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The statistical properties of inflation and, in particular,
its degree of persistence and stability over time is a subject
of intense debate, and no consensus has been achieved yet.
The goal of this paper is to analyze this controversy using
a general approach, with the aim of providing a plausible
explanation for the existing contradictory results. We consider
the inflation rates of twenty-one OECD countries which are
modeled as fractionally integrated (FI) processes. First, we
show analytically that FI can appear in inflation rates after
aggregating individual prices from firms that face different
costs of adjusting their prices. Then, we provide robust empir-
ical evidence supporting the FI hypothesis using both classical
and Bayesian techniques. Next, we estimate impulse response
functions and other scalar measures of persistence, achieving
an accurate picture of this property and its variation across
countries. It is shown that the application of some popular
tools for measuring persistence, such as the sum of the AR
coefficients, could lead to erroneous conclusions if fractional
integration is present. Finally, we explore the existence of
changes in inflation inertia using a novel approach. We con-
clude that the persistence of inflation is very high (although
nonpermanent) in most postindustrial countries and that
it has remained basically unchanged over the last four decades.
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The study of the statistical properties of inflation has attracted
a great deal of attention because this variable plays a central role in
the design of monetary policy and has important implications for the
behavior of private agents. Moreover, new interest in the subject has
arisen in the last few years and, as a consequence, a large number of
empirical and theoretical papers have appeared recently. Two reasons
motivate this upsurge. Firstly, the international monetary context
has experienced important changes such as the adoption of inflation-
targeting regimes by some countries, the arrival of monetary union in
Europe, and a general deflationist process in industrial economies.
Secondly, the recent advances in the statistical treatment of time-
series data have improved the tools of analysis.

In spite of the great effort, no consensus has been achieved yet
about the most appropriate way to model the inflation rate, and var-
ious questions remain open. Two fundamental issues emerge in this
macroeconomic debate: how to measure the persistence of inflation
rates accurately and whether this persistence has changed recently.
On the one hand, the degree of inflation persistence is a key element
in the monetary transmission mechanism and a determinant of the
success of monetary policy in maintaining a stable level of output
and inflation simultaneously.! On the other hand, detecting whether
persistence has fallen recently is crucial in determining the probabi-
lity of recidivism by the monetary authority (see Sargent 1999) since,
as Taylor (1998) and Hall (1999) have pointed out, tests in the spirit
of Solow (1968) and Tobin (1968) will tend to reject the hypothesis of
monetary neutrality if persistence estimates are revised downward.
Thus, understanding the dynamics of inflation is a crucial issue with
very important policy implications.

Various economic mechanisms have been put forward to char-
acterize the price formation process, the sticky price models a la
Taylor (1979, 1980) and Calvo (1983) being the dominant theoreti-
cal background in monetary policy. These models are not com-
pletely successful in capturing the observed inflation inertia, so

1The need to coordinate monetary policy with the degree of inflation per-
sistence has given rise to numerous articles. For instance, Coenen (2003) and
Angeloni, Coenen, and Smets (2003) study the robustness of monetary policy
when there is uncertainty about the correct persistence of inflation and conclude
that it would be preferable to design the monetary target assuming a high infla-
tion inertia.
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subsequent modifications have been designed to enhance their em-
pirical performance (e.g., Fuhrer and Moore [1995], Fuhrer [1997],
Gali and Gertler [1999], Christiano, Eichenbaum, and Evans [2001],
Gali, Gertler, and Lépez-Salido [2001], Roberts [2001], Driscoll and
Holden [2004], Coenen and Wieland [2005], etc.). Nevertheless, from
a more applied perspective, there is still a lot of controversy about
the degree and stability of inflation persistence. On the one hand,
there is abundant empirical evidence that postwar inflation exhibits
high persistence in industrial countries. The papers of Pivetta and
Reis (2004) for the United States and O’Reilly and Whelan (2004)
in the euro zone are some examples. On the other hand, it has been
argued that the above-mentioned results are very sensitive to the sta-
tistical techniques employed and that the observed persistence may
be due to the existence of unaccounted structural changes, probably
stemming from modifications in the inflation targets of monetary au-
thorities, different exchange rate regimes, or shocks to key prices (see
Levin and Piger 2003).2 A similar lack of consensus is found in the
analysis of persistence stability. Some authors have found evidence
of a decrease in inflation inertia in recent years (see Taylor [2000],
Cogley and Sargent [2001], and Kim, Nelson, and Piger [2004]) while
others, employing different econometric techniques, give support to
the opposite conclusion that inflation persistence is better described
as unchanged over the last decades (see Batini [2002], Stock [2001],
Levin and Piger [2003], O’Reilly and Whelan [2004], and Pivetta and
Reis [2004]).

The goal of this article is to shed further light on this controversy
by considering a wider statistical framework. Typically, the papers
above only consider I(1) or I(0) processes (allowing sometimes for
parameter instability) in order to fit these data. Although both for-
mulations can deliver similar short-term predictions if appropriate
parameters are chosen, their medium- and long-term implications
are drastically different (see Diebold and Senhadji 1996). Processes
containing a unit root are characterized by a flat sample autocor-
relation function, revealing the fact that the impact of shocks to
the series is permanent. In contrast, correlations in I(0) processes
decay to zero at an exponential rate, implying that all shocks have a

2Tt is well known that the existence of changes of regime that are not explicitly
taken into account may lead to the detection of spurious persistence (see Perron
1989).
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short-lasting effect on the process. It is easy to find situations where
this framework can be too restrictive, as there are both economic
foundations and empirical evidence suggesting that many macroeco-
nomic and financial variables react to shocks in a different fashion.
This is the case, for instance, of variables whose shocks are non-
permanent but vanish very slowly (with correlations, if they exist,
decaying at a hyperbolic rather than at an exponential rate), result-
ing in series that may or may not be stationary, in spite of displaying
mean reversion.? To overcome this limitation, a more flexible model
has been introduced which is capable of encompassing the I(1)/I(0)
paradigm as well as a richer class of persistence behaviors. The au-
toregressive fractionally integrated moving average (ARFIMA) mod-
els are similar to the ARIMA models, but the order of integration,
d, is allowed to be any real number instead of only integer ones. It
turns out that the former models are very convenient for analyzing
the persistence properties of inflation since they are able to account
for a wide variety of persistence features very parsimoniously.

In this paper, we demonstrate that fractionally integrated (FT)
behavior can appear in the inflation rate as a result of aggregating
prices from firms that are heterogeneous in their price adjustment
costs, and we test this conjecture on a large data set containing
twenty-one OECD countries.* In order to do so, FI models are esti-
mated and tested against other popular specifications (such as dif-
ferent ARMA and ARIMA models, possibly affected by parameter
instability) using both classical and Bayesian techniques.

We have found strong support for our conjecture, which is robust
across the different countries, the various competing models, and the
set of employed techniques. According to these results, it is shown
that if ARIMA models are used to measure persistence, they will

3Evidence of these features has been found in variables such as GNP (Diebold
and Rudebusch [1989] and Sowell [1992b]); asset price and exchange rate volatil-
ity (Andersen and Bollerslev [1997], Andersen et al. [1999], Ding, Granger, and
Engle [1993], and Breidt, Crato, and Lima [1998]); political opinion data (Byers,
Davidson, and Peel [1997]); and many others. See Henry and Zaffaroni (2002) for
other significant references.

4FI models have already been employed in the literature to model inflation
data, but, to the best of our knowledge, no economic justification for the presence
of FI has been provided. See Baillie, Chung, and Tieslau (1992, 1996), Hassler and
Wolters (1995), Franses and Ooms (1997), Barkoulas, Baum, and Oguz (1998),
Bos, Franses, and Ooms (1999, 2002), Delgado and Robinson (1994), Baum,
Barkoulas, and Caglayan (1999), and Ooms and Doornik (1999).



Vol. 2 No. 1 The Persistence of Inflation in OECD Countries 55

tend to overestimate this property. Furthermore, we show that the
usual procedure of fitting an AR(k) process to the data and iden-
tifying a value of the sum of the AR coefficients close to one with
the existence of an (integer) unit root can easily lead to persistence
overestimation. This is so because any FI model with a fractional
integration order strictly greater than zero admits an AR(c0) rep-
resentation that verifies that the sum of the corresponding coeffi-
cients (p(1)) is equal to one.® When fitting an AR model to an FI
process, any sensible information criterion chooses a finite and rela-
tively small value of k, but the sum of the estimated coefficients is
still close to one in most cases. Therefore, prudence recommends to
interpret p(1) ~ 1 not as a signal of an integer unit root but just as
an indication of some type of integration, possibly fractional, in the
data. The implications in term of persistence of the former or the
latter interpretation are drastically different.%

The main results that we have obtained can be summarized as
follows. Once fractional integration is allowed for, both the I(0) and
the I(1) specifications are clearly rejected. Furthermore, for most
countries the FI specification is also preferred to the alternative of
I(0) processes suffering from parameter instability, which could be an
alternative explanation of the observed persistence.” Inflation rates
are estimated using different techniques, and it is shown that they
are best characterized as FI models with a memory parameter, d,
around 0.6—0.8. This implies that they are very persistent, nonsta-
tionary; however, as opposed to I(1) variables, shocks have a non-
permanent character, so the series are mean reverting. We provide
various persistence measures that permit an adequate comparison of
inflation inertia across countries and their evolution over time. We

This is true for the same reasons as in the I(1) case: the polynomial of the
AR expansion contains the factor (1 — L)d, where L is the lag operator and d is a
real number representing the order of integration. Clearly, L = 1 is a root of this
polynomial if d > 0 which, in turn, implies that the sum of the AR coefficients
associated with lagged values of the process has to be equal to one. See section 4
for a more technical explanation.

SAs it will be shown in section 2, the class of FI models with an integra-
tion order, d, strictly greater than zero is very large, containing both stationary
and nonstationary processes that, in the latter case, may or may not be mean
reverting.

"It is well known that FI models and I(0) processes with structural changes
may look very similar (see section 3). The possibility of directly testing these
hypotheses is also a major novelty of this paper.
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find important differences across countries. According to the half-
life measure (HL), U.S. inflation is the most persistent and infla-
tion of Central and Nordic European countries presents the lowest
degree of inertia. We also provide persistence estimates computed
from ARIMA specifications and show that the permanent-shock re-
striction introduced by the unit-root hypothesis leads to persistence
overestimation. Finally, we have also explored the possibility of a
change in persistence, but for most countries we find no evidence of
any such change. Throughout the article, our results are compared
with those of previous works, and explanations of the divergence are
provided. We also describe some potential pitfalls deriving from the
use of some popular persistence tools when the DGP is FI but this
property is not taken into account.

The rest of the paper is structured as follows. Section 1 presents
a standard preliminary analysis of inflation. Section 2 describes the
concept and the main characteristics of fractionally integrated pro-
cesses and provides an economic explanation of the existence of
these features in inflation data. Section 3 reports the results of fit-
ting ARFIMA models to this data set by using both classical and
Bayesian methods and tests the FI(d) hypothesis against various al-
ternatives such as I(1), I(0), and I(0) with a structural break in the
mean. Impulse response functions and other scalar measures of per-
sistence are provided in section 4. Section 5 analyzes the hypothesis
of a change in inflation persistence. Finally, section 6 gives some
concluding remarks.

1. Data Description and Preliminary Tests

We consider the quarterly consumer price index in the period run-
ning from the first quarter of 1957 to the last quarter of 2003 for
twenty-one OECD countries. The data have been obtained from
the International Financial Statistics database of the International
Monetary Fund. The countries included in the study are Australia
(AU), Austria (AUS), Belgium (BE), Canada (CA), Denmark (DK),
Finland (FI), France (FR), Germany (GE), Greece (GR), Italy (IT),
Japan (JP), Luxembourg (LX), Netherlands (NL), New Zealand
(NZ), Norway (NO), Portugal (PO), Spain (SP), Sweden (SWE),
Switzerland (SWI), United Kingdom (UK), and the United States
(USA).
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In order to construct the inflation rates, we have proceeded as
follows. Firstly, the price series for each country has been seasonally
adjusted using the X12 quarterly seasonal adjustment method of
the U.S. Census Bureau. Secondly, inflation rates are computed as
7t =1n P} —In P{_; and, finally, an outlier analysis has been carried
out and the additive outliers (AO) that clashed with methodological
changes in the price indices have been removed. This has been the
case of Austria (1957:3), Belgium (1967:1, 1971:1), Finland (1972:1),
France (1980:1), Germany (1991:1), Greece (1959:1, 1970:1), Italy
(1967:1), Netherlands (1960:1, 1961:1, 1981:1, 1984:2), New Zealand
(1970:1), and Sweden (1980:1).

The evolution of the inflation series is shown in figures 5 to 7 (see
the appendix). The well-known trends of postwar inflation in devel-
oped countries can be easily identified in these graphs. Starting from
low levels in the 1960s, around 3 percent for most countries, prices
rose dramatically in the 1970s after the oil crisis (inflation figures
almost tripled) and this sharp increase was accompanied by high
volatility. In the 1980s, inflation was moderately reduced by the ap-
plication of tight monetary policies, but high levels of volatility were
still observed. Finally, the 1990s were characterized by a generalized
decrease in the mean and in the variance of inflation.

The preliminary analysis proceeds as follows. Firstly, standard
unit-root tests have been computed on the inflation series and the
results are presented in table 1. To be precise, the ADF test of Dickey
and Fuller (1981), the PP of Phillips and Perron (1988), the MZ-GLS
of Ng and Perron (2001), and the KPSS of Kwiatkowski et al. (1992)
have been employed. Columns 1-3 of table 1 take the I(1) model as
the null hypothesis, whereas the fourth column considers the I(0).
The latter hypothesis is clearly rejected for all countries at the 1
percent significance level (column 4), whereas the I(1) is rejected for
sixteen out of the twenty-one countries by at least two tests (columns
1-3). Four countries (IT, SP, PO, and USA) present rejection in one
of the tests, and for only one country (BE) is it not possible to reject
the I(1) conjecture with any of these tests. Since unit-root tests are
known to lack power in many relevant situations, the results above
cast serious doubts about the existence of a unit root in inflation
rates. This finding is relevant because some tests (like the monetary
neutrality tests) start by assuming a unit root in inflation rates and
are not valid outside this framework.
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Table 1. Unit-Root and Stationarity Tests
ADF PP MZ;-GLS KPSS
AU —2.39 —4.46** —2.16* 0.88**
(2) (8) (2) (10)
AUS —4.71%* —5.60** —0.35 0.94**
(2) (8) (2) )
BE —2.26 —2.77 —1.85 0.79**
@) (10) ®) (10)
CA -3.01* —3.89** —2.77** 0.93**
(1) (3) (1) (10)
DK —3.49** —4.94** —1.62 1.38%*
(2) (8) (2) )
FI —3.32* —4.11** —3.06** 1.34**
(1) (5) (1) (10)
FR —3.69** —3.49** —3.22%* 1.46**
(1) (6) (1) (10)
GE -3.01* —4.75%* —2.77** 0.70**
(2) (7) (2) (10)
GR —3.23* —3.71** —2.80** 1.32**
(1 (2) (1) (10)
1T —1.50 —3.56** —-0.91 0.90**
(5) (10) (5) (10)
JP —2.76 —4.60** —2.50* 1.78**
(2) (6) (2) (10)
LX -3.11* —4.38%* —3.62** 0.72**
(7) (4) (7) (10)
NL —3.81** —5.20** —3.32*%* 1.01%*
(3) (7) (3) )
NZ —4.14** —4.42** —3.42** 1.00**
(1) (6) (1) (10)
NO —3.42* —-2.77 3.16** 0.99**
(1) (1) (1) (10)
PO —2.02 —3.74** —1.42 1.01**
(4) (2) (4) (10)
SP —2.19 —5.08** —1.94 1.13**
(4) (3) (4) (10)
SWE —3.00* —5.38** —2.28* 1.04**
(2) (7) (2) (10)
SWI —3.08* —5.09** —2.84** 0.82**
(2) (4) (2) (10)
UK —3.22% —3.26* —2.89** 0.85**
(1) (3) (1) (10)
USA —2.61 —2.63 —2.70** 0.75**
(3) (4) (3) (10)
Notes: ** * denote significance at the 1 percent and 5 percent level, re-
spectively. Figures in parentheses correspond to the number of lags and the
bandwidth for the ADF and MZ;-GLS and the PP and KPSS, respectively. Lag
length was chosen according to the SBIC criterion. Bartlett’s window was used
as a kernel estimator in the PP and KPSS (bandwidth was chosen according
to Newey and West 1994).
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To sum up, since for most countries both the I(0) and the I(1)
hypotheses are rejected, it seems that the ARIMA framework does
not provide a good characterization of this data set. This result has
been interpreted in the literature as an indicator of a behavior mid-
way between the I(0) and the I(1) formulations.® If a process is I(1),
all shocks have a permanent effect, whereas they disappear expo-
nentially when the process is I(0). An alternative to both formula-
tions that has been widely explored in the literature is the existence
of structural breaks. This amounts to considering that only a few
shocks, such as stock market crashes, oil crises, wars, etc., have a
permanent effect on the series while all the others vanish rapidly.
Perron (1989) showed that standard unit-root tests are not able to
reject the I(1) hypothesis if a trend stationary process suffers from
occasional breaks in the parameters that describe the trend and/or
the level.

To explore the existence of breaks in the mean, we employ the
method proposed by Bai and Perron (1998, 2003a, 2003b), henceforth
BP, for multiple structural breaks. BP propose three types of tests.
The supFr (k) test considers the null hypothesis of no breaks against
the alternative of k breaks. The supFr (14 1/1) test takes the existence
of | breaks, with [ = 0,1,..., as Hy against the alternative of | + 1
changes. Finally, the so-called “double maximum” tests, UDmax and
WDmax, test the null of absence of structural breaks versus the
existence of an unknown number of breaks. Bai and Perron (2003a)
suggest beginning with the sequential test supFr(I+ 1/1). If no break
is detected, they recommend checking this result with the UDmax
and WDmax tests to see if at least one break exists. When this is
the case, they recommend continuing with a sequential application
of the supFr(l 4+ 1/1) test, with [ = 1,.... This strategy has been
followed to obtain the figures in table 2.

To test the changes in the level of the series, the following repre-
sentation has been considered:

T =@+ S},

81t is well known that standard unit roots still have power when the DGP
is not the one postulated under the alternative hypothesis. This is the case, for
instance, of fractionally integrated processes (see Diebold and Rudebusch [1991]
and Lee and Schmidt [1996] for the DF and KPSS tests, respectively) or some
types of structural breaks (see Perron 1989).
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Table 2. Breaks in the Mean

Number of Breaks Dates of the Breaks
AU 2 1970:4, 1991:1
AUS 3 1970:1, 1983:3, 1995:4
BE 2 1971:4, 1985:3
CA 4 1965:1, 1972:3, 1983:1, 1990:4
DK 3 1972:4, 1985:2, 1992:1
FI 3 1971:1, 1982:3, 1991:2
FR 3 1973:2, 1985:3, 1992:3
GE 2 1970:1, 1983:1
GR 2 1973:1, 1993:3
IT 3 1972:2 1983:3, 1995:3
JP 2 1981:3, 1993:4
LX 2 1970:1, 1985:3
NL 2 1963:4, 1985:4
NZ 2 1970:1, 1988:3
NO 2 1970:4, 1990:3
PO 4 1963:4, 1971:2, 1983:5, 1992:3
SP 4 1973:2, 1980:1, 1986:4, 1995:3
SWE 2 1970:1, 1992:1
SWI 1 1993:3
UK 3 1970:1, 1991:1, 1982:1
USA 2 1967:3, 1982:4
Note: The consistent covariance matrix is constructed using a
quadratic kernel following Andrews (1991).

where ¢ is a constant capturing the level of the series and gf; is a
(short-memory) linear process. Following Perron (1989), attention is
focused on sharp changes of the level, ¢. A maximum number of five
breaks has been considered, which, in accordance with the sample
size T = 186, supposes a trimming ¢ = 0.15. The process ¢} is allowed
to present autocorrelation and heteroskedasticity. A nonparametric
correction has been employed to take account of these effects.

The results of applying the multiple-break tests to changes in
the level of the inflation rates are presented in table 2. For most
countries two or three breaks in the level are detected. The first
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break usually takes place at the beginning of the 1970s, whereas the
second is located in the middle of the 1980s. The third, if it exists,
occurs at the beginning of the 1990s. Thus, the chronology of the
break points is in agreement with the general features of inflation
discussed above.

The preliminary analysis of the inflation processes of OECD
countries highlights the difficulties of modeling these series. On the
one hand, there is evidence against both short-memory stationarity
(I(0)) and unit-root behavior, which are the most common formula-
tions employed to model these series. An alternative to both settings
is to consider a model containing structural breaks in some parame-
ters, and evidence supporting this hypothesis has been found. If the
latter were true, it would mean that the persistence often found in
these series is likely to be spurious. This is the conclusion put for-
ward by Levin and Piger (2003). They analyze the inflation rates
of twelve industrial countries and find evidence of breaks in the in-
tercept of the inflation rate. They claim that conditional on these
breaks, many countries do not show strong persistence.

Nevertheless, the existence of structural breaks is not the only al-
ternative to the I(0)/I(1) framework. Fractionally integrated models
can also bridge the gap between these two formulations. Moreover, it
is well-known that FI and structural breaks can be easily confused.
Since both types of models have very different implications in terms
of persistence, it is crucial to determine which of the two phenomena
is more likely to be present in the data. Sections 2 and 3 will deal
with this issue.

2. Fractional Integration in Inflation Data

The previous results cast serious doubts on the adequacy of either
the I(1) or the I(0) models to fit inflation series. When one is inter-
ested in analyzing the long-run impact of contemporaneous shocks,
the above categories represent two extreme possibilities. Models con-
taining a unit root are characterized by shocks that have a perma-
nent effect, while innovations of I1(0) processes disappear so fast that
correlations decay at an exponential rate. Nevertheless, it has been
shown that this framework could be too narrow in many instances,
as there is ample empirical evidence suggesting that shocks of many
macroeconomic and financial series behave differently. A class that
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embeds both the I(1) and the I(0) models and, at the same time, is
able to account for richer persistence types is given by the so-called
fractionally integrated (FI) models. Among this class, the most popu-
lar parametric model is the ARFIMA one, independently introduced
by Granger and Joyeux (1980) and Hosking (1981). The main ad-
vantage of this formulation with respect to the ARIMA one is the
introduction of a new parameter, d, that models the “memory” of
the process, that is, the medium- and long-run impact of shocks on
the process. More specifically, y; is an ARFIMA(p, d, q) if it can be
written as

®(L)(1 — L)Yy, = O(L)ey, e ~ i.i.d.(0, 02),

where the so-called memory parameter, d, determines the integration
order of the series and is allowed to take values in the real, as opposed
to the integer, set of numbers.” The terms ®(L) =1 — ¢;L — ... —
¢,LP and O(L) =1 —01L — ... — 0,17 represent the autoregressive
and moving average polynomials, respectively, with all their roots
lying outside the unit circle. While d captures the medium- and
long-run behavior of the process, ®(L) and ©(L) model the short-run
dynamics. As Diebold and Rudebusch (1989) notice, this provides for
“parsimonious and flexible modeling of low frequency variation.”
The bigger the value of d, the more persistent the process is.
Stationarity and invertibility require |d| < 1/2, which can always be
achieved by taking a suitable number of (integer) differences. Short
memory is implied by a value of d = 0, where the process is char-
acterized by absolutely summable correlations decaying at an expo-
nential rate. By contrast, long memory occurs whenever d belongs
to the (0,0.5) interval. Hosking (1981) showed that the correlation
function in this case is proportional to k2! as k — oo, that is,
it decays at a hyperbolic rather than at an exponential rate. These
processes are also characterized by an unbounded spectral density
at frequency zero. These facts reflect the slower decay of shocks with

9ARIMA models are a particular case, where d = 0,1,2,.... Notice that, in
contrast to the ARIMA case, in the ARFIMA framework, d is a parameter that
requires estimation.

10Furthermore, the fact of having two sets of parameters modeling the long-
and short-run dynamics separately avoids some estimation problems that might
affect the ARMA processes. As Sowell (1992b) points out, maximum likelihood
estimation of ARMA models may sacrifice the long-run fit to obtain a better fit
of the short-run behavior.
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Figure 1. Sample Autocorrelation Function of Several

Processes
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respect to the I(0) case. A particularly interesting region for macroe-
conomic applications is the interval d € [0.5,1). In this range, shocks
are transitory, but the impulse response to shocks vanishes so slowly
that the variance is not bounded and, therefore, the process is non-
stationary in spite of being mean reverting (as shocks eventually
disappear). Shocks have a permanent effect whenever d > 1.

Figure 1 illustrates the differences described above. The main di-
agonal contains the sample correlation function up to lag 80 of an
I(0) and an I(1) process, respectively, whereas the other diagonal
represents the same function for two FI processes. It can be seen
that, after a few lags, the I(0) and the I(1) characterizations are
drastically different, while the FI ones are able to fill the gap be-
tween the former models. The upper left graph depicts the sample
autocorrelation function of an AR(1) process with an autoregressive
coefficient equal to 0.7. Although this process is highly correlated at
first lags, autocorrelations decay to zero very fast and become non-
significant after a few lags. The behavior changes drastically when-
ever d is allowed to take strictly positive values. The long-memory
case is illustrated in the upper right graph that contains the sample
correlation function of an ARFIMA(0,0.3,0). It is characterized by a
slow decay of correlations, which remain significantly different from
zero even at distant horizons. The two bottom graphs represent an
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ARFIMA(0,0.7,0) and an I(1) process. Both are nonstationary, very
persistent, but correlations for the former decay faster, revealing the
fact that the process is eventually mean reverting. The graph on the
lower right corresponds to a random walk where all shocks have a
permanent effect.

The success of these models in economics may be attributed to
the development of a rationale for the presence of FI in macro-level
economic and financial systems. Robinson (1978) and Granger (1980)
showed that FI behavior could appear in the aggregate produced
from a large number of heterogeneous I(0) processes describing the
microeconomic dynamics of each unit. This result has been incorpo-
rated in different economic settings to show analytically that some
relevant variables can display FI'' and is also the approach that
we exploit to justify the existence of FI behavior in the inflation
rate. Another way of obtaining FI behavior was proposed by Parke
(1999). He considers the cumulation of a sequence of shocks that
switch to zero after a random delay. If the probability that a shock
survives for k periods, py, decreases with k at the rate p, = k272
for d € (0, 1], Parke demonstrates that the error duration model gen-
erates a process with the same autocovariance structure as an I(d)
process. He also shows how this mechanism can be applied to gen-
erate FI in aggregate employment and asset price volatility. From
an empirical point of view, evidence supporting FI in financial and
macroeconomic data is very large. See Henry and Zaffaroni (2002)
for a detailed list of references.

Operationally, a binomial expansion of the operator (1 — L)d is
used in order to fractionally differentiate a time series:

(1-L)"=) m(@L, (1)
1=0

where

7 =T(i — d)/T(—d)D(i + 1) 2)

and I'(-) denotes the gamma function. When d = 1, (1) is just the
usual first-differencing filter. For noninteger d, the operator (1—L)% is
an infinite-order lag-operator polynomial with coefficients that decay

1Some examples are Michelacci and Zaffaroni (2000), Abadir and Talmain
(2002), Haubrich and Lo (2001), Byers, Davidson, and Peel (1997), etc.
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very slowly. Since the expansion is infinite, a truncation is needed
in order to fractionally differentiate a series in practice (see Dolado,
Gonzalo, and Mayoral [2002] for details on the consequences of the
truncation).

2.1 The Sources of Fractional Integration in Inflation Data

Before testing for the presence of the above-described features in
inflation series, it would be enlightening to have some plausible ex-
planations for their existence in the data.

Why can inflation be fractionally integrated? Ome plausible
mechanism for generating long-run dependence in inflation could
stem from the fact that some economically important shocks have
long memory. Evidence of this behavior in geophysical and meteoro-
logical variables is well documented (see, among others, Mandelbrot
and Wallis 1969). Some authors have argued that the prices of
some goods (in particular, raw materials) could inherit this property
which, in turn, they transmit to other related goods (see Haubrich
and Lo 2001). It seems difficult, however, to assess the extent of
this effect in a price index and, therefore, we will not pursue this
explanation here.

A more satisfactory explanation of the FI behavior, however, is
provided by models that produce strong dependence despite white
noise shocks. By applying the aggregation results on heterogeneous
agents, it is easy to show that FI could appear in inflation data. Let
us consider a model of sticky prices as in Rotemberg (1987), where
it is assumed that each firm faces a quadratic cost of changing its
price.'? It is well known that when this is the case, the dynamics of
prices are given by

P, =Upi_1 + (1 —9)p}*, (3)

where p and p* represent the actual and optimal level of prices of firm
i, and ¥ is a parameter that captures the extent to which imbalances
are remedied in each period. Equation (3) can also be written as

Ap; = 0Ap;_, +vj, (4)

12Quadratic costs of changing prices are equivalent, up to a first-order approx-
imation, as far as aggregates are concerned, to a model such as Calvo (1983)
where firms have a constant hazard of adjusting prices.
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with i = (1 — 9¥)Api*. The parameter o is a function of the adjust-
ment costs and describes the speed of the adjustment, while 9/(1—1)
is the expected time of adjustment. Since costs may differ across
firms, it is natural to consider the case where ¥ may also depend on
1. Then,
Apj =0'Api_y +v}. (5)
To build a price index, aggregation over a huge number of indi-
vidual prices has to be considered (for instance, prices for the goods
and services used to calculate the CPI are collected in eighty-seven
urban areas throughout the United States and from about 23,000
retail and service establishments). Let us define the change in the
price index Ap; that verifies

N .
Apy = Z Ap;.
i=1

Provided the distribution of ¢ verifies some (mild) semipara-
metric restrictions, Ap; will display an FI behavior. Zaffaroni (2004)
provides a full discussion of these restrictions. We will assume that
9 belongs to a family < of continuous distributions on [0,1) with
density

3(0,d) ~ 9% as 9 — 07, (6)

with ¢ € (0,00). This is a very mild semiparametric specification
of the cross-sectional distribution of ¥. Zaffaroni (2004) shows that
if ¥ is distributed according to (6), then the aggregated series will
be FI(d). The bigger the proportion of agents having values of ¥’
close to one, the higher the memory of the process. In other words,
if an important proportion of agents correct the imbalances between
the actual and the optimal level of prices only by a very small
amount each period, the inertia in the inflation rate will be very
high since the main factor driving the dynamics will be past values of
prices.

It is interesting to notice that the behavior of 3(¥, d) within any
interval [0,~] is completely unspecified. Many parametric specifica-
tions verify the restriction in (6), for instance, the uniform and the
Beta distributions. Zaffaroni’s results imply that if the value of the
memory parameter d is known (or can be estimated), then it is pos-
sible to infer a precise indication of the shape of the cross-sectional
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distribution of the ¥”s near one. This implies that it is possible to
infer on certain aspects of the microenvironment using aggregate
information only.

3. Evidence of FI Behavior in Inflation Data

In this section we analyze the evidence of FI behavior in inflation
data through a series of steps. Subsection 3.1 reports the results of
applying several estimation techniques that explicitly allow for FI.
In order to obtain more robust results, both classical and Bayesian
methods are employed. For all countries and across the different tech-
niques, fractional values of d, distant from both {0,1}, are found.
Next, we perform different tests of integer versus fractional integra-
tion, and the results are reported in subsection 3.2. Finally, the pos-
sibility of having detected spurious long memory as a consequence
of the existence of an unknown number of structural changes in the
data has been analyzed in subsection 3.3.

3.1 Estimation Results

In order to obtain robust estimates of the parameters of interest, we
have considered several of the most popular estimation techniques,
namely, the Geweke and Porter-Hudak (1983) (GPH) semiparamet-
ric method and three parametric ones: exact maximum likelihood
(EML; see Sowell 1992a), nonlinear least squares (NLS; Beran 1994),
and a minimum distance estimator (MD; Mayoral 2004a).'® The es-
timated values of the memory parameter d are presented in table 3.

Several conclusions can be drawn from the inspection of this
table. Firstly, the finding of fractional values of d, distant from the
unit root, is robust across countries and across estimation methods.
Most countries display values of d in the nonstationary (d > 0.5)
but mean-reverting (d < 1) range, implying that, although very
persistent, shocks are transitory. The semiparametric GPH method
usually delivers slightly higher values of d than the other parametric
techniques. This can be explained on the grounds that short-run

I3NLS and EML have been computed with the ARFIMA package 1.0 for OX
(Doornik and Ooms 2001), while MD has been implemented in MATLAB. Para-
metric models have been chosen according to the AIC information criteria.
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Table 3. Estimation of FI(d) Models

March 2006

GPH NLS EML MD

AU 0.78 0.79 0.69 0.74
(0.20) (0.10) (0.06) (0.06)

AUS 0.78 0.69 0.80 0.73
(0.19) (0.13) (0.10) (0.10)

BE 0.83 0.58 0.56 0.611
(0.21) (0.10) (0.06) (0.08)

CA 0.76 0.69 0.73 0.69
(0.17) (0.10) (0.07) (0.09)

DK 0.66 0.67 0.63 0.66
(0.16) (0.11) (0.07) (0.07)

FI 0.74 0.59 0.60 0.62
(0.14) (0.08) (0.15) (0.10)

FR 0.75 0.89 0.65 0.72
(0.21) (0.21) (0.06) (0.08)

GE 0.94 0.58 0.61 0.68
(0.27) (0.27) (0.09) (0.09)

GR 0.64 0.66 0.62 0.60
(0.30) (0.10) (0.05) (0.06)

IT 1.19 0.72 0.66 0.69
(0.27) (0.42) (0.05) (0.08)

JP 0.62 0.59 0.75 0.63
(0.09) (0.16) (0.10) (0.10)

LX 0.74 0.69 0.68 0.65
(0.29) (0.18) (0.11) (0.13)

NL 0.86 0.67 0.72 0.70
(0.20) (0.14) (0.12) (0.11)

NZ 0.52 0.62 0.57 0.63
(0.41) (0.14) (0.08) (0.10)

NO 0.64 0.66 0.55 0.64
(0.26) (0.13) (0.26) (0.15)

PO 0.80 0.63 0.63 0.59
(0.22) (0.10) (0.07) (0.10)

SP 0.90 0.61 0.60 0.65
(0.16) (0.15) (0.07) (0.11)

SWE 0.58 0.59 0.52 0.59
(0.16) (0.14) (0.09) (0.10)

SWI 0.56 0.62 0.59 0.61
(0.18) (0.11) (0.12) (0.11)

UK 0.78 0.69 0.64 0.62
(0.20) (0.22) (0.10) (0.10)

USA 0.66 0.68 0.72 0.69
(0.14) (0.32) (0.20) (0.16)

Note: Standard deviation is shown in parentheses.
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correlation may bias the estimator upward (see Agiakloglou, New-
bold, and Wohar 1992). The parametric methods present very similar
values, and for most countries estimated values of d around 0.6-0.7
are found.

A problem often associated with parametric estimators of d is
that they are very sensitive to the selection of the specific para-
metric model, so estimated values can vary greatly across different
specifications. To overcome this problem, we have also computed
some Bayesian estimates of d in order to take the model uncertainty
into account. We follow Koop et al. (1997) and consider the sixteen
possible combinations of ARFIMA models with p, ¢ < 3. A uniform
density for d in the interval [0, 1.5] has been assumed. So, the method
puts 2/3 of the prior mass on values of d implying nonpermanent
shocks (d < 1) and 1/3 on values that correspond to permanent
shocks (d > 1).

The outcome of the Bayesian estimation is reported in table 4.
The mean and the standard deviation of d is provided for both the
“best model” (the one with the highest posterior probability) and
the “overall model,” which weights the sixteen ARFIMA models ac-
cording to their posterior probabilities.'* Since the method computes
the density function of d for each model, the probability that infla-
tion is mean reverting (P(d; < 1)) can be easily obtained and is also
displayed in this table.

The results reported in table 4 suggest that there is a high vari-
ability associated with the estimation of d. In general, the Bayesian
approach offers higher values of the memory parameter than the
classical methods, although in almost all cases the estimated values
remain below one. Moreover, the posterior probability of nonperma-
nent shocks (d < 1) is bigger than 2/3 (the a priori probability) for
eighteen out of the twenty-one countries considered.

Summing up, the Bayesian analysis, in accordance with the
classical approach, confirms the very persistent but mean-reverting
behavior of inflation data.

1See Koop et al. (1997) for details on the estimation procedure. Computations
have been carried out using the Fortram code provided by them.
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Table 4. Bayesian Estimation of ARFIMA Models

BEST ARFIMA OVERALL ARFIMAS
Mean(d) P(d<1/data) Mean(d)  P(d<1/data)
AU 0.88 0.75 0.82 0.82
(0.19) (0.20)
AUS 0.34 1 0.34 1
(0.06) (0.06)
BE 0.86 0.90 0.87 0.76
(0.14) (0.15)
CA 0.99 0.55 0.85 0.74
(0-26) (0.21)
DK 0.85 0.71 0.87 0.63
(0-21) (0.23)
FI 0.62 1 0.67 0.95
(0.06) (0.15)
FR 0.66 1 0.68 0.93
(0.07) (0.14)
GE 0.78 0.86 0.83 0.76
(0.33) (0.26)
GR 0.64 1 0.78 0.82
(0.06) (0.17)
IT 0.73 0.92 0.66 0.96
(0.18) (0.13)
JP 0.64 0.99 0.62 0.91
(0.10) (0.21)
LX 0.98 0.65 0.83 0.78
(0.31) (0.22)
NL 0.91 0.54 0.79 0.76
(0.28) (0.25)
NZ 0.91 0.60 0.85 0.66
(0.31) (0-22)
NO 0.57 1 0.71 0.86
(0.06) (0.19)
PO 1.33 0.03 1.14 0.25
(0.12) (0.18)
SP 1.30 0.30 1.07 0.52
(0.30) (0.31)
SWE 0.42 1 0.80 0.74
(0.05) (0-24)
SWI 0.60 1 0.65 0.94
(0.06) (0.17)
UK 0.60 1 0.80 0.75
(0.06) (0.15)
USA 0.58 0.97 0.64 0.86
(0.19) (0.22)
Note: Standard deviation in shown in parentheses.
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3.2 Testing Fractional versus Integer Integration

Tables 3 and 4 support our initial hypothesis of the fractionally in-
tegrated behavior of inflation data and that the order of integration
is, in general, far from both zero and one. But one could argue that
this could be the case even if the series has an integer degree of in-
tegration since it would be very unlikely to obtain an exact integer
value for d. In this section, we will formally test these hypotheses.

Several authors have found evidence in favor of the existence of
a unit root in inflation (see, for instance, Pivetta and Reis 2004).
Other authors, such as Cogley and Sargent (2001), postulate an I(0)
representation for inflation on the basis that nonstationary ones are
not plausible since they would imply an infinite asymptotic variance
of inflation. They argue that this could never be optimal if the cen-
tral bank’s loss function includes the aforementioned variance. We
will show below that when the possibility of fractional integration is
considered, both the I(0) and the I(1) representations are rejected in
our data set.

The simplest test is to build confidence intervals around the esti-
mated values of d reported in table 3. Although simple, this approach
has an important drawback: usually intervals are too wide and most
hypotheses cannot be rejected (see Sowell 1992a). Fortunately, other
simple and more powerful methods are available in the literature. To
test the unit root versus the FI hypothesis, the Fractional Dickey-
Fuller (FDF) test (see Dolado, Gonzalo, and Mayoral 2002, 2003) has
been employed. This test generalizes the traditional Dickey-Fuller
test of I(1) against I(0) to the more general framework of I(1) versus
FI(d). It is based upon the t-ratio associated with the coefficient of
(1—L)%y;_1 in a regression of (1—L)y; on (1— L)%y;_1 and, possibly,
some lags of (1 — L)y; to account for the short-run autocorrelation
of the process and/or some deterministic components if the series
displays a trending behavior or initial conditions different from
zero.'® Table 5 presents the results of applying the FDF test to

5The FDF invariant regression that has been run is equal to Ay, = a17¢-1(d)+
Ay 1 + Z?:1 ¥;Ayi—j + a, and a number of lags of Ay, equal to two was
chosen according to the BIC criterion. The coefficient a; is associated to the
deterministic components (a constant; see Dolado, Gonzalo, and Mayoral 2003).

The term 7:(d) is defined as 7¢(d) = Zf;é mi(d), where the coefficients ;(9)
come from the expansion of (1 — L)’ as defined in equation (2).
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Table 5. FDF Test (I(1) versus FI(d)). Hy:dy=1; H, : d=d;

Hy dy =06 dy =0.7 d, =0.8 dy =09
AU —8.76** —4.65** —4.68** —4.69**
AUS —8.56* —8.54** —8.47** —8.36"*
BE —7.39** —7.53** —7.62** —7.69**
CA —5.92%* —5.66"* -3.73** —3.70**
DK —6.14** —6.05** —5.94** —5.81**
FI —5.45** —5.19** —4.90** —3.20"*
FR —4.34** —4.12%* -3.27%* —3.26%*
GE —6.77** —6.79** —6.77** —6.72**
GR —5.79** —5.62** —5.43** —5.24**
IT —4.82** —2.87** 0.01 0.17
JP —8.73** —4.52%* —4.51%* —4.50**
LX —7.32%* —4.55** —4.60** —4.65"*
NL —6.86** —6.68** —6.49** —5.89**
NZ —9.31** —4.70** —4.56** —4.41**
NO —6.77** —6.50** —6.22** —3.12**
PO —8.04** —4.40** —4.31** —4.20**
SP —7.88** —7.65** —-3.80** —3.89**
SWE —6.07"* —6.03** —5.79** —5.78"*
SWI —5.86** —5.58** —3.73** —3.68**
UK —6.07"* —5.84** —5.58** —5.32%*
USA —2.27* —2.18* —2.11* —2.04*
Note: *** denote rejection at the 5 percent and the 1 percent level,
respectively. Critical values: N(0, 1).

this data set. Several alternative hypotheses have been considered
(d = 0.6, 0.7, 0.8, and 0.9). The conclusion of this table is clear:
the unit-root model is clearly rejected (usually at the 1 percent
significance level) against fractionally integrated alternatives in all

countries.
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Next, we test for FI versus short memory (I(0)). To this end, a
point-optimal test recently proposed by Mayoral (2004b) has been
implemented and the results are presented in table 6. The test works
as follows. Given the characteristics of the inflation data, the follow-
ing DGP has been considered:

Y = WU+ 3¢
Ay, = i ={0,1},

where p is a constant, u; is a linear I(0) process, and d = dp and
d; = 0 are, respectively, the integration orders under Hy and H;j.
Under the Neyman-Pearson lemma, the most powerful test will
reject the null hypothesis of d = dy for small values of L(d,o)|m, —
L(d,o)|n,, where L is the log-likelihood function. After some ma-
nipulation, the critical region of the most powerful test for these
hypotheses is given by

Sy — p)?
S (A (yp — p))?

The asymptotic distribution of this statistic (scaled by T7~27) is
not standard, and critical values can be found in Mayoral (2004b) for
the case where w; is i.i.d. When u; is a general linear short-memory
process, a nonparametric correction should be introduced using any
of the standard techniques available in the literature (see Mayoral
2004b).

To interpret the figures reported in table 6, it is important to
notice that the test is consistent (rejects the null hypothesis of FI(dp)
for large T') if the true integration order, d*, is smaller than the inte-
gration order used as the null hypothesis, dy. Consequently, whenever
dp > d*, the test will reject the FI(dy) hypothesis. For example, if
the true integration order is d* = 0.7 but dy = 0.9 is taken as Hy,
the test will tend to reject the hypothesis of dy = 0.9.

The results in table 6 are very homogeneous across countries. For
moderate values of d, around 0.6-0.7 and even 0.8 for most countries,
the null hypothesis of FI cannot be rejected. Nevertheless, for higher
values of dy (dy = 0.9), the same null is rejected. This result confirms
the outcome of the estimation methods in table 3 since, according
to this table, the true integration orders are around 0.7. Therefore,
taking into account the properties of the test, when higher dy's are

< kp. (7)
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Table 6. Test of FI(d) versus I(0)

R¢ Test (Mayoral 2004)
Hp: d=06 d=07 d=08 d=09
AU 1.136 0.456 0.175  0.064*
AUS 0.592 0.257 0.071*  0.024*
BE 0.550 0.196*  0.069*  0.024*
CA 1.315 0.547 0.217  0.083*
DK 0.899 0.339 0.124 0.044*
FI 1.054 0.438 0.174 0.067*
FR 0.939 0.397 0.162 0.064*
GE 0.839 0.327 0.123 0.044*
GR 0.737 0.273 0.098*  0.035*
IT 1.434 0.614 0.251 0.099
JP 1.013 0.408 0.158 0.059*
LX 1.125 0.466 0.184 0.070*
NL 0.513 0.282 0.063*  0.022*
N7Z 0.817 0.314 0.117*  0.042*
NO 1.006 0.400 0.154  0.057*
PO 1.218 0.483 0.184  0.068*
SP 1.079 0.448 0.178  0.068*
SWE 1.019 0.405 0.155  0.058*
SWI 0.840 0.347 0.138  0.053*
UK 1.014 0.412 0.161 0.061*
USA 1.225 0.535 0.225  0.091*
Crit. Values (5% S.L.)  0.502 0.241 0.122 0.092

employed, the test should reject Hy : d = dy, as it actually does.
Thus, the test supports the hypothesis of FI behavior with a degree
of integration close to 0.7.

3.8 Testing Fractional Integration versus Structural Breaks

It is well known that it is very difficult to provide an unambigu-
ous answer as to whether a process is fractionally integrated or is
short memory plus some deterministic components perturbed by sud-
den changes. Several authors have pointed out that many standard
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techniques for detecting persistence can spuriously find this prop-
erty in short-memory processes when there is parameter instability
(e.g., Bhattacharya, Gupta, and Waymire [1983], Kiinsh [1986], Per-
ron [1989], Teverosky and Taqqu [1997], Giraitis, Kokoszka, and Lei-
pus [2001], Mikosch and Starica [2004], Perron and Zhu [2005], and
many others). Other authors have studied the opposite effect, that
is, how conventional procedures for detecting and dating structural
changes tend to find spurious breaks, usually in the middle of the
sample, when in fact there is only fractional integration (see Nunes,
Kuan, and Newbold [1995], Krdmer and Sibbertsen [2002], and Hsu
[2000]). Therefore, although there is a general consensus on the fact
that most economic series are nonstationary, it is often difficult to
be sure about the source of the nonstationarity, that is, whether it
comes from a high degree of persistence or from the existence of
parameter changes.

In view of these results, it is not surprising that evidence support-
ing both the existence of breaks in the mean (section 1) and strong
persistence (subsections 3.1 and 3.2) is found for the same data set.
For the purposes of this article, distinguishing between these two
models is crucial since they have very different implications in terms
of the degree of persistence. Thus, we now explore the possibility
that the existence of different regimes in the mean in an other-
wise short-memory process could be generating spurious memory
in the inflation rate. To do so, an extension of the test described in
subsection 3.2 has been employed. The aim of the test is to deter-
mine if the persistence observed in the data is real or is an artifact
of other phenomena such as the existence of breaks. More specifi-
cally, the hypotheses of FI(dy) versus I(0) with a break in the level
are considered. The test works as follows: let T be the time when
the break occurs and w = Tp/T the parameter that describes the
location of the break point in the sample. To allow for breaks in the
level, the dummy variable DC}(w) = 1 if ¢ > T and 0 otherwise is
defined. Since the date where the break occurs is unknown, the test
has a critical region given by

in ming, oy (Yt — a1 — (2 — a1)DC(w))?
w ming, > (A% (y, — ap))?

where the minimization is carried out in w € ), where, following
Andrews (1993), 2 = [0.15,0.85]. The distribution of the statistic in

< kr, (8)
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Table 7. Tests of FI(d) versus Breaks

Hp : 0.6 0.7 0.8 0.9
AU 0.4284 0.1132*  0.0304*  0.0084*
AUS 0.1997*  0.0602*  0.0184*  0.0051*
BE 0.4121 0.0817*  0.0091*  0.0021*
CA 0.9027 0.2466 0.0678*  0.0181*
DK 0.1953*  0.0539*  0.0152*  0.0043*
FI 0.8050 0.2284 0.0645*  0.0181*
FR 0.8796 0.3228 0.1309 0.0400*
GE 0.4001 0.0979*  0.0188*  0.0053*
GR 0.7318 0.2077 0.0534*  0.0032*
IT 1.7063 0.4857 0.1469 0.0401
JP 0.3638*  0.0987*  0.0269*  0.0070%
LX 0.6286 0.1688*  0.0456*  0.0121*
NL 0.1350*  0.0299*  0.0086*  0.0025*
NZ 0.3422*  0.0998*  0.0224*  0.0062*
NO 0.6561 0.1847 0.0520*  0.0141*
PO 0.5419 0.1476*  0.0409*  0.0114*
Sp 0.6018 0.1658*  0.0460*  0.0129*
SWE 0.3004*  0.0823*  0.0229*  0.0061*
SWI 0.6391 0.1782*  0.0494*  0.0131*
UK 0.8408 0.2339 0.0648*  0.0180*
USA 1.4462 0.4098 0.1136 0.0313*
Crit. Values (5% S.L.)  0.399 0.175 0.0844 0.0404

(8), scaled by T’ 2d=1 'is nonstandard, and critical values are provided
in Mayoral (2004b). Again, since short-term structure is allowed,
the test statistic has been corrected using standard nonparametric
techniques (see Mayoral [2004b] for details).

Table 7 summarizes the output of the tests. For fifteen out of
the twenty-one countries considered, the null hypothesis of fractional
integration cannot be rejected.'® The countries for which this

!6Notice that the simulations reported in Mayoral (2004b) show that the em-
ployed techniques are very powerful against a wide variety of DGPs under the
alternative hypothesis, with rejection rates ranging from 90 to 100 percent for this
sample size. Then, we are confident that the nonrejection of the null hypothesis
is not due to lack of power.
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hypothesis is dismissed are Austria, Denmark, Japan, Netherlands,
New Zealand, and Sweden. Two more countries, Belgium and
Germany, are on the border between rejection and nonrejection. For
these eight countries, the hypothesis of d > 0.5 versus I(0)+ breaks
has also been tested, and the null was only rejected for four of them
(NL, DK, AUS, and SWE). To understand this finding, it is interest-
ing to look at the first graph of figure 2, which depicts the half-life
measure of persistence, and figure 3, which shows the IRF(h) of these
countries. Notice that, in figure 2, the latter four countries appear
at the very bottom of the graph, implying that they are the least
persistent. Right above those four, JP, NZ, BE, and GE are found.
Therefore, it seems that at least some of the persistence that has
been found in these series is spurious and derives from the existence
of some breaks in the average level of inflation.

4. Measuring Persistence

In sections 2 and 3 we have presented an economic explanation and
some robust empirical evidence supporting the hypothesis of frac-
tionally integrated behavior in inflation data. Bearing in mind these
results, we turn now to the main goal of the paper, the measurement
of inflation persistence. In the following, by persistence we mean the
long-term effect of a shock to the series.

In this section we provide various persistence measures that per-
mit an adequate comparison of inflation inertia across countries and
their evolution over time. The relevance of explicitly considering FI
alternatives will become clear now. Our results demonstrate that,
although in the short run the estimated persistence from the ARIMA
and ARFIMA specifications is similar, the medium- and long-run im-
plications are very different. This is due to the fact that, in order to
model nonstationarity, ARIMA models necessarily impose the res-
triction of permanent shocks, while the more flexible ARFIMA for-
mulations are able to characterize nonstationarity without imposing
such a restriction. We show that some scalar measures of persistence,
such as the sum of the AR coefficients (or its equivalent, the cumula-
tive impulse response [see Andrews and Chen 1994]) are not suitable
for measuring persistence in this context since they deliver exactly
the same value for all FI(d) processes with d > 0 (equal to one for
the former and to oo for the latter), despite the fact that processes
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Figure 2. Half-Life and Impulse Response Functions
in the Middle Run
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in this group are of a very different character. In relation to this
behavior, we also discuss some potential pitfalls that these techniques
may present when used in applied work.

There are several ways to measure persistence, each with its
virtues and faults. In the next subsection, we describe the tools that
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Figure 3. Impulse Response Functions of Countries with
Inflation Process I(0) with a Break in the Mean
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will be used in this analysis. In order to have an accurate picture of
this important property, we consider the estimation under both the
classical and the Bayesian approach. Subsections 4.2 and 4.3 report
the corresponding results.

4.1  Measuring Persistence with FI Processes

We consider three different tools in order to evaluate persistence—
firstly, the impulse response function (IRF'), which measures “the
effect of a change in the innovation &; by a unit quantity on the
current and subsequent values of y,” (see Andrews and Chen 1994,
189). This measure is problematic because it is a vector, not a scalar,
and, therefore, could be more difficult to interpret. For this reason,
we also consider two scalar measures that will be described below.
For stationary series, the impulse responses are the coefficients of
their Wold decomposition. For I(1) processes, the IRF(h) is usually



80 International Journal of Central Banking March 2006

computed!” as the sum from zero to h of the impulse response co-
efficients of the first differences of the original series.'® The above-
mentioned expressions are embedded in the general formulation of
the IRF(h) of an ARFIMA(p, d, q) process. This is defined as the h-th
coefficient of A(L) = (1 — L)™?®(L)~*O(L), where ®(L) and O(L)
are the AR and MA polynomials, respectively. The corresponding
coefficients can be computed according to the following formula (see
Koop et al. [1997] for details):

h
IRF(h) =Y mi(—d)J(h—1i), (9)
i=0

where each 7;(—d) comes from the binomial expansion of (1 — L)~¢
and is defined in (2), and J(-) is the standard ARMA(p, ¢) impulse
response, given by

q
J(@) = 0;ifis1j,
§=0
with g =1, f, =0for h <0, f; =1, and

fn= *(¢1flL—1+-'-+¢pfh—p)v for h > 2.

Notice that if d = 1, 7;(—1) = 1 for all ¢ and, therefore, the tradi-
tional IRF for I(1) processes is recovered, i.e., IRF(h) = Z?:o J(h—1)
(see Campbell and Mankiw 1987, 861). The limit behavior of the
IRF(h) when h — oo depends upon the value of d and verifies

0, ifd <1,
IRF(00) = ¢ ®(1)7'0(1),ifd = 1, (10)

oo if d > 1.

17 A different approach, which will not be pursued in this article, is to compute
impulse responses based on estimating local projections at each period of interest
(see Jorda 2005).

8Gince the TRF(h) function in the I(1) case is computed by accumulating the
individual I(0) impulse responses, it is often called cumulative impulse response
function (see, for instance, Diebold and Rudebusch 1989). However, we will not
use this terminology here in order to avoid confusion with other measures that
share a similar name. This is the case of the cumulative impulse response (see
Andrews and Chen 1994).
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Expression (10) means that the effect of a shock is transitory for
d < 1, as the long-term impact of any shock is equal to zero. By con-
trast, shocks are permanent for any d > 1. If the process contains a
unit root (d = 1), the long-run effect of the shock is bounded away
from zero and finite and is given by the sum of the Wold coefficients
of its stationary transformation (or alternatively, by ®(1)~1©(1) if it
admits an ARMA representation). Finally, for any d > 1 the effect of
any shock is magnified and the final impact is not bounded. Based on
this behavior, Hauser, Potscher, and Reschenhofer (1999) have crit-
icized the use of ARFIMA models for measuring persistence. They
argue that, although the ARIMA class is nested within the more gen-
eral ARFIMA formulation, it would not be wise to use these models
if the true DGP is in fact ARIMA. This is so because if d = 1, it
would be extremely unlikely to obtain exactly this estimated value in
finite samples. Thus, since the IRF(oco) is highly discontinuous, this
would be equivalent to imposing an a priori value of this function
either equal to zero (if d < 1) or to infinity (if d > 1). Accord-
ing to their view, imposing these long-term restrictions would also
adversely affect the estimation of the IRF(h) for finite values of h
(see the simulations provided in Hauser, P&tscher, and Reschenhofer
(1999, Table 1).

We agree with them that, for the purpose of persistence estima-
tion, it is important to treat the ARFIMA and the ARIMA classes
as two different groups of models, despite the fact that one con-
tains the other. This is one of the reasons that led us to apply an
ample battery of tests to distinguish between these formulations in
our data set. But, in our opinion, it does not follow from here that
the use of ARFIMA processes is inadequate to measure persistence.
There are several ways in which the criticisms in Hauser, Potscher,
and Reschenhofer (1999) can be answered. The most obvious is that
their misspecification argument can be easily reversed, that is, if the
DGP is FI(d) but an ARIMA model (with integer d) is fitted to the
data to compute the impulses, the (wrong) long-term restrictions
imposed by the ARIMA specification might bias the estimates as a
result of the misspecification. Since the empirical evidence found in
the previous section supports the better fit of the ARFIMA over the
ARIMA model, the use of the former is well justified. The estimated
values of d obtained for our data set are, in general, less than one,
which means that the IRF(co) associated with these processes is
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zero. This restriction reflects the main finding of section 3: the infla-
tion rate is best characterized as a nonstationary but mean-reverting
process. If this condition is true, imposing a unit root to compute
the impulses will result in higher estimated persistence, since the
permanent shock restriction will upwardly bias the estimates. This
fact is illustrated in table 9, shown in subsection 4.3.

Finally, we are aware that it is not possible to be certain about
the true nature of the DGP. So, in order to avoid possible biases in
our estimates stemming from imposing a possibly incorrect long-term
restriction, in subsection 4.3 we estimate the impulse responses using
a Bayesian approach that explicitly acknowledges model uncertainty.
By allowing for a strictly positive probability mass on the I(1) model,
we will be able to obtain a continuous impulse response function with
a strictly positive and bounded value at infinity. To do so, we will
follow the approach of Koop et al. (1997).

In addition to the IRF, two scalar measures of persistence are
also reported: the half life (HL), defined as the number of peri-
ods that a shock needs to vanish by 50 percent, and p,,, which is

given by
40

pio=1-1/ S IRF(h)
h=0
This quantity can be interpreted as a truncated version of the
sum of the AR coefficients (see Andrews and Chen 1994), defined as

p(1)=1-— 1/§:IRF(h)
h=0

and is introduced here in order to overcome the problems that this
measure presents in this context. It turns out that p(1) = 1 for any in-
tegrated process with an integration order strictly greater than zero.
This is so because any invertible FI(d) process admits an AR(o0)
representation, given by

(1= L)'C(L) 'y =<,

where the innovations {e;}>, are white noise and C(L) is the poly-
nomial of the Wold representation of the I(0) variable (1— L)%y,. For
any d > 0, L = 1 is a root of the polynomial (1— L)YC(L)~!. Calling
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AL) = (1-L)C(L)t =172, iiL! and noticing that L =1 is
a root of A(L), it follows that 1 — 72, A\;1" = 0, which implies that
p(1) = >, A\ = 1. An equivalent way of looking at this result is
by considering the cumulative impulse response (CIR), given by

CIR=1/(1-p(1)) = iIRF(h).
=0

This measure is proportional to the spectral density at frequency
zero (see Andrews and Chen 1994). Since the spectral density of any
FI(d) process with d > 0 is unbounded at frequency zero, it follows
that CIR = oo for any FI(d) process with d > 0. Since the degree
of persistence varies a great deal across the different values of d in
this range, it follows that p(1) cannot be taken as a good measure
of persistence in this case. To overcome this problem, we consider a
truncated version of it, p,q, which, instead of considering the sum of
the IRF(h) for h =1, ..., 00, only considers the first forty coefficients
(which we identify with the long run). Interestingly, this measure can
be considerably far from 1 for moderate values of d (for instance, in
an FI(i) process with ¢ = {0.1,0.2,0.3}, it would be around 0.35,
0.59, and 0.74, respectively).

4.2 Classical Estimation

We now report the estimated values of the three tools presented
above, obtained using classical techniques. Table 8 presents the
IRF(h) at different time horizons h, namely, h = 4, 12, and 40, rep-
resenting the short, middle, and long run, respectively. In addition,
columns 4 and 5 report the values of the HL and p,,, respectively.
The full path of IRF(h) for different time horizons is displayed in
figure 4.

The information in table 8 can be summarized as follows. For
the twenty-one industrial countries, the IRF decreases in the middle-
and long-run horizons, although the remaining effect of shocks dif-
fers considerably across countries, ranging from 38 percent for the
United States versus 17 percent for Sweden in the middle-run hori-
zon, and 30 percent versus 8 percent for the same countries in the
long term. The p,, measure oscillates within the interval [0.90,0.96],
confirming the high persistence of the series. It is interesting to com-
pare this result with the one obtained in Pivetta and Reis (2004).
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Table 8. IRF and Scalar Measures of Persistence

IRF(4) IRF(12) IRF(40) HL Pao
AU 0.3087 0.2601 0.2002 2.68 0.94
AUS 0.3684 0.2266 0.1789 0.42 0.94
BE 0.3650 0.2779 0.1135 0.82 0.92
CA 0.3749 0.3267 0.2386 3.00 0.95
DK 0.2399 0.1742 0.1134 0.40 0.91
FI 0.3744 0.2461 0.1531 1.92 0.90
FR 0.4324 0.3000 0.1980 2.84 0.92
GE 0.3246 0.2152 0.1344 0.84 0.93
GR 0.3969 0.2666 0.1698 2.63 0.94
1T 0.4829 0.3805 0.2585 6.71 0.96
JpP 0.3168 0.2879 0.2158 0.72 0.95
LX 0.4101 0.2991 0.2036 3.21 0.95
NL 0.1751 0.1553 0.1149 0.70 0.91
NZ 0.2804 0.1803 0.1087 0.74 0.91
NO 0.3316 0.2002 0.1173 1.71 0.92
PO 0.5581 0.3689 0.2360 5.73 0.96
SP 0.2521 0.2307 0.1573 2.02 0.91
SWE 0.1930 0.1713 0.0853 0.62 0.90
SWI 0.3634 0.2363 0.1453 1.88 0.93
UK 0.3166 0.2615 0.1902 2.53 0.95
USA 0.4726 0.3883 0.3058 8.76 0.96
Notes: IRF(h), h =4, 12, 40 denote the impulse response function.
HL is the half life defined as the number of periods that a shock
needs to vanish by 50 percent. p,, is computed as 1 — 1/ Ziozl
IRF(h).

They estimate p(1) for the U.S. inflation rate from an AR(p) specifi-
cation, where p = 3 is chosen according to the Bayesian information
criterion (BIC). They obtain estimates of this quantity around 0.95
and they conclude that inflation has a unit root and, therefore, that
shocks to inflation are permanent. Nevertheless, as has been shown
above, a value of p(1) close to one does not imply an integer unit root
but only a fractional one. Thus, one cannot say much about inflation
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Figure 4. Impulse Response Functions
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persistence just by looking at this quantity since very different types
of integrated processes share this property.

In order to illustrate this, we have carried out a small Monte
Carlo experiment: we have generated 5,000 ARFIMA(0,d,0) pro-
cesses with a value of d = 0.7 (which is approximately the estimated
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value for U.S. inflation obtained in section 3; see table 3). Then we
have fitted an AR(p) process using the BIC as in Pivetta and Reis
(2004). Although the DGP is AR(oc0), any sensitive information cri-
teria will select a much shorter lag length. In fact, we have found
that, on average, the chosen lag length is p = 3 and the mean (me-
dian) of p(1) is 0.89 (0.90) with a standard deviation equal to 0.26.
This example shows that the traditional interpretation that identi-
fies p(1) &~ 1 with the existence of an integer unit root is clearly
unfounded and could lead to persistence overestimation if one con-
cludes from here that shocks are permanent.

A related problem can be found in Cogley and Sargent (2001).
These authors assume that inflation is stationary. In order to im-
pose this assumption, they truncate the parameter space so that the
largest autoregressive root (LAR) is strictly less than one. Thus, they
are imposing not only stationarity (which is compatible with an LAR
equal to one in a fractional model with d < 0.5) but short memory
(bounded spectral density). As Pivetta and Reis (2004) point out,
this truncation could strongly bias the results toward lower values of
persistence.

Figure 2, shown previously in subsection 3.3, ranks the different
countries in accordance with their HL, value and shows that its be-
havior varies a lot across them. Broadly speaking, two groups can be
distinguished: the low inflation persistence group, exhibiting an HL
of less than two periods (equivalent to six months), and the high in-
flation persistence group, with an HL superior to two periods. In the
first group, the Scandinavian countries SWE, FI, and NO, together
with JP, NZ, and SWI, can be found. All of them show a low infla-
tion rate in most of the period with a mean around 4 percent. Other
countries such as AUS, DK, NL, BE, and GE are also included in
this group and are characterized by a tight monetary discipline and
an implicit commitment with the German currency, whether they
belonged to the European Monetary System or not. The members of
the second group are AU, CA, FR, GR, LX, IT, PO, SP, UK, and
USA with an inflation mean around 6 percent. The United States
is the country with the highest HL, with a value around two years.
However, this quantity is considerably smaller than that obtained by
Pivetta and Reis (2004), who present figures of the HL of more than
five years. This important difference in magnitude is a consequence
of the use of the I(1) (permanent shocks) specification instead of
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the FI(d) one with d < 1 (mean-reverting shocks) employed in this
article.

4.3 Bayesian Estimation

We now turn to the Bayesian estimation of inflation persistence. Al-
though we have found abundant evidence against integer values of d,
in this subsection we acknowledge our uncertainty by considering dif-
ferent combinations of ARIMA and ARFIMA models. The main mo-
tivation for undertaking this analysis is to overcome the criticism pre-
sented by Hauser, Potscher, and Reschenhofer (1999). They argued
that ARFIMA models may not be appropriate for measuring persis-
tence because they imply a limit behavior of IRF(co) which is either
zero (if d < 1) or infinity (if d > 1). Nevertheless, using Bayesian
techniques, it is possible to achieve a continuous distribution of the
IRF(o0) in the interval [0, 00) if a strictly positive prior probability
is assumed for the integer values of d. Following Koop et al. (1997),
we have considered sixteen ARIMA models (where d = 1 is im-
posed) and sixteen ARFIMA models, corresponding to the different
combinations of ARMA parameters, with p,q < 3 in both cases. In
order to determine the prior probabilities assigned to both groups of
models, we will use the posterior probabilities of d; < 1 that were
obtained in subsection 3.1. It is clear that P(d > 1) =1— P(d < 1)
and, therefore, we can use this expression as an upper bound for
the probability of P(d = 1). This quantity will be used as the prior
probability for the ARIMA models. Table 9 reports the IRF evalu-
ated at different time horizons for the best ARIMA and ARFIMA
models (the ones with highest posterior probability) and also for the
OVERALL model, constructed as a sum of the thirty-two models
weighted by their posterior probabilities.

Bayesian IRFs present slightly higher values than those ob-
tained under the classical paradigm, but in general, the nonperma-
nent character of shocks and the classification among countries is
maintained. It is also interesting to compare the results obtained
from the ARFIMA and ARIMA models. Both deliver very similar
values in the short run, but they are very different in the medium
and long run. Therefore, if only ARIMA alternatives are considered,
it is very easy to conclude that shocks are much more persistent than
they actually are.
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Table 9. Bayesian Estimation of IRF
IRF(4) IRF(12) IRF(40)
BFI BI Al BFI BI Al BFI BI Al

AU 0.35 0.38 0.38 0.31 0.38 0.34 0.29 0.38 0.30
(0.06)  (0.06)  (0.07)  (0.09)  (0.06)  (0.09)  (0.13)  (0.06)  (0.13)

AUS 0.15 0.22 0.15 0.08 0.22 0.08 0.04 0.22 0.04
(0.04)  (0.05)  (0.04) (0.03)  (0.05)  (0.03)  (0.02)  (0.05)  (0.02)

BE 0.53 0.57 0.52 0.34 0.42 0.37 0.30 0.41 0.32
(0.10)  (0.03)  (0.08)  (0.11)  (0.03)  (0.08)  (0.14)  (0.03)  (0.11)

CA 0.46 0.50 0.44 0.44 0.50 0.39 0.47 0.50 0.36
(0.08)  (0.07)  (0.08)  (0.14)  (0.07)  (0.11)  (0.24)  (0.07)  (0.15)

DK 0.22 0.22 0.21 0.19 0.22 0.19 0.17 0.22 0.17
(0.05)  (0.05)  (0.05)  (0.05)  (0.05)  (0.06)  (0.07)  (0.05)  (0.07)

FI 0.40 0.58 0.42 0.27 0.58 0.32 0.18 0.58 0.24
(0.07)  (0.08)  (0.12)  (0.07)  (0.08)  (0.10)  (0.06)  (0.08)  (0.12)

FR 0.45 0.44 0.43 0.32 0.40 0.32 0.22 0.40 0.24
(0.08)  (0.10)  (0.09)  (0.08)  (0.11)  (0.10)  (0.08)  (0.11)  (0.11)

GE 0.34 0.34 0.34 0.41 0.36 0.33 0.39 0.25 0.29
(0.09)  (0.06)  (0.08)  (0.17)  (0.10)  (0.12)  (0.26)  (0.17)  (0.16)

GR 0.42 0.35 0.41 0.29 0.36 0.32 0.19 0.40 0.27
(0.07)  (0.08)  (0.08)  (0.07)  (0.09)  (0.099)  (0.06)  (0.12)  (0.10)

IT 0.56 0.87 0.51 0.46 0.90 0.42 0.35 0.92 0.32
(0.07)  (0.13)  (0.11)  (0.09)  (0.14)  (0.14)  (0.15)  (0.18)  (0.17)
JP 0.08 0.30 0.32 0.08 0.28 0.26 0.05 0.26 0.18

(0.03)  (0.13)  (0.09)  (0.02)  (0.09)  (0.10)  (0.02)  (0.10)  (0.10)

LX 0.41 0.47 0.42 0.47 0.47 0.42 0.53 0.47 0.39
0.09)  (0.06)  (0.09) (0.21)  (0.06)  (0.13)  (0.41)  (0.06)  (0.19)

NL 0.18 0.18 0.19 0.18 0.20 0.17 0.17 0.21 0.16
(0.06)  (0.06)  (0.06)  (0.06)  (0.05)  (0.06)  (0.09)  (0.05)  (0.07)

Nz 0.30 0.28 0.29 0.26 0.26 0.24 0.24 0.24 0.21
(0.07)  (0.07)  (0.08)  (0.09)  (0.09)  (0.08)  (0.14)  (0.14)  (0.09)

NO 0.34 0.33 0.36 0.22 0.26 0.27 0.13 0.15 0.21
(0.06)  (0.06)  (0.08)  (0.05)  (0.05)  (0.08)  (0.04)  (0.11)  (0.10)

PO 0.21 0.36 0.32 0.31 0.36 0.33 0.32 0.36 0.32
(0.03)  (0.07)  (0.07)  (0.04) (0.07)  (0.08)  (0.06)  (0.07)  (0.08)

SP 0.21 0.31 0.31 0.25 0.38 0.36 0.24 0.30 0.32
(0.09)  (0.07)  (0.08)  (0.10)  (0.12)  (0.14)  (0.19)  (0.18)  (0.12)

SWE 0.21 0.23 0.27 0.11 0.23 0.23 0.06 0.23 0.20
(0.04)  (0.08)  (0.06)  (0.03)  (0.08)  (0.07)  (0.02)  (0.08)  (0.09)

SWI 0.38 0.36 0.41 0.25 0.26 0.30 0.16 0.16 0.22
(0.07)  (0.07)  (0.08)  (0.06)  (0.12)  (0.11)  (0.05)  (0.17)  (0.13)

UK 0.38 0.74 0.44 0.26 0.56 0.36 0.16 0.56 0.29
(0.07)  (0.08)  (0.08)  (0.06)  (0.08)  (0.10)  (0.05)  (0.08)  (0.11)

USA 0.68 0.62 0.66 0.51 0.42 0.53 0.32 0.22 0.42
(0.11)  (0.07)  (0.13)  (0.17)  (0.11)  (0.19)  (0.20)  (0.17)  (0.23)

Note: B-FI: best ARFIMA; B-I: best ARIMA; All: overall models. Standard
deviation is shown in parentheses.
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Summarizing, in agreement with previous findings, this section
confirms the high degree of inflation inertia. The United States
emerges as the country with the highest inflation persistence in con-
trast to the Nordic countries, which display the lowest rates. Inter-
estingly, high inertia is compatible with mean-reverting shocks in
the framework considered in this article, a feature that cannot be
captured in the I(1) setup. This finding is relevant in many contexts,
for instance, if one is interested in testing monetary neutrality.

5. Changes in Persistence

Another issue that has been widely studied recently is the stability
of persistence over time. Changes in persistence may have a decisive
impact on monetary strategy design. Some authors have pointed out
that, if there is a decrease in inflation persistence, tests of the natu-
ral rate hypothesis in the spirit of Solow (1968) or Tobin (1968) may
reject the null hypothesis of monetary neutrality as a consequence
of this decrease. On the other hand, monetary policy is usually im-
plemented in a more aggressive way in a context where inflation
persistence increases. Furthermore, many macroeconomic models in-
corporate a measure of the persistence of inflation and, if persistence
is not constant over time, Lucas’s critique could apply.

The hypothesis of the stability of inflation persistence has been
tested recently in various articles. Nevertheless, no consensus seems
to have been reached. On the one hand, authors such as Taylor
(2000), Cogley and Sargent (2001), and Kim, Nelson, and Piger
(2004) have found that inflation inertia has decreased in recent years
as a result of a general deflationist process, the implementation of
target rules, and a more credible performance of central banks.'® On
the other hand, Stock (2001), Batini (2002), Levin and Piger (2003),
O’Reilly and Whelan (2004), Hondroyiannis and Lazaretou (2004),
and Pivetta and Reis (2004) have found little evidence of changes in
persistence for different countries.

In many of the latter papers, the decrease in persistence has
been tested by checking whether the sum of the AR coefficients has

9By using a more historical perspective, some authors have found changes in
persistence linked to different monetary regimes (c.f. Barsky [1987], Alogoskoufis
and Smith [1991], Alogoskoufis [1992], Bordo and Schwartz [1999], Kim [2000],
and Benati [2002]).
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changed from one to a value strictly smaller than one. But, as was
pointed out in section 4, this procedure is not completely correct if
FI is allowed for. If a process is FI(d), the sum of the AR coefficients
is equal to one for any d > 0. So, a decrease in persistence, associated
with a lower value of d, does not have any theoretical impact on this
sum (whose value will remain equal to one) as long as the new d
is larger than zero. Therefore, a test based on the aforementioned
criteria is likely to have very low power.

In this section, we will explore the stability of inflation persistence
using a different approach. We will directly test whether the memory
parameter d has remained constant over time or not. In order to
do so, a Lagrange multiplier (LM) test of the stability of d will be
applied (see Mayoral [2005] for further details). The following DGP
is considered:

Y = p+ o8
AP g — B(L)T'O(L)ey.

The process y; is the sum of a constant term, y, and a fractionally
integrated process x;. The parameter w = to/T describes the location
of a change in the value of d in the sample that, if it occurs, happens
at time tg. Dy(w) is a dummy variable that takes the value one if
wT < t and zero otherwise. The process ¢; is assumed to be i.i.d. and
®(L), O(L) are the standard AR and MA polynomials, respectively.
Under the null hypothesis, there is no change in persistence and,
therefore, # = 0. Under Hi, a single break in d is allowed to take
place so that @ can take both positive and negative values, indicating
an increase or a decrease of persistence, respectively. The test is
developed following Andrews (1993) and works as follows: assuming
normality, the test statistic derived under the LM principle for any
fixed w is given by

LMy (w) = Sr (w)’A_lST (w),

where St is the score obtained by deriving the likelihood function
with respect to 6,
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where p,. is the k-th correlation associated with the residuals after
(parametrically) estimating z;. The matrix A contains the relevant

terms of the expression Eo[g—{; g#,] Its form depends upon the ARMA

components. For instance, in the case where ®(L) = O(L) =

becomes
to—1
1 1
A=t —(1-=.
0 ; 2 < it0>

It can be easily shown that for any fixed w, LM (w) = x?. But
since w is, in general, unknown, we adopt a common method used in
this scenario and consider test statistics of the form sup,,cq LM (w).
Critical values can be found in Mayoral (2005). To carry out the
test on our data set, residuals are computed using Sowell’s ML
method.

The first column of table 10 presents the results of the test while
the second column displays the date of the break for the cases where
it turned out to be significant. It is noteworthy that the results are
very homogeneous across countries: for eighteen out of the twenty-
one countries no evidence of a change in persistence has been found.
That conclusion is only reversed for Austria, Belgium, and Germany;,
for which some evidence of a break in persistence is found. For all
three countries, the shock is found at the beginning of the 1960s.
Nevertheless, we should remember that we are running twenty-one
tests at the 5 percent significance level and, therefore, we should
expect some rejections even if the null hypothesis is true.

In short, our results agree with the recent literature that finds
little empirical evidence supporting a change in inflation persistence.

6. Conclusions

This paper explores the inflation rates of a group of OECD coun-
tries, focusing on their persistence properties. We propose model-
ing this data set using ARFIMA models, since they are very flexi-
ble, to represent the medium- and long-run properties of time series.
An economic justification for the existence of fractionally integrated
behavior in the data, as well as solid empirical evidence supporting
this hypothesis, is provided. In agreement with previous works, we
find that inflation rates are very persistent but, in contrast to most
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Table 10. Changes in Persistence

supLM Break Date
AU 6.026 -
AUS 25.601** 1964:1
BE 13.373* 1966:1
CA 1.759 -
DK 2.382 -
FI 2.004 -
FR 5.670 -
GE 10.340* 1963:2
GR 3.294 -
IT 1.738 -
JP 0.000 -
LX 6.033 -
NL 3.787 -
NZ 0.761 -
NO 3.270 -
PO 1.451 -
SP 6.850 -
SWE 2.060 -
SWI 1.106 -
UK 3.691 -
USA 4.577 -
C.V. (9.68,13.5) -

of them, we believe that shocks do not have, in general, a permanent
effect, implying that the series are mean reverting. The latter finding
is very relevant since it implies that the I(1) characterization is not
suitable for this data set. We have shown that some widely used tools
to measure persistence and to test its stability, such as the sum of
the AR coefficients (or its equivalent, the cumulative impulse res-
ponse) are not suitable if the DGP is FI. Since there is always un-
certainty about the true DGP, these conclusions should always be
taken into account when computing these tools.

Our measures of persistence allow us to establish cross-country
comparisons, and it is shown that important differences arise between
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the nations that we have considered, which may be related to the
different monetary institutions present in each of them. Finally, for
most countries, little evidence in favor of a change in inflation per-
sistence has been found, in accordance with the recent literature in
this area.
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Appendix. Evolution of the Inflation Series

Figure 5. Evolution of Inflation Rates in OECD Countries

AU AUS

Q > q L
JROGROE R IRIROIN o
NSRS

0.03

0.02
0.02
0.01
0.01
0.00
&

-0.01

s

0.02




Vol. 2 No. 1

The Persistence of Inflation in OECD Countries 95

Figure 6. Evolution of Inflation Rates in OECD Countries
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Figure 7. Evolution of Inflation Rates in OECD Countries
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