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A relation between inflation and the path of average
marginal cost (often measured by unit labor cost) implied by
the Calvo (1983) model of staggered pricing—sometimes re-
ferred to as the “New Keynesian” Phillips curve—has been the
subject of extensive econometric estimation and testing. Stan-
dard theoretical justifications of this form of aggregate-supply
relation, however, either assume (1) the existence of a com-
petitive rental market for capital services, so that the shadow
cost of capital services is equated across firms and sectors at all
points in time, despite the fact that prices are set at different
times, or (2) that the capital stock of each firm is constant,
or at any rate exogenously given, and so independent of the
firm’s pricing decision. But neither assumption is realistic. The
present paper examines the extent to which existing empirical
specifications and interpretations of parameter estimates are
compromised by reliance on either of these assumptions.

The paper derives an aggregate-supply relation for a model
with monopolistic competition and Calvo pricing in which cap-
ital is firm specific and endogenous, and investment is subject
to convex adjustment costs. The aggregate-supply relation is
shown to again take the standard New Keynesian form, but
with an elasticity of inflation with respect to real marginal cost
that is a different function of underlying parameters than in
the simpler cases studied earlier. Thus the relations estimated
in the empirical literature remain correctly specified under the
assumptions proposed here, but the interpretation of the esti-
mated elasticity is different; in particular, the implications of
the estimated Phillips-curve slope for the frequency of price
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National Science Foundation through a grant to the National Bureau of Economic
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adjustment is changed. Assuming a rental market for capi-
tal results in a substantial exaggeration of the infrequency of
price adjustment; assuming exogenous capital instead results
in a smaller underestimate.

JEL Codes: E30.

A popular specification in recent analyses of alternative monetary
policies is the “New Keynesian” Phillips curve,

πt = ξŝt + βEtπt+1, (1)

where πt is the rate of inflation, ŝt is the departure of the (average)
log of real marginal cost from its steady-state value, the coefficient
ξ > 0 depends on the degree of stickiness of prices, and 0 < β < 1 is a
utility discount factor that, under an empirically realistic calibration,
must nearly equal 1. As is well known, this relation follows (in a
log-linear approximation) from the Calvo model of staggered price
setting under certain assumptions.1 The implications of (1) for the
co-movement of the general level of prices and marginal cost have
been subject to extensive econometric testing, beginning with the
work of Gaĺı and Gertler (1999) and Sbordone (2002).

In standard derivations, (1) follows from the optimal pricing
problem of a firm that adjusts the price of its product at random
intervals, under the assumption that the marginal cost St(i) of sup-
plying a given good i in period t is given by a function of the form

St(i) = S(yt(i); Xt), (2)

where yt(i) is the quantity sold of good i in that period, and Xt is
a vector of variables that firm i takes to be unaffected by its pricing
decision. Under the further assumption of a demand curve of the
form yt(i) = Y (pt(i); Xt), this implies that marginal cost can be
expressed as a function of the price pt(i) that i chooses to charge
in that period, together with variables that are unaffected by its
actions.

The specification (2) is in turn correct as long as all factors of
production are either purchased on a spot market (at a price that

1See, e.g., Woodford (2003, chap. 3, sec. 2.2).
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is independent of the quantity used by i), or completely fixed. In
particular, one can treat the case in which capital is not a variable
factor of production (and output is simply a concave function of
the variable labor input, as in Woodford 2003, chap. 3), or the case
in which capital is variable, but capital services are obtained on a
rental market (as in Gaĺı and Gertler [1999] and the baseline case
considered in Sbordone [2002]).2 Matters are more complex, however,
under the more realistic assumption that capital is endogenous and
firm specific. That is, we shall assume that each firm accumulates
capital for its own use only, and that (as in standard neoclassical
investment theory) there are convex costs of more rapid adjustment
of an individual firm’s capital stock. In this case, St(i) will depend
not only on the quantity that firm i produces in period t, but also
on the firm’s capital stock in that period, and this latter variable
depends on the firm’s decisions in previous periods, including its
previous pricing decisions. The dynamic linkages in a firm’s optimal
price-setting decision are therefore more complex in this case than
is assumed in standard derivations of the New Keynesian Phillips
curve.

Here I treat the optimal price-setting problem in a model with
firm-specific capital, and show that once again a relation of the form
(1) can be derived.3 Hence the econometric estimates reported by
authors such as Gaĺı and Gertler (1999) and Sbordone (2002) can
be interpreted without making assumptions as restrictive as those
papers had appeared to rely upon. However, the coefficient ξ is a
more complex function of underlying model parameters, such as the
frequency with which prices are reoptimized, in the case that capital
is firm specific.

This is potentially of considerable importance for the interpre-
tation of econometric estimates of the coefficient ξ. Estimates of ξ
are often interpreted in terms of the frequency of price of adjustment
that they imply, given estimated or calibrated values for other model
parameters. (Indeed, in many papers in the literature, beginning with

2Both assumptions lead to a relation of the form (1). However, the interpre-
tation of the coefficient ξ in terms of underlying model parameters is different in
the two cases, as discussed in Sbordone (2002).

3The derivation here corrects the analysis given in Woodford (2003, chap. 5,
sec. 3), to take account of an error in the original calculations noted by Sveen
and Weinke (2004a).
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Gaĺı and Gertler [1999], equation [1] is estimated in a form that re-
sults directly in an estimate of the frequency of price adjustment
rather than of the elasticity ξ.) Furthermore, it is often argued that
estimated values of ξ are so small as to imply that prices are sticky
for an implausibly long length of time; this is taken to cast doubt on
the realism of the Calvo pricing model and hence of the aggregate-
supply specification (1). But the mapping between the frequency of
price adjustment and the value of ξ is different in the case of firm-
specific capital than under the more common assumption of a rental
market for capital services.4 The assumption of a rental market for
capital substantially weakens the degree of strategic complementar-
ity among the pricing decisions of different firms—or alternatively,
it reduces the importance of real rigidities in the sense of Ball and
Romer (1990)—with the consequence that ξ is larger for any given
frequency of price adjustment. It then follows that a small estimated
value of ξ will be taken to imply very infrequent price adjustment.
But allowing for firm-specific capital can make the implied frequency
of price adjustment much greater, as shown in section 3.4 below.

The fact that an assumption that capital is firm specific will lead
to a lower estimate of the degree of price stickiness was first demon-
strated by Sbordone (1998) and also illustrated by Gaĺı, Gertler,
and Lopez-Salido (2001). However, in these papers, the treatment
of capital as firm specific is accompanied (at least implicitly) by an
assumption that the capital stock of each firm is exogenously given,
as in the analysis in Woodford (2003, chap. 3), rather than respond-
ing endogenously to the firm’s incentives to invest. This is because
it is only in this case that a specification of the form (2) remains
consistent with the assumption of firm-specific capital. The analy-
sis here instead presents an analysis of aggregate supply in the case
that capital is both firm specific and endogenous.5 This case is a

4It is also different under the assumption of a fixed quantity of capital for each
firm, as noted above. However, that simple model is disconfirmed by the observa-
tion that capital varies over time, and that investment spending is substantially
affected by monetary disturbances.

5Subsequent to the first circulation of these notes, Eichenbaum and Fisher
(2004), Altig et al. (2005), and Matheron (2005) have built on the analysis here
to examine the consequences of endogenous firm-specific capital for the estimated
frequency of price adjustment in empirical versions of the New Keynesian Phillips
curve. These authors extend the present analysis to more complicated versions
of (1) that allow a closer fit to aggregate U.S. time series.
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good deal more complicated to analyze, but it turns out still to be
possible to derive an aggregate-supply relation that (in a log-linear
approximation) takes the simple form (1).

The paper proceeds as follows. In section 1, I introduce a model
of firm-specific investment demand with convex costs of adjustment
of an individual firm’s capital stock, with particular attention to
the way in which standard neoclassical investment theory must be
modified when the firm is not a price-taker in its product market, but
instead fixes its price for a period of time and fills whatever orders it
may receive. In section 2, I then consider the price-setting problem
of such a firm, under the assumption that the price remains fixed for
a random interval of time, and characterize the joint dynamics of the
firm’s price and its capital stock. Finally, in section 3, I derive the
model’s implications for the form of the aggregate-supply relation
that connects the overall inflation rate with the overall level of real
activity, and discuss the consequences for the inference about the
frequency of price adjustment that can be drawn from an estimate
of the elasticity ξ in (1).

1. Investment Demand when Prices Are Sticky

I wish to analyze the relation between inflation and aggregate out-
put in a model with staggered pricing (modeled after the fashion
of Calvo [1983] and Yun [1996]) and endogenous capital accumu-
lation. The main source of complication in this analysis is the as-
sumption that the producers of individual differentiated goods (that
adjust their prices at different dates) invest in firm-specific capital
that is relatively durable, so that the distribution of capital stocks
across different firms (as a result of differing histories of price ad-
justment) matters, and not simply the economy’s aggregate capital
stock. Nonetheless, I shall show that (in the same kind of log-linear
approximation that is used in standard derivations of the New Key-
nesian Phillips curve) it is possible to derive structural relations that
constitute the “aggregate supply block” of a macro model, which in-
volve only the economy’s aggregate capital stock, aggregate output,
and overall index of prices.

A first task is to develop a model of optimizing investment de-
mand by suppliers with sticky prices, and that are demand con-
strained as a result. As in the sticky-price models with exogenous
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capital presented in Woodford (2003, chap. 3), there is a continuum
of differentiated goods, each supplied by a single (monopolistically
competitive) firm. The production function for good i is assumed to
be of the form

yt(i) = kt(i)f(Atht(i)/kt(i)), (3)

where f is an increasing, concave function, with f(0) = 0. I assume
that each monopoly supplier makes an independent investment deci-
sion each period; there is a separate capital stock kt(i) for each good,
which can be used only in the production of good i.

