 0.49
Fra,Jap 0.51 6.55 0.34 0.51 5.95 0.34 0.51 6.63 0.34 0.34
UK,US 0.66 11.95 0.46 0.66 11.68 0.46 0.66 11.44 0.46 0.46
UK,Jap 0.44 6.18 0.29 0.44 6.04 0.29 0.43 5.80 0.28 0.28
US,Jap 0.46 6.63 0.31 0.47 6.26 0.31 0.46 6.51 0.30 0.30

Normal Student t Canonical Vine

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ
Ger,Fra 0.58 6.37 0.39 0.59 5.83 0.40 RGumbel 1.75 9.76 0.43 0.43
Ger,UK 0.47 3.96 0.31 0.48 4.04 0.32 RGumbel 1.47 13.47 0.32 0.32
Ger,US 0.39 3.70 0.26 0.40 4.10 0.27 RGumbel 1.39 14.77 0.28 0.28
Ger,Jap 0.36 2.52 0.24 0.37 2.37 0.24 RGumbel 1.31 15.89 0.24 0.24
Fra,UK 0.46 3.86 0.30 0.48 4.19 0.32 Normal 0.26 1.92 0.17 0.32
Fra,US 0.34 3.18 0.22 0.36 3.38 0.23 Normal 0.15 1.13 0.10 0.24
Fra,Jap 0.28 1.83 0.18 0.29 1.91 0.19 Student t 0.13 0.70 0.08 0.21

DoF 7.88 1.74
UK,US 0.37 2.36 0.24 0.38 2.36 0.25 Normal 0.22 1.63 0.14 0.27
UK,Jap 0.29 2.07 0.18 0.28 2.03 0.18 Normal 0.13 0.90 0.08 0.20
US,Jap 0.16 1.04 0.10 0.15 0.97 0.10 Normal -0.02 -0.13 -0.01 0.11
DoF 23.95 1.40

Transition Probabilities Transition Probabilities Transition Probabilities

Coef t-stat Coef t-stat Coef t-stat
P11 0.982 96.018 0.983 104.888 0.984 114.435
P22 0.963 40.154 0.966 46.579 0.971 56.482

LogL 896.30 897.74 903.22

31



Panel B: Latin America

Normal Student t Canonical Vine

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ
Bra,Mex 0.79 7.66 0.58 0.61 7.74 0.41 RGumbel 1.67 13.60 0.40 0.40
Bra,Arg 0.73 2.26 0.52 0.66 14.53 0.46 RGumbel 1.77 14.35 0.43 0.43
Bra,Chi 0.70 3.76 0.50 0.50 5.36 0.33 RGumbel 1.51 18.78 0.34 0.34
Mex,Arg 0.77 5.96 0.56 0.65 8.40 0.45 Normal 0.41 3.75 0.27 0.44
Mex,Chi 0.68 4.33 0.48 0.47 6.48 0.31 Normal 0.25 2.67 0.16 0.31
Arg,Chi 0.59 1.27 0.40 0.49 6.39 0.32 Normal 0.13 0.92 0.08 0.33
DoF 10.75 2.70

Normal Normal Normal

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ
Bra,Mex 0.43 0.57 0.28 0.64 4.74 0.44 0.68 5.72 0.48 0.48
Bra,Arg 0.41 0.61 0.27 0.37 2.74 0.24 0.40 2.63 0.26 0.26
Bra,Chi 0.43 4.48 0.28 0.70 3.96 0.49 0.69 3.12 0.49 0.49
Mex,Arg 0.35 0.49 0.23 0.36 8.24 0.24 0.34 5.83 0.22 0.22
Mex,Chi 0.33 2.15 0.22 0.58 5.12 0.39 0.57 3.97 0.39 0.39
Arg,Chi 0.30 2.16 0.20 0.34 3.72 0.22 0.35 3.35 0.23 0.23

Transition Probabilities Transition Probabilities Transition Probabilities

Coef t-stat Coef t-stat Coef t-stat
P11 0.737 1.509 0.978 67.195 0.976 54.537
P22 0.767 1.803 0.961 45.949 0.948 27.305

