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Abstract

This paper discusses first results of a comparative study of different
environmental policy instruments. In a model with pollution as a side
effect of consumption different environmental policies are studied. In sim-
ulations we observe the dynamic behavior of models with utility functions
of the Leontief, CES, and Cobb-Douglas type. Environmental policy is
modeled as a consumption tax. Tax revenues are used to pay a subsidy for
environment-friendly activities, are reimbursed as lump-sum payments or
vanish. Furthermore we investigate the implications of errors in the choice
of instruments.
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1 Introduction

Environmental policy instruments are usually evaluated in a static context. In
addition to dimensions such as static efficiency, information intensity, ease of
monitoring and enforcement, flexibility and political considerations Bohm and
Russell (1985) examine dynamic incentives of policy instruments. Their focus
lies on effects on the development of new technologies, the impact on relative
factor prices and on consequences for locational decisions. With respect to
instruments such as taxes, tradeable rights, and direct regulation they discuss
the adaptation to changes of exogenous variables, the incentives to develop new
technologies and the effect on market structures.
Dynamic aspects of environmental policy instruments are discussed in stud-

ies about the interaction of environmental policy and economic growth. Fun-
damental studies were published by Bovenberg and de Mooij (1997), Boven-
berg and Smulders (1995, 1996), Forster (1973), Gradus and Smulders (1993),
Huang and Cai (1994), Lighthart and van der Ploeg (1994) as well as Smulders
and Gradus (1996). Hettich (2000) summarizes the above-mentioned literature
about the interaction between economic growth and environmental policy. Fur-
thermore he analyzes several aspects in the linear growth model and in three
different versions of the Uzawa-Lucas growth model. To study transitional dy-
namics he uses discrete versions of his models. In these models it is possible to
analyze the impact of parameter changes resulting, for example, from increased
environmental care caused by better information about the consequences of pol-
lution.
Pittel (2002) investigates different issues of the interrelation between sus-

tainable development and economic growth. Besides an in-depth survey of the
theoretical studies she develops models with a focus on recycling, endogenous
time preferences and the effects of economic integration on growth and pollution
- topics that are hardly mentioned in the theoretical literature, although they
are extensively discussed in applied economic studies.
Here we focus on aspects that are also not in the center of theorists’ debate.

First we generalize previous investigations by analyzing explicitly Cobb-Douglas,
CES and Leontief utility functions. Studies published up to now concentrate on
Cobb-Douglas utility functions or were made without any specification of the
elasticity of substitution. In any case, the impact of the specific form of the
utility function has been neglected so far. However, we consider its specification
to be very important. One reason is that we can speculate that the elasticity of
substitution is not constant in the long run. If degradation is severe, substitution
may be impossible. But of course, if environmental quality is high enough, we
may have the Cobb-Douglas case. The consequences of such a change should
be clarified.
Assuming different types of utility functions has repercussions on the effect

of environmental policy instruments. If substitution is easily possible, a rising
price of the use of the environment can be expected to have little impact on
environmental quality. This results from high elasticities of substitution; invest-
ment in environment-friendly activities may not be that necessary. Otherwise,
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easy substitution possibilities may also call for strong policy measures if welfare
gains are high.
In the political process time plays a significant role. Environmental degra-

dation and protection are slow-moving processes; political decision-making -
although it seems sometimes sluggish - is comparatively a day-to-day affair and
tends to be myopic. The influence of variables - exogenous as well as those
determined in the political process - on the speed of convergence of an economic
system to the optimal path is therefore an important matter.
One important issue is information. Usually perfect information is assumed.

Instead, in a second set of models we look at situations where policy makers
choose a too high or too low tax rate due to incomplete information about
preferences and technologies. This is far more realistic, since especially the es-
timation of preferences for environmental quality is a serious, unsolved problem
(Mäler, 1985). Furthermore, also information about technologies - and conse-
quently about abatement costs - is private, and it is widely known that there
are barely incentives to reveal this information.
Since taxes generate revenues, we can wonder about the impact of the com-

bination of taxes with subsidies on environment-friendly activities (abatement
or cleaning). And we can compare the results with lump-sum reimbursements
(negative lump-sum taxes). The welfare implications of environmental policy
are still an important point in the political discussion and influence the accep-
tance of green policy measures quite a bit.
The paper is organized as follows: In the next section we introduce the

basic model. Section (3) discusses the market solution of the model and the
influence of the elasticity of substitution on the equilibrium solution and the
speed of convergence. Section (4) introduces environmental policy. To construct
a reference point we calculate the solution of the social planner. Examples of
different combinations of instruments are examined. Section (5) summarizes
the results and gives a brief outlook on possible extensions and variations of the
model.

2 The Basic Model

In the following we introduce the basic model and its underlying assumptions.
Specifications of the functions are given in the following sections.

2.1 Environment

The quality of the natural environment N (t) depends only on the flow of pol-
lution. There is no accumulation of pollutants. We assume that all pollutants
which are not eliminated due to environmental protection vanish in the next
moment. This resembles a situation with infinite but somewhat lagged self-
regenerating capacity of the environment. Examples of pollutants of this type
are traffic noise, malodor from thinners or other chemical substances and - some-

3



times - food, and last but not least cigarettes and cigars.1 In summary one can
say pollution P (C) is a damaging side effect of consumption C. On the other
hand, the burden on the environment depends on effect E (S) of the share of
income devoted to clean the environment S. Without any economic activities
such as consumption or cleaning, the quality of the natural environment is N .
It follows:

N = N
¡
E (S) , P (C) , N

¢

with:
NE > 0 NP < 0

2.2 Households and Preferences

We assume n identical households, especially of equal size and small. The
representative household exhibits preferences over consumption goods and envi-
ronmental amenities. Population growth is zero. The rate of time preference is
ρ with ρ > 0. The elasticity of substitution, 0 ≤ σ ≤ 1, and the relative weight
of environmental amenities in utility, φ > 0, are constant. The utility function
of the individual household can be written as:

Wi =

Z ∞

0

U (ci, N, φ) · e−ρ·tdt (1)

with the household’s consumption being ci and the public good environmental
quality N .
Households supply perfectly inelastic one unit of labor and receive a wage

w. Each household holds assets a with a rate of return r. Part of its income
can be invested “into the nature” to improve the regenerative capacity of the
environment. This is something like trash collection with costs or engagement in
environmental activities. The endogenous rate of these investments is s(N). The
remaining income will be used for consumption c and saving ȧ. For the average
consumption and investment into the regenerative capacity of the environment
follows:

C =
nX

i=1

ci c =
C

n

S(N) =
nX

i=1

s(N)i s(N) =
S(N)
n

The flow budget constraint for the household is:

w + r · a = ȧ+ c+ s(N) (2)

The household’s optimization problem is to maximize (1), subject to the
budget constraint (2). As derived in Appendix 6.1 the control variables change

1We ignore that especially cigars cause stench for days if one cannot open the window.
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according to:

g(c) ≡
ċ

c
=

ξ4 − ξ2
ξ1 · ξ4 − ξ3 · ξ2

·
(ρ− r)

c
(3)

g(s) ≡
ṡ

s
=

ξ1 − ξ3
ξ1 · ξ4 − ξ2 · ξ3

·
(ρ− r)

s
(4)

with

ξ1 ≡
Ucc +

∙
UN ·

¡
NP · PCC + P 2C ·NPP

¢

+UNN · P
2
C ·N

2
P

¸
· n+ UcN · PC ·NP · (n+ 1)

UN ·NE ·ES

ξ2 ≡ [(UNN ·NE ·NP + UN ·NEP ) · PC + UcN ·NE] · n

UN ·NE

ξ3 ≡ (UNN ·NE ·NP + UN ·NEP ) · PC · n+ UcN ·NE

UN ·NE

ξ4 ≡
¡
UN ·ESS ·NE + UNN ·E

2
S ·N

2
E + UN ·E

2
S ·NEE

¢
· n

UN ·NE ·ES

For the change of the quality of nature we can write:

Ṅ = NE ·ES · Ṡ +NP · PC · Ċ (5)

= n · (NE ·ES · ṡ+NP · PC · ċ)

2.3 Production

The technology to produce goods in this economy is described by a linear-
homogeneous production function with labor L and capitalK in efficiency units.

Y = F (K,L) (6)

Since each of the n households supplies one unit of labor and owns the same
share of total capital K it follows:

Y = F (K,n) = n · F

µ
K

n
, 1

¶

k ≡ K

L
f (k) ≡ F (k, 1)

Output per capita can be expressed by:

y ≡ Y

n
= f (k)
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The marginal productivities are then given by:

∂Y

∂K
= n ·

∂f (k)

∂k
·
1

n

=
∂f (k)

∂k
∂Y

∂L
= f (k) + n ·

∂f (k)

∂k
·
∂k

∂n

= f (k)− K

n
·
∂f (k)

∂k

Output is equal to the sum of the marginal factor productivities multiplied by
the quantities:

Y =
∂Y

∂K
·K +

∂Y

∂L
· L

=
∂f (k)

∂K
n

·K +

∙
f (k)− K

n
·
∂f (k)

∂k

¸
· n

= f (k) · n

In equilibrium, supply and demand on capital and labor markets are equal. This
results in factor returns equal to marginal productivities:

r =
∂Y

∂K
=

∂f (k)

∂k

w =
∂Y

∂L
= f (k)− k ·

∂f (k)

∂k

Equilibrium on the capital market ensures that savings are equal to investments.
The total amount of capital equals the total amount of assets:

a · n = K

The interest rate therefore equals the marginal return to investment; the wage
rate equals output per capita reduced by capital costs:

r =
∂f (a)

∂a

w = f (a)− a ·
∂f (a)

∂a

The household’s budget constraint can be written as:

ȧ+ c+ s(N) = f (a)

3 Solution of the Model

3.1 Steady State

In this model - with no other engine of growth than capital accumulation - a
steady state is characterized by constant variables c∗, s∗ and a∗. It follows (with
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the co-state variable for capital denoted as θ(a)):

θ̇(a)
θ(a)

= ρ− r = 0

ρ = r (7)

Uc + UN ·NP · PC = UN ·NE ·ES = θ(a)

Uc
UN

= NE ·ES −NP · PC (8)

ȧ = 0

c+ s(N) = w + r · a = f (a) (9)

For a given parameterization, these equations allow to compute solutions for
the steady state values c∗, s∗ and a∗. To run numerical simulations, we have to
specify particular functional forms for the general equations used so far.

3.2 The Function of the Quality of Nature

The following functional form for the environmental quality is chosen:

N = N +E (S)− P (C) (10)

The relevant derivatives are:

NE = 1

NP = −1
NEE = NPP = NEP = 0

We can rewrite condition (8) in the following way:

Uc = UN · (ES + PC)

It follows:

ξ1 ≡ Ucc − UN · PCC · n− UcN · PC · (n+ 1) + UNN · P
2
C · n

UN ·ES

ξ2 ≡ (UcN − UNN · PC) · n

UN

ξ3 ≡ UcN − UNN · PC · n

UN

ξ4 ≡
¡
UN ·ESS + UNN ·E

2
S

¢
· n

UN ·ES

The path of the system is now determined by the equations:

g(c) ≡
ċ

c
=

ξ4 − ξ2
ξ1 · ξ4 − ξ3 · ξ2

·
ρ− r

c
(11)

g(s) ≡
ṡ

s
=

ξ1 − ξ3
ξ1 · ξ4 − ξ2 · ξ3

·
ρ− r

s
(12)

g(a) ≡
ȧ

a
=

f (a)− c− s(N)
a

(13)
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With respect to the impact of economic activities on environmental quality we
assume:

E (S) = τ (S) · S
γ

P (C) = τ (C) · C
β

0 < γ < 1 < β

0 ≤ τ (S), τ (C)

The relevant derivatives are:

ES = τ (S) · γ · S
γ−1 > 0

ESS = τ (S) · γ · (γ − 1) · Sγ−2 < 0
PC = τ (C) · β · C

β−1 > 0

PCC = τ (C) · β · (β − 1) · Cβ−2 > 0

This implies decreasing marginal effects of investments into environmental qual-
ity and increasing marginal environmental damage due to consumption.

3.3 Production Function

We use a Cobb-Douglas production function:

Y = F (K,L) = A ·Kδ · L1−δ (14)

with A being the level of technology. In this case, the per-capita output and
the interest rate are given by:

y = A · kδ

r = δ ·A · kδ−1

It follows, that the unique equilibrium is determined by exogenous parameter
values. The equilibrium capital stock is given by:

k∗ =

µ
δ ·A

ρ

¶ 1
1−δ

The labor supply is one unit per capita. Since there are n households in the
economy, this implies:

k = a

3.4 CES Utility Function

To analyze the influence of different elasticities of substitution we use a CES
utility function. This allows easily to cover the range 0 < σ ≤ 1. The Leontief
case (σ = 0) will be calculated separately. The CES utility function is given by:

U (c,N) =
³
α · c

σ−1
σ + (1− α) · (φ ·N)

σ−1
σ

´ σ
σ−1

(15)
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The marginal utilities for the general CES utility function are given by:

Uc = α · c−
1
σ ·
³
α · c

σ−1
σ + (1− α) · (φ ·N)

σ−1
σ

´ 1
σ−1

Ucc =
(α− 1) · α · c 1−σσ · (φ ·N)

1+σ
σ

σ ·
³
(α− 1) · φ · c 1σ ·N − α · c · (φ ·N)

1
σ

´2 · U

UN = (1− α) · φ · (φ ·N)−
1
σ ·
³
α · c

σ−1
σ + (1− α) · (φ ·N)

σ−1
σ

´ 1
σ−1

UNN =
(α− 1) · α · φ · c 1+σσ · (φ ·N)

1
σ

σ ·N ·
³
(α− 1) · φ · c 1σ ·N − α · c · (φ ·N)

1
σ

´2 · U

UcN =
(1− α) · α · φ · c

1
σ · (φ ·N)

1
σ

σ ·
³
(α− 1) · φ · c 1σ ·N − α · c · (φ ·N)

1
σ

´2 · U

Uc
UN

=
α

(1− α) · φ
·

µ
φ ·N

c

¶ 1
σ

Since we know from (8) that Uc = UN · (ES + PC) on the optimal path we have:

N

c
=

1

φ
·

∙
(1− α) · φ

α
· (ES + PC)

¸σ

N =
1

φ
·

∙
(1− α) · φ

α
·
¡
τ (S) · γ · S

γ−1 + τ (C) · β · C
β−1¢

¸σ
· c

3.5 Numerical Results with Different Elasticities of Sub-
stitution

The following parameter values are used: A = 5, n = 1000, α = 0.75, β = 1.1,
γ = 0.9, δ = 0.5, ρ = 0.05, φ = 0.5, N = 1000, τ (S) = 5 and τ (C) = 0.05.2

To analyze the dynamics of the model we want to show the stable branch of
the model for various starting values. It is possible to use various methods to
determine the correct initial value of the control variables.3 However, we use
the method of backward integration as described by Brunner and Strulik (2002).
The following figures illustrate the trajectories of the variables over 30 periods
of time. The solid line is calculated under the assumption that in t = 30 all
variables take their equilibrium values. The other lines are calculated under the
assumption that assets deviate after 30 periods by −0.01% (two dots, dash),
−0.005% (dot, dash), +0.005% (short dashes), and +0.01% (long dashes) from

2All numerical calculations and plots were made with Mathematica 4.0.
3For an overview see Barro and Sala-i-Martin (1995, 471-491).
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their equilibrium value. Furthermore, it is assumed that savings - and therefore
the growth of the capital stock - in t = 30 amount to the same percentage of
output.4

3.5.1 Low Elasticity of Substitution

The first simulation is calculated with σ = 0.1. Here, equilibrium values are
c∗ = 229.0372, s∗ = 20.9627, N∗ = 407.286 and U∗ = 219.442.

5 10 15 20 25 30

20.6

20.8

21.2

21.4

s

5 10 15 20 25 30

402

404

406

408

410

412

414

N

5 10 15 20 25 30

2490

2500

2510

2520

a

5 10 15 20 25 30

228

230

232

c

Figure 3.1: Market solution: assets (a), consumption (c), environmental
expenditures (s) and quality of nature (N) with σ = 0.1

4Note that this is the reason for the intersection of time paths in some figures. If the
savings for the given starting values of assets are relatively low (high), environmental quality
and utility can be higher (lower) than those on the equilibrium path. To keep all models
comparable, we had to accept this overshooting effect.
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5 10 15 20 25 30

216

218

220

222

224

U

5 10 15 20 25 30

-0.0015

-0.001

-0.0005

0.0005

0.001

0.0015

growth rate of a

5 10 15 20 25 30

-0.004

-0.002

0.002

0.004

growth rate of c

Figure 3.2: Market solution: growth rates of assets, consumption and
environmental expenditures, and utility level (U) with σ = 0.1

3.5.2 High Elasticity of Substitution

In the next set of figures, the elasticity of substitution is assumed to be higher
(σ = 0.9). Equilibrium values are here c∗ = 229.1710, s∗ = 20.8289, N∗ =
159.254 and U∗ = 173.873.

5 10 15 20 25 30

19.5

20.5

21

21.5
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22.5

s

5 10 15 20 25 30

152.5

157.5

160

162.5

165

167.5

N

5 10 15 20 25 30

2460

2480

2500

2520

2540

2560

a

5 10 15 20 25 30

220

225

230

235

240

245

c

Figure 3.3: Market solution: assets (a), consumption (c), environmental
expenditures (s) and quality of nature (N) with σ = 0.9
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-0.004

-0.002

0.002

0.004

0.006

growth rate of a

5 10 15 20 25 30

-0.015

-0.01

-0.005

0.005

0.01

0.015

growth rate of c

Figure 3.4: Market solution: growth rates of assets, consumption and
environmental expenditures, and utility level (U) with σ = 0.9

Although consumption is only slightly higher and investments in environ-
mental quality are a little bit lower than in the case of a low elasticity of sub-
stitution, environmental quality differs a lot. On the other hand, the speed of
convergence is much higher. If the elasticity of substitution is higher, the econ-
omy will close a given gap between an initial and equilibrium values determined
by exogenous variables much faster.

3.5.3 Cobb-Douglas Utility Function

To analyze the case of a elasticity of substitution equal to one (σ = 1), we have
to replace the general CES utility function by a Cobb-Douglas utility function:

U = cα · (φ ·N)
1−α

(16)

Equilibrium values are now c∗ = 229.1805, s∗ = 20.8194, N∗ = 141.617 and
U∗ = 170.866.
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Figure 3.5: Market solution: assets (a), consumption (c), environmental
expenditures (s) and quality of nature (N) with σ = 1
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Figure 3.6: Market solution: growth rates of assets, consumption and
environmental expentitures, and utility level (U) with σ = 1

Here, the effect of a higher elasticity of substititution is - compared with the
first scenario - even stronger. The equilibrium value of consumption is higher,
investments in environmental quality and - as a consequence - environmental
quality itself are lower. Again, the speed of convergence is higher than in the
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case with a high elasticity of substitution and obviously much higher than in
the case of a low elasticity of substitution. If we compare the time necessary
to close the gap between a deviation from the equilibrium value of assets per
capita of −5% to a deviation of −0.01%, the economy needs 39.29 time units
in the case of a low elasticity of substitution (σ = 0.1), 32.44 time units in
the case of a high elasticity of substitution (σ = 0.9), and 31.65 time units in
the Cobb-Douglas case. The growth rate of capital in t = 0 is with 0.00747 in
the Cobb-Douglas case more than four times as high as in the case with a low
elasticity of substitution (0.00184).

3.5.4 Leontief Utility Function

Finally, we consider the case in which the utility function of the individual
household is of Leontief type. Again, the representative household exhibits
preferences over consumption goods and environmental amenities. Population
growth is zero. The rate of time preference is ρ. The relative weight of environ-
mental amenities in utility, φ, is constant. The utility function can be written
as:

U = min
h
cλ, (φ ·N)λ

i
0 < λ ≤ 1 (17)

with the household’s consumption being ci and environmental quality N . Effi-
cient points are characterized by:

cλ = (φ ·N)
λ

c = φ ·N

which in fact reduces the utility function to:

U = (φ ·N)λ = cλ

and the marginal utilities to:

UN = λ · φ · (φ ·N)
λ−1

UNN = λ · (λ− 1) · φ2 · (φ ·N)λ−2

Uc = λ · cλ−1

Ucc = λ · (λ− 1) · cλ−2

The flow budget constraint for the household is:

w + r · a = ȧ+ c+ s(N) = ȧ+ φ ·N + s(N) (18a)

The system is fully described by:5

g(c) =
Uc · (ρ− r)

Ucc · c
(19)

g(a) =
f (a)− c− s(N)

a
(20)

5See Appendix 6.2.
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Again we use the simplest form to model - with the same specifications as before
- the impact of economic activities on the environmental quality:

N = N +E (S)− P (N)

Then we can calculate the level and the associated growth rate of investments
in environmental quality necessary to fulfill the optimality condition c = φ ·N :

s =
1

n
·

µ
c

φ · τ (S)
+

τ (C)
τ (S)

· (n · c)β − N

τ (S)

¶ 1
γ

g(s) =
1

γ · n
·

Ã
c

φ · τ (S)
+

τ (C) · (n · c)
β

τ (S)
− N

τ (S)

! 1
γ−1

·

Ã
1

φ · τ (S)
+

τ (C) · β · (n · c)

τ (S)

β−1!
· g(c) · c

The steady state is again given by:

ρ = r (21)

ȧ = 0 (22)

c+ s(N) = w + r · a = f (a) (23)

The specifications of all other functions remain unchanged. Equilibrium val-
ues are now c∗ = 229.0098, s∗ = 20.99017, N∗ = 458.02 and U∗ = 58.8695.

5 10 15 20 25 30
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21.01
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N
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2499

2500

2501

2502

a

5 10 15 20 25 30

228.8

228.9

229.1

229.2

c

Figure 3.7: Market solution: assets (a), consumption (c), environmental
expenditures (s) and quality of nature (N) with σ = 0
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0.0001
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Figure 3.8: Market solution: growth rates of assets, consumption and
environmental expenditures and utility level (U) with σ = 0

Although the equilibrium value of consumption is only about 1% lower and
the investment in environmental quality a bit more than 1% higher than in
the Cobb-Douglas case, the environmental quality is more than three times as
high (323%). The speed of convergence is very low. To close the gap between a
deviation from the equilibrium value of assets per capita of −5% to a a deviation
of −0.01%, the economy needs 77.57 time units (compared with 39.29 time units
in the case of a low elasticity of substitution (σ = 0.1), 32.44 time units in the
case of a high elasticity of substitution (σ = 0.9), and 31.65 time units in the
Cobb-Douglas case).

3.6 The Influence of the Elasticity of Substitution

We have seen that paths approaching from “above” are mirror images of paths
converging from lower values to the equilibrium values. Therefore, the influence
of the elasticity of substitution can be illustrated with the case of a deviation
of −0.01% at the point of time t = 30, compared to the equilibrium value. Tra-
jectories calculated with a deviation of +0.01% at the point of time t = 30 are
in principle simple upside down copies of the trajectories as can be seen in the
following. The solid line is calculated under the assumption of a Cobb-Douglas
utility function, the other lines with elasticities of substitution of 0.1 (two dots,
dash), 0.9 (dot, dash), and for the Leontief case σ = 0 (short dashes).
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Figure 3.9: Market solution: assets (a), consumption (c), environmental
expenditures (s) and quality of nature (N) with varying elasticity of

substitution

Table 3.1 shows the values in t = 0 of the variables assets per capita, con-
sumption, investment in environmental quality, and environmental quality for
different elasticities of substitution.
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Table 3.1: Variable values in t = 0
a c s N

σ = 0 2497.05 228.67 20.95 457.34
σ = 0.1 2472.05 223.70 20.35 397.90
σ = 0.9 2422.32 211.96 18.89 148.36
σ = 1 2410.16 208.92 18.54 130.33

Table 3.2 shows the equilibrium values of the variables assets per capita,
consumption, investment in environmental quality, and environmental quality
for different elasticities of substitution.

Table 3.2: Equilibrium values of variables6

σ a c s N U

0 2500.00 229.01 20.99 458.02 58.87
0.1 2500.00 229.04 20.96 407.29 219.44
0.9 2500.00 229.17 20.83 159.25 173.87
1 2500.00 229.18 20.82 141.62 170.87
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Figure 3.10: Market solution: growth rates of assets, consumption and
environmental expenditures with varying elasticity of substitution

Table 3.3 shows the values in t = 0 of the growth rates of the variables assets
per capita, consumption, and investment in environmental quality for different
elasticities of substitution. Note that the equilibrium values of these variables
equal zero.

6Note that a comparison of utility levels calculated with different utility functions is mean-
ingless. The column with equilibrium values of U serves as reference for comparisons with
different environmental policy instruments.
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Table 3.3: Values of growth variables in t = 0

σ g(a) g(c) g(s)

0 0.00009 0.0001 0.0031
0.1 0.00183 0.0039 0.0048
0.9 0.00629 0.0157 0.0197
1 0.00747 0.0191 0.0240

Table 3.4: Speed of convergence7

∆a
σ −5%→ −0.01% −1%→ −0.01% −0.1%→ −0.01%
0 77.570 57.052 27.908
0.1 39.294 29.314 15.203
0.9 32.440 24.270 12.746
1 31.655 23.691 12.460

The lower the elasticity of substitution is, the longer it takes to reach the
equilibrium value. A high speed of convergence (a small time interval necessary
to close a gap between an initial and a "target" level of the variable assets per
capita) corresponds obviously to high growth rates. The equilibrium value of
environmental quality is higher if the elasticity of substitution is low. Note
that a comparison of utilitiy levels evaluated with different utility functions is
meaningless as long as we have no cardinal utility measures.

4 Implementing Environmental Policy

4.1 Social Optimum

In order to construct a reference point we derive the social optimum. We assume
that the social planner maximizes the sum over the households’ welfare. Since
all households are equal, distributional aspects can be ignored. Therefore, the
optimization problem can be reduced to maximizing the utility of the represen-
tative household. If we use the same specifications for all functions, the system
can be described by:8

gP(a) ≡
ȧ

a
=

f (a)− c− s(N)
a

(24)

gP(c) ≡
ċ

c
=

ξ2 − ξ3
ξ22 − ξ1 · ξ3

·
ρ− fa

c
(25)

gP(s) ≡
ṡ

s
=

ξ2 − ξ1
ξ22 − ξ1 · ξ3

·
ρ− fa

s
(26)

7The speed of convergence is measured by the time necessary to close the gap ∆a between
a certain amount of assets and the target level in t = 30. We calculated the time the economy
needs to increase the amount of assets from 5%, 1% and 0.1% below the equilibrium and the
"target" level of 0.01% below the equilibrium.

8See Appendix 6.3.
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with:

ξ1 ≡ Ucc
UN ·ES · n

− PCC · n

ES
+

UNN · P
2
C · n− 2 · UcN · PC
UN ·ES

ξ2 ≡ UcN − UNN · PC · n

UN

ξ3 ≡ UNN ·ES · n

UN
+

ESS · n

ES

The steady state of a planned economy is now characterized by:

ρ = fa (27)

Uc
UN

= n · (ES + PC) (28)

f (a) = c+ s(N) (29)

With the given parameters, we can now find the planner’s path from a certain
initial point to the equilibrium and compare this path with the trajectories in
the market equilibrium - at least theoretically. It turns out that boundary value
problems of this type can not be solved in every case. Even with very simple
functional forms this is usually a complicated problem which has to be solved
by trial and error.9

Therefore, we focus on another aspect. We introduce different environmental
policies and analyze their effects in a decentralized economy. We address the
following questions: How can the environmental quality be influenced by policy
instruments? Is it possible to influence the speed of convergence? Can a society
characterized by rather high elasticities of substitution attain a comparatively
high level of environmental quality?

4.2 The Tax Regime

Various tax regimes are possible: constant tax rates, tax rates dependent on the
actual environmental quality or time-dependent tax rates.10 Constant tax rates
are similar to the existing energy taxes or taxes on fossil fuels.11 The Pigou tax
which internalizes the external effects is an ideal type of such a tax. Tax rates
dependent on the environmental quality influence the behavior of households or
firms over time. It is possible to start with high tax rates to induce an initial
jump in the control variables. Starting with low rates would maybe imply a
smooth behavior of the system. Time-dependent tax rates may allow to adapt
to changing variables more easily. Welfare losses due to jumps - which are a
serious problem in real-world scenarios - can be diminished by such a regime.
On the other hand, changing tax rates are a source of uncertainty and may
cause welfare losses resulting from the increase in transaction costs.

9Mathematica usually produces error messages.
10Here, we understand constant tax rates as rates that do not change automatically with

time or environmental quality. But of course, the rates are subject to changes due to legislative
activities of governments.
11For European countries, an overview can be found in European Commission (2004).
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4.3 The Decentralized Economy with a Green Tax

Here, we will model one simple policy: a tax on consumption d with or without
returning the tax revenue as a lump-sum payment or as subsidies for environ-
mental quality. Without paying reimbursements to the households the money
has to be burnt.12 Complete repayments make a balanced budget possible. For
the cases of no repayments at all (30), lump-sum payments (31) and subsidies
(32) the budget constraints of the households are then given by:

w + r · a = ȧ+ (1 + d) · c+ s(N) (30)

w + r · a+D = ȧ+ (1 + d) · c+ s(N) (31)

w + r · a = ȧ+ (1 + d) · c+ (1− p) · s(N) (32)

Another point is the information problem: Is it known that at a certain point
of time a tax will be introduced? Or does this step come unanticipated? In
the first case the household will choose an optimal path which takes this step
into account. In the second case the household follows an optimal path which
depends on parameters and initial conditions. When the tax is introduced, the
households calculate a new path in consideration of the new parameters. In the
present study, we assume an existing tax regime with complete or incomplete
knowledge about the optimal tax rate.
In general the policy makers can use the tax to influence the system with

respect to two aspects: First they may try to improve environmental quality
permanently by shifting expenditures from consumption to abatement. Second,
they may try to influence the adjustment speed.

4.3.1 No or Lump-sum Repayment of Tax Revenues

In the following, we assume that there is either a lump-sum or no repayment
of tax revenues, i.e. we apply the budget constraints (30) and (31). Since
households are assumed to be “small”, they can not influence the tax regime
and see no connection between their consumption pattern and the additional
income from the lump-sum transfers. The system can be described by the
following three equations:13

g(a) ≡
ȧ

a
=

r · a+ w +D − (1 + d) · c− s(N)
a

(33)

g(c) ≡
ċ

c
=
(ξ5 − ξ2) · (ρ− r)− ξ3 · ξ5 · ḋ

(ξ1 · ξ5 − ξ2 · ξ4) · c
(34)

g(s) ≡
ṡ

s
=
(ξ1 − ξ4) · (ρ− r) + ξ3 · ξ4 · ḋ

(ξ1 · ξ5 − ξ2 · ξ4) · s
(35)

12Maybe not in a physical sense, but from the households’ point of view. The use of the
tax revenue does not necessarily produce income and substitution effects for the households.
13See Appendix 6.4.
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with:

ξ1 ≡ Ucc +
¡
UNN · P

2
C − UN · PCC

¢
· n− UcN · PC · (n+ 1)

(1 + d) · UN ·ES

ξ2 ≡ (UcN − UNN · PC) · n

(1 + d) · UN

ξ3 ≡ − 1

1 + d

ξ4 ≡ UcN − UNN · PC · n

UN

ξ5 ≡
¡
UN ·ESS + UNN ·E

2
S

¢
· n

UN ·ES

4.3.2 Numerical Simulations: No Repayments

If we assume a constant tax rate without repayments it follows that ḋ = 0 and
D = 0. Consequently:14

g(a) =
r · a+ w − (1 + d) · c− s(N)

a

g(c) =
(ξ5 − ξ2) · (ρ− r)

(ξ1 · ξ5 − ξ2 · ξ4) · c

g(s) =
(ξ1 − ξ4) · (ρ− r)

(ξ1 · ξ5 − ξ2 · ξ4) · s

This assumption implies that the use of the tax revenue does not influence a
household’s utility at all. As mentioned before, it is used to "build pyramids"
or other things which are unimportant for the individual’s utility level. A sec-
ond implication is that the household’s utility level will fall compared to the
situation without the tax or with reimbursement of tax revenues. With full
lump-sum repayments of the tax revenue it is in principle possible to stay on
the same utility level and simply adjust to the changed price relation between
consumption and quality of nature. This adjustment can lead to the social opti-
mal values for consumption and expenditures for environmental quality. Hence,
without repayments the social optimal point cannot be reached. Note that basic
functions remain unchanged. As an example, we assume a tax rate of d = 0.1
and a CES utility function with a high elasticity of substitution of σ = 0.9.

14Note that ξ3 vanished from the equations of motion completely.
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Figure 4.1: Green consumption tax without repayment of the tax revenue:
assets (a), consumption (c), environmental expenditures (s) and quality of

nature (N) with σ = 0.9
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Figure 4.2: Green consumption tax without repayment of the tax revenue:
growth rates of assets, consumption and environmental expentitures, and

utility level (U) with σ = 0.9

Similar figures can be generated with higher tax rates. In the following we
want to compare selected parameter values for different tax rates and elastici-
ties of substitution. We concentrate on the path that starts in t = 30 with a
deviation of 0.01% below the equilibrium value of assets.15

15See Appendix 6.6.
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Higher taxes decrease the equilibrium levels of utility. This result is intu-
itive since the households’ income is reduced. The decrease in environmental
quality due to taxation in the case of CES utility functions is not that blatant.
With the Cobb-Douglas function this effect does not appear, but this is caused
by decreasing pollution due to a lower consumption level, the high speed of
convergence and the overshooting effect. The reason is that the income effect
dominates the substitution effect. Note that the effect vanishes off equilibrium.
Easy substitution possibilities between goods result in a relative decrease of
the environmental quality: Consumption is nearly unaffected by the elasticity
of substitution, but environmental quality is much higher for lower elasticities
of substitution. Consumption decreases with the tax rate, and overshooting
cannot be observed. The equilibrium asset level is given by the rate of time
preference and technological parameters and therefore independent of the elas-
ticity of substitution. But the speed of convergence increases with the elasticity
of substitution and with the tax rate. With higher taxes expenditures for en-
vironmental quality are lower. This results in decreasing environmental quality
in the CES case. For higher tax rates and higher elasticities of substitution
the growth rates are higher. The growth rate of consumption is lower than the
growth rate of expenditures for environmental quality. The households try to
approach the equilibrium level of consumption before the optimal environmental
quality is reached.
Additionally let us have a look at the consequences for the government’s

budget. First, the tax revenues for a given point of time are calculated; second,
we compute the accumulated tax revenues for all 30 time periods, for the last
20, the last 10, the last 5 and the last, beginning in t = 29 and ending in t = 30.
In all cases tax revenues per period rise over time and are nearly independent
of the elasticity of substitution. It is obvious that they depend on the tax rate.
The overall tax revenue is higher for low elasticities of substitution.

4.3.3 Numerical Simulations: Lump-sum Repayments

Now we assume a constant tax rate and lump-sum repayments of the tax rev-
enue. It follows:16

g(a) =
r · a+ w +D − (1 + d) · c− s(N)

a

g(c) =
(ξ5 − ξ2) · (ρ− r)

(ξ1 · ξ5 − ξ2 · ξ4) · c

g(s) =
(ξ1 − ξ4) · (ρ− r)

(ξ1 · ξ5 − ξ2 · ξ4) · s

The case in which the lump-sum transfers exceed the tax revenue is excluded.
Therefore, we can restrict the share of revenues that is paid back to:

bd = D

d · c
, 0 < bd ≤ 1

16Note that ξ
3
= vanished from the expressions for the growth rates completely.
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If the tax is a constant and we assume a balanced government budget, the
tax revenue equals the lump-sum payments. It follows:

D = d · c

Consequently, in this special case the budget constraint of the household is given
by:

ȧ = r · a+ w − c− s(N)

and the growth rate of assets is:

g(a) =
r · a+ w − c− s(N)

a

All other functions remain unchanged.
Here, an optimal (Pigou) tax leads to the socially optimal equilibrium with

c∗ = 228.819, s∗ = 21.181, N∗ = 811.808 and U∗ = 236.201:
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Figure 4.3: Green consumption tax with lump-sum repayment of the tax
revenue: assets, consumption, environmental expenditures and quality of

nature with σ = 0.1 and an optimal tax rate (d = 1112.796)
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Figure 4.4: Green consumption tax with lump-sum repayment of the tax
revenue: growth rates of assets, consumption and environmental expenditures,
and utility level (U) with σ = 0.1 and an optimal tax rate (d = 1112.796)

Consumption is slightly lower, investment in environmental quality slightly
higher than in the market solution. Environmental quality is nearly twice as
high. The attained utility level is higher than in the market (236.201 compared
to 219.442, see Table 3.2). Note that the tax rate is unrealistically high because
of the lump-sum transfer back to the households. The regulatory effect of the
tax is very low since the decrease of income due to the tax is nearly compensated
by the lump-sum transfer. As a result, very high rates of convergence for low
elasticities of substitution are a striking feature of all models with lump-sum
transfers.

Table 4.1: Convergence of models if revenues from an optimal tax
are reimbursed as lump-sum payments

∆a
σ −1%→ −0.01% −0.1%→ −0.01%
0.1 1.730 0.957
0.9 14.014 7.562
1 17.363 9.284

With high elasticities of substitution, the speed of convergence is roughly
comparable to the market solution. With low elasticities of substitution, the
equilibrium will be reached almost immediately. The picture does not change
qualitatively if we vary the tax rates. In a second example with a low elasticity of
substitution we assume a tax rate below the optimal value (d = 100). The equi-
librium value are c∗ = 228.912, s∗ = 21.088, N∗ = 638.919 and U∗ = 235.915.
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Figure 4.5: Green consumption tax with lump-sum repayment of the tax
revenue: assets, consumption, environmental expenditures and quality of

nature with σ = 0.1 and a too low tax rate (d = 100)
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Figure 4.6: Green consumption tax with lump-sum repayment of the tax
revenue: growth rates of assets, consumption and environmental expenditures,

and utility level (U) with σ = 0.1 and too low tax rate (d = 100)

The next picture captures the case of an optimal tax with a higher elasticity
of substitution. The equilibrium values are: c∗ = 193.884, s∗ = 56.116, N∗ =
62250.2 and U∗ = 541.271.17 Here, the difference to the market solution is more

17See Table 3.2 for a comparison.
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obvious. All variables differ remarkably from the values of the market solution,
the utility level is more than three times as high, the environmental quality is
nearly 400 times higher.
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Figure 4.7: Green consumption tax with lump-sum repayment of the tax
revenue: assets, consumption, environmental expenditures and quality of

nature with σ = 0.9 and optimal tax rate (d = 1122.134)
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Figure 4.8: Green consumption tax with lump-sum repayment of the tax
revenue: growth rates of assets, consumption and environmental expenditures,

and utility level (U) with σ = 0.9 and optimal tax rate (d = 1122.134)

In a last example with complete reimbursement of tax revenues, we want to
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look at the effects of a too high tax rate of d = 2000 in the model with a high
elasticity of substitution (σ = 0.9). The equilibrium values are now given by
c∗ = 175.759, s∗ = 74.241, N∗ = 92531.988 and U∗ = 529.956.
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Figure 4.9: Green consumption tax with lump-sum repayment of the tax
revenue: assets, consumption, environmental expenditures and quality of

nature with σ = 0.9 and a too high tax rate (d = 2000)
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Figure 4.10: Green consumption tax with lump-sum repayment of the tax
revenue: growth rates of assets, consumption and environmental expenditures,

and utility level (U) with σ = 0.9 and too high tax rate (d = 2000)
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In nearly all cases there are - compared with the situation without repay-
ments - slightly changed consumption levels, but dramatically improved envi-
ronmental qualities.
To complete the picture, we now take a look at the results with a partly

repayment of tax revenues. As an example, a model with a Cobb-Douglas utility
function, a tax rate of d = 0.3 and a repayment of 50% of the tax revenues is
chosen. The tax rate is far below the optimal tax rate. But in real life, tax rates
exceeding 1 can rarely be observed.18 To take this fact into account, we calculate
in the following models with lower, more realistic tax rates. The equilibrium
values are: c∗ = 201.930, s∗ = 17.780, N∗ = 160.552, and U∗ = 160.342.
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Figure 4.11: Green consumption tax with lump-sum repayment of 50% of the
tax revenue: assets, consumption, environmental expenditures and quality of

nature with σ = 1 and a tax rate of d = 0.3

18An example for rather high tax rates is the tax on gasoline. Today, the consumption tax
on gasoline is C= 654.50 per 1.000 litres plus value-added tax. An overview can be found at
Bundesministerium der Finanzen (ed.) (2005).

30



5 10 15 20 25 30

-0.03

-0.02

-0.01

0.01

0.02

0.03

growth rate of s

5 10 15 20 25 30

160

170

180

U

5 10 15 20 25 30

-0.01

-0.005

0.005

0.01

growth rate of a

5 10 15 20 25 30

-0.02

-0.01

0.01

0.02

growth rate of c

Figure 4.12: Green consumption tax with lump-sum repayment of 50% of the
tax revenue: growth rates of assets, consumption and environmental
expenditures, and utility level (U) with σ = 1 and a tax rate of d = 0.3

Table 4.2 compares the variables with equilibrium values without or with
complete reimbursement of tax revenues, Table 4.3 the speed of convergence in
these models.19

Table 4.2: Equilibium values of variables if tax revenues are not,
partly or fully reimbursed as lump-sum payments

reimbursement c s N U

0% 180.44 15.429 145.23 143.72
50% 201.93 17.780 160.55 160.34
100% 229.16 20.840 179.74 181.35

Table 4.3: Convergence of models if tax revenues are not, partly
or fully reimbursed as lump-sum payments

∆a
reimbursement −5%→ −0.01% −1%→ −0.01% −0.1%→ −0.01%

0% 30.334 22.712 11.974
50% 30.355 22.728 11.983
100% 30.383 22.750 11.993

While there is nearly no difference in the speed of convergence, all other
variables differ. The decreasing income leads to lower consumption, lower

19Note that there is a difference between equilibrium values in Table 4.2 and values for
t = 30 in Appendix 6.6.
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quality of environment as well as a sunken utility level. Similar results were
obtained for different elasticities of substitution (σ = {0.1, 0.9, 1}), tax rates
(d = {0.1, 0.2, 0.3}), and rates of reimbursement ( Dd·c = {0, 0.1, 0.5, 1}). The
effect of increasing tax rates is always the same: consumption, investments in
environmental quality and environmental quality itself as well as utility decrease.
A higher rate of reimbursement works in the opposite direction. A higher elastic-
ity of substitution increases consumption and decreases investments in environ-
mental quality slightly with the effect of a remarkable decrease of environmental
quality and a moderate decrease of utility. Table 4.4 illustrates the latter effect.

Table 4.4: Equilibrium values of variables if tax revenues are partly
(50%) reimbursed as lump-sum payments for a tax rate d = 0.3

σ c s N U

0.1 201.83 17.892 368.07 195.64
0.9 201.92 17.789 176.05 162.88
1 201.93 17.780 160.55 160.34

4.3.4 Repayment of Tax Revenues as Subsidy

Similarly, we can analyze the third possible budget constraint given in (32),
meaning that tax revenues are repaid in the form of subsidies for investments
in environmental quality. This yields:20

g(a) ≡
ȧ

a
=

r · a+ w − (1 + d) · c− (1− p) · s(N)
a

g(c) ≡
ċ

c
=
(ξ5 − ξ2) · (ρ− r)− ξ3 · ξ5 · ḋ+ ξ2 · ξ6 · ṗ

(ξ1 · ξ5 − ξ2 · ξ4) · c

g(s) ≡
ṡ

s
=
(ξ1 − ξ4) · (ρ− r) + ξ3 · ξ4 · ḋ− ξ1 · ξ6 · ṗ

(ξ1 · ξ5 − ξ2 · ξ4) · s

with

ξ1 ≡ Ucc +
¡
UNN · P

2
C − UN · PCC

¢
· n− UcN · PC · (n+ 1)

1+d
1−p · UN ·ES

ξ2 ≡ (UcN − UNN · PC) · n
1+d
1−p · UN

ξ3 ≡ − 1

1 + d

ξ4 ≡ UcN − UNN · PC · n

UN

ξ5 ≡
¡
UN ·ESS + UNN ·E

2
S

¢
· n

UN ·ES

ξ6 ≡ 1

1− p

20See Appendix 6.5.
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A balanced government’s budget requires that tax revenue equals subsidy pay-
ments:

c · d = s · p

4.3.5 Numerical Simulations: A Subsidy on Investments in Environ-
mental Quality

In the following we consider the government’s option to use part or all of the tax
revenue to finance a subsidy on investments in environmental quality. Again,
several combinations of changing and/or constant subsidy rates - depending
on time, environmental parameters or other variables - are possible. A special
case is a changing subsidy rate that ensures a balanced budget. We restrict
our analysis to the cases of constant tax and subsidy rates and to constant tax
rates and a subsidy which keeps the government budget in equilibrium balanced.
Constant tax and subsidy rates yield:21

g(a) =
r · a+ w − (1 + d) · c− (1− p) · s(N)

a

g(c) =
(ξ5 − ξ2) · (ρ− r)

(ξ1 · ξ5 − ξ2 · ξ4) · c

g(s) =
(ξ1 − ξ4) · (ρ− r)

(ξ1 · ξ5 − ξ2 · ξ4) · s

The following table shows the equilibrium values of the variables for varying
elasticities of substitution.

Table 4.5: Equilibrium values of variables if tax revenues are re-
imbursed as subsidies on environmental expeditures

σ c s N U

0.1 228.82 21.81 811.8 236.20
0.9 193.88 56.12 62250.2 541.27
1 173.97 76.03 95476.0 708.07

As a first example, the path with a Cobb-Douglas utility function and an
optimal constant tax rate (d = 0.43645) and subsidy (p = 0.99872) is shown:

21Note that ξ
3
and ξ

3
vanish.
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Figure 4.13: Green consumption tax with repayment of the tax as constant
subsidy: assets, consumption, environmental expenditures and quality of

environment with σ = 1 and an optimal tax and subsidy rate
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Figure 4.14: Green consumption tax with repayment of the tax as constant
subsidy: growth rate of assets, consumption and environmental expenditures

and utility with σ = 1 and an optimal tax and subsidy rate

Again the adjustment speed is much higher with low elasticities of substitu-
tion. Table 4.6 illustrates the decreasing speed of convergence if the elasticity of
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subsititution increases. The calculated numbers are similar to the model with
lump-sum repayments of tax revenues (see Table 4.1).

Table 4.6: Convergence of models if tax revenues are used to fi-
nance a constant subsidy on investments for environmental quality

∆a
σ −5%→ −0.01% −1%→ −0.01% −0.1%→ −0.01%
0.1 2.437 1.748 0.967
0.9 18.847 14.172 7.652
1 23.350 17.532 9.380

The question now is if the government’s budget is balanced or not. It is
self-evident that long running deficits cause serious problems. The following
figure shows that in the long run, the budget is balanced, and even in the short
run the size of deficit or surplus does not exceed reasonable limits.
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Figure 4.15: Green consumption tax with repayment of the tax as constant
subsidy: the government’s budget with σ = 1 and an optimal tax and subsidy

rate

Integrated over 30 time periods, the tax revenues exceed (fall short of) ex-
penditures in the case of a deviation from equilibrium of −0.01% (+0.01%) by
10.094 (35.115). Similar results can be obtained for CES utility functions with
elasticities of substitution of 0.1 and 0.9, although in earlier periods deficit and
surplus are higher for lower elasticities of substitution. These findings corre-
spond with higher speeds of convergence (see Table 4.6).
Again, we look at consequences of errors in the determination of tax and

subsidy rates. Various causes of fault are conceivable. Similar to previous
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models we can assume that the tax revenue is low due to low tax rates or that
the subsidy exceeds tax revenues. It is also possible that part of the tax revenues
will not be reimbursed or tax rates exceed the optimal level. The first cases end
with a permanent deficit, the latter with a growing surplus. Combinations of
these errors are possible. Since in our model the only aim of the government is
to steer the economy to the optimal point it is questionable that such errors are
persistent. But, if the government is interested in a surplus for various reasons,
such errors could become permanent conditions.
Here we will concentrate on two other types of errors. First we look at too

high (low) tax rates. The tax revenue will be used to finance a subsidy. In equi-
librium, the government’s budget will be balanced by choosing an appropriate
subsidy rate. Second we assume too high (low) tax rates, but now we choose the
subsidy rate appropriate to reach equilibrium values of our variables. A long
running surplus or deficit of the government is accepted. This model refers to
a situation where the government has made commitments with respect to tax
rates and the quality of environment - e.g. by signing multilateral environmental
agreements - and is therefore forced to finance the budget deficit otherwise.
In the following, we use a Cobb-Douglas utility function. Table 4.7 shows

equilibrium values of our variables. A tax rate 10% below (above) the equilib-
rium level changes consumption +3.1% (−2.9%), investments in environmental
quality −7.2 (+6.7) and environmental quality −9.4 (+8.8). Utility is nearly
unaffected. Also the speed of convergence does not change very much. It is
slightly higher for higher tax rates (see Table 4.7).

Table 4.7: Equilibrium values of variables if tax rates are too high
or too low

σ c s N U

90% 179.42 70.578 86473 706.92
99% 174.50 75.497 94603 708.06
100% 173.97 76.027 95476 708.07
101% 173.44 76.554 96343 708.06
110% 168.84 81.156 103893 707.14

Table 4.8: Convergence of models if tax rates are too high or too
low

∆a
t −5%→ −0.01% −1%→ −0.01% −0.1%→ −0.01%
90% 23.417 17.582 9.406
99% 23.356 17.537 9.382
100% 23.350 17.532 9.380
101% 23.344 17.528 9.378
110% 23.294 17.491 9.358

With a high elasticity of substitution, CES utility functions result in a
slightly higher speed of convergence. The error in determining the tax rate
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has - as in the models with Cobb-Douglas utility functions - nearly no impact.
This changes if the elasticity of substitution is rather low. An error in the de-
termination of tax rates accelerates (slows down) the system considerably (see
Table 4.9). On the other hand, equilibrium values are nearly unaffected.

Table 4.9: Convergence of models if tax rates are too high or too
low

∆a
σ t −5%→ −0.01% −1%→ −0.01% −0.1%→ −0.01%

99% 5.637 4.209 2.331
0.1 100% 2.437 1.748 0.967

101% 0.44222 0.410 0.213

99% 18.867 14.186 7.659
0.9 100% 18.847 14.172 7.652

101% 18.828 14.158 7.644

In all cases, the budget is balanced in the long run and does not exceed a
reasonable deficit or surplus in the short run.
Using again a Cobb-Douglas utility function we will now look at a situation

with an error in the determination of the tax rate and a subsidy rate which
ensures equilibrium values of consumption and investments in quality of nature.
Compared with an optimal tax and subsidy, there is nearly no change in the
speed of convergence. But the government’s budget is not balanced anymore.
The following table shows the budget in t = 30 and the integral of the budget
over time from 0 to 30 for the equilibrium time path.

Table 4.10: Government’s budget if tax rates are too high or too
low

∆d budget in t = 30 budget over time from 0 to 30

−50% −37.980 −1139.39
−10% −7.596 −227.88
+10% +7.596 +227.88
+50% +37.980 +1139.39

Here, the budget deficit or surplus adds up to 3% (15.2%) of output per
period, if the error is as high as 10% (50%) of the tax rate.

5 Summary and Outlook

We have presented some results from a study of different environmental instru-
ments. Besides the choice of instruments - we have used various combinations of
taxes and subsidies -, the exogenous parameter elasticity of substitution has a
great influence on the dynamic behavior and the equilibrium levels of variables.

22Calculated by interpolation.
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Furthermore we have investigated the impact of the precision of determination
of tax and subsidy rates.
In our model pollution is a side effect of consumption. Without environ-

mental policy, the equilibrium levels of the variables consumption, investments
in environmental quality, environmental quality and utility depend on the elas-
ticity of substitution. For higher elasticities of substitution we observe higher
equilibrium levels of consumption and lower equilibrium levels of investments in
environmental quality, environmental quality and utility. Since the equilibrium
amount of assets depends only on the rate of time preference and technological
parameters, it does not change if the elasticity of substitution changes. With
a Cobb-Douglas utility function the speed of convergence is high, in case of a
Leontief utility function it is low.
We have introduced a simple environmental instrument: a tax on house-

hold’s consumption. Without repayments of tax revenues in the form of lump-
sum transfers (a negative lump-sum tax), the socially optimal values cannot
be reached. This follows immidiately from the budget cuts. Environmental
quality is lower if the elasticity of substitution is high. The tax rate has little
influence on environmental quality, especially if the elasticity of substitution is
high. This is the result of the income effect of the tax. This income effect low-
ers the expenditures for environmental quality and dominates the substitution
effect caused by a change of relative prices. The level of consumption is nearly
independent of the rate of substitution, but decreases with the tax rate. The
growth rates of assets are lower than the growth rates of consumption and en-
vironmental expenditures, indicating that households first increase assets and
then consumption. Environmental expenditures fall behind and therefore have
to grow with the highest rates.
If we introduce a lump-sum repayment of the tax revenue the economy can

reach the socially optimal level for all variables, but only if the tax rate is
ridiculously high. The repayment of tax revenues cancels the regulatory impact
of the tax out. Whereas in the market solution the speed of convergence was
higher for high elasticities of substitution we have here a very high speed of
convergence for low elasticities of substitution. If we restrict the repayment to
part of the tax revenues we get qualitatively the same results for reasonable
tax rates. As a matter of course, here again equilibrium values of the variables
cannot be reached, i.e. the values for quality of the environment and utility level
are lower. The share of reimbursed tax revenues has virtually no effect on the
speed of convergence. In all models, the budget of the government is balanced
or closes with a surplus.
With a repayment of tax revenues as a subsidy on environmental expendi-

tures, the required tax rate is reasonable. We observe a high adjustment speed
and a high optimal level of natural quality. The system converges faster if
the elasticity of substitution is low. Optimal consumption decreases, optimal
investment in environmental quality and environmental quality increase with
elasticity of substitution. The government’s budget tends to be balanced.
If taxes and subsidies are not appropriate to approach the optimal values of

variables, the budget of the government can still be balanced if a deviating tax
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rate is combined with an adequate deviation of the subsidy rate. For moderate
deviations (10%), the equilibrium utility level remains nearly unchanged, al-
though we can observe considerable changes of environmental quality (˜9%) due
to changes of the consumption level and investments in environmental quality. If
the elasticity of substitution is low, a rising tax rate results in an acceleration of
the system, measured by the speed of convergence. If the government is forced
to achieve a certain level of environmental quality, an error in the determination
of tax rates may imply a permanent surplus or deficit. The speed of convergence
is unaffected.
Future research should focus on a modified model with pollution as a side

effect of production. In this case, a tax on capital can be used to achieve the
optimal capital stock. The tax revenues can again be used to finance a lump-sum
transfer to the households or to pay a subsidy on investments in environmental
quality. Furthermore, we will analyze the impact of shocks and of lags in the
politician’s response. Shocks may result from changing exogenous variables,
e.g. productivity, preferences or a destruction of capital due to social or natural
unpredictable incidences.
It would be very interesting to conduct empirical studies, especially to learn

more about the elasticity of substitution between environmental amenities and
consumption. But this goes beyond the scope of the present study.

6 Appendix

6.1 Solution of the Household’s Optimization Problem in
the Basic Model

The Hamiltonian for the household i is:

J = U
¡
ci, N

¡
E (S) , P (C) , N

¢
, φ
¢
+ θ(a) ·

¡
r · a+ w − ci − s(N)i

¢
(36)

The first-order conditions are:

1. ∂J
∂ci

= 0
Uc + UN ·NP · PC = θ(a) (37)

2. ∂J
∂s(N)i

= 0

UN ·NE ·ES = θ(a) (38)

3. ∂J
∂a = ρ · θ(a) − θ̇(a)

ρ · θ(a) − θ̇(a) = θ(a) · r (39)

The transversality condition23 is given by:

lim
t→∞

£
θ(a) · a

¤
= 0

23See Barro and Sala-i-Martin (1995, 503-508). This condition holds for all model specifi-
cations.
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which is equivalent to:
lim
t→∞

£
e−ρ·t · a

¤
= 0

Conditions (37) and (38) yield:

Uc = UN · (NE ·ES −NP · PC)

Derivation of conditions (37) and (38) with respect to time yield:

θ̇(a)
θ(a)

= ξ1 · ċ+ ξ2 · ṡ

= ξ3 · ċ+ ξ4 · ṡ

where:

ξ1 ≡
Ucc +

∙
UN ·

¡
NP · PCC + P 2C ·NPP

¢

+UNN · P
2
C ·N

2
P

¸
· n+ UcN · PC ·NP · (n+ 1)

UN ·NE ·ES

ξ2 ≡ ((UNN ·NE ·NP + UN ·NEP ) · PC + UcN ·NE) · n

UN ·NE

ξ3 ≡ (UNN ·NE ·NP + UN ·NEP ) · PC · n+ UcN ·NE

UN ·NE

ξ4 ≡
¡
UN ·ESS ·NE + UNN ·E

2
S ·N

2
E + UN ·E

2
S ·NEE

¢
· n

UN ·NE ·ES

The control variables change therefore according to:

ċ =
ξ4 − ξ2

ξ1 · ξ4 − ξ3 · ξ2
· (ρ− r) (40)

ṡ =
ξ1 − ξ3

ξ1 · ξ4 − ξ2 · ξ3
· (ρ− r) (41)

6.2 Solution of the Household’s Optimization Problemwith
a Leontief Utility Function

The Hamiltonian is given by:

JH = U (c) + θ(a) ·
¡
w + r · a− ci − s(N)

¢
(42)

The first order conditions are:

1. ∂J
∂ci

= 0
Uc − θ(a) = 0 (43)

2. ∂J
∂a = ρ · θ(a) − θ̇(a)

ρ · θ(a) − θ̇(a) = θ(a) · r (44)

40



The derivative of the condition (43) with respect to time is:

θ̇(a) = Ucc · ċ

Using condition (44) yields:

θ̇(a)
θ(a)

=
Ucc
Uc

· ċ

= ρ− r

It follows:

ċ =
Uc · (ρ− r)

Ucc

6.3 Solution of the Planners’s Optimization Problem

The Hamiltonian can be written as:

JP = U
¡
c,N

¡
E (S) , P (C) , N

¢
, φ
¢
+ θ(a) ·

¡
f (a)− c− s(N)

¢
(45)

The first order conditions are:

1. ∂J
∂c = 0

Uc + UN ·NP · PC · n = θ(a) (46)

2. ∂J
∂s(N)

= 0

UN ·NE ·ES · n = θ(a) (47)

3. ∂J
∂a = ρ · θ(a) − θ̇(a)

ρ · θ(a) − θ̇(a) = θ(a) · fa (48)

From equations (46) and (47) it follows:

Uc = UN · n · (NE ·ES −NP · PC)

Derivation of conditions (46) and (47) with respect to time yields:

θ̇(a)
θ(a)

= ξ1 · ċ+ ξ2 · ṡ

= ξ2 · ċ+ ξ3 · ṡ

where:

ξ1 ≡
Ucc +

∙
UN ·

¡
NP · PCC + P 2C ·NPP

¢

+UNN ·N
2
P · P

2
C

¸
· n2 + 2 · UcN · PC ·NP · n

UN ·NE ·ES · n

ξ2 ≡ UcN + UNN ·NP · PC · n

UN
+

NEP · PC · n

NE

ξ3 ≡ UNN ·NE ·ES · n

UN
+

NEE ·ES · n

NE
+

ESS · n

ES
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It follows

ρ− fa = ξ1 · ċ+ ξ2 · ṡ

= ξ2 · ċ+ ξ3 · ṡ

Here, the growth rates are given by:

ȧ = f (a)− c− s(N) (49)

ċ =
ξ2 − ξ3

ξ22 − ξ1 · ξ3
· (ρ− fa) (50)

ṡ =
ξ2 − ξ1

ξ22 − ξ1 · ξ3
· (ρ− fa) (51)

6.4 Solution of the Household’s Optimization Problemwith-
out or with Lump-sum Repayment of Tax Revenues

The budget constraint is given by:

w + r · a+D = ȧ+ (1 + d) · c+ s(N)

with the tax rate being d and the repayment of the tax revenue D ≥ 0. The
Hamiltonian for the household i is:

JH = U
¡
ci, N

¡
E (S) , P (C) , N

¢
, φ
¢

(52)

+θ(a) ·
¡
r · ai + wi +Di − (1 + d) · ci − s(N)i

¢

The first-order conditions are:

1. ∂J
∂ci

= 0
Uc + UN ·NP · PC = θ(a) · (1 + d) (53)

2. ∂J
∂s(N)i

= 0

UN ·NE ·ES = θ(a) (54)

3. ∂J
∂a = ρ · θ(a) − θ̇(a)

ρ · θ(a) − θ̇(a) = θ(a) · r (55)

Again, we arrive at:

Uc = UN · [(1 + d) ·NE ·ES −NP · PC ]

From the derivation of the first and second condition with respect to time we
obtain:

θ̇(a)
θ(a)

= ξ1 · ċ+ ξ2 · ṡ+ ξ3 · ḋ

= ξ4 · ċ+ ξ5 · ṡ
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where:

ξ1 ≡
Ucc +

∙
UN ·

¡
NP · PCC + P 2C ·NPP

¢

+UNN · P
2
C ·N

2
P

¸
· n+ UcN · PC ·NP · (n+ 1)

(1 + d) · UN ·NE ·ES

ξ2 ≡ ((UNN ·NE ·NP + UN ·NEP ) · PC + UcN ·NE) · n

(1 + d) · UN ·NE

ξ3 ≡ − 1

1 + d

ξ4 ≡ (UNN ·NE ·NP + UN ·NEP ) · PC · n+ UcN ·NE

UN ·NE

ξ5 ≡
¡
UN ·ESS ·NE + UNN ·E

2
S ·N

2
E + UN ·E

2
S ·NEE

¢
· n

UN ·NE ·ES

If we use the specification of the function of quality of nature given in (10), we
can simplify to equations in the following way:

ξ1 ≡ Ucc +
¡
UNN · P

2
C − UN · PCC

¢
· n− UcN · PC · (n+ 1)

(1 + d) · UN ·ES

ξ2 ≡ (UcN − UNN · PC) · n

(1 + d) · UN

ξ3 ≡ − 1

1 + d

ξ4 ≡ UcN − UNN · PC · n

UN

ξ5 ≡
¡
UN ·ESS + UNN ·E

2
S

¢
· n

UN ·ES

It follows for the control variables:

ċ =
(ξ5 − ξ2) · (ρ− r)− ξ3 · ξ5 · ḋ

ξ1 · ξ5 − ξ2 · ξ4

ṡ =
(ξ1 − ξ4) · (ρ− r) + ξ3 · ξ4 · ḋ

ξ1 · ξ5 − ξ2 · ξ4

6.5 Solution of the Household’s Optimization Problemwith
Repayment of Tax Revenues as a Subsidy

The Hamiltonian for the household i is:

JH = U
¡
ci, N

¡
E (S) , P (C) , N

¢
, φ
¢

(56)

+θ(a) ·
¡
r · ai + wi − (1 + d) · ci − (1− p) · s(N)i

¢

The first-order conditions are:
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1. ∂J
∂ci

= 0
Uc + UN ·NP · PC = θ(a) · (1 + d) (57)

2. ∂J
∂s(N)i

= 0

UN ·NE ·ES = θ(a) · (1− p) (58)

3. ∂J
∂a = ρ · θ(a) − θ̇(a)

ρ · θ(a) − θ̇(a) = θ(a) · r (59)

Again, this yields:

Uc = UN ·

µ
1 + d

1− p
·NE ·ES −NP · PC

¶

The derivation of conditions (57) and (58) with respect to time yields:

θ̇(a) =

Ucc +

∙
UN ·

¡
NP · PCC +NPP · P

2
C

¢

+UNN · P
2
C ·N

2
P

¸
· n+ UcN ·NP · PC · (n+ 1)

1 + d
· ċ

+
((UN ·NEP + UNN ·NE ·NP ) · PC + UcN ·NE) ·ES · n

1 + d
· ṡ

− θ(a)
1 + d

· ḋ

=
((UN ·NEP + UNN ·NE ·NP ) · PC · n+ UcN ·NE) ·ES

1− p
· ċ

+

¡
UN ·NE ·ESS +

¡
UNN ·N

2
E + UN ·NEE

¢
·E2S

¢
· n

1− p
· ṡ

+
θ(a)
1− p

· ṗ

or

θ̇(a)
θ(a)

= ξ1 · ċ+ ξ2 · ṡ+ ξ3 · ḋ

= ξ4 · ċ+ ξ5 · ṡ+ ξ6 · ṗ
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with:

ξ1 ≡
Ucc +

∙
UN ·

¡
NP · PCC +NPP · P

2
C

¢

+UNN · P
2
C ·N

2
P

¸
· n+ UcN ·NP · PC · (n+ 1)

1+d
1−p · UN ·NE ·ES

ξ2 ≡ ((UN ·NEP + UNN ·NE ·NP ) · PC + UcN ·NE) · n
1+d
1−p · UN ·NE

ξ3 ≡ − 1

1 + d

ξ4 ≡ (UN ·NEP + UNN ·NE ·NP ) · PC · n+ UcN ·NE

UN ·NE

ξ5 ≡
¡
UN ·NE ·ESS + UNN ·N

2
E ·E

2
S + UN ·NEE ·E

2
S

¢
· n

UN ·NE ·ES

ξ6 ≡ 1

1− p

We can use the specification of the function of the quality of the environment
to simplify the equations:

ξ1 ≡ Ucc +
¡
UNN · P

2
C − UN · PCC

¢
· n− UcN · PC · (n+ 1)

1+d
1−p · UN ·ES

ξ2 ≡ (UcN − UNN · PC) · n
1+d
1−p · UN

ξ3 ≡ − 1

1 + d

ξ4 ≡ UcN − UNN · PC · n

UN

ξ5 ≡
¡
UN ·ESS + UNN ·E

2
S

¢
· n

UN ·ES

ξ6 ≡ 1

1− p

The equations of motion of the control variables are then given by:

ċ =
(ξ5 − ξ2) · (ρ− r)− ξ3 · ξ5 · ḋ+ ξ2 · ξ6 · ṗ

ξ1 · ξ5 − ξ4 · ξ2

ṡ =
(ξ1 − ξ4) · (ρ− r) + ξ3 · ξ4 · ḋ− ξ1 · ξ6 · ṗ

ξ1 · ξ5 − ξ4 · ξ2
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6.6 Results of Simulations with a Consumption Tax with-
out Repayment of Tax Revenues

Table 6.1: Utility level over time if the tax revenue is not repaid.

t =
σ d 0 10 20 25 29 30

0.1 0.1 196.92 201.26 202.09 202.20 202.24 202.25
0.1 0.2 181.96 186.58 187.42 187.53 187.57 187.58
0.1 0.3 168.95 173.88 174.74 174.85 174.89 174.90

0.9 0.1 149.85 161.47 163.04 163.20 163.25 163.26
0.9 0.2 140.04 152.23 153.84 153.99 154.04 154.05
0.9 0.3 131.43 144.12 145.75 145.90 145.95 145.96

1 0.1 145.04 158.55 160.29 160.45 160.51 160.52
1 0.2 135.46 149.56 151.33 151.49 151.55 151.56
1 0.3 127.10 141.68 143.48 143.64 143.69 143.69

Table 6.2: Quality of nature over time if the tax revenue is not
repaid.

t =
σ d 0 10 20 25 29 30

0.1 0.1 367.36 375.41 376.94 377.14 377.22 377.23
0.1 0.2 341.07 349.68 351.25 351.45 351.52 351.54
0.1 0.3 318.15 327.36 328.98 329.18 329.26 329.27

0.9 0.1 146.96 157.52 158.94 159.08 159.13 159.14
0.9 0.2 145.61 157.34 158.87 159.02 159.06 159.07
0.9 0.3 144.32 157.18 158.83 158.98 159.03 159.04

1 0.1 130.16 141.25 142.68 142.81 142.85 142.86
1 0.2 129.96 142.32 143.87 144.01 144.06 144.06
1 0.3 129.77 143.34 145.01 145.15 145.20 145.21

Table 6.3: Assets level over time if the tax revenue is not repaid.

t =
σ d 0 10 20 25 29 30

0.1 0.1 2468.74 2494.12 2498.89 2499.51 2499.72 2499.75
0.1 0.2 2465.10 2493.68 2498.86 2499.50 2499.72 2499.75
0.1 0.3 2461.13 2493.22 2498.82 2499.50 2499.72 2499.75

0.9 0.1 2413.99 2488.59 2498.51 2499.45 2499.72 2499.75
0.9 0.2 2405.90 2487.88 2498.47 2499.44 2499.72 2499.75
0.9 0.3 2398.08 2487.22 2498.43 2499.44 2499.72 2499.75

1 0.1 2400.73 2487.44 2498.44 2499.44 2499.72 2499.75
1 0.2 2391.78 2486.70 2498.40 2499.43 2499.72 2499.75
1 0.3 2383.36 2486.01 2498.36 2499.43 2499.72 2499.75
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Table 6.4: Consumption over time if the tax revenue is not repaid

t =
σ d 0 10 20 25 29 30

0.1 0.1 204.58 209.11 209.96 210.08 210.12 210.13
0.1 0.2 188.27 193.07 193.94 194.06 194.10 194.11
0.1 0.3 174.18 179.28 180.18 180.29 180.33 180.34

0.9 0.1 192.54 207.88 209.96 210.16 210.23 210.24
0.9 0.2 176.08 191.85 193.92 194.12 194.18 194.19
0.9 0.3 161.99 178.08 180.14 180.33 180.40 180.41

1 0.1 189.46 207.60 209.95 210.16 210.24 210.25
1 0.2 173.04 191.57 193.91 194.12 194.19 194.20
1 0.3 159.02 177.81 180.13 180.34 180.40 180.41

Table 6.5: Expenditures for environmental quality over time if the
tax revenue is not repaid

t =
σ d 0 10 20 25 29 30

0.1 0.1 18.20 18.70 18.80 18.81 18.82 18.82
0.1 0.2 16.39 16.92 17.02 17.03 17.03 17.03
0.1 0.3 14.86 15.41 15.51 15.52 15.52 15.52

0.9 0.1 16.74 18.44 18.67 18.69 18.70 18.70
0.9 0.2 14.96 16.67 16.90 16.92 16.93 16.93
0.9 0.3 13.47 15.18 15.40 15.43 15.43 15.43

1 0.1 16.40 18.40 18.66 18.68 18.69 18.69
1 0.2 14.63 16.63 16.89 16.91 16.92 16.92
1 0.3 13.15 15.15 15.40 15.42 15.42 15.43

Table 6.6: Growth rate of assets over time if the tax revenue is
not repaid

t =
σ d 0 10 20 25 29 30

0.1 0.1 0.0021 3.948 · 10−4 7.345 · 10−5 3.067 · 10−5 1.327 · 10−5 1.000 · 10−5

0.1 0.2 0.0024 4.340 · 10−4 7.762 · 10−5 3.177 · 10−5 1.343 · 10−5 1.000 · 10−5

0.1 0.3 0.0027 4.760 · 10−4 8.192 · 10−5 3.288 · 10−5 1.359 · 10−5 1.000 · 10−5

0.9 0.1 0.0070 9.328 · 10−4 1.209 · 10−4 4.214 · 10−5 1.487 · 10−5 1.000 · 10−5

0.9 0.2 0.0079 0.0010 1.263 · 10−4 4.332 · 10−5 1.502 · 10−5 1.000 · 10−5

0.9 0.3 0.0087 0.0011 1.313 · 10−4 4.440 · 10−5 1.516 · 10−5 1.000 · 10−5

1 0.1 0.0084 0.0010 1.296 · 10−4 4.403 · 10−5 1.512 · 10−5 1.000 · 10−5

1 0.2 0.0093 0.0011 1.352 · 10−4 4.522 · 10−5 1.527 · 10−5 1.000 · 10−5

1 0.3 0.0102 0.0012 1.402 · 10−4 4.627 · 10−5 1.541 · 10−5 1.000 · 10−5
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Table 6.7: Growth rate of consumption over time if the tax revenue
is not repaid

t =
σ d 0 10 20 25 29 30

0.1 0.1 0.0045 8.440 · 10−4 1.585 · 10−4 7.036 · 10−5 3.995 · 10−5 3.580 · 10−5

0.1 0.2 0.0053 9.462 · 10−4 1.708 · 10−4 7.433 · 10−5 4.174 · 10−5 3.737 · 10−5

0.1 0.3 0.0061 0.0010 1.836 · 10−4 7.838 · 10−5 4.352 · 10−5 3.894 · 10−5

0.9 0.1 0.0180 0.0023 3.036 · 10−4 1.123 · 10−4 5.719 · 10−5 5.088 · 10−5

0.9 0.2 0.0204 0.0026 3.216 · 10−4 1.171 · 10−4 5.898 · 10−5 5.244 · 10−5

0.9 0.3 0.0227 0.0028 3.384 · 10−4 1.214 · 10−4 6.060 · 10−5 5.384 · 10−5

1 0.1 0.0219 0.0027 3.319 · 10−4 1.196 · 10−4 5.991 · 10−5 5.324 · 10−5

1 0.2 0.0246 0.0029 3.508 · 10−4 1.244 · 10−4 6.168 · 10−5 5.478 · 10−5

1 0.3 0.0272 0.0032 3.680 · 10−4 1.287 · 10−4 6.325 · 10−5 5.614 · 10−5

Table 6.8: Growth rate of expenditures for environmental quality
over time if the tax revenue is not repaid

t =
σ d 0 10 20 25 29 30

0.1 0.1 0.0057 0.0010 1.990 · 10−4 8.834 · 10−5 5.017 · 10−5 4.495 · 10−5

0.1 0.2 0.0066 0.0012 2.150 · 10−4 9.358 · 10−5 5.254 · 10−5 4.704 · 10−5

0.1 0.3 0.0078 0.0013 2.317 · 10−4 9.893 · 10−5 5.493 · 10−5 4.914 · 10−5

0.9 0.1 0.0227 0.0029 3.814 · 10−4 1.411 · 10−4 7.184 · 10−5 6.392 · 10−5

0.9 0.2 0.0258 0.0032 4.051 · 10−4 1.474 · 10−4 7.428 · 10−5 6.604 · 10−5

0.9 0.3 0.0288 0.0035 4.273 · 10−4 1.533 · 10−4 7.651 · 10−5 6.798 · 10−5

1 0.1 0.0276 0.0034 4.170 · 10−4 1.503 · 10−4 7.526 · 10−5 6.669 · 10−5

1 0.2 0.0311 0.0037 4.418 · 10−4 1.567 · 10−4 7.769 · 10−5 6.899 · 10−5

1 0.3 0.0346 0.0040 4.646 · 10−4 1.625 · 10−4 7.987 · 10−5 7.088 · 10−5

Table 6.9: Speed of convergence of assets per head

∆a
σ d 5% 1% 0.1%

0.1 0.1 38.40 28.66 14.89
0.1 0.2 37.56 28.04 14.59
0.1 0.3 36.78 27.46 14.31

0.9 0.1 31.89 23.86 12.54
0.9 0.2 31.41 23.51 12.37
0.9 0.3 31.00 23.21 12.22

1 0.1 31.14 23.31 12.27
1 0.2 30.70 22.98 12.11
1 0.3 30.33 22.71 11.97
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Table 6.10: Tax revenue over time if the tax revenue is not repaid

t =
σ d 0 10 20 25 29 30

0.1 0.1 20.458 20.911 20.996 21.008 21.012 21.013
0.1 0.2 37.653 38.614 38.789 38.811 38.820 38.822
0.1 0.3 52.254 53.784 54.053 54.086 54.098 54.101

0.9 0.1 19.254 20.788 20.996 21.016 21.023 21.024
0.9 0.2 35.217 38.370 38.785 38.824 38.837 38.839
0.9 0.3 48.598 53.423 54.043 54.100 54.119 54.122

1 0.1 18.946 20.760 20.995 21.016 21.024 21.025
1 0.2 34.607 38.314 38.782 38.824 38.838 38.840
1 0.3 47.706 53.343 54.040 54.101 54.120 54.124

Table 6.11: Accumulated tax revenue over time if the tax revenue
is not repaid

∆t =
σ d 30 20 10 5 1

0.1 0.1 627.16 419.72 201.07 105.05 21.01
0.1 0.2 1157.97 775.34 388.09 194.08 38.82
0.1 0.3 1612.67 1080.38 540.83 270.47 54.10

0.9 0.1 621.96 419.39 210.14 105.10 21.02
0.9 0.2 1147.47 774.64 388.20 194.16 38.84
0.9 0.3 1596.96 1079.29 540.95 270.56 54.12

1 0.1 620.66 419.29 210.14 105.10 21.02
1 0.2 1144.91 774.45 388.20 194.17 38.84
1 0.3 1593.23 1079.02 540.95 270.57 54.12
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