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The Effects of Detailing on Prescribing Decisions under
Quality Uncertainty

Abstract

We develop a structural model of detailing and prescribing decisions under an environment

where detailing helps physicians obtain the current information sets about drug qualities. Our

model assumes that a representative opinion leader is responsible for updating the prior belief

about the quality of drugs via patients’ experiences, and manufacturers use detailing as a means

to build/maintain the measure of physicians who are informed of the current information sets.

We estimate our model using data on sales, prices, and detailing minutes at the product level

for ACE-inhibitor with diuretic in Canada. We quantify the marginal impact of detailing on

current demand at different points in time, and demonstrate how it depends on the measure of

well-informed physicians and the information sets. Furthermore, we conduct a policy experiment

to examine how a public awareness campaign, which encourages physicians/patients to report

their drug experiences, would affect managerial incentives to detail.

Keywords: Detailing, Prescription Drugs, Decisions Under Uncertainty, Representative Opin-

ion Leader, Diffusion
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The Effects of Detailing on Prescribing Decisions under

Quality Uncertainty

1 Introduction

Many serious Adverse Drug Reactions (ADRs) are discovered only after a drug has

been on the market for years. Only half of newly discovered serious ADRs are

detected and documented in the Physicians’ Desk Reference within 7 years after

drug approval.

Lasser et al. (2002), Journal of American Medical Association

A major tool of marketing communication in the prescription drug market is detailing,

in which drug manufacturers send sales representatives to visit physicians. This type of per-

sonal selling activities allows sales representatives to directly discuss compliance information,

side-effects, and clinical studies of the drugs. One challenge in managing detailing activities

throughout a drug’s product lifecycle is that even manufacturers may be uncertain about the

product attributes of their own drugs. Although some information on product attributes is

established from clinical trials when a drug gains approval from the public health agency, many

side-effects are not revealed until a large number of patients have tried the drug (Lasser et al.

2002).

One implication from this observation is that the information set about the quality of

drugs is changing over time. As a result, detailing may only help physicians to obtain the

current information about drugs. This is different from the conventional view of informative

detailing under which manufacturers know the true quality of their product from the beginning

of the product lifecycle, and use detailing to convey noisy signals about the true quality of

their drugs to physicians (e.g., Narayanan et al. 2005). Under the conventional framework,

the effectiveness of informative detailing will depend mainly on the true quality of the drugs

and how much information physicians have learned. However, when detailing helps physicians

obtain the most updated information about drugs, the effectiveness of detailing should directly

depend on the current information set.
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The goal of this paper is to provide a structural model that captures this alternative

view of informative detailing, and to quantify how the effectiveness of detailing changes when

additional information on drugs is revealed via patients’ experiences during the product lifecycle.

Our model can be estimated using standard product level panel data on sales volume, prices, and

detailing efforts. To demonstrate the usefulness of our model, we apply it to the ACE-inhibitor

with diuretic market in Canada.

In our model, detailing serves as a means to build/maintain the measure of physicians who

are informed of the most updated information. For each drug, physicians are either informed of

the most updated information or uninformed. We assume that the measure of physicians who are

informed about a particular drug to depend on its cumulative detailing efforts. We also assume

that the most updated information is maintained by a representative opinion leader. This is to

capture the idea that opinion leaders play an important role in disseminating new information

about drugs, and are often considered as an important source of the most up-to-date information

about the drug categories in which they specialize (e.g., Haug 1997, Thompson 1997). Further-

more, we model physicians’ forgetting by allowing the measure of well-informed physicians to

depreciate over time.1 One important implication of our framework is that informative detailing

will continue to affect physicians’ prescribing decisions even after the uncertainty about drugs’

efficacies and side-effects is completely resolved, as long as the depreciation rate for the measure

of well-informed physicians is strictly positive. In other words, our way of modeling informa-

tive detailing captures the role of reminding physicians of the most updated information about

drugs.

