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We propose a new method for the analysis of systemic sta-
bility of a banking system relying mostly on market data. We
model both asset correlations and interlinkages from interbank
borrowing so that our analysis gauges two major sources of sys-
temic risk: correlated exposures and mutual credit relations
that may cause domino effects of insolvencies. We apply our
method to a data set of the ten major UK banks and ana-
lyze insolvency risk over a one-year horizon. We also suggest
a stress-testing procedure by analyzing the conditional asset
return distribution that results from the hypothetical failure
of individual institutions in this system. Rather than looking
at individual bank defaults ceteris paribus, we take the change
in the asset return distribution and the resulting change in the
risk of all other banks into account. This takes previous stress
tests of interlinkages a substantial step further.
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1. Introduction

We suggest a new method for analyzing systemic financial stability of
banking systems relying on market data and nonproprietary account-
ing data. The central idea is to combine concepts from finance and
modern risk management with a network model of interbank loans
to analyze the probability of simultaneous failures of banks—often
referred to as systemic risk—and to develop a simple stress-testing
procedure. We apply our ideas to a data set describing the system of
the ten major UK banks and find that this system appears to be very
stable. In particular, the likelihood of domino effects of bank insol-
vencies is very low. We also gain three more general insights. First,
we see that for the analysis of systemic risk, defined as the proba-
bility assessment of joint default events, the analysis of both corre-
lations and interlinkages is important. An analysis based on single
institutions underestimates these events. Second, we see that stress
testing of interbank linkages based on idiosyncratic default events
only underestimates the impact of bank defaults on the rest of the
system by a considerable margin. Third, we see that a simultaneous
risk analysis of all major banks in a system can be done even when
access to large proprietary microdata sets about individual banks is
not available.

1.1 Related Research

In a series of recent papers analyzing interbank exposures such as
Humphrey (1986), Angelini, Maresca, and Russo (1996), Furfine
(2003), Wells (2004), Degryse and Nguyen (2004), VanLelyveld and
Liedorp (2004), Upper and Worms (2004), and Mistrulli (2005), it
has become common practice to investigate contagious defaults that
result from the hypothetical failure of some single institution. This
sort of analysis is able to capture the effect of idiosyncratic bank
failures (e.g., because of fraud). It emphasizes one source of systemic
risk, namely interbank linkages, and ignores the other, i.e., it is silent
on correlation between banks’ exposures. We believe that a mean-
ingful risk assessment is only possible by studying both aspects in
conjunction. Our paper builds on the model developed in Elsinger,
Lehar, and Summer (2004), which incorporates both sources of sys-
temic risk simultaneously. While in their model the distribution of
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bank asset returns is inferred from bank-specific data on market and
credit risk exposures derived from a combination of various propri-
etary data sets of the Austrian Central Bank (OeNB), in contrast, in
this paper the distribution of bank asset returns is inferred indirectly
from stock market return data. The method of indirectly inferring
bank asset return correlations from market data builds on the work
of Lehar (2005).

1.2 An Overview of the Model and Main Results

We reconstruct a time series for the market values of assets for ten
large publicly traded UK banks by viewing equity as a call option on
total assets. We analyze the covariance structure of asset returns and
simulate potential risk situations for the banking system as a whole
based on this analysis. The advantage of this approach to model
the uncertainty of bank asset returns lies in the fact that it does
not depend on proprietary data sources. Of course, this advantage
does not come without a price. While in highly developed financial
systems stock market data are likely to incorporate all relevant public
information on a bank’s risk exposure, the data do not necessarily
incorporate private information that is often contained in supervisory
bank microdata and loan registers. Private information is, however,
likely to be important for assessing the risks of a bank due to the
opaque nature of bank asset values. One way to see the approach to
bank asset risk modeling suggested in this paper is that it offers an
alternative approach when private information—as is very often the
case in practice—is not available.

Using a network model of the interbank market (following the
model of Elsinger, Lehar, and Summer 2004) we investigate default
probabilities and so-called domino effects. More significantly, we ana-
lyze the differences that arise in risk assessment when we take a naive
approach, neglecting correlations; when we analyze correlations but
ignore interlinkages; and finally, when we additionally take inter-
linkages into account. We then model the impact of various stress
scenarios for the banking system by using a method that preserves
the idea of previous papers examining scenarios where each bank in
the system fails one at a time. But in contrast to this literature, we
do so in a way that is consistent with the correlation structure of
asset returns. Put another way, rather than simply removing a bank
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from the system one at a time (leaving everything else equal) we
look at the conditional distribution of asset returns resulting from
the event that one bank fails.

The empirical analysis gives the following main insights. First,
the UK banking system appears to be very stable. In particular, the
likelihood of domino effects is very low. Second, the simultaneous
consideration of correlation and interlinkages does indeed make a
difference for the assessment of systemic financial stability. In par-
ticular, the probability of systemic events such as the joint breakdown

of major institutions is underestimated when correlations between
banks are ignored. We can also show that ignoring interlinkages leads
to an underestimation of joint default events. Third, the analysis un-
covers substantial differences between banks concerning their impact
on others in stress scenarios and clearly identifies institutions with a
high systemic impact.

Finally, we demonstrate the importance of the assumption about
the source of the shock when studying the consequences of a bank de-
fault. While the previous literature has studied idiosyncratic shocks,
only our model captures systematic shocks too. We suggest a hypo-
thetical decomposition into idiosyncratic and systematic sources of a
shock that may hit a bank. In this way we can investigate not only the
extreme cases studied in the existing literature but also intermediate
cases. By measuring the expected shortfall for all other banks in the
system conditional on the default of one bank, we demonstrate that
a systematic shock has a much higher impact on financial stability
than an idiosyncratic one. Basing a stress test entirely on idiosyn-
cratic shock scenarios may therefore considerably underestimate the
impact of the shock on the banking system as a whole. The impact
of a bank’s default on the banking system is much smaller if we as-
sume an idiosyncratic shock than if we assume that the bank defaults
following a macroeconomic shock.

2. A System Perspective on Risk Exposure for Banks

Our network model of interbank credits is a version of the model
of Eisenberg and Noe (2001). We refer the reader to this paper for
technical details. For our purpose of risk analysis, we extend their
model to include uncertainty. Consider a set N = {1, ..., N} of banks.
Each bank i ∈ N is characterized by a given value ei net of interbank
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positions and its nominal liabilities lij against other banks j ∈ N in
the system. The entire banking system is thus described by an N×N
matrix L and a vector e ∈ R

N . We denote this system by the pair
(L, e).

The total value of a bank is the value of ei plus the value of
all payments received from counterparties in the interbank market
minus the interbank liabilities. If for a given pair (L, e) the total value
of a bank becomes negative, the bank is insolvent. In this case we
assume that creditor banks are rationed proportionally. Denote by
d ∈ R

N
+ the vector of total obligations of banks toward the rest of the

system, i.e., di =
∑

j∈N lij . Define a new matrix Π ∈ [0, 1]N×N which
is derived from L by normalizing the entries by total obligations.

πij =







lij
di

if di > 0

0 otherwise
(1)

We describe a banking system as a tuple (Π, e, d) for which we
define a clearing payment vector p∗. The clearing payment vector has
to respect limited liability of banks and proportional sharing in case
of default. It denotes the total payments made by the banks under
the clearing mechanism. It is defined by

p∗i =



































di if
N
∑

j=1
πjip

∗
j + ei ≥ di

N
∑

j=1
πjip

∗
j + ei if di >

N
∑

j=1
πjip

∗
j + ei ≥ 0

0 if
N
∑

j=1
πjip

∗
j + ei < 0

(2)

This can be written more compactly as

p∗ = min
[

d, max
(

Π′p∗ + e, 0
)]

, (3)

where the min and max operators denote the componentwise max-
imum and minimum. The clearing payment vector directly gives us
two important insights: for a given structure of liabilities and bank
values (Π, e, d) we can identify insolvent banks (p∗i < di) and derive

the recovery rate for each defaulting bank (
p∗i
di

).
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To find a clearing payment vector, we employ a variant of the
fictitious default algorithm developed by Eisenberg and Noe (2001).
They prove that under mild regularity conditions, a unique clearing
payment vector for (Π, e, d) always exists. These results extend to
our framework as well.

From the solution of the clearing problem, we can gain additional
economically important information with respect to systemic stabil-
ity. Default of bank i is called fundamental if bank i is not able to
honor its promises under the assumptions that all other banks honor
their promises

N
∑

j=1

πjidj + ei − di < 0.

A contagious default occurs when bank i defaults only because other
banks are not able to keep their promises, i.e.,

N
∑

j=1

πjidj + ei − di ≥ 0

but
N

∑

j=1

πjip
∗
j + ei − di < 0.

To use the model for risk analysis, we extend it to an uncertainty
framework by assuming that e is a random variable. As there is no
closed-form solution for the distribution of p∗, given the distribution
of e, we have to resort to a simulation approach where each draw
is called a scenario. By the theorem of Eisenberg and Noe (2001)
we know that there exists a (unique) clearing payment vector p∗

for each scenario. Thus from an ex ante perspective we can assess
expected default frequencies from interbank credits across scenarios
as well as the expected severity of losses from these defaults given
that we have an idea about the distribution of e. Furthermore, we
are able to decompose insolvencies across scenarios into fundamental
and contagious defaults.

To pin down the distribution of e we choose the following ap-
proach: assume that there are two dates: t = 0, which is the obser-

vation date, and t = T, which is a hypothetical clearing date where
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all interbank claims are settled according to the clearing mecha-
nism. At t = 0 the interbank exposures are observed. Assuming that
these positions remain constant for the time horizon under consid-
eration, they constitute the matrix L at T . This implies that the
liability structure of the banks remains constant. Yet, there is em-
pirical evidence (see Shibut 2002) that the creditors of distressed
banks withdraw unsecured funds before the bank fails.1 If creditors
learn between t = 0 and t = T that a bank is distressed, they will try
to withdraw their unsecured funds.2 If this were interbank funds, this
would change the assumed seniority structure. Though this could re-
duce the risk of contagion and increase the loss to a deposit insurer,
it will not change the risk of fundamental default.

Given the assumption of constant interbank claims, the value of
the banks at t = T depends solely on the realization of the random
value of e at T, which is defined as the net assets before interbank
positions are taken into account, i.e.,

ei = Vi(T ) − Di(T ) −





N
∑

j=1

πjidj − di



 ,

where Vi(T ) is the value of total assets of bank i and Di(T ) is the
value of total liabilities of bank i at time T . As in Duan (1994) we
assume that the liabilities are insured and hence accrue at the risk-
free interest rate. Therefore, Di(T ) = Di(0)erT and the distribution
of ei is determined by the distribution of Vi(T ) only.

Given the lack of available data on UK banks’ net asset positions,
we model Vi(t) as a geometric Brownian motion under the objective
probability measure P , i.e.,

dVi = µiVidt + ViσidBi,

where Bi is a one-dimensional Brownian motion.3 An important
innovation in our research is that we explicitly allow the asset values

1On the other hand, Cocco, Gomes, and Martins (2004) show that for
overnight loans, lending relationships do play a role in the interbank market
and that during the Russian financial crisis, banks relied on relationship lending
even more than usual.

2In case of netting agreements, another way to reduce exposures could be to
take up funds from the troubled institution.

3This approach follows Merton (1974) and has been applied to banking sys-
tems as a whole by Lehar (2005).
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of different banks to be correlated, i.e., the instantaneous correlation
of Bi(t) and Bj(t) denoted by ρij might be different from zero for all
i and j. Given the drift parameters µi and the variance-covariance
matrix Σ where σij = σiσjρij , we are able to simulate the future
asset values V s

i (T ) of all banks simultaneously taking the correlation
structure between their asset values into account. For details we refer
the reader to Elsinger, Lehar, and Summer (2005).

By correcting V s
i (T ) for interbank positions and deducting to-

tal liabilities Di(T ) in each scenario, we construct the net income
position for each bank as follows:

es
i = V s

i (T ) − Di(T ) −





N
∑

j=1

πjidj − di



 .

This together with the interbank matrix L determines a clearing
payment vector for each realization. Based on this information, we
conduct our risk analysis.

Neither the initial bank asset value V (0) nor the drift µ nor the
variance covariance matrix Σ are observable. Our approach there-
fore requires not only an estimate of interbank liabilities, but also
estimates of the parameters of the stochastic processes governing
bank assets, and of the market values of total assets. The simulation
is then performed using the estimated values. An overview of the
model is given in figure 1. Like all market or credit risk models, we
have to assume a time horizon, which we set to one year.

3. Estimating Bank Asset Risk from Market Data

A bank’s asset portfolio consisting of loans to nonbanks, interbank
loans, traded securities, and many other items is funded by debt and
equity. So in order to estimate the value of total assets, we need
information on the future development of asset values and the face
value of debt. The problem is that the actual market value of assets is
not directly observable.4 What is, however, observable is the market
value of equity and the face value of debt for each publicly traded

4The dynamics of the market value of a bank’s liabilities are not important, as
the bank is assumed to default whenever the market value of the assets is below
the promised payments, which is the book value of liabilities.
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Figure 1. The Structure of the Model

Initial State of the Banking System

< L, E(0), D(0) >

L and D(0) estimated from balance sheet data.

E(0) observed from market data.

Simulate

(L, es )

Network Model

Clearing of the System.

Use (L, es ) to get

p*(L, es )

ˆ

ˆ

Stochastic Process of Bank Assets

dV = µ̂  .Vdt  +    .Vdz

(µ̂   ,   ) estimated from stock market

and balance sheet data.

bank. By viewing equity as a European call option on the bank’s
assets with a strike price equal to the value of debt at maturity, we
can make use of this information to get an estimate of the market
value of assets for each publicly traded bank.5

Denote the equity of bank i at t by Ei(t) and the total face value
of its interest-bearing debt by Di(t), which is assumed to have a time
to maturity of T1. We assume that all bank debt is insured and will

5This idea goes back to Black and Scholes (1973) and Merton (1973).
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therefore grow at the risk-free rate.6 The value of bank equity is then
given by the call option price formula:

Ei(t) = Vi(t) Φ(ki(t)) − Di(t) Φ(ki(t) − σi

√

T1), (4)

where

ki(t) =
ln(Vi(t)/Di(t)) + (σ2

i /2)T1

σi

√
T1

(5)

and Φ(·) is the cumulative standard normal distribution.7 This for-
mula is invertible in the sense that given (Ei(t), Di(t), σi, T1) are all
larger than 0, the value of total assets Vi(t) is uniquely determined.
Hence, given an estimate of σi, we can infer the market value of total
assets from observable data.

The parameters of the stochastic processes are estimated using
a maximum likelihood approach as developed in Duan (1994) and
Duan (2000). As we are interested in the joint behavior of the total
assets, we extend this technique by estimating the parameters of all
banks simultaneously.

Given sequences Ei = (Ei(t)) and Di = (Di(t)), t ∈ {1 . . . m}
and i ∈ {1 . . . N} of observed historical equity and debt values, re-
spectively, the parameters (µ,Σ) of the asset value processes can be
estimated by maximizing the following log-likelihood function:8

L(E) = − (m−1)N
2 ln(2π) − m−1

2 ln|Σ|
−

m
∑

t=2

{

N
2 ln(ht) + 1

2ht
(x̂t − htα)′ Σ−1 (x̂t − htα)

}

−
m
∑

t=2

N
∑

i=1

[

lnV̂i,t(σi) + lnΦ(k̂i,t)
]

,

where αi = µi − 1
2σ2

i ; ht denotes the time increment from t − 1 to

t; V̂i,t(σi) is the solution of equation (4) given σi; k̂i,t corresponds

to ki(t) in equation (5) with Vi(t) replaced by V̂i,t(σi); and x̂it =

ln(V̂i,t(σi)/V̂i,t−1(σi)).

6Relaxing this assumption will not dramatically change the results, since the
paper’s focus is not on deposit insurance pricing. From the available data, we
cannot determine the amount of uninsured debt for every bank.

7Note, as the strike price equals Di (t)e
r T1 , r cancels out in the Black-Scholes

formula.
8For the derivation of the likelihood function see Elsinger, Lehar, and Summer

(2005).
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For the estimation of the parameters µ and Σ, we assume that
the time to maturity of debt, T1, equals one year. We use one year of
weekly market values of total equity Ei(t). From the estimation we
get a set of parameters for every bank in the sample, which can then
be used to back out the estimated asset values V̂i(t) for every given
equity price for each week during the past year. Put another way,
we are able to estimate the value of total assets at each observation
date for each bank.

In line with the standard risk management literature, we assume
throughout the paper that the returns on the banks’ asset portfolios
are normally distributed. One could consider alternative distribu-
tions to include frequently observed characteristics of equity return
series like fat tails.9 However, this would be inconsistent with the
assumptions of the estimation procedure in equation (4).

4. The Data

To apply the framework described in section 2 to the data, we need
to determine the interbank exposures (the matrix L) as well as non-
interbank exposures (the net worth positions ei) for each bank. Since
we describe the risks to ei by the stochastic process approach, we can
only consider banks that are publicly traded. All banks that are not
in this category are summarized in a residual position. To estimate
the parameters of the stochastic process governing the value of banks’
assets, we use weekly stock market data for 2003 from Bloomberg.
Total liabilities are taken from the Bank of England’s bank balance
sheet data.

Central banks usually have quite detailed information about their
domestic banks’ on-balance-sheet interbank positions. This informa-
tion is available in form of balance sheet reports and supervisory
data. The information is partial in several dimensions. First, the
balance sheet does not contain exposures at a bilateral level. Some
bilateral exposures can, however, be recovered by combining balance
sheet information with other data sources.10 Second, the balance

9Note that normality is assumed for the asset returns. The equity returns,
where most studies document skewness and kurtosis, are not normally distributed
in this setting.

10For instance, in their study for Austria, Elsinger, Lehar, and Summer (2004)
can reconstruct 72 percent of on-balance-sheet interbank exposures exactly. Wells
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sheet data allow a reconstruction of the interbank network only for
the domestic banks, as data on overseas banks are usually only avail-
able as an aggregate position. The procedure thus can usually cover
only banks that are owned domestically or branches and subsidiaries
of foreign banks located within the country. Finally, off-balance-sheet
information and exposures arising from intraday payment and set-
tlement are not included.

For the estimation of an interbank exposure matrix, we look
at the ten largest UK resident banks, an aggregate position for all
other UK resident banks, and an aggregate position for foreign banks
(i.e., branches and subsidiaries of overseas banks located within the
United Kingdom).11 This gives us a 10 by 10 matrix of interbank ex-
posures of money market loans and deposits. As mentioned in Wells
(2004), these data are unconsolidated. This is a measurement prob-
lem because the UK banking system is highly concentrated and the
largest banking groups often have significant overseas subsidiaries
and/or other subsidiaries located within the United Kingdom. But
although potentially important exposures are excluded, we believe
our data set provides an adequate estimate of the interbank liabili-
ties. Wells (2004) finds that the data cover around 75 percent of to-
tal (on-balance-sheet) unsecured interbank assets.12 He furthermore
finds that OTC derivative exposures are small relative to on-balance-
sheet interbank exposures. In table 1, we give an account of the size
of on-balance-sheet interbank business for the last quarter of 2003.

Partial information about the interbank liability matrix L is
available from balance sheet data. The bank-by-bank record of total
interbank assets and liabilities provides the column and row sums of
the matrix L. Further, some structural information is available. For
example, the diagonal of L must contain only zeros since banks do

(2004) combines balance sheet data with the large exposure statistics to get an
improved estimate on bilateral positions compared to an estimate that relies on
balance sheet information only.

11As we have no information on default probabilities of foreign banks and the
other UK banks, we assume in the following analysis that the exposure to these
banks is well diversified and thus has zero default probability. To analyze the
impact of interbank exposure to these banks, one could come up with ad hoc
scenarios, like assuming that a certain fraction of foreign interbank debt is lost.
Our framework allows us to analyze the impact of such scenarios on contagion.

12The other 25 percent is accounted for by commercial paper and certificates
of deposit.
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Table 1. UK-System Interbank Loans and Deposits in
2003:Q4

Interbank Assets Interbank Liabilities

Billion % of Billion % of

Bank Group GBP Total GBP Total

Major UK Banks 269.97 67.78% 270.07 67.81%

Other UK Banks 3.81 0.96% 2.89 0.72%

Foreign Banks 124.51 31.26% 125.39 31.47%

Total 398.29 100% 398.29 100%

Source: Bank of England.

not have claims and liabilities against themselves. For the UK bank-
ing system, limited information about certain large bilateral expo-
sures is also available (see Wells 2004). But these data are based on a
different definition of interbank exposure; for example, they include
some off-balance-sheet exposures and so are not directly comparable
with the loan and deposit data that we use to estimate the matrix
L. Given our aim of using only market data, we do not incorporate
these data into our analysis.

As fundamental defaults are determined by the sum of all claims
and liabilities in the interbank market, the sum of individual rows
and columns is sufficient for this purpose. But to calculate a clearing
payment vector and to identify contagious defaults, the bilateral ex-
posures have to be estimated based on this partial information. The
fact that we cannot observe individual bilateral exposures should be
reflected in the fact that these entries in the matrix are treated ho-
mogeneously in the estimation process. We formulate the estimation
of the unobservable parts of the L matrix as an entropy optimization

problem.

Intuitively, this procedure finds a matrix that treats all entries
as balanced as possible and satisfies all known constraints. This can
be formulated as minimizing a suitable measure of distance between
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the estimated matrix and a matrix that reflects our a priori knowl-
edge. The so-called cross-entropy measure is a suitable concept for
this task (see Fang, Rajasekera, and Tsao [1997] or Blien and Graef
[1997]). A detailed description of the estimation procedure and the
estimated matrix can be found in Elsinger, Lehar, and Summer
(2004).

Our assumption on the structure of L will not affect fundamental
defaults but will certainly have an impact on the number of con-
tagious defaults. On the one hand, spreading out interbank loans
among many banks might make the banking system more resilient
toward shocks (Allen and Gale 2000); on the other hand, it might
allow contagion to spread out more (consistent with the empirical
findings of Elsinger, Lehar, and Summer 2004). To check for robust-
ness we also estimated L matrices that are as sparse as possible.13

Table 7 (shown at the end of section 7) contains some results of this
robustness check.

5. Risk Analysis: Status Quo

For the estimate of the interbank matrix and the observed values of
total equity and liabilities at the end of December 2003, our frame-
work provides statistics of default scenarios in one year’s time, i.e.,
at the end of 2004. Note that our model allows for a decomposition
of default events into “fundamental” and “contagious” defaults. The
results of the simulation are reported in table 2.

We see that the UK banking system—at least as far as the ten
largest institutions are concerned—appears to be extremely stable.
There are scenarios with nine defaults in total; however, their prob-
ability is practically zero, since it occurs in only one scenario out of
100,000. The probability that one or more defaults occur in the en-
tire system over a one-year horizon given the December 2003 starting
position is 4.7 percent. The probability of observing a domino effect
is practically zero.

Various parameters in the clearing process can be changed to
check the sensitivity of the results on the banking system’s aggre-
gate default statistics. When we change the procedure by netting

13We had to rely on heuristics for this estimation, since we are not aware of a
well-suited algorithm for our problem.
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Table 2. Frequency of Fundamentally and Contagiously
Defaulting Banks Grouped by the Number of

Fundamental Defaults (First Column)

Contagious Defaults

No Netting Netting
Fundamental

Defaults 0 1 2 0 1 2 3 4 5

0 95335 0 0 95335 0 0 0 0 0

1 3985 34 2 3971 49 1 0 0 0

2 409 37 8 402 45 5 1 0 1

3 98 23 2 93 25 5 0 0 0

4 31 11 4 27 14 3 2 0 0

5 11 4 2 6 6 5 0 0 0

6 2 1 0 0 2 1 0 0 0

7 0 0 0 0 0 0 0 0 0

8 0 1 0 0 1 0 0 0 0

Total 99871 111 18 99834 142 20 3 0 1

Note: The total number of scenarios is 100,000.

all bilateral exposures before the clearing mechanism is applied, the
mean default probability as well as its standard deviation increase
slightly compared to the case without netting. This is due to increas-
ing second round effects or contagious defaults (see table 2).14 If in
addition we assume that insolvent institutions do not repay their in-
terbank creditors after netting of bilateral exposures—which might
be interpreted according to Elsinger, Lehar, and Summer (2004) as a
“short-term” scenario—the probability of contagious defaults hardly
rises at all and the default statistics remain virtually unchanged.

14Netting bilateral exposures might increase or decrease contagion (see
Elsinger, Lehar, and Summer [2005] for examples). In our data set most of the
banks are harmed by bilateral netting.
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Table 3. Distribution of Individual Default Probabilities
and Distance to Default

Bank 1 2 3 4 5 6 7 8 9 10

Default Prob 0% 0.01% 0.02% 0.02% 0.04% 0.10% 0.23% 0.59% 0.68% 4.06%

DD 7.11 4.78 3.48 3.46 3.31 3.10 2.90 2.42 2.45 1.73

Looking at the distribution of the individual Merton-default
probabilities of the ten banks in our system, we see that the system
is very stable. We have one outlier with a one-year default proba-
bility of 4 percent; all other individual default probabilities are in
the range between 0 percent and 0.68 percent. The distribution of
individual default probabilities is shown in table 3. The table also
shows the distance to default under the objective probability, which
is measured as

ddi(T ) =

(

µ̂i − 1
2 σ̂2

i

)

T + ln Vi (0)
Di (T )

σ̂i

√
T

.

The results should be interpreted with caution. The focus of our
model is not to derive individual default probabilities but rather to
investigate the impact of correlation between bank portfolios versus
contagion as well as to derive a stress-testing framework to identify
system-relevant banks. The default probabilities of the Merton model
should mainly be seen as providing a ranking of default risk among
banks.15

6. The Role of Correlation and Interlinkages

Banking regulation has traditionally been more focused on individual
banks than on the system as a whole. Hence, regulators are typically
interested in the marginal distribution of Vi(t) and less attention
is given to the joint distribution of V (t). Whereas this marginal ap-

proach gives the correct default probabilities of individual banks, the
estimates for joint defaults based on the marginal distributions are,
in general, not correct. The question is whether the improvement in
estimating the probability of joint defaults by taking the correlation

15To get a precise default probability estimate, one could follow KMV and use
a mapping of Merton default probabilities into empirical PDs.
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Table 4. Number of Simultaneously Defaulting Banks
across Simulations

Simultaneous Marginal Joint
Interbank Market

Defaults Distribution Distribution No Netting Full Netting

0 94523 95335 95335 95335

1 5421 4021 3985 3971

2 56 454 443 451

3 0 123 137 139

4 0 46 62 57

5 0 17 24 26

6 0 3 10 9

7 0 0 3 10

8 0 1 0 1

9 0 0 1 1

10 0 0 0 0

Note: Simulations are based on the marginal distribution only (second column), on
the joint distribution (third column), and on the joint distribution together with con-
tagion (fourth column).

structure into account makes this more elaborate technique really
necessary. To examine this, we compare the (simulated) number of
joint defaults for three different procedures

1. based on the marginal distributions only, i.e., assuming that
the covariances are zero,16

2. based on the joint distribution, and

3. based on the joint distribution taking the financial linkages
between banks into account.

The results, shown in table 4, demonstrate that taking the cor-
relation structure into account can have a considerable impact on
estimates of default. The number of scenarios with a single default-
ing bank decreases. In contrast, both the number of scenarios with
no default at all and the number of scenarios where two or more

16For a description of the simulation procedure, see appendix 1.
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banks default simultaneously increase. This result is further ampli-
fied when bank interlinkages (i.e., the potential for contagion) are
taken into account.

This analysis shows that, from the viewpoint of systemic sta-
bility, both correlated exposures and interlinkages do matter. Ig-
noring the systemwide perspective—i.e., ignoring correlations and
interlinkages—leads to a considerable underestimation of the proba-
bility of a systemic crisis. If we do not take into account interlinkages,
the amount of underestimation of joint default probabilities is, from
a practical point of view, perhaps not too big. Ignoring correlations,
however, leads to an underestimation of joint default events by a
significant margin.17

7. Risk Analysis: Stress Testing

Stress testing provides another measure of systemic stability, but
importantly it also allows financial regulators to identify individual
banks that may pose systemic risks. With the exception of Elsinger,
Lehar, and Summer (2004), the literature on interbank linkages and
domino effects has focused on stress tests that assume the default of
single institutions, leaving the financial condition of the other banks
unaffected. The implicit assumption of this previous research is that
the cause of bank failure is an idiosyncratic shock that hits just one
bank at a time. This approach is useful to study the consequences
of fraud or to study the contagion impact within a banking system
where banks’ asset portfolios are rather uncorrelated, e.g., geograph-
ical diversification. But to look at stress testing from a more general
perspective, we have to be more specific on the source of the assumed
default.

From the perspective of systemic stability, the assumption of id-
iosyncratic shocks might lead to an underestimation of systemic risk,
as there is evidence that the correlation between bank portfolios
is generally positive.18 When conducting stress testing on a system

17The results are quite robust with respect to the estimation procedure of the
interbank matrix L. Using different estimates for L, we got similar results in
terms of contagion (see table 7).

18See, for example, Nicolo and Kwast (2002) or Lehar (2005). While the new
internal ratings-based approach of Basel II considers correlations of bank loans
within a bank portfolio, our focus is on the correlation between bank portfolios.
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level, the impact of a macroeconomic shock that hits the whole bank-
ing system should be a major concern for institutions charged with
maintaining financial stability. Such a shock affects all banks to a cer-
tain degree, depending on their asset composition. Thus, we extend
the current stress-testing framework by modeling a second reason
for a bank’s default—a systematic shock. If there is a positive cor-
relation in banks’ asset values, it is likely that if one bank defaults
because of a declining asset value, other banks may also be expecting
difficulties.

We model systematic shocks by deriving the multivariate condi-
tional distribution for the banks’ asset values. The idea is as follows:
suppose that the regulator knows the joint unconditional distribution
of the banks’ asset values and observes that one bank has defaulted,
partly due to a systematic shock. It is now rational for the regulator
to update his or her beliefs on the joint distribution and compute
the conditional distribution of all the other banks’ asset values, given
that one bank’s asset value is below the bankruptcy threshold. Under
this conditional distribution, default probabilities, the probability of
contagion, and the losses to the deposit insurer would be expected
to increase if bank asset values are positively correlated. Conducting
such an analysis ex ante will allow the regulator to rank banks ac-
cording to the impact of their default on the banking system and thus
identify system-relevant banks. Appendix 2 outlines the simulation
technique in detail.

Table 5 shows each bank’s probability of default conditional on
the default of bank i. We find a large variation across banks. For
instance, the first bank has only a very small impact on the funda-
mental default probability of all the other banks, but is itself affected
most by the hypothetical defaults of all the others. Banks 1, 4, and 7
have, on average, a much weaker impact on the others than banks 2,
3, 5, 6, 8, 9, and 10. On the other hand, banks 1, 3, 4, 5, and 7 are,
on average, most affected by the change in asset correlations brought
about by the default of other banks in the system. The pattern that
seems to appear in this table is that the larger the distance to de-
fault, the higher the impact of a default on the other banks. The
reason is that a bank with a large distance to default needs a large
negative shock to make the bank default. In conjunction with the
positive asset correlations, all other banks are seriously hit by this
(systematic) shock, too. Yet, a closer look at table 5 reveals that,
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Table 5. Probabilities of Default Conditional on the
Failure of One Bank

Banks DD

No 1 No 2 No 3 No 4 No 5 No 6 No 7 No 8 No 9 No 10

– 92.7% 62.6% 49.0% 62.9% 98.8% 55.5% 64.3% 77.0% 97.7% 1.73

0.5% – 5.4% 2.0% 6.5% 56.8% 2.1% 14.2% 12.0% 60.1% 3.46

1.2% 16.1% – 5.7% 10.6% 79.4% 6.3% 19.3% 31.4% 88.4% 3.10

7.9% 55.6% 46.9% – 42.4% 74.4% 26.9% 51.4% 44.5% 97.1% 2.45

3.8% 54.8% 34.0% 14.3% – 55.0% 14.7% 38.6% 68.7% 77.6% 2.90

0.0% 0.0% 0.0% 0.0% 0.0% – 0.0% 0.0% 0.0% 0.0% 7.11

8.3% 52.7% 47.6% 24.3% 32.7% 68.5% – 48.5% 70.2% 81.6% 2.42

0.6% 23.7% 9.7% 3.0% 7.2% 65.1% 3.2% – 14.9% 44.9% 3.31

0.3% 6.3% 6.0% 1.0% 5.4% 32.3% 1.8% 5.2% – 18.2% 3.48

0.1% 6.6% 4.5% 0.6% 1.6% 73.8% 0.7% 4.1% 7.3% – 4.78

Note: Each column i shows the default probabilities of the other banks, conditional on
the default of bank i. The last column shows the distance to default for all banks.

for instance, the default of bank 6 hits bank 10 harder than bank 5,
although bank 10 has a larger distance to default than bank 5. So,
the distance to default, which is based on the marginal distribution
of the asset value only, is a reasonable but not perfect indicator of
whether the bankruptcy of a bank will have a small or large impact
on the system.

To demonstrate the difference between systematic and idiosyn-
cratic shocks, we assume that a fraction (1 − a) of the distance to
default ddi hits bank i as an idiosyncratic shock zidio

i = −(1−a)ddi.
We then draw a systematic shock zs

i such that this bank is in default,
i.e., zs

i + zidio
i ≤ −ddi. Given this systematic shock, we simulate the

conditional distribution of all banks’ asset values using the technique
described in appendix 2. Hence, the simulation for the other banks is
conditioned on the systematic shock only. This simulation is done for
various levels of a ranging from 0 to 1. We run 100,000 simulations
where zs

i + zidio
i ≤ −ddi for each defaulting bank and each level a.

Note that we compute the conditional distribution of V using
the estimated covariance matrix Σ̂. As an alternative, one could as-
sume a factor model, which would also allow a decomposition into
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Table 6. For Each Bank i, Expected Shortfall for All Other
Banks Conditional on the Default of Bank i

Bank

a 1 2 3 4 5 6 7 8 9 10

0 77 168 192 139 267 170 235 144 165 180

0.1 85 223 241 169 305 267 256 188 218 262

0.25 103 385 370 241 404 643 315 306 366 558

0.5 157 1170 897 492 769 3059 528 835 1133 2541

0.75 263 3835 2424 1118 1669 12568 1011 2611 4227 11615

0.9 370 7566 4411 1882 2721 25791 1547 5201 9111 24845

1 469 11550 6498 2676 3782 38814 2069 8071 14460 37513

Note: The shortfall (in £m) is computed for different ratios of
idiosyncratic to systematic shocks (first column). The shock that
causes bank i’s default is assumed to consist of a systematic part
(a) and an idiosyncratic part (1–a).

systematic and idiosyncratic shocks. Such a model, however, would
just be equivalent to imposing a special structure on Σ̂. If the aim is
to get a quick impression of the difference in magnitude of expected
shortfall that comes with the stress assumption, our suggested de-
composition is perhaps the simplest and most direct way. As a mea-
sure of systemic importance of bank i, we compute the expected
shortfall for all other banks conditional on the default of bank i.
That is

ESi =
1

S

S
∑

s=1

N
∑

k=1,k �=i

max(Dk(T ) − V s
k (T ), 0), (6)

where N is the number of banks and S is the number of simulation
runs. If all deposits are insured, the expected shortfall is equal to the
liability of the deposit insurer. Therefore, we can interpret ESi as
the increase in the liability of the deposit insurer that results from
the failure of bank i.

In line with our intuition, we find that systematic shocks consti-
tute a much bigger threat for financial stability than idiosyncratic
shocks. Table 6 shows expected shortfall (in £m) conditional on each
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Figure 2. Systematic versus Idiosyncratic Shocks

30000

25000

20000

15000

10000

35000

5000

0.80.70.60.50.40.30.20.1 0.9

ES

a

Note: For each bank i of the ten banks, the expected shortfall ES
for all other banks conditional on the default of bank i is plotted
for different weights of the systematic component a of the shocks.
The shock that causes bank i’s default is assumed to consist of a
systematic part (a) and an idiosyncratic part (1 − a).

bank’s default for different levels of a. A completely idiosyncratic
shock is simulated whenever a = 0 and the shock is assumed to be
completely systematic in the case of a = 1. Figure 2 illustrates the
results.

From the results, we can see that when defining a stress-testing
framework for a financial stability assessment, we have to be precise
about which situation we want to analyze. Idiosyncratic shocks be-
cause of fraud will have a much smaller impact on the banking system
than a systemwide shock of similar magnitude. Our approach allows
us to come up with measures of systemic importance that combine
both aspects of systemic risk, the correlation between banks’ assets
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Table 7. Number of Simultaneously Defaulting Banks
across Simulations Based on Different Estimates of the

Matrix L

Defaults Entrop A B

0 95335 95335 95335

1 3985 4005 3941

2 443 448 473

3 137 123 144

4 62 51 55

5 24 26 19

6 10 8 14

7 3 3 9

8 0 0 7

9 1 1 3

10 0 0 0

Note: The results in the column labeled “Entrop” are based
on the solution of the relative entropy minimization. The
matrix A (B) is an estimate of L with the highest (lowest)
probability of a single default we were able to find.

as well as contagion. Regulators can therefore identify banks that
are crucial for the stability of the banking sector.

8. Conclusions

This paper has outlined a new framework for systemic financial sta-
bility analysis for banking systems, which relies mainly on easily ob-
servable market data. We apply this framework to the ten major UK
banks and suggest a stress-testing procedure. Our motivation stems
from the fact that for the analysis of systemic risk—the large-scale
breakdown of financial intermediation—the main events of interests
are the joint failures of major financial institutions. Therefore it is
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essential to capture two major sources of risk that can lead to simul-
taneous insolvencies. This requires the consideration of both cor-

related exposures and credit interlinkages. In most existing studies,
attention is focused exclusively on domino effects that result from
interlinkages, when single institutions fail ceteris paribus. One of our
main results is that the existing approach potentially underestimates
joint default events by a significant margin and that considering the
two sources of systemic risk indeed matters.

For stress testing we demonstrate how the assumption of a default
of a major institution can be simulated consistently with the risks
inherent in the bank’s assets. We do so by considering the conditional
covariance structure of bank asset returns that result from the failure
of one institution and study how this changed covariance structure
influences domino effects of defaults. Thus we carry previous stress
tests for interlinkages a significant step further by embedding these
stress tests in a coherent risk analysis. Furthermore, we analyze the
role of the assumption of idiosyncratic defaults in the stress testing
of interlinkages that was frequently used in the previous literature.
We demonstrate that this assumption leads to a much lower impact
on the rest of the banking system than assuming that the source
of the shock is systematic. Stress tests of interlinkages therefore un-
derestimate the impact of bank breakdowns on the stability of the
financial system. The empirical analysis uncovers substantial differ-
ences between individual banks concerning their impact on others
in stress scenarios and clearly identifies institutions with a high sys-
temic impact.

We hope that our results will be useful in the search for a canon-
ical model to perform risk assessment for banking systems for insti-
tutions in charge of systemic financial stability. Since our method
relies mainly on market data, it can be more easily applied than
methods relying strongly on proprietary information such as loan
registers and supervisory data. While such data sources are very
rich and allow a more detailed analysis of risk factors, their draw-
back is that they are not widely available and usually under the close
control of national supervisory bodies. Provided the system under
consideration is financially highly developed—such as, for instance,
in the United Kingdom—our method shows a workable alternative
to naive single-institution analysis for systemic risk monitoring. We
therefore believe that the approach outlined here is interesting for
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supranational institutions like the International Monetary Fund or
the European Central Bank who do not have access to proprietary
supervisory data sources but who are interested in financial stabil-
ity assessment. The parsimony in data has the advantage that our
approach is more easily replicable than proprietary data models and
might thus be a useful building block to enhance our understanding
of systemic risk monitoring for financial stability analysis through
studies of other banking systems.

Appendix 1. The Marginal Approach

To simulate joint defaults neglecting the correlation structure, we
use the following procedure. The marginal distribution of Vi(T ) is
given by

Vi(T ) = Vi(0) ∗ exp

([

µi −
1

2
σ2

i

]

T + σiBi(T )

)

,

where Bi(T ) ∼ N(0, T ). To generate a scenario s we randomly draw
an N×1 vector B̃s of independent standard normal random variables
and calculate

V s
i (T ) = Vi(0) ∗ exp

([

µ̂i −
1

2
σ̂2

i

]

T + σ̂i

√
TB̃s

i

)

,

where µ̂i and σ̂i are the estimates of µi and σi. Then we count the
number of banks for which their asset values V s

i (T ) is less than their
total liabilities Di(T ).

Appendix 2. Conditional Default

In section 7 we assume that the regulator learns that bank i is in
default. We ask the question, what can be deduced about the stabil-
ity of the system given this information, i.e., what is the conditional
distribution of the asset values of all other banks given the default
of bank i? To do the simulations, we first reorder the banks such
that the defaulting bank is the first one. Then we simulate asset
returns according to the procedure below and count the number of
conditionally defaulting banks.
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The (asset) return of bank i is defined as Ri(T ) =
ln(Vi(T )/Vi(0)). We denote the vector of joint returns by R(T ) =
(R1(T ), . . . , RN (T ))′. R(T ) is a multivariate normal random vari-
able with E[Ri(T )] = T (µi − 1

2σ2
i ) = Tαi and V ar[R(T )] = TΣ,

i.e., R(T ) ∼ MV N(α, TΣ), where α = (α1, . . . , αN )′. Consider the
following partition

R(T ) =





R1(T )

R2(T )



 α =





α1

α2



 Σ =





Σ11 Σ12

Σ21 Σ22



,

where the N random variables are partitioned into n1 and n2 vari-
ates (n1 + n2) = N . R2(T ) given R1(T ) is multivariate normally
distributed with E[R2(T ) | R1(T )] = Tα2 + Σ21(Σ11)−1(R1 − Tα1)
and V ar[R2(T ) | R1(T )] = T (Σ22 − Σ21(Σ11)−1Σ12).19

For our simulation, we factor Σ using the Cholesky decomposition
such that Σ = U ′U . Now define the random variable S = Tα +√

TU ′Z where Z ∼ MV N(0N,1, IN,N ). Evidently, S has the same
distribution as R, i.e., S ∼ MV N(Tα, TΣ). Partitioning S, U , Z
conformably to R gives

S =





S1

S2



 Z =





Z1

Z2



 U =





U11 U12

0 U22



.

This means that
S1 = Tα1 +

√
T (U11)′Z1.

and
S2 = Tα2 +

√
T (U12)′Z1 +

√
T (U22)′Z2.

To simulate the conditional distribution of S2 given S1 = R1(T ), we
first calculate Z1 as

Z1 =
1√
T

(

(U11)′
)−1 (

R1(T ) − Tα1
)

.

Plugging this into the definition of S2 yields

S2 = Tα2 + (U12)′
(

(U11)′
)−1 (

R1(T ) − Tα1
)

+
√

T (U22)′Z2.

19See Ramanathan (1993, 109).
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We know that S2 given S1 is multivariate normally distributed. It
remains to be shown that E[S2 | R1(T ))] = E[R2(T ) | R1(T )] and
V ar[S2 | R1(T )] = V ar[R2(T ) | R1(T )]. Note that E[S2 | R1(T )] =

Tα2 + (U12)′
(

(U11)′
)−1 (

R1(T ) − Tα1
)

and

(U12)′
(

(U11)′
)−1

= (U12)′U11(U11)−1
(

(U11)′
)−1

.

Now (U12)′U11 = Σ21 and (U11)−1
(

(U11)′
)−1

= (Σ11)−1. Hence

E[S2 | R1(T )] = Tα2 + Σ21(Σ11)−1(R1(T ) − Tα1).

The variance of S2 given S1 = R1(T ) is T (U22)′U22. By the definition
of U it holds that

(U22)′U22 = Σ22 − (U12)′U12

= Σ22 − (U12)′U11(U11)−1
(

(U11)′
)−1

(U11)′U12

= Σ22 − Σ21(Σ11)−1Σ12,

which is the same as the variance of R2(T ) given R1(T ). Hence, the
conditional distribution of S2 given S1 = R1(T ) is just the same as
that of R2(T ) given R1(T ).

To generate a scenario s we assume that bank 1 defaults (n1 = 1).
Let R∗

1(T ) be such that V1(T ) = V1(0)exp(R∗
1(T )) = D1(T ).

Now we randomly draw Rs
1 ≤ R∗

1(T ). Given this realization of
R1(T ), we simulate S2 and calculate the asset values of the banks,
V s

2 (T ), . . . , V s
n (T ). Finally, we count the number of (conditionally)

defaulting banks in scenario s. The results are based on 100,000 sim-
ulations. Note that the procedure can easily be extended to the case
where several banks are assumed to be in default.
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