LogL 442.86 448.60 464.52

Table 4: Estimation results
This table presents parameter estimates of the dependence structure in a regime switching model for the five countries of G5 in Panel A, and for the
four countries of Latin America in Panel B.
Panel A, G5. Model one (Columns two to four): Regime one (high dependence) and Regime two (low dependence) are modeled using a Gaussian copula.
Model two (Columns five to seven): Regime one (high dependence) is a Gaussian copula while Regime two (low dependence) is a Student t copula. Model
three (Columns eight to twelve): Regime one (high dependence) is modeled using a Gaussian copula while for Regime two (low dependence) we use a
Canonical vine copula. The structure of the Canonical vine copula is the following: Germany-France, Germany-UK, Germany-US and Germany-Japan
are modeled using a bivariate Rotated Gumbel copula for each pair. The dependence structure of France-UK as well as France-US, conditional on
Germany is captured by a bivariate Gaussian copulas, while France-Japan conditional on Germany is a Student t copula. The copula of UK-US and
UK-Japan, conditional of Germany and France are Gaussian. Finally, US-Japan conditional on Germany, France and UK is a Gaussian copula.
Panel B, Latin America. Model one (Columns two to four): Regime one (high dependence) and Regime two (low dependence) are modeled using a
Gaussian copula. Model two (Columns five to seven): Regime one (high dependence) is a Student t copula while Regime two (low dependence) is a
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Gaussian copula. Model three(Columns eight to twelve): Regime one (high dependence) is modeled using a Canonical vine copula while for Regime two
(low dependence) we use a Gaussian copula. The structure of the Canonical vine copula is as follows: Brazil-Mexico, Brazil-Argentina and Brazil-Chile
are modeled using a bivariate Rotated Gumbel copula for each pair. The dependence structure of Mexico-Argentina and Mexico-Chile conditional on
Brazil is a bivariate Gaussian copula. The copula of Argentina-Chile conditional on Brazil and Mexico is Gaussian.

We report t statistics for all parameters. A Kendall’s τ coefficient is obtained by using the following relation: τ = 2arcsin(ρ)/π, where ρ is the estimated

correlation coefficient for the multivariate Gaussian and Student t copulas as well as for the bivariate Gaussian and Student t copulas in the canonical vine

copula of model three. For all the bivariate Rotated Gumbel copulas in model three we use the following equation: τ = 1−1/θ, where θ is the parameter

of the Rotated Gumbel. As some parameters estimated in the canonical vine copula of model 3 are conditional, we present the unconditional Kendall’s

τ (Uncond. τ). To compute the unconditional Kendall’s τ , we transform each Kendall’s τ into the parameter of the bivariate normal Copula that

implies the same rank correlation via the relation sin(τπ/2). Now, we apply the rules of conditional variance-covariance to compute the corresponding

unconditional correlations. Finally, we report the unconditional Kendall’s τ given the unconditional normal copula’s parameter by 2 arcsin(ρ)/π. P11

and P22 are the diagonal elements of the transition probability matrix. The Log-Likelihood is reported in the last row.
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9 Figures
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Figure 1: Exceedance Correlation from Gaussian and Rotated Gumbel copulas with stan-
dard normal marginals (100000 simulations, Kendall’s τ = .5).
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Figure 2: Dependence structure of a canonical vine
This figure shows the structure of a canonical vine copula with five variables. In the first layer, the de-

pendence between variable 1 and all the other variables in the system is modeled with bivariate copulas.

The second layer consists in modeling the dependence of variables 2 with variables 3 to 5, conditionally on

variable 1. In the last layer, one uses a bivariate copula to model the dependence between variables 4 and

5, conditionally on variables 1 to 3. In the case of this system with 5 variables, the dependence is modeled

with 10 bivariate copulas
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θij|(1,...,i−1) τij|(1,...,i−1) ρij|(1,...,i−1)

τij ρij

//
(Eq.4)

//
sin(τπ/2)

²²

conditional
to

unconditional:
Σx|y = Σx − ΣxyΣ

−1
y Σyx

oo
2 arcsin(ρ)/π

Figure 3: Computation of unconditional Kendall’s τ
This figure shows how we compute unconditional Kendall’s τ , τij from θij|(1,...,i−1), the parameter of the

conditional copula. First, we compute τij|(1,...,i−1), the Kendall’s τ of each bivariate conditional copula

implied by the estimated parameter using Equation (4). Second, we presume the data came form a Gaussian

copula and we compute ρij|(1,...,i−1), the correlation that implies the same Kendall’s τ , via the relation

sin(τπ/2). Third, we apply the rules of conditional variance-covariance to compute ρij , the corresponding

unconditional correlations which we obtain by normalizing the unconditional variance covariance matrix

obtained via the formula Σx|y = Σx −ΣxyΣ−1
y Σyx. Finally we report τij , the unconditional Kendall’s τ that

corresponds to the Gaussian unconditional correlation, with the relation 2 arcsin(ρ)/π.
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Figure 4: Smoothed probability of high dependence regime, G5 and Latin America.
This figure presents the smoothed probability of the high dependence regime obtained from the EM algorithm

for the G5 and Latin America. The first column corresponds to model 1, the Gaussian-Gaussian copula

switching model. The second column is model 2, which corresponds to the Normal-Student t copula switching

model for the G5, and the Student t-Normal for Latin America. The third column is the Normal-canonical

vine copula switching model for G5, and the canonical vine-Normal copula for Latin America.
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Figure 5: Exceedance correlation, data and models, G5 countries
This figure shows the pairwise empirical exceedance correlations of the G5 for the following thresholds: from

0.1 to 0.9 by increments of 0.025. The exceedance correlation of the inverse normal cdf of the PIT of the

marginals is represented by dots. The dashed line represents the all Gaussian copula model, the dot-dashed

line represents the model with the Student-t copula, while the continuous line represents the canonical vine

model.
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Figure 6: Exceedance correlation, data and models, Latin American countries
This figure shows the pairwise empirical exceedance correlations of Latin America for the following thresh-

olds: from 0.1 to 0.9 by increments of 0.025. The exceedance correlation of the inverse normal cdf of the

PIT of the marginals is represented by dots. The dashed line represents the all Gaussian copula model, the

dot-dashed line represents the model with the Student-t copula, while the continuous line represents the

canonical vine model.
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Figure 7: Quantile dependence, Gaussian-Gaussian model, with bootstrap confidence in-
tervals based on the data, Latin American countries
This figure shows the pairwise quantile dependence implied by the PIT of the marginals and the all Gaussian

copula model for Latin America. The continuous line represents the quantile dependence of the PIT of the

marginals, while the dashed line is the one calculated from the simulations of the all Gaussian model. The

5% and 95% confidence intervals are drawn by lines connecting dots. These confidence intervals are obtained

from 500 bootstrap replications of the data. The average over the bootstrap samples is represented by a

dotted line. The graphs below the diagonal of each figure represent the lower quantile dependence, while

the ones above the diagonal are the upper quantile dependence.
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Figure 8: Quantile dependence, canonical vine-Gaussian model, with bootstrap confidence
intervals based on the data, Latin American countries
This figure shows the pairwise quantile dependence implied by the PIT of the marginals and the canonical

vine model for Latin America. The continuous line represents the quantile dependence of the PIT of the

marginals, while the dashed line is the one calculated from the simulations of the canonical vine model.

The 5% and 95% confidence intervals are drawn by lines connecting dots. These confidence intervals are

obtained from 500 bootstrap replications of the data. The average over the bootstrap samples is represented

by a dotted line. The graphs below the diagonal of each figure represent the lower quantile dependence,

while the ones above the diagonal are the upper quantile dependence.
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Figure 9: Expected Shortfall and Value at Risk with respect to the all Gaussian copula
model, G5 countries
This figure shows the VaR and ES of an equally weighted portfolio, assuming normal marginals, for the

Student-t and canonical vine model as a fraction of the all Gaussian copula model for the G5. The significance

levels go from 0.9 to 0.99 by increments of 0.05. In order to calculate the VaR and ES, for each model we

simulate a long series of Nb = 298000 observations.
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Figure 10: Expected Shortfall and Value at Risk with respect to the all Gaussian copula
model, Latin American countries
This figure shows the VaR and ES of an equally weighted portfolio, assuming normal marginals, for the

Student-t and canonical vine models as a fraction of the all Gaussian copula model for Latin America. The

significance levels go from 0.9 to 0.99 by increments of 0.05. In order to calculate the VaR and ES, for each

model we simulate a long series of Nb = 298000 observations.
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