I also assume convex adjustment costs for investment by each
firm, of the usual kind assumed in neoclassical investment theory.
Increasing the capital stock to the level kt+1(i) in period t+1 requires
investment spending in the amount It(i) = I(kt+1(i)/kt(i))kt(i) in
period t. Here It(i) represents purchases by firm i of the composite
good, defined as the usual Dixit-Stiglitz aggregate over purchases of
each of the continuum of goods (with the same constant elasticity of
substitution θ > 1 as for consumption purchases).6 In this way, the
allocation of investment expenditure across the various goods is in
exactly the same proportion as consumption expenditure, resulting
in a demand curve for each producer that is again of the form

yt(i) = Yt

(

pt(i)

Pt

)

−θ

, (4)

but where now aggregate demand is given by Yt = Ct + It + Gt,
in which expression Ct is the representative household’s demand
for the composite good for consumption purposes, Gt is the gov-
ernment’s demand for the composite good (treated as an exogenous
random variable), and It denotes the integral of It(i) over the various
firms i.

I assume as usual that the function I(·) is increasing and convex;
the convexity implies the existence of costs of adjustment. I further
assume that near a zero growth rate of the capital stock, this func-
tion satisfies I(1) = δ, I ′(1) = 1, and I ′′(1) = ǫψ, where 0 < δ < 1
and ǫψ > 0 are parameters. This implies that in the steady state to
which the economy converges in the absence of shocks (which here

6See Woodford (2003, chap. 3) for discussion of this aggregator and its con-
sequences for the optimal allocation of demand across alternative differentiated
goods.
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involves a constant capital stock, as I abstract from trend growth),
the steady rate of investment spending required to maintain the cap-
ital stock is equal to δ times the steady-state capital stock (so that
δ can be interpreted as the rate of depreciation). It also implies that
near the steady state, a marginal unit of investment spending in-
creases the capital stock by an equal amount (as there are locally
no adjustment costs). Finally, in my log-linear approximation to the
equilibrium dynamics, ǫψ is the parameter that indexes the degree
of adjustment costs. A central goal of the analysis is consideration
of the consequences of alternative values for ǫψ; the model with ex-
ogenous firm-specific capital presented in Woodford (2003, chaps. 3,
4) is recovered as the limiting case of the present model in which ǫψ

is made unboundedly large.
Profit-maximization by firm i then implies that the capital stock

for period t + 1 will be chosen in period t to satisfy the first-order
condition

I ′(gt(i)) = EtQt,t+1Πt+1

{

ρt+1(i)

+ gt+1(i)I
′(gt+1(i)) − I(gt+1(i))

}

, (5)

where gt(i) ≡ kt+1(i)/kt(i), ρt+1(i) is the (real) shadow value of a
marginal unit of additional capital for use by firm i in period t + 1
production, and Qt,t+1Πt+1 is the stochastic discount factor for eval-
uating real income streams received in period t + 1. Expressing the
real stochastic discount factor as βλt+1/λt, where λt is the repre-
sentative household’s marginal utility of real income in period t and
0 < β < 1 is the utility discount factor, and then log-linearizing (5)
around the steady-state values of all state variables, we obtain

λ̂t + ǫψ(k̂t+1(i) − k̂t(i)) = Etλ̂t+1 + [1 − β(1 − δ)]Etρ̂t+1(i)

+ βǫψEt(k̂t+2(i) − k̂t+1(i)), (6)

where λ̂t ≡ log(λt/λ̄), k̂t(i) ≡ log(kt(i)/K̄), ρ̂t(i) ≡ log(ρt(i)/ρ̄), and
variables with bars denote steady-state values.

Note that ρt+1(i) would correspond to the real “rental price” for
capital services if a market existed for such services, though I do not
assume one here.7 It is not possible in the present model to equate

7The case in which there is a rental market for capital services is instead
considered in section 3.2 below.
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this quantity with the marginal product, or even the marginal rev-
enue product of capital (using the demand curve [4] to compute
marginal revenue), for suppliers are demand constrained in their
sales, given the prices that they have posted; it is not possible to
increase sales by moving down the demand curve. Thus the shadow
value of additional capital must instead be computed as the reduc-
tion in labor costs through substitution of capital inputs for labor,
while still supplying the quantity of output that happens to be de-
manded. In this way I obtain

ρt(i) = wt(i)

(

f(h̃t(i)) − h̃t(i)f
′(h̃t(i))

Atf ′(h̃t(i))

)

,

where wt(i) is the real wage for labor of the kind hired by firm i and
h̃t(i) ≡ Atht(i)/kt(i) is firm i’s effective labor-capital input ratio.8

I can alternatively express this in terms of the output-capital ratio
for firm i (in order to derive an “accelerator” model of investment
demand), by substituting (3) to obtain

ρt(i) =
wt(i)

At
f−1(yt(i)/kt(i))[φ(yt(i)/kt(i)) − 1], (7)

where φ(y/k) is the reciprocal of the elasticity of the function f ,
evaluated at the argument f−1(y/k).

As in the baseline model treated in Woodford (2003, chap. 3),
I shall assume a sector-specific labor market. In this case, the first-
order condition for optimizing labor supply can be written in the
form

wt(i) =
vh(f−1(yt(i)/kt(i))kt(i)/At; ξt)

λt
, (8)

where labor demand has been expressed as a function of the demand
for good i. This can be log-linearized as

ŵt(i) = ν(ĥt(i) − h̄t) − λ̂t,

8Note that in the case of a flexible-price model, the ratio of wt(i) to the
denominator would always equal marginal revenue, and so this expression would
equal the marginal revenue product of capital, though it would be a relatively
cumbersome way of writing it.
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where ν > 0 is the elasticity of the marginal disutility of labor with
respect to labor supply, and h̄t is an exogenous disturbance to pref-
erences, indicating the percentage increase in labor supply needed to
maintain a constant marginal disutility of working. Substituting (8)
into (7) and log-linearizing, I obtain

ρ̂t(i) =

(

νφh +
φh

φh − 1
ωp

)

(ŷt(i) − k̂t(i)) + νk̂t(i) − λ̂t − ωqt, (9)

where φh > 1 is the steady-state value of φ(y/k) (i.e., the reciprocal
of the elasticity of the production function with respect to the labor
input), and ωp > 0 is the negative of the elasticity of the marginal
product f ′(f−1(y/k)) with respect to y/k. The composite exogenous
disturbance qt is defined as

qt ≡ ω−1[νh̄t + (1 + ν)at],

where at ≡ log At; it indicates the percentage change in output re-
quired to maintain a constant marginal disutility of output supply,
in the case that the firm’s capital remains at its steady-state level.9

Substituting (9) into (6), I then have an equation to solve for the dy-
namics of firm i’s capital stock, given the evolution of demand ŷt(i)

for its product, the marginal utility of income λ̂t, and the exogenous
disturbance qt.

As the coefficients of these equations are the same for each firm,
an equation of the same form holds for the dynamics of the aggre-
gate capital stock (in our log-linear approximation). The equilibrium
condition for the dynamics of the capital stock is thus of the form

λ̂t + ǫψ(K̂t+1 − K̂t) = β(1 − δ)Etλ̂t+1 +

[1 − β(1 − δ)][ρyEtŶt+1 − ρkK̂t+1 − ωEtqt+1] + βǫψEt(K̂t+2 − K̂t+1),

(10)

where the elasticities of the marginal valuation of capital are given
by

ρy ≡ νφh +
φh

φh − 1
ωp > ρk ≡ ρy − ν > 0.

9That is, qt measures the output change that would be required to maintain a
fixed marginal disutility of supply given possible fluctuations in preferences and
technology, but not taking account of the effect of possible fluctuations in the
firm’s capital stock. With this modification of the definition given in Woodford
(2003, chap. 3) for the model with exogenous capital, qt is again an exogenous
disturbance term.
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The implied dynamics of investment spending are then given by

Ît = k[K̂t+1 − (1 − δ)K̂t], (11)

where Ît is defined as the percentage deviation of investment from its
steady-state level, as a share of steady-state output, and k ≡ K̄/Ȳ
is the steady-state capital-output ratio.

Thus far I have derived investment dynamics as a function of the
evolution of the marginal utility of real income of the representative
household. This is in turn related to aggregate spending through the
relation λt = uc(Yt − It − Gt; ξt), which we may log-linearize as

λ̂t = −σ−1(Ŷt − Ît − gt), (12)

where the composite disturbance gt reflects the effects both of gov-
ernment purchases and of shifts in private impatience to consume.10

Finally, because of the relation between the marginal utility of in-
come process and the stochastic discount factor that prices bonds,11

the nominal interest rate must satisfy

1 + it = {βEt[λt+1/(λtΠt+1)]}
−1,

which one may log-linearize as

ı̂t = Etπt+1 + λ̂t − Etλ̂t+1. (13)

The system of equations (10)–(13) then comprises the “IS block” of
the model. These jointly suffice to determine the paths of the vari-
ables {Ŷt, Ît, K̂t, λt}, given an initial capital stock and the evolution
of short-term real interest rates {ı̂t −Etπt+1}. The nature of the ef-
fects of real interest-rate expectations on these variables is discussed
further in Woodford (2004).

10Note that the parameter σ in this equation is not precisely the intertemporal
elasticity of substitution in consumption, but rather C̄/Ȳ times that elasticity.
In a model with investment, these quantities are not exactly the same, even in
the absence of government purchases.

11See Woodford (2003, chaps. 2, 4) for further discussion of the stochastic
discount factor and the Fisher relation between the nominal interest rate and
expected inflation.
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2. Optimal Price Setting with Endogenous Capital

I turn next to the implications of an endogenous capital stock for
the price-setting decisions of firms. The capital stock affects a firm’s
marginal cost, of course; but more subtly, a firm considering how its
future profits will be affected by the price it sets must also consider
how its capital stock will evolve over the time that its price remains
fixed.

I begin with the consequences for the relation between marginal
cost and output. Real marginal cost can be expressed as the ratio of
the real wage to the marginal product of labor,

st(i) =
wt(i)

Atf ′(f−1(yt(i)/kt(i)))
. (14)

Again writing the factor input ratio as a function of the capital-
output ratio, and using (8) for the real wage, we obtain

st(i) =
vh(f−1(yt(i)/kt(i))kt(i)/At; ξt)

λtAtf ′(f−1(yt(i)/kt(i)))
(15)

for the real marginal cost of supplying good i. This can be log-
linearized to yield

ŝt(i) = ω(ŷt(i) − k̂t(i) − qt) + νk̂t(i) − λ̂t, (16)

where ŝt(i) ≡ log(st(i)/s̄), and ω ≡ ωw + ωp ≡ νφh + ωp > 0 is
the elasticity of marginal cost with respect to a firm’s own output.

Letting ŝt without the index i denote the average level of real
marginal cost in the economy as a whole, I note that (16) implies
that

ŝt(i) = ŝt + ω(ŷt(i) − Ŷt) − (ω − ν)(k̂t(i) − K̂t). (17)

Then using (4) to substitute for the relative output of firm i in (17),
one obtains

ŝt(i) = ŝt − (ω − ν)k̃t(i) − ωθp̃t(i), (18)

where p̃t(i) ≡ log(pt(i)/Pt) is the firm’s log relative price, and k̃t(i) ≡

k̂t(i)− K̂t is its log relative capital stock. Note also that the average
level of real marginal cost satisfies

ŝt = ω(Ŷt − K̂t − qt) + νK̂t − λ̂t. (19)
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Following the same logic as in Woodford (2003, chap. 3), the
Calvo price-setting framework implies that if a firm i resets its price
in period t, it chooses a price that satisfies the (log-linear approxi-
mate) first-order condition

∞
∑

k=0

(αβ)kÊi
t [p̃t+k(i) − ŝt+k(i)] = 0, (20)

where 0 < α < 1 is the fraction of prices that are not reset in
any period. Here I introduce the notation Êi

t for an expectation
conditional on the state of the world at date t, but integrating only

over those future states in which i has not reset its price since period

t. Note that in the case of any aggregate-state variable xt (i.e., a
variable the value of which depends only on the history of aggregate
disturbances, and not on the individual circumstances of firm i),

Êi
txT = EtxT , for any date T ≥ t. However, the two conditional

expectations differ in the case of variables that depend on the relative
price or relative capital stock of firm i. For example,

Êi
t p̃t+k(i) = p̃t(i) −

k
∑

j=1

Etπt+j (21)

for any k ≥ 1, since firm i’s price remains unchanged along all of the
histories that are integrated over in this case. Instead, the expecta-
tion when one integrates over all possible future states conditional
upon the state of the world at date t is given by

Etp̃t+1(i) = α[p̃t(i) − Etπt+1] + (1 − α)Etp̂
∗

t+1(i), (22)

where p̂∗t (i) is the (log) relative price chosen when i reconsiders its
price at date t. (Similar expressions can be given for horizons k > 1.)

Substituting (18) for st+k(i) and (21) for Êi
t p̃t+k(i) in (20), one

obtains

(1 + ωθ)p̂∗t (i) =

(1 − αβ)
∞

∑

k=0

(αβ)kÊi
t



ŝt+k + (1 + ωθ)
k

∑

j=1

πt+j − (ω − ν)k̃t+k(i)





(23)
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for the optimal relative price that should be chosen by a firm that
resets its price at date t. This relation differs from the result obtained
in Woodford (2003, chap. 3) for a model with exogenous capital only

in the presence of the Êi
t k̃t+k(i) terms.

The additional terms complicate the analysis in several re-
spects. Note that the first two terms inside the square brackets are
aggregate-state variables, so that the distinction between Êi

t and Et

would not matter in this expression, were it not for the dependence
of marginal cost on i’s relative capital stock; it is for this reason that
the alternative form of conditional expectation did not have to be
introduced in Woodford (2003, chap. 3). However, in the model with
endogenous capital, it is important to make this distinction when
evaluating the Êi

t k̃t+k(i) terms.12 Furthermore, these new terms will
not have the same value for all firms i that reset their prices at date
t, for they will depend on i’s relative capital stock k̃t(i) at the time
that prices are reconsidered; hence p∗t (i) is no longer independent
of i, as in the model with exogenous capital (or a model with an
economy-wide rental market for capital). And finally, (23) is not yet
a complete solution for the optimal price-setting rule, since the value
of the right-hand side still depends on the expected evolution of i’s
relative capital stock; this in turn depends on the expected evolution
of i’s relative price, which depends on the choice of p̂∗t (i). A complete
solution for this decision rule requires that one consider the effect of
a firm’s relative price on the evolution of its relative capital stock.

2.1 Dynamics of the Relative Capital Stock

Equation (10) implies that i’s relative capital stock must evolve in
accordance with the relation

ǫψ(k̃t+1(i) − k̃t(i)) = [1 − β(1 − δ)][ρyEt(ŷt+1(i) − Ŷt) − ρkk̃t+1(i)]

+ βǫψEt(k̃t+2(i) − k̃t+1(i)).

Again using i’s demand curve to express relative output as a function
of the firm’s relative price, this can be written as

Et[Q(L)k̃t+2(i)] = ΞEtp̃t+1(i), (24)

12It is the failure to distinguish between Êi
t and Et in evaluating these terms

that results in the incorrect calculations in the treatment of the present model
in Woodford (2003, chap. 5) noted by Sveen and Weinke (2004a).
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where the lag polynomial is

Q(L) ≡ β − [1 + β + (1 − β(1 − δ))ρkǫ
−1

ψ ]L + L2,

and
Ξ ≡ (1 − β(1 − δ))ρyθǫ

−1

ψ > 0.

I note for later reference that the lag polynomial can be factored as

Q(L) = β(1 − µ1L)(1 − µ2L).

Given that Q(0) = β > 0, Q(β) < 0, Q(1) < 0, and that Q(z) > 0
for all large enough z > 0, one sees that µ1, µ2 must be two real roots
that satisfy 0 < µ1 < 1 < β−1 < µ2.

Equation (24) cannot yet be solved for the expected evolution of
the relative capital stock because of the dependence of the expected
evolution of i’s relative price (the “forcing term” on the right-hand
side) on the expected evolution of the relative capital stock itself,
for reasons just discussed. However, one may note that insofar as i’s
decision problem is locally convex, so that the first-order conditions
characterize a locally unique optimal plan, the optimal decision for i’s
relative price in the event that the price is reset at date t must depend
only on i’s relative capital stock at date t and on the economy’s
aggregate state. Thus a log-linear approximation to i’s pricing rule
must take the form

p̂∗t (i) = p̂∗t − ψk̃t(i), (25)

where p̂∗t depends only on the aggregate state (and so is the same
for all i), and ψ is a coefficient to be determined below.

Note that the assumption that the firms that reset prices at date
t are drawn with uniform probability from the entire population
implies that the average value of k̃t(i) over the set of firms that reset
prices is zero (just as it is over the entire population of firms). Hence
p̂∗t is also the average relative price chosen by firms that reset prices
at date t, and the overall rate of price inflation will be given (in our
log-linear approximation) by

πt =
1 − α

α
p̂∗t . (26)

Substitution of this, along with (25), into (22) then yields

Etp̃t+1(i) = αp̃t(i) − (1 − α)ψk̃t+1(i). (27)
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Similarly, the optimal quantity of investment in any period t must
depend only on i’s relative capital stock in that period, its relative
price (which matters as a separate argument of the decision rule in
the event that the price is not reset in period t), and the economy’s
aggregate state. Thus a log-linear approximation to i’s investment
rule must imply an expression of the form

k̃t+1(i) = λk̃t(i) − τ p̃t(i), (28)

where the coefficients λ and τ remain to be determined. This in turn
implies that

Etk̃t+2(i) = λk̃t+1(i) − τEtp̃t+1(i)

= [λ + (1 − α)τψ]k̃t+1(i) − ατp̃t(i),

using (27) to substitute for Etp̃t+1(i) in the second line. Using this
to substitute for Etk̃t+2(i) in (24), and again using (27) to substi-
tute for Etp̃t+1(i), we obtain a linear relation that can be solved for
k̃t+1(i) as a linear function of k̃t(i) and p̃t(i). The conjectured solu-
tion (28) satisfies this equation, so that the first-order condition (24)
is satisfied, if and only if the coefficients λ and τ satisfy

R(λ; ψ) = 0, (29)

(1 − αβλ)τ = Ξαλ, (30)

where

R(λ; ψ) ≡ (β−1 − αλ)Q(βλ) + (1 − α)Ξψλ

is a cubic polynomial in λ, with a coefficient on the linear term that
depends on the value of the (as yet unknown) coefficient ψ. Condition
(29) involves only λ (given the value of ψ); given a solution for λ,
(30) then yields a unique solution for τ , as long as λ �= (αβ)−1.13

The dynamics of the relative capital stock given by (28), together
with (27), imply an expected joint evolution of i’s relative price and
relative capital stock satisfying

13It is obvious from (30) that no solution with λ = (αβ)−1 is possible, as long
as Ξ > 0, as we assume here (i.e., there exists some cost of adjusting capital).
Even in the case that Ξ = 0, such a solution would violate condition (32) below,
so one can exclude this possibility.
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Etp̃t+1(i)

k̃t+1(i)



 =





α + (1 − α)τψ −(1 − α)ψλ

−τ λ









p̃t(i)

k̃t(i)



 .

(31)

This implies convergent dynamics—so that both the means and vari-
ances of the distribution of possible future values for i’s relative price
and relative capital stock remain bounded no matter how far in the
future one looks, as long as the fluctuations in the average desired
relative price p̂∗t are bounded—if and only if both eigenvalues of the
matrix in this equation are inside the unit circle. This stability con-
dition is satisfied if and only if

λ < α−1, (32)

λ < 1 − τψ, (33)

and

λ > −1 −
1 − α

1 + α
τψ. (34)

These conditions must be satisfied if the implied dynamics of firm
i’s capital stock and relative price are to remain forever near enough
to the steady-state values around which I have log-linearized the
first-order conditions for the solution to the linearized equations to
accurately approximate a solution to the exact first-order conditions.
Hence the firm’s decision problem has a solution that can be char-
acterized using the local methods employed above only if equations
(29)–(30) have a solution (λ, τ) satisfying (32)–(34). I show below
that a unique solution consistent with these bounds exists, in the
case of large enough adjustment costs.

2.2 The Optimal Pricing Rule

I return now to an analysis of the first-order condition for optimal
price setting (23). The term that depends on firm i’s own intended
future behavior is proportional to

∞
∑

k=0

(αβ)kÊi
t k̃t+k(i).
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It is now possible to write this term as a function of i’s relative
capital stock at the time of the pricing decision and of the expected
evolution of aggregate variables, allowing me to obtain an expression
of the form (25) for the optimal pricing rule.

Equation (28) for the dynamics of the relative capital stock im-
plies that

Êi
t k̃t+k+1(i) = λÊi

t k̃t+k(i) − τ [p̃t(i) − Et

k
∑

j=1

πt+j ]

for each k ≥ 0, using (21) to substitute for Êi
t p̃t+k(i). This can be

integrated forward (given that14 |λ| < (αβ)−1), to obtain

∞
∑

k=0

(αβ)kÊi
t k̃t+k(i) = (1 − αβλ)−1k̃t(i)

−τ
αβ

(1 − αβ)(1 − αβλ)

[

p̃t(i) −
∞

∑

k=1

(αβ)kEtπt+k

]

. (35)

Substitution of this into (23) then yields

φp̂∗t (i) = (1 − αβ)

∞
∑

k=0

(αβ)kEtŝt+k + φ
∞
∑

k=1

(αβ)kEtπt+k − (ω − ν)
1 − αβ

1 − αβλ
k̃t(i),

where

φ ≡ 1 + ωθ − (ω − ν)τ
αβ

1 − αβλ
. (36)

The solution to this equation is a pricing rule of the conjectured form
(25) if and only if the process p̂∗t satisfies

φp̂∗t = (1 − αβ)

∞
∑

k=0

(αβ)kEtŝt+k + φ

∞
∑

k=1

(αβ)kEtπt+k, (37)

where ŝt is defined by (19), and the coefficient ψ satisfies

φψ = (ω − ν)
1 − αβ

1 − αβλ
. (38)

14Note that (33)–(34) jointly imply that λ > −α−1. Hence any solution con-
sistent with the stability conditions derived in the previous section must imply
convergence of the infinite sum in (35).
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Note that this last equation can be solved for ψ, given the values
of λ and τ ; however, the equations given earlier to determine λ and
τ depend on the value of ψ. Hence equations (29), (30), and (38)
comprise a system of three equations that jointly determine the co-
efficients λ, τ , and ψ of the firm’s optimal decision rules.

This system of equations can be reduced to a single equation for
λ in the following manner. First, note that for any conjectured value
of λ �= 0, (29) can be solved for ψ. This defines a function15

ψ(λ) ≡ −
(1 − αβλ)Q(βλ)

(1 − α)βΞλ
.

Similarly, (30) defines a function16

τ(λ) ≡
αΞλ

1 − αβλ
. (39)

Substituting these functions for ψ and τ in (38), one obtains an
equation in which λ is the only unknown variable. Multiplying both
sides of this equation by (1 − α)β(1 − αβλ)Ξλ,17 one obtains the
equation

V (λ) = 0, (40)

where V (λ) is the quartic polynomial

V (λ) ≡ [(1 + ωθ)(1 − αβλ)2 − α2β(ω − ν)Ξλ]Q(βλ)

+ β(1 − α)(1 − αβ)(ω − ν)Ξλ. (41)

Finally, one can write the inequalities (32)–(34) as restrictions
upon the value of λ alone. One observes from the above discussion
that the product τ(λ)ψ(λ) is well defined for all λ, and equal to
−(α/1 − α)β−1Q(βλ). Using this function of λ to replace the terms
τψ in the previous inequalities, one obtains an equivalent set of three
inequalities,

λ < α−1, (42)

15The function is not defined if λ = 0. However, since Q(0) �= 0, it is clear
from (29) that λ �= 0, for any economy with some adjustment costs (so that Ξ is
finite).

16The function is not defined if λ = (αβ)−1, but that value of λ would be
inconsistent with (33) and (34) holding jointly, as noted above.

17This expression is necessarily nonzero in the case of the kind of solution that
we seek, for the reasons noted in the previous two footnotes.
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α

1 + α
β−1Q(βλ) − 1 < λ <

α

1 − α
β−1Q(βλ) + 1, (43)

that λ must satisfy.
I can then summarize my characterization of a firm’s optimal

pricing and investment behavior as follows.

Proposition 1. Suppose that the firm’s decision problem has
a solution in which, for any small enough initial log relative capital
stock and log relative price of the individual firm, and in the case that
the exogenous disturbance qt and the aggregate variables Ŷt, K̂t, λ̂t,
and πt forever satisfy tight enough bounds, both the conditional
expectation Etk̂t+j(i) and the conditional variance vartk̂t+j(i) remain
bounded for all j, with bounds that can be made as tight as one likes
by choosing sufficiently tight bounds on the initial conditions and
the evolution of the aggregate variables.18 Then the firm’s optimal
decision rules can be approximated by log-linear rules of the form
(25) for p̂∗t (i) in periods when the firm reoptimizes its price and
(28) for the investment decision k̃t+1(i) each period. The coefficient
λ in (28) is a root of the quartic equation (40), that satisfies the
inequalities (42)–(43). The coefficient τ in (28) is furthermore equal
to τ(λ), where the function τ(·) is defined by (30), and the coefficient
ψ in (25) is equal to ψ(λ), where the function ψ(·) is defined by (38).
Finally, the intercept p̂∗t in (25) is given by (37), in which expression
the process {ŝt} is defined by (19).

This result gives a straightforward algorithm that can be used to
solve for the firm’s decision rules, in the case that local methods
suffice to give an approximate characterization of optimal behavior
in the event of small enough disturbances and a small enough initial
departure of the individual firm’s situation from that of an average
firm. The two decision rules (25) and (28), together with the law of
motion

p̃t(i) = p̃t−1(i) − πt

for any period t in which i does not reoptimize its price, then al-
low a complete solution for the evolution of the firm’s relative cap-
ital stock and relative price, given its initial relative capital stock

18Note that this is the only condition under which local log-linearizations of
the kind used above can suffice to approximately characterize the solution to the
firm’s problem.
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and relative price and given the evolution of the aggregate variables
{Ŷt, K̂t, λt, πt, qt}.

2.3 Existence of a Solution

Proposition 1 does not guarantee the existence of a nonexplosive
solution to the firm’s decision problem. The following result, however,
shows that at least in the case of large enough adjustment costs, there
is a solution of the kind characterized in proposition 1.

Proposition 2. Let household preferences, the production func-
tion, the rate of depreciation of capital, and the frequency of price
changes all be fixed, but consider alternative specifications of the in-
vestment adjustment-cost function I(·), all of which are twice differ-
entiable, increasing, convex, and satisfy I(1) = δ, I ′(1) = 1. Then for
any adjustment-cost function for which the value of ǫψ ≡ I ′′(1) > 0 is
large enough, the polynomial (40) has a unique real root λ satisfying
(42)–(43). It follows that the firm decision problem has a solution
of the kind described in proposition 1. Furthermore, in this solution
0 < λ < 1, and τ , φ, and ψ are all positive. In the limit as Ξ → 0,
λ → 1, τ → 0, φ → 1 + ωθ, and

φ →
ω − ν

1 + ωθ
> 0.

This result can be established by considering the way in which
the polynomial (40) depends on the value of Ξ, which in turn varies
inversely with ǫψ. Note that the steady-state allocation associated
with zero inflation (or flexible prices) is determined independently
of the assumed degree of adjustment costs, and so the values of the
parameters α, β, δ, ν, ω, θ, ρy, and ρk are all given, regardless of the
variation considered in the value of ǫψ. The coefficient Ξ is then equal
to a positive constant divided by ǫψ, so that one may equivalently
consider the consequences of varying the value of Ξ while holding
fixed the values of the parameters listed above. I am then interested
in the roots of V (λ) as the value of Ξ approaches zero.

Since the definition (41) involves the polynomial Q(z), it is first
necessary to consider how this polynomial depends on the value of
Ξ. One observes that

Q(z) = z2 − (1 + β + cΞ)z + β,



Vol. 1 No. 2 Firm-Specific Capital 21

where
c ≡

ρk

ρyθ
> 0.

One can then write

V (λ; Ξ) = V̄ (λ) + VΞ(λ)Ξ +
1

2
VΞΞ(λ)Ξ2,

where the polynomials

V̄ (λ) ≡ (1 + ωθ)(1 − αβλ)2β(1 − λ)(1 − βλ),

VΞ(λ) ≡ β(1−αβλ)[1−α(1+β)+αβλ](ω−ν)λ−(1+ωθ)(1−αβλ)2cλ,

and VΞΞ(λ) are each independent of the value of Ξ.
When Ξ = 0, the roots of V (λ) are simply the roots of V̄ (λ),

which are easily seen to be λ1 = 1, λ2 = β−1, and λ3 = λ4 = (αβ)−1.
By continuity, any real roots in the case of a small enough positive
value of Ξ will also have to be close to one of the roots of V̄ (λ).

It is easily seen that no such root can satisfy the inequalities (42)–
(43), unless it is a root near 1. Because Q(βλ2; 0)Q(1; 0) = 0, the
right-most term in (43) is equal to 1, so that the second inequality
is violated when λ = λ2, Ξ = 0. By continuity, the second inequality
of (43) will also necessarily be violated by any root near λ2 in the
case of any small enough value of Ξ. Similarly, because Q(βλ3; 0) =
Q(α−1; 0) = α−1(α−1 − β)(1 − α), the right-most term is negative,
and the second inequality is again violated, when λ = λ3 = λ4,
Ξ = 0. Hence any roots near these will also violate the inequality
in the case of any small enough value of Ξ. Thus there can be at
most one root of (40) that satisfies the inequalities for small positive
values of Ξ, and it must be near 1.

Because V̄ ′(1) < 0, V (λ) will continue to have a real root λ1(Ξ)
near 1 for all small enough values of Ξ, and the implicit function
theorem implies that

dλ1

dΞ
(0) = −

VΞ(1)

V̄ ′(1)
.

Since

VΞ(1) = β(1 − αβ)(1 − α)(ω − ν) − (1 + ωθ)(1 − αβ)2c

< (1 − αβ)2[(ω − ν) − (1 + ωθ)c]

= (1 − αβ)2[(ωρ−1
y − 1)ν − c] < 0,
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using the fact that ρy > ω in the final line and

V̄ ′(1) = −(1 + ωθ)β(1 − β)(1 − αβ)2 < 0,

it follows that
dλ1

dΞ
(0) < 0.

Thus there is a real root 0 < λ1 < 1 for all small enough positive
values of Ξ. This root necessarily also satisfies (42).

Since Q(β; 0) = 0, the left-most term of (43) is near –1 for all
small enough values of Ξ; hence the first inequality of (43) is satisfied
by the root λ1 as well. However, both sides of the second inequality
are equal to 1 when Ξ = 0; thus in order to determine whether the
inequality holds when Ξ > 0, one must determine the sign of the
derivative

D ≡
d

dΞ

[

λ1(Ξ) −
α

1 − α

Q(βλ1(Ξ); Ξ)

β

]

at Ξ = 0. Since

d

dΞ
Q(βλ1(Ξ); Ξ) = −β(1 − β)

dλ1

dΞ
− βc

at Ξ = 0, it follows that

D =
1 − αβ

1 − α

dλ1

dΞ
+

α

1 − α
c

=
(ω − ν) − (1 + ωθ)c

(1 − β)(1 + ωθ)

=
[(ωρ−1

y − 1)ν − c]

(1 − β)(1 + ωθ)
< 0.

Thus for all small enough Ξ > 0, the second inequality of (43) holds
as well, and λ = λ1(Ξ) is the solution asserted to exist in the propo-
sition.

It then follows from (39) that associated with this solution is a
positive value of τ , and that τ → 0 as Ξ → 0. It similarly follows from
(36) that the associated value of φ is positive for all small enough
values of Ξ, and that φ → 1 + ωθ as Ξ → 0. Finally, it follows from
these results and (38) that the associated value of ψ is positive,19

19Recall that our assumptions require that ω > ν.
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and that it approaches the positive limit stated in the proposition
as Ξ → 0. Proposition 2 is thus established.

Proposition 2 guarantees that a solution to the firm’s optimiza-
tion problem that can be characterized using the local methods em-
ployed above will exist for at least some economies, namely, those
in which adjustment costs are large enough. The proposition also
implies that in the limit of large adjustment costs, the optimal price-
setting rule approaches the one derived in Woodford (2003, chap. 3)
under the assumption of an exogenously given capital stock for each
firm. Thus the exogenous-capital model represents a useful approx-
imation to the equilibrium dynamics in a model with endogenous
capital accumulation, if adjustment costs are large enough.

Numerical exploration of the properties of the polynomial (40)
suggests that adjustment costs do not have to be large in order for
the analysis given above to apply. In figure 1, model parameters are
assigned the values given in table 1,20 while the values of α and ǫψ are
allowed to vary. The figure indicates for which part of the α−ǫψ plane
the polynomial (40) has a unique real root satisfying the bounds
(42)–(43). Except in the case of very high values of α (α > 0.93,
corresponding to an average interval between price changes longer
than three and one-half years), a unique real root of this kind exists

Table 1. Numerical Parameter Values

β 0.99

ν 0.11

φ−1

h 0.75

ωp 0.33

(θ − 1)−1 0.15

δ 0.12

20These are the same parameter values used in the numerical illustrations in
Woodford (2004), which are in turn chosen for comparability with the numerical
analyses of related models in Woodford (2003). (The justification for interest in
these values is discussed in both of those sources.) Thus, for example, in figure
1, one sees that if α = 0.66, a unique solution exists for all possible values of
ǫψ ; this explains why it is possible to present solutions for alternative values of
ǫψ in figure 1 of Woodford (2004). In this calibration of the model, periods are
understood to correspond to quarters.
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Figure 1. Values of α and ǫψ for which a Solution of the
Kind Characterized in Proposition 1 Exists

in the case of any ǫψ > 0. If we suppose that ǫψ = 3 (the calibration
used in Woodford 2004), then a solution exists in the case of any
α less than 0.978 (i.e., as long as prices are changed at least once
every eleven years, on average). In the case of very high values of
α, a solution does not exist, except in the case of very high values
of ǫψ,21 and when it does not, the solution to the firm’s problem
cannot be characterized using the local methods employed above.22

But such high values of α are clearly not empirically realistic, so we
need not be concerned with this case.

21It may appear from the figure that no solution is possible when α exceeds
0.99, but this is because the vertical axis is truncated at ǫψ = 10. If α = 0.995,
a solution exists in the case of all ǫψ > 22.2; if α = 0.999, a solution exists in
the case of all ǫψ > 88.2. Thus a solution does always exist in the case of large
enough adjustment costs, in accordance with proposition 2.

22This may, for example, be due to a failure of the firm’s problem to be locally
convex. I do not further investigate the problem here, as it does not appear to
arise in cases of practical interest.
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3. Inflation Dynamics

I now consider the implications of the analysis above for the evo-
lution of the overall inflation rate. I show that the model of price
setting presented above implies the existence of a New Keynesian
Phillips curve of the form (1), and then consider the interpretation
of empirical estimates of the slope coefficient ξ in this relation.

3.1 A New Keynesian Phillips Curve

Recall that the average log relative price set by firms that reoptimize
at date t is given by (37). This equation can be quasi-differenced
(after dividing by φ23) to yield

p̂∗t = (1 − αβ)φ−1ŝt + αβEtπt+1 + αβEtp̂
∗

t+1.

Then, using (26) to substitute for p̂∗t , one obtains a relation of the
form (1), where

ξ ≡
(1 − α)(1 − αβ)

αφ
. (44)

Equation (1) is the corrected form of equation (3.17) in Woodford
(2003, chap. 5). Together with (19), it provides a complete charac-
terization of the equilibrium dynamics of inflation, given the evo-
lution of Ŷt, K̂t, and λ̂t. This pair of equations can be thought of
as constituting the “aggregate supply block” of the model with en-
dogenous capital. They generalize the aggregate-supply equation of
the constant-capital model (expounded in Woodford 2003, chap. 3)
to take account of the effects of changes in the capital stock on real
marginal cost, and hence on the short-run trade-off between inflation
and output.

In the constant-capital model, (19) (after using [12] to substitute

for λ̂t) reduces to

ŝt = ω(Ŷt − qt) + σ−1(Ŷt − gt),

which can be equivalently written as

ŝt = (ω + σ−1)Ỹt, (45)

23It follows from (38) that φ �= 0, given that (as already discussed) λ �= (αβ)−1.
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where Ỹt is the “output gap,” defined as the (log) difference between
actual and flexible-price equilibrium output. Substituting this rela-
tion into (1), one obtains the familiar output-gap formulation of the
New Keynesian Phillips curve,

πt = κỸt + βEtπt+1, (46)

where κ ≡ (ω + σ−1)ξ > 0.
In the model with endogenous (and firm-specific) capital, instead,

(45) takes the more general form

ŝt = (ω + σ−1)Ỹt − σ−1Ĩt, (47)

where Ĩt indicates the gap between actual investment (specifically,

the value of Ît) and its flexible-price equilibrium level.24 If one sub-
stitutes this relation instead into (1), one obtains a generalization of
(46),

πt = κỸt − κI Ĩt + βEtπt+1,

where κ is defined as before, but now κI ≡ σ−1ξ > 0. Thus while (1)
continues to apply, the relation between inflation and real activity
is no longer as simple as (46). This is a further reason (in addition
to the lack of simple empirical measures of the flexible-price equilib-
rium level of output) why it has been appropriate for the empirical
literature to focus more on estimation of the inflation equation (1)
than of the corresponding aggregate-supply relation.

As with equation (3.17) in Woodford (2003, chap. 5), equation
(1) implies that one can solve for the inflation rate as a function of
current and expected future real marginal cost, resulting in a relation
of the form

πt =
∞

∑

j=0

ΨjEtŝt+j . (48)

The correct formula for these coefficients is given by

Ψj = ξβj ,

just as in the model with constant capital discussed in Woodford
(2003, chap. 3). Hence the coefficients do not decay as rapidly with

24See Woodford (2004) for further discussion of the definition of this and related
“gap” variables in this model.
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increasing j as is shown in figure 5.6 of Woodford (2003), in the case
of finite adjustment costs. Nor do the coefficients ever change sign
with increasing j, as occurs in the figure. In the case that ξ > 0
(as implied by the calibrated parameter values proposed below), an
increase in the expected future level of real marginal costs unam-
biguously requires that inflation increase, and the degree to which
inflation determination is forward looking is even greater than is
indicated by the figure in Woodford (2003).

3.2 The Case of a Rental Market for Capital

I now briefly compare the results obtained above to those that would
be obtained under the assumption of a competitive rental market for
capital services.25 In the literature, when models of staggered pricing
have allowed for endogenous capital accumulation (as, for example,
in Yun [1996] or Chari, Kehoe, and McGrattan [2000]), they have
typically assumed that firms purchase capital services on a competi-
tive rental market, rather than accumulating firm-specific capital as
in the model above. This alternative assumption is of considerable
convenience, since it allows price-setting decisions to be analyzed sep-
arately from the decision to accumulate capital.26 However, while the
assumption of an economy-wide rental market for capital is purely a
convenience in the case of standard real business-cycle models (i.e.,
one-sector models with a competitive goods market), it is no longer
innocuous in a model where firms are price setters, and so must con-
sider the consequences for their profits of setting a price different
from that of their competitors. As we shall see, alternative assump-
tions about the way in which capital services can be obtained (with
a production technology that is otherwise the same) lead to dif-
ferent conclusions regarding aggregate dynamics. In particular, the
predicted slope of the Phillips-curve trade-off can be affected to an
extent that is quantitatively significant.

I shall consider two versions of a model with a competitive rental
market for capital services. In each case, the production technology

25Sveen and Weinke (2004b) similarly compare the consequences of these two
assumptions, but instead focus on the differences that result for the implied
impulse responses to disturbances in a complete dynamic stochastic general equi-
librium (DSGE) model.

26The same assumption was used, for example, in the DSGE model with
oligopolistic pricing of Rotemberg and Woodford (1995).
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and the technology of capital accumulation are as described in the
introductory paragraphs of this paper, except that now capital goods
are either accumulated by households and rented to the firms that
produce the goods that are used for consumption and investment, or
they are accumulated by a special set of firms that accumulate capi-
tal and then rent capital services to the goods-producing firms. (Our
equilibrium relations will be the same, whether capital is accumu-
lated by households or by a special set of firms.) There is assumed to
be a competitive market for capital services each period, with rental
rate ρt in period t. (Note that this rental rate is no longer indexed
by the firm that uses the capital.)

It follows that for each household or firm i that accumulates
capital, its holdings of capital {kt(i)} must evolve in accordance with
the first-order condition (5), except that now the firm-specific shadow
value ρt+1(i) is replaced by the market rental rate ρt+1, with the
same value for all i. Log-linearization of this condition again leads to
a relation of the form (6) for each i, but with ρ̂t+1(i) replaced simply
by ρ̂t+1. Assuming that one starts from a symmetric distribution of
capital k0(i) = K0 for all i, one will similarly have a common capital
stock kt(i) = Kt in all subsequent periods, since each household or
firm solves an identical optimization problem. The aggregate capital
stock will then also evolve in accordance with (5) or, up to a log-
linear approximation, in accordance with (6).

An optimal demand for capital services by a goods-producing
firm i (not to be confused with a firm i that accumulates capital)
again requires that the firm’s output-capital ratio satisfy (7), though
(7) is now a first-order condition for a firm that takes as given the
cost of capital services ρt, rather than a definition of the shadow value
of additional capital services, and ρt(i) must now be replaced by the
common rental rate ρt for all i. There are two possible assumptions
that may be made regarding labor inputs. In the literature, when a
rental market for capital services is assumed, it is often also assumed
that all sectors hire the same kind of labor, and that there is a single
economy-wide labor market as well; this is the case of “homogeneous
factor markets” treated in Woodford (2003, chap. 3).27 In this case,

27It is the case assumed in the derivation of a New Keynesian Phillips curve in
Gaĺı and Gertler (1999) and in the baseline case considered in Sbordone (1998,
2002). Note that a single economy-wide labor market is also assumed in the anal-
ysis of the consequences of an exogenous firm-specific capital stock in Sbordone
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every firm i faces a common wage, so that wt(i) = wt. It then follows
from (7) that each firm i will choose a common output-capital ratio;
firms with higher demand for their products (because of lower prices)
will choose to use a proportionately higher quantity of capital ser-
vices and a proportionately higher quantity of labor as well. It then
follows from (14) that the marginal cost of output supply will be the
same for all firms i and independent of the quantity produced by any
firm, so that st(i) = st for all i, where the common real marginal
cost st is an increasing function of both ρt and wt. Equation (18)
then reduces simply to

ŝt(i) = ŝt.

In this case, frequently assumed in previous derivations of the
New Keynesian Phillips curve, (20) implies that the optimal relative
price that should be chosen by a firm that resets its price at date t
is given by

p̂∗t (i) = (1 − αβ)

∞
∑

k=0

(αβ)kÊi
t



ŝt+k +

k
∑

j=1

πt+j



 (49)

instead of (23). In this case, the quantities inside the brackets are
not firm specific, and there is no need to distinguish between the
conditional expectations Êi

t [·] and Et[·]. Nor is there any need to
solve for the dynamics of a firm’s relative capital stock in order to
evaluate the right-hand side of (49). The right-hand side of (49) is
the same for all i, and thus gives the value of p̂∗t . Equation (49) then
leads directly to an inflation equation of the form (1), with

ξh ≡
(1 − α)(1 − αβ)

α
> 0. (50)

Alternatively, we may assume the existence of a sector-specific
labor market for each sector, as in the model developed in this pa-
per for the case of firm-specific capital or the model of “specific

(1998, 2002) and in Gaĺı, Gertler, and Lopez-Salido (2001). For this reason, the
formula for ξ(α) presented by those authors for the case of firm-specific capital
differs from the one derived in Woodford (2003, chap. 3) under the assumption
of industry-specific labor markets. Eichenbaum and Fisher (2004) also assume an
economy-wide labor market even in their model with firm-specific capital, though
in their case each firm’s capital stock is endogenous as in the model developed
here.
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factor markets” treated in Woodford (2003, chap. 3). In this case,
the real wage for the type of labor hired by firm i is given by a
sector-specific labor supply equation (8). Substituting this into (7)
and log-linearizing, we again obtain equilibrium relation (9) for each
firm i, except that ρ̂t(i) must now be replaced by the common rental
rate ρ̂t. Because ρt is now the same for all firms, this conditional for
cost-minimizing production by firm i implies that the firm’s relative
capital stock will be a monotonic function of its relative sales, so
that

ρk(k̂t(i) − K̂t) = ρy(ŷt(i) − Ŷt) (51)

for all i at any date.
The marginal cost of production of each firm i is again given by

(17), but we can now use (51) to substitute for the firm’s relative
demand for capital as a function of its relative sales. Then, again
using (4) to substitute for the relative sales of firm i, one obtains

ŝt(i) = ŝt − χθp̃t(i) (52)

instead of (18), where

χ ≡
ωρk − (ω − ν)ρy

ρk

=
νωp

ρk(φh − 1)
> 0.

Note that there is no longer any dependence on the firm’s relative
capital stock (which is no longer a state variable for the firm’s opti-
mization problem).

Once again substituting (52) for st+k(i) and (21) for Êi
t p̃t+k(i)

in (20), one now obtains

(1 + χθ)p̂∗t (i) = (1− αβ)

∞
∑

k=0

(αβ)kÊi
t



ŝt+k + (1 + χθ)

k
∑

j=1

πt+j





(53)

for the optimal relative price that should be chosen by a firm that
resets its price at date t. One can again replace the conditional expec-
tation Êi

t [·] by Et[·], and one again observes that p̂∗t (i) is the same for
all i, so that one can replace p̂∗t (i) by p̂∗t . Relation (53) is then of the
same form as relation (37) for the model above with endogenous but
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firm-specific capital, but with the coefficient φ in the earlier equation
here replaced by 1 + χθ. One again obtains a pricing relation of the
form (1), but with elasticity

ξr ≡
(1 − α)(1 − αβ)

α(1 + χθ)
> 0. (54)

Thus each model leads to a Phillips-curve relation of the same
form (1), except that in each case the elasticity ξ > 0 is a dif-
ferent function of underlying model parameters. The quantitative
difference made by the alternative assumptions can be illustrated
through a numerical example. Let us again assume the parameter
values given in table 1, and furthermore now specify that ǫψ = 3,
as assumed in Woodford (2004). Figure 2 then plots the value of ξ
corresponding to any given frequency of price change (indicated by

Figure 2. The Relation between ξ and α under Four
Alternative Assumptions about Factor Markets
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the value of α on the horizontal axis) under each of four possible
assumptions. The function ξh(α) defined in (50) indicates how the
elasticity ξ in (1) varies with α in the case of homogeneous factor
markets. The function ξr(α) defined in (54) applies instead in the
case of industry-specific labor but an economy-wide rental market
for capital. The function ξf (α) defined in (44) applies instead in the

case of industry-specific labor and firm-specific capital.28 And finally,
the function ξc(α) is the corresponding relation derived in Woodford
(2003, chap. 3) for the case of the model with industry-specific labor
and a constant quantity of firm-specific capital.29 The function ξc(α)
corresponds to the limit of ξf (α) as ǫψ is made unboundedly large;
it follows from proposition 1 that this is given by

ξc ≡
(1 − α)(1 − αβ)

α(1 + ωθ)
> 0.

We see from the figure that for any given value of α (in the
range for which all four functions are defined), the model with ho-
mogeneous factor markets implies the highest value of ξ, as in this
case the model possesses the fewest sources of “real rigidities” in the
sense of Ball and Romer (1990). The fact that an increase in de-
mand in one part of the economy bids up the price of factor inputs
throughout the economy creates a source of “strategic substitutabil-
ity” between the pricing decisions in different sectors of the economy
(the fact that others keep their prices low increases your marginal
cost of production, and so gives you a reason for higher prices, rather
than lower ones); this speeds up the rate of adjustment of the ag-
gregate price index to changes in demand conditions.30 There are
greater real rigidities, and hence a flatter Phillips curve, in the case
of industry-specific labor markets, even if we continue to assume an
economy-wide rental market for capital services; for in this case, an

28As shown in figure 1, the function ξf is only defined for values of α lower
than a critical value on the order of 0.978. The other functions are defined for all
values of α between zero and one.

29This is called the model with “specific factor markets” in Woodford (2003,
chap. 3).

30See Woodford (2003, chap. 3) for further discussion of why the Phillips curve
is relatively steep in this case, building upon the seminal treatment by Kimball
(1995). The discussion there, conducted under the assumption of an exogenously
given capital stock, still gives the essential insight into why the specificity of
factor markets matters.
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increase in demand in one part of the economy still bids up the price
of capital services throughout the economy, but does not similarly
affect wages in other sectors. There are still greater real rigidities,
and a still flatter Phillips curve, if we assume firm-specific invest-
ment, because in this case an increase in demand in one part of the
economy that increases the shadow value of capital there has no im-
mediate effect on the shadow cost of capital services in other parts
of the economy.

Real rigidities are the greatest if we assume, as in the model with
“specific factor markets” in Woodford (2003, chap. 3), that the capi-
tal stock of each firm is exogenously given, and hence never affected
by differential shadow values of capital in different sectors. In the
model with endogenous firm-specific capital developed here, a sus-
tained higher shadow value of capital in part of the economy will
eventually raise the shadow value of capital services everywhere, as
a result of differential rates of investment in the sectors with differ-
ing shadow values of capital. Thus capital is still reallocated among
sectors in response to rate-of-return differentials, albeit with a delay,
as long as investment adjustment costs are not too large. However,
the figure shows that in our calibrated example, an empirically re-
alistic level of adjustment costs results in a value of ξ that is quite
close to what would be implied by the exogenous-capital model with
firm-specific capital (though slightly larger), while it is considerably
lower than would be implied by the assumption of instantaneous re-
allocation of capital across sectors so as to equalize the shadow value
of capital services. Thus the implicit assumption of an exogenously
evolving capital stock in derivations of the Phillips curve for mod-
els with firm-specific capital by authors such as Sbordone (1998)
appears not to have been a source of any great inaccuracy.31 The
endogeneity of the capital stock is instead of greater significance for

31Coenen and Levin (2004) also discuss the role of firm-specific capital in in-
creasing real rigidities, in the context of a model with Taylor-style fixed-period
price commitments, which allows separate econometric identification of the length
of time between price changes, on the one hand, and the elasticity of a firm’s de-
sired relative price with respect to aggregate output, on the other. They are
concerned with whether the estimated value of the latter elasticity can be rec-
onciled with the microfoundations of the firm’s pricing decision, and argue that
allowing for firm-specific capital is important in doing so. Like Sbordone (1998)
and Gaĺı, Gertler, and Lopez-Salido (2001), they assume that each firm’s capital
stock is fixed in analyzing this issue.
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predictions about the equilibrium responses of inflation or output
to aggregate disturbances, as shown in Woodford (2004), because of
the effects of the endogenous rate of investment on the evolution of
real marginal cost, as indicated by equation (47).

3.3 Additional Sources of Real Rigidities

Even the model with firm-specific capital developed above still ab-
stracts from a number of possible sources of real rigidities. Here I
briefly consider the effects of two generalizations that are discussed
in more detail (though in the context of a model with exogenous
capital) in Woodford (2003, chap. 3, sec. 1.4).

First, I shall now suppose that each differentiated good is pro-
duced using not only labor and capital, but also intermediate in-
puts produced by other industries. As in Rotemberg and Woodford
(1995), I assume a production function of the form

yt(i) = min

[

kt(i)f(Atht(i)/kt(i))

1 − sm
,

mt(i)

sm

]

,

generalizing (3), where f(·) has the same properties as before, mt(i)
denotes the quantity of materials inputs used by firm i in period t,
and 0 ≤ sm < 1 is a parameter of the production technology that can
be identified, for purposes of calibration, with the share of materials
costs in the value of gross output. The materials inputs are measured
in units of the composite good.

The shadow value to firm i of an additional unit of capital is then
given by

ρt(i) =
wt(i)

At
f−1((1 − sm)yt(i)/kt(i))[φ((1 − sm)yt(i)/kt(i)) − 1],

generalizing (7), where φ(·) is the same function as before. But be-
cause the log deviation of (1 − sm)yt(i)/kt(i) from its steady-state
value is equal to the log deviation of yt(i)/kt(i) from its steady-state
value, the log-linear relation (9) continues to apply, regardless of the
size of the materials share.

With intermediate inputs, the real marginal cost of production
can be written as

st(i) = (1 − sm)sV A
t (i) + sm, (55)
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where sV A
t (i) is the real marginal cost of producing a unit of “real

value added,” by which I mean the homogeneous-degree-one aggre-
gate of primary factors of production given by kt(i)f(Atht(i)/kt(i)).
Equation (15) furthermore takes the more general form

sV A
t (i) =

vh(f−1((1 − sm)yt(i)/kt(i))kt(i)/At; ξt)

λtAtf ′(f−1((1 − sm)yt(i)/kt(i)))
.

Substituting this into (55) and log-linearizing, I obtain

ŝt(i) = (1 − µsm)[ω(ŷt(i) − k̂t(i) − qt) + νk̂t(i) − λ̂t], (56)

generalizing (16), where µ ≡ θ/(θ−1) > 1 is the steady-state markup
(ratio of price to marginal cost).32 The reduced elasticity of real
marginal cost with respect to the firm’s level of production when sm

is positive (but less than µ−1) indicates greater real rigidities.
Second, I shall suppose that substitution possibilities among the

differentiated goods are no longer necessarily described by the famil-
iar Dixit-Stiglitz aggregator that leads to the constant-elasticity de-
mand function (4) for individual goods. If I instead assume only that
the aggregator belongs to the more general family of homogeneous-
degree-one functions considered by Kimball (1995), the elasticity of
demand varies with the relative price of (and hence the relative de-
mand for) individual good i. The relative demand for an individual
good is again a decreasing function of the relative price,33 but the
function need not be a constant-elasticity function, as in (4).

As a result, the desired markup of the supplier’s price over the
marginal cost of supply will no longer be a constant µ > 1, but rather
a function µ(yt(i)/Yt) of the relative output of the good, where Yt

is aggregate output, defined using the Kimball aggregator. To a log-
linear approximation, the deviation of the log desired markup from
its steady-state level (that I shall again call µ) is equal to ǫµỹt(i),

32In the case of the model with generalized preferences introduced in the next
paragraph, this relation still applies, but θ > 1 indicates the steady-state elasticity
of substitution among differentiated goods, rather than a coefficient of the Dixit-
Stiglitz aggregator.

33As in the model developed above, it is assumed that both household prefer-
ences and the production technology of firms depend only on the quantity pur-
chased of the composite good defined by this aggregator. Hence the purchases of
each buyer, for whatever purpose, will be distributed across differentiated goods
in the same proportions.
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where ǫµ is the elasticity of the function µ(·), evaluated at the steady
state (i.e., at a relative output of 1), and ỹt(i) is the log relative
output. The demand function can again be log-linearized to yield

ỹt(i) = −θp̃t(i),

where θ > 1 is now the steady-state elasticity of demand (and not
necessarily also the elasticity near a relative price other than 1). One
can then show that the first-order condition for optimal price setting
under Calvo staggering of price changes takes the form

∞
∑

k=0

(αβ)kÊi
t [p̃t+k(i) − (1 + θǫµ)−1ŝt+k(i)] = 0, (57)

generalizing (20), just as in Woodford (2003, chap. 3). The only dif-
ference here is that real marginal cost will depend on the firm’s en-
dogenous, firm-specific capital stock in the way treated above. One
observes directly from (57) that a value ǫµ > 0 will increase the
degree of real rigidities, by reducing the sensitivity of the desired
relative price to variations in real marginal cost, and hence to vari-
ations in the firm’s output.

Substituting (56) into (57), I now obtain

Γ1p̂
∗

t (i) = (1 − αβ)
∞

∑

k=0

(αβ)kÊi
t



ŝt+k + Γ1

k
∑

j=1

πt+j − Γ2k̃t+k(i)



 ,

(58)
generalizing (23), where

Γ1 ≡ 1 + θǫµ + (1 − µsm)ωθ, Γ2 ≡ (1 − µsm)(ω − ν).

Here only the expressions for Γ1 and Γ2 have become more com-
plex. One can then show, using the same reasoning as above, that
the solution to the firm’s optimization problem is characterized by
proposition 1, except that (36) must be replaced by

φ ≡ Γ1 − Γ2τ
αβ

1 − αβλ
, (59)

and (41) must be replaced by

V (λ) ≡ [Γ1(1 − αβλ)2 − α2βΓ2Ξλ]Q(βλ) + β(1 − α)(1 − αβ)Γ2Ξλ.
(60)
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One can similarly obtain once again an aggregate-supply relation
of the form (1), where the elasticity ξ is defined by (44), but now
using the generalized definition (59) of φ. Alternatively, one can write
the aggregate-supply relation as

πt = ξŝV A
t + βEtπt+1, (61)

in which case

ξ ≡
(1 − µsm)(1 − α)(1 − αβ)

αφ
, (62)

where φ is defined by (59), using the fact that

ŝt = (1 − µsm)ŝV A
t ,

from a log-linearization of (55). The alternative form (61) is actually
the one that is estimated in the literature, since (under the assump-
tion of a Cobb-Douglas production function for “value added”) it is
sV A
t rather than st that is proportional to real unit labor cost (the

proxy for “marginal cost” that is used in empirical work).
The additional sources of real rigidities affect the value of ξ asso-

ciated with a given average frequency of price adjustment, as shown
in figure 3. As in Woodford (2003, chap. 3, sec. 1.4), I shall consider
the consequences of an intermediate input share such that µsm = 0.6,
and a nonconstant elasticity of substitution among differentiated
goods such that θǫµ = 1. The figure plots the functional relation
ξ(α) defined by (44) for each of four possible combinations of pa-
rameter values: the baseline case, in which sm = 0, ǫµ = 0; a case
with intermediate inputs, in which µsm = 0.6, though again ǫµ = 0;
a case with Kimball preferences, in which sm = 0 but θǫµ = 1; and
finally, a case with both additional sources of real rigidities, in which
µsm = 0.6, θǫµ = 1. In all four cases, it is assumed that labor markets
are industry specific, capital is endogenous and firm specific, and the
numerical parameters other than those just listed are as in the case
with firm-specific capital plotted in figure 2. (The function ξ(α) in
the baseline case here corresponds to the function ξf (α) in figure 2.)

One observes that for each of the values of α considered, either
intermediate inputs or Kimball preferences with ǫµ > 0 lower the
implied value of ξ, and if both departures from the baseline model
are considered simultaneously, the implied value of ξ is still lower.
Hence allowance for either of these empirically plausible additional
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Figure 3. The Relation between ξ and α with Additional
Sources of Real Rigidities

sources of real rigidities further reduces the implied slope of the
Phillips curve, without any change in the assumed frequency of price
changes. The results obtained here are quite similar to those obtained
in Woodford (2003, chap. 3) for the case of a model in which each
firm’s capital stock is given exogenously (see table 3.1 there).

3.4 Consequences for Estimates of the Frequency of Price

Adjustment

Because alternative assumptions about the specificity of factor mar-
kets affect the location of the curve ξ(α), as shown in figure 2, it
follows that the consequences of an estimate of ξ for the frequency of
price adjustment are correspondingly different in the different cases.
(One should note that estimation of the aggregate-supply relation
[1] only allows an estimate of the elasticity ξ and provides no di-
rect evidence regarding the frequency of price adjustment, nor any



Vol. 1 No. 2 Firm-Specific Capital 39

way of testing which of the alternative possible assumptions about
the specificity of factor markets is the correct one.) An assumption
of specific factor markets—either that labor markets are industry
specific, or that capital is firm specific—increases the degree of real
rigidities, relative to an assumption of an economy-wide market for
the services of that factor, and so lowers the value of ξ correspond-
ing to any given value of α. Conversely, it follows that the value
of α required to explain any given value of ξ—and hence the value
of α implied by any given estimate of ξ—is lower the greater the
degree of specificity of factors. Hence a given degree of sluggishness
in the adjustment of the overall price index to changes in aggregate
conditions can be reconciled with a greater degree of firm-level flex-
ibility of prices in the case that one assumes more specific factors of
production.

This is illustrated by the calculations reported in table 2. The
numerical parameter values given in table 1 are again assumed, and
in addition (in the case of the model with firm-specific capital) it is
assumed that ǫψ = 3, as in the baseline case considered in Woodford

Table 2. Interpretation of the Estimated Value of ξ

under Alternative Assumptions about Factor Markets

Implied Values of α

ξ Homogeneous Factor Rental Market Firm Specific

0.05 .804 .757 .630

0.04 .823 .779 .663

0.03 .845 .806 .703

0.02 .872 .840 .754

Implied Values of T

ξ Homogeneous Factor Rental Market Firm Specific

0.05 4.57 3.59 2.16

0.04 5.13 4.01 2.43

0.03 5.94 4.65 2.84

0.02 7.32 5.71 3.55
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(2004). The first panel of the table then indicates the value of α
that would be implied by a given estimate of the elasticity ξ, under
each of three different possible assumptions about factor markets:
homogeneous factor markets; industry-specific labor markets but a
rental market for capital services; and industry-specific labor markets
together with endogenous, firm-specific capital. The range of values
considered for ξ in the table corresponds to the range of values found
in empirical estimates of the New Keynesian Phillips curve (1) for
the United States.34 The second panel of the table shows the implied
values of

T ≡
−1

log α
,

the average time (in quarters) that a price remains fixed,35 for each
of the same possible estimates of ξ under each of the same three
possible assumptions about factor markets.

One observes that the assumption made regarding factor markets
has a substantial effect on the implied frequency of price adjustment,
given any estimate of the slope of the Phillips curve ξ. If, for exam-
ple, one estimates a slope ξ = 0.02—and some estimates using U.S.

34For example, Gaĺı and Gertler (1999) report an estimate of 0.023 when they
estimate the “reduced form” equation (1) using U.S. data. When they use an
alternative generalized method of moments (GMM) estimation approach that
yields estimates of α (under the assumption of homogeneous factor markets)
rather than of ξ, the values of ξ implied by the reported estimates (that vary
depending on the sample and moment conditions used) are mostly in the range of
0.02 to 0.04. (It should be noted that when Gaĺı and Gertler report estimates of α,
they are really only estimating a nonlinear transformation of the elasticity ξ that
would correspond to α under the assumption of homogeneous factor markets, and
do not attempt any test of the homogeneous-factor assumption.) Gaĺı, Gertler,
and Lopez-Salido (2001) similarly report estimates of α using U.S. data that
imply values of ξ equal to 0.03 or 0.04. Sbordone (2002) obtains an estimate of
0.055 for U.S. data using a different estimation technique, while Sbordone (2004)
obtains an estimate of 0.025 for U.S. data using yet another approach.

35In the literature, estimates of α are often converted into estimates of the
average time between price changes using the alternative formula T = 1/(1−α).
This latter formula is correct if one takes the discrete-time model (in which all
prices change, if they change at all, at a single time each quarter) literally; but
it has the unappealing feature that no matter how flexible prices may be (and
how steep the estimated Phillips curve may be as a result), T must always equal
at least three months. The formula here assumes instead that there is a constant
hazard rate ρ in continuous time for price changes, and that an estimate of α
is an estimate of e−ρ. This means that if one estimates a steep enough Phillips
curve, and hence infers a value of α close enough to 1, the inferred value of T
may be arbitrarily small.
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data are this low, though most reported estimates have been at least
somewhat larger—then under the assumption of homogeneous fac-
tor markets (and the other parametric assumptions in table 1), one
would conclude that the estimate implied an average time between
price changes of over seven quarters. This is implausibly long, given
microeconomic evidence on the frequency of price changes, so that
one might well conclude that the model cannot account for the ob-
served facts about price adjustment, no matter how well it might
fit the joint evolution of overall inflation and average marginal cost.
Assuming instead that labor markets are industry specific, however,
would reduce the implied average time between price changes to less
than six quarters, even if one continues to assume a rental market
for capital services. And allowing for firm-specific capital would fur-
ther reduce the implied average time between price changes, to only
three and one-half quarters. This is no longer so implausible, given
the evidence in surveys such as that of Blinder et al. (1998) that
many prices in the United States are changed only once a year or
less.

My finding that an assumption that capital is firm specific re-
duces the average time between price changes implied by estimates
of the aggregate-supply relation (1) confirms the previous results
of Sbordone (1998) and Gaĺı, Gertler, and Lopez-Salido (2001), ob-
tained under an implicit assumption that each firm’s capital stock is
constant, or evolves exogenously. Figure 2 shows that the assumption
of a constant (or exogenous) capital stock would imply even slightly
greater real rigidities than exist in the case of an endogenous but
firm-specific capital stock; but the numerical error resulting from
that simplifying assumption is not great, at least if investment ad-
justment costs are of the size assumed here.36 For example, in the
case that ξ = 0.02, under the assumptions of exogenous capital and
industry-specific labor markets, the value of α would be 0.740 and
the value of T would be 3.28, rather than the values shown in the
third column of table 2. Allowance for a realistic degree of endoge-
nous adjustment of each firm’s capital stock does not dramatically
change those conclusions.

36As shown in Woodford (2004), adjustment costs of roughly this size are
needed to explain the observed size of output response to an identified monetary
policy shock, in the context of a simple New Keynesian model that incorporates
the model of investment and price-setting decisions developed here.
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The implied average times between price adjustments shown in
table 2 may still seem a bit too long to square with microeconomic
evidence, even in the case of firm-specific capital, especially if ξ is
estimated to take a value between 0.2 and 0.3. (Blinder et al. [1998]
report a median time between price changes of three quarters, but
Bils and Klenow [2004] instead report a median of less than two
quarters.) However, a value of ξ of this magnitude can be reconciled
with even greater frequencies of adjustment of individual prices, if
additional empirically plausible sources of real rigidities are taken
into account.

Table 3 shows the values of α and T implied by alternative es-
timates of ξ, under alternative assumptions about the importance
of intermediate inputs and the degree to which the aggregator that
defines the composite good differs from the Dixit-Stiglitz form. All
numerical parameters except sm and ǫµ take the same values as in
table 2, and in each case it is now assumed that labor markets are

Table 3. Interpretation of the Estimated Value of ξ under
Alternative Assumptions about Input/Output Structure

and Substitutability of Differentiated Goods

Implied Values of α

ξ Baseline Intermediate Inputs Kimball Both

0.05 .630 .584 .598 .528

0.04 .663 .619 .633 .564

0.03 .703 .662 .674 .609

0.02 .754 .716 .728 .669

Implied Values of T

ξ Baseline Intermediate Inputs Kimball Both

0.05 2.16 1.86 1.95 1.56

0.04 2.43 2.09 2.18 1.75

0.03 2.84 2.42 2.54 2.02

0.02 3.55 3.00 3.15 2.48
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industry specific and capital is firm specific. (Thus the “baseline”
case in table 3 corresponds to the “firm-specific” column of table 2.)
The values assumed for sm and ǫµ in the alternative cases are the
same as in figure 3.

One observes the average time between price changes implied by
any given estimate of ξ falls in the case that one assumes either
of the additional sources of real rigidities, and falls by even more
if one assumes both. Making corrections of both type that remain
within the range of empirically plausible parameter values, one finds
that a Phillips-curve slope of only 0.02 can be consistent with an
average period between price changes that is less than two and one-
half quarters. A Phillips-curve slope of 0.04 can instead be consistent
with an average period between price changes that is well below two
quarters. Since point estimates of this magnitude for ξ are obtained
in a number of studies (and it is within the 95 percent confidence
interval in an even larger number of cases), one cannot say that
estimates of ξ are too small to be consistent with microeconomic
evidence regarding the frequency with which prices change.

I conclude that there is no necessary conflict between the param-
eter values that are required to explain the co-movement between
overall inflation and aggregate output, as indicated by Phillips curves
estimated using aggregate time series, on the one hand, and the pa-
rameter values required for consistency with microeconomic obser-
vations, on the other. The appearance of a “micro/macro conflict”
results from simplifying assumptions in familiar derivations of the
New Keynesian Phillips curve that are not actually necessary in or-
der to obtain a relation between aggregate time series of that form,
and that are not realistic, either. When one adopts more realistic (or
at the very least, no less realistic) assumptions—industry-specific la-
bor markets, firm-specific capital, intermediate inputs required for
production, and a nonconstant elasticity of substitution among dif-
ferentiated goods for both consumption and investment purposes—
the discrepancy between the frequency of price adjustment that is
required to explain the aggregate co-movements and the one that is
indicated by microeconomic data disappears.

A similar conclusion is reached by Eichenbaum and Fisher (2004),
Altig et al. (2005), and Matheron (2005) in the context of economet-
ric models that allow for endogenous, firm-specific capital, follow-
ing the analysis presented above. While the first two papers place
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particular stress on the role of firm-specific capital in reconciling the
microeconomic and macroeconomic evidence, the assumption of an
aggregator of the Kimball form that departs substantially from the
Dixit-Stiglitz case is also important for the quantitative results of
Eichenbaum and Fisher. Matheron stresses the importance of allow-
ing for industry-specific labor as well as firm-specific capital. In the
case of his analysis with euro-area data, a specification with firm-
specific capital but homogeneous labor, as assumed by the other
authors, reduces the estimated time between price revisions relative
to the specification with economy-wide markets for both factors, but
not by nearly enough to reconcile the model with microeconomic
evidence on the frequency of price changes; allowing for both firm-
specific capital and industry-specific labor, as proposed here, results
in a substantial further reduction in the estimated time between price
revisions.

I have given particular attention to the importance of allowing
for firm-specific capital because, in the case that one allows for en-
dogenous capital accumulation, the assumption that capital is firm
specific results in a nontrivial complication in the analysis. It turns
out, however, that the same form of equilibrium relation between in-
flation dynamics and the evolution of average real marginal cost can
be derived under this assumption. Moreover, the relation between
the slope of the Phillips curve and the frequency of price adjustment
that can be derived under the simpler assumption of an exogenously
given capital stock for each firm turns out to be fairly accurate as an
approximation to the correct relation in the case of an empirically re-
alistic size of adjustment costs for investment. Hence the conclusions
of the earlier literature (beginning with Sbordone 1998) that drew
inferences about the frequency of price adjustment from estimated
Phillips curves under the implicit assumption of an exogenous cap-
ital stock are found to have been essentially correct, even if a more
precise inference can be made using the analysis given here.
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