This paper also deals with the potential endogeneity problem of detailing. Conceivably,

when the prior belief about the quality of a drug is updated favorably, its manufacturer may re-

act to it by increasing his detailing efforts so as to bring this information to physicians.2 Ignoring

this endogeneity problem would potentially result in biased estimates of the parameters associ-

ated with detailing. Nonetheless, the structural modeling literature in pharmaceutical demand

1We provide a formal definition of forgetting in our context in Section 3.2.

2Azoulay (2002) finds evidence that drug companies change their detailing efforts when new information

about their drugs becomes available in the U.S. anti-ulcer drugs market.
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that uses product level data has so far neglected to take this endogeneity problem into account.3

To take the potential endogeneity problem of detailing into account, we extend the estimation

method proposed by Ching (2000; 2008b), which does not require solving manufacturers’ (dy-

namic or static) optimization problem. This method uses a reduced form approach to model

detailing as a function of observed and unobserved state variables that determine demand, and

then jointly estimate this pseudo-detailing policy function with the demand side model.

There has been a growing literature in economics and marketing that studies the demand

for pharmaceuticals using product level data.4 Most of these studies (e.g., Leffler 1981, Hurwitz

and Caves 1988, Berndt et al. 1997, Rizzo 1999, Narayanan et al. 2004, Osinga et al. 2007)

use a reduced-form approach to provide evidence that cumulative detailing can influence the

demand for drugs. Another set of studies takes a structural modeling approach to study how

uncertainty about drug qualities affects demand (e.g., Ching 2000; 2008a; 2008b, Narayanan

et al. 2005, Mukherji 2002). In particular, Narayanan et al. (2005) and Mukherji (2002) use

the framework of Erdem and Keane (1996) to investigate the effects of detailing on demand, in

which they assume manufacturers use detailing to convey noisy signals about the true quality

of their products to physicians. These studies provide a useful framework for quantifying the

impact of aggregate learning on demand and how detailing affects the rate of learning when

manufacturers have complete information about the quality of their drugs from the beginning of

the product lifecycle. However, to our knowledge, the existing structural modeling literature has

not studied the situation that detailing helps physicians to obtain the most updated information

about drug qualities.

3As far as we know, there is only one recent structural modeling paper by Dong et al. (2006), which endog-

enizes detailing at the individual level. The endogeneity problem that they focus on is different from ours. In

their case, the endogeneity problem is due to the unobserved physician level heterogeneity. In our case, it is due

to the unobserved product characteristics because we use product level data. Another difference is that Dong et

al. (2006) do not model consumer/physician learning.

4The majority of the studies in this industry use product level data because they are the least expensive data

that could be purchased from IMS. Recently, there are a few studies which use proprietary individual level data

to study the demand for prescription drugs (e.g., Gonul et al. 2001, Wosinska 2002, Manchanda et al. 2004,

Crawford and Shum 2005, Dong et al. 2006, Narayanan and Manchanda 2006). In particular, Crawford and

Shum (2005) and Narayanan and Manchanda (2006) model how an individual physician/patient learns his/her

own match with different drugs. Unfortunately, individual level data in this market is very hard to obtain.
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Our paper is also related to the consumer learning literature. In addition to Erdem and

Keane (1996), the following papers are particularly relevant. Mullainathan (2002) studies learn-

ing and forgetting in a theoretical model. Mehta et al. (2004) develop and estimate a structural

model of learning with forgetting using individual level scanner data instead of product level

data. Both Mullainathan (2002) and Mehta et al. (2004) do not model the effect of market-

ing communication mix. Ackerberg (2003) estimates a model in which a consumer infers the

value of the product to him/her from the advertising intensity (implicitly through the signal-

ing equilibrium). He does not allow for consumer forgetting. Moreover, similar to Erdem and

Keane (1996), he assumes manufacturers know the true mean quality of their products. Ching

(2000; 2008a; 2008b) estimates a structural learning model to examine the equilibrium pricing

strategies and diffusion pattern empirically in the U.S. prescription drug market after patent

expiration. However, since brand-name firms usually cut their detailing efforts dramatically

after patent expiration, he does not model detailing.

As far as we know, this is the first paper that develops an empirical structural model

to study the effects of detailing on demand, under the environment that detailing can help

physicians obtain the most updated information about drugs. Our main findings can be sum-

marized as follows: First, we quantify the marginal impact of detailing on current demand at

different points in time and show how it depends on the measure of well-informed physicians

and the information sets; Second, we find evidence that the endogeneity problem biases the

estimates of the coefficients associated with detailing; Third, using our parameter estimates, we

conduct a policy experiment to evaluate how a public awareness campaign, which encourages

physicians/patients to report their drug experiences, would affect managerial incentives to de-

tail. Given our parameter estimates, we find that the marginal return of detailing has increased

under this campaign, suggesting that managers should increase their detailing efforts.

The rest of the paper is organized as follows. Section 2 provides some background of the

prescription drug market. Section 3 describes the demand model. Section 4 describes data and

the estimation strategy. Section 5 discusses the results. Section 6 is the conclusion.
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2 Background

Why would the information about drugs’ efficacies and side-effects change over time? To un-

derstand this, it is important for us to give some background information about the approval

process of new drugs. Most countries, including the U.S. and Canada, have a similar approval

process. Drug manufacturers are required to prove that a new drug is safe and effective before

marketing it. The proof involves a series of clinical trials, which are divided into three phases.

Phase I and II studies provide basic evidence that the drug works in a small sample of patients.

Phase III studies require a relatively larger sample of patients, which ranges from hundreds to

several thousands. These studies are designed to evaluate the safety and effectiveness of the

drug, wherein manufacturers need to demonstrate that the drug works better than a placebo.

Nevertheless, manufacturers are not required to show that the new drug performs better than

existing drugs that treat the same problem. Moreover, although most public health agencies set

high standards for phase III clinical studies, it is not uncommon that they do not reveal all the

side-effects, as documented by Lasser et al. (2002).

Physicians are supposed to keep themselves updated of the latest information for drugs.

However, with many new drugs entering the market each year, it is difficult for general physicians

to keep up with the enormous amount of information that changes regularly.5 Most primary

care physicians therefore rely on three external sources of information: (1) sales representatives

(Coleman et al. 2004, p.179, Greider 2003, p.67); (2) peers who are opinion leaders (Haug 1997,

Thompson 1997); (3) medical journals. Among these three external sources, sales representatives

are the most time-saving source of information because they visit primary care physicians,

compile information on clinical studies for them, and remind them of drug information. Given

that primary care physicians are usually occupied with seeing patients, without detailing, it is

plausible that they may forget the information about a drug’s attributes (e.g., side-effects and

efficacy profile) over time, and they may become reluctant to prescribe the drug. There is indirect

evidence that supports this hypothesis: Caves et al. (1991) find that most drug manufacturers

5For example, the number of active drugs in the cardiovascular drug category increased from 215 in March

1993 to 294 in February 1999 in Canada.
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during the 80s dramatically reduces their detailing efforts for drugs whose patents are about to

expire, and the total demand for those drugs typically declines over time after patent expiration.

It is possible that the presentations given by sales representatives are biased towards the

drugs they promote. This possibility appears to be well-recognized by health care professionals

(e.g., Cooper et al. 2003, Ziegler et al. 1995), and physicians are usually cautious when listening

to the sales representatives’ claims. It is common that during their visits, sales representatives

hand out printed documents related to efficacies and side-effects of the drugs being promoted

(e.g., published academic articles about clinical trials). Although the printed documents may

not be complete, more likely than not it saves physicians’ time in gathering the related literature.

Most importantly, the favorable picture of the drug presented by them may trigger physicians’

interests to learn the latest information of the drug being promoted. They may then be more

likely to read the related medical literature, or contact peers who are opinion leaders in the

related field for more information. One implication of this hypothesis is that the impact of

detailing on demand would depend on the actual effectiveness and side-effects of the drug. A re-

cent study by Venkataraman and Stremersch (2006) finds evidence that supports this hypothesis

in three therapeutic classes: anti-cholesterol drugs (statins), gastrointestinal drugs and erectile

dysfunctions drugs. Our way of modeling detailing will be consistent with this hypothesis.

It should also be emphasized that opinion leaders play an important role in disseminating

the most current information about drugs in this industry. The medical continuing education

literature find that opinion leaders is an important source of information for general physicians

(e.g., Haug 1997, Thompson 1997). In Medicine, opinion leaders are physicians who specialize

in doing research in a particular field (e.g., cardiovascular). The research focus of their career

allows them to be much more updated about the current evidence about the drugs used in the

field. In our model, we introduce a representative opinion leader to capture their role.

3 Model

We now turn to discuss our model of detailing and prescribing decisions. Our framework here

extends Ching (2000; 2008b). In our model, there are three types of agents: physicians, man-

6



ufacturers, and a representative opinion leader. There are two types of products: inside goods

which represent the products that use similar chemical compounds (so-called “me-too” drugs),

and an outside good that represents their substitutes (0). Product characteristics can be distin-

guished as pj and qj, j = 1, ..., J , where pj is the price of product j, and qj is the mean quality

level of product j. All agents in the model are perfectly informed about pj, but are imperfectly

informed about the drug’s mean quality level, qj.

To capture the idea that there are opinion leaders who gather the most recent information

about drug qualities, we introduce a representative opinion leader in our model. The repre-

sentative opinion leader maintains a vector of public information sets, I(t) = (I1(t), ..., IJ(t)),

which describes the most updated belief about q = (q1, . . . , qJ) at time t based on past patients’

experiences available to the public. For each drug j, a physician either knows Ij(t), or Ip
j , which

is the initial prior that physicians have when drug j is first introduced. Let Mjt be the measure

of physicians who know Ij(t). We assume that Mjt depends on the cumulative detailing efforts

at time t. There are two stages in each period. In the first stage, manufacturers choose the

amount of detailing, Djt. Given Djt, Mjt is determined. Each physician makes his/her pre-

scribing decision based on his/her information about the drugs. In the second stage, patients

consume the prescribed drugs and some of their experience signals are revealed to the public.

The representative opinion leader then uses these signals to update I(t+1) in a Bayesian fashion.

We will describe these two stages backward.

3.1 Updating of the Information Set

A drug is an experienced good. Consumption of a drug provides information about its quality.

It is assumed that physicians and patients in the model can measure drug qualities according to

a fixed scale. For example, a patient can measure quality in terms of how long he/she needs to

wait before the drug becomes effective to relieve his/her symptoms, how long his/her symptoms

would be suppressed after taking the drug, or how long the side-effects would last.6

6Obviously, drug qualities are multi-dimensional. Implicitly, we assume patients are able to use a scoring rule

to map all measurable qualities to a one-dimensional index. It is the value of this one-dimensional index that

enters the utility function.
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Each patient i’s experience with the quality of drug j at time t (q̃ijt) may differ from its

mean quality level qj. As argued in Ching (2000), the difference between q̃ijt and qj could be

due to the idiosyncratic differences of human bodies in reacting to drugs. An experience signal

may be expressed as,

q̃ijt = qj + δijt, (1)

where δijt is the signal noise. We assume that δijt is an i.i.d. normally distributed random

variable with zero mean:

δijt ∼ N(0, σ2
δ ), (2)

and the representative opinion leader’s initial prior on qj (Io
j) is also normally distributed:

qj ∼ N(qo

j
, σo2

j ). (3)

The representative opinion leader updates the public information set at the end of each period

using the experience signals that are revealed to the public. The updating is done in a Bayesian

fashion. In each period, we assume that the number of experience signals revealed is a random

subsample of the entire set of experience signals. This captures the idea that not every patient

revisits and discusses his/her experiences with physicians, and not every physician shares his/her

patients’ experiences with others.

According to the Bayesian rule (DeGroot 1970), the expected quality is updated as follows:

E[qj|I(t + 1)] = E[qj|I(t)] + ιj(t)(q̄jt − E[qj|I(t)]), (4)

where q̄jt is the sample mean of all the experience signals that are revealed in period t.7 ιj(t) is

a Kalman gain coefficient, which is a function of the variance of the signal noise (σ2
δ ), perceived

variance (σ2
j (t)), the quantity sold at time t (njt), and the proportion of experience signals

revealed to the public (κ), and it can be expressed as:

ιj(t) =
σ2

j (t)

σ2
j (t) +

σ2

δ

κnjt

. (5)

7Let qj be the true mean quality level of drug j. Then, q̄jt|(κnjt, I(t)) ∼ N(qj ,
σ2

δ

κnjt
).
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ιj can be interpreted as the weights that the representative opinion leader attaches to the

information source in updating its expectation about the level of qj. In particular, ιj(t) increases

with σ2
j (t).

The perception variance at the beginning of time t + 1 is given by (DeGroot 1970):

σ2
j (t + 1) =

1
1

σ2

j (0)
+

κNjt

σ2

δ

, (6)

where Njt(=
∑t

τ=1 njτ ) is the cumulative consumption of drug j, or,

σ2
j (t + 1) =

1
1

σ2

j (t)
+

κnjt

σ2

δ

. (7)

Equation (6) implies that, after observing a sufficiently large number of experience signals for

a product, the representative opinion leader will learn about qj, at any arbitrarily precise way

(i.e., σj(t) → 0 and E[qj|I(t)] → qj as the number of signals received grows large). We will next

turn to discuss the physicians’ choice problem and how detailing influences their choices.

3.2 Detailing and Measure of Well-Informed Physicians

There is a continuum of physicians with measure one. They are heterogeneous in their infor-

mation sets. A physician is either well-informed or uninformed about drug j. A well-informed

physician knows the current information set maintained by the representative opinion leader,

i.e., Ij(t). An uninformed physician only knows the initial prior, i.e., Ip
j = N(qp

j
, σp2

j ). This

implies that the number of physician types is 2J . Note that physicians’ initial prior Ip
j could

differ from the initial prior of the representative opinion leader, Io
j .

We assume that manufacturers observe I(t) when they decide the amount of detailing,

D1t, ..., DJt. In general, the measure of well-informed physicians for drug j at time t, Mjt, is a

function of Mjt−1 and D1t, ..., DJt. For simplicity, we assume that this function only depends on

Mjt−1 and Djt, i.e., Mjt = f(Mjt−1, Djt). We assume that f(Mjt−1, .) is monotonically increasing

in Djt. To capture the idea that physicians may forget, we assume that f(M, 0) ≤ M, ∀M .

Two remarks should be made regarding the way we model the relationship between detail-

ing and the measure of well-informed physicians. First, similar to Mullainathan (2002), we do
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not allow uninformed physicians for drug j at time t to possess any Ij(t
′) for t′ < t, but Ip

j . As

we mentioned above, even with our current setup, the number of types increases exponentially

in J . Although allowing physicians who “partially” forget may seem more appealing, it will

dramatically increase the size of the state space – we would need to keep track of the measure

of physicians who know Ij(t
′), for all j and t′ < t. The number of types will increase to tJ in

time t. Such a modification will make the model computationally infeasible to estimate using

product level data.8 On the other hand, our assumption is not as restrictive as it may seem.

One interpretation is that we approximate the aggregate demand from tJ types of physicians by

randomizing the demand of 2J types.

Second, we assume that Mjt depends on Djt partly because the main job of sales rep-

resentatives is to give physicians documented information about side-effects and efficacies of

the drug that they are promoting. We do not mean that physicians simply believe what sales

representatives claim during their conversations. Rather, we try to capture the intuition that

detailing would increase the chances that physicians obtain the most recent information about

the drug (by consulting their peers, reading the medical literature, etc.). This could be because

the visits stimulate their interests, increase their awareness of existing or new clinical studies,

and make it easier for them to access the relevant journal articles.

In our econometric model, we capture the relationship between Mt and (Mt−1, Dt) by

introducing a detailing goodwill stock, GI
jt, which accumulates as follows:

GI
jt = (1 − φI)G

I
jt−1 + Djt, (8)

where Djt is manufacturer j’s detailing efforts in time t, and φI ∈ [0, 1] is the corresponding

depreciation rate. We specify the relationship between Mjt and GI
jt as:

Mjt =
exp(β0 + β1G

I
jt)

1 + exp(β0 + β1GI
jt)

. (9)

Define the average rate of forgetting, φM ≡ (M − f(M, 0))/M . Although φI is a constant,

GI
jt affects Mjt nonlinearly. In particular, the implied average forgetting rate, φM , will exhibit

8However, with individual level data, it is feasible to estimate a model of learning with partial forgetting

(Mehta et al. 2004).
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an inverted-U shape. This might first appear to be restrictive, but it is consistent with the

following intuition. It is likely that individual physicians are heterogeneous in terms of their

rate of forgetting. Some physicians who are more willing to spend time to keep up with the

most recent medical literature themselves are likely to have a lower rate of forgetting. Other

physicians who prefer to spend most of their time seeing patients, are likely to have a higher

rate of forgetting – they probably will rely more on sales representatives to help them get

the most updated information. When M is small, we expect that most of the well-informed

physicians would be those who have a lower rate of forgetting. As M increases, we expect that

the proportion of well-informed physicians who have a higher forgetting rate would increase.

On the other hand, we expect that the number of interactions among well-informed physicians

would also increase with M . They might remind each other about how this drug works, which

helps reduce the average rate of forgetting (i.e., the network effect). These two forces work

against each other. In particular, it is likely that the latter dominates the former when M is

large, and vice versa. We therefore expect that when M is small, φM will first increase with M

at a diminishing rate. After M has passed a certain threshold, φM will eventually decrease with

M .

3.3 Prescribing Decisions

Now we turn to discuss how physicians make their prescribing decisions. Each physician takes

the current expected utility of his/her patients into account when making prescribing decisions.

Physician h’s objective is to choose dhij(t) to maximize the current period expected utility for

his/her patients:

E[
∑

j∈{0,1,...,J}

uijt · dhij(t)|I
h(t)], (10)

where dhij(t) = 1 indicates that alternative j is chosen by physician h for patient i at time t,

and dhij(t) = 0 indicates otherwise. We assume that
∑

j dhij(t) = 1. The demand system is

obtained by aggregating this discrete choice model of an individual physician’s behavior.

We assume that a patient’s utility of consuming a drug can be adequately approximated

by a quasilinear utility specification, additively separable in a concave subutility function of
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drug return, and a linear term in price. The utility of patient i who consumes drug j at time t

is given by the following expression:

uijt = α − exp(−rq̃ijt) − πppjt + ζikt + eijt, (11)

where pjt is the price for product j at time t; r is the risk aversion parameter; α is the common

intercept across drugs; πp is the utility weight for price; (ζikt +eijt) represents the distribution of

patient heterogeneity; k indexes nest (i.e., inside good or outside good).9 ζikt and eijt are unob-

served to the econometrician but observed to the physicians when they make their prescribing

decisions. We assume that ζikt and eijt are i.i.d. extreme value distributed. The exponen-

tial specification of the subutility function of drug return is known as the Constant Absolute

Risk Aversion (CARA) utility. In this specification, r represents the coefficient of absolute risk

aversion.

Note that q̃ijt is observed neither by physicians nor patients when prescribing decisions

are made. It is observed by physicians/patients only after patients have consumed the drug,

but it remains unobserved by the econometrician. Physicians make their decisions based on

the expected utility of their patients. Let I(t) and Ih(t) denote the representative opinion

leader’s information set and physician h’s information set at time t, respectively. If physician h

is well-informed about drug j at time t, his/her expected utility will be:

E[uijt|I
h(t)] = E[uijt|Ij(t)] (12)

= α − exp(−rE[qj|I(t)] +
1

2
r2(σ2

j (t) + σ2
δ )) − πppjt

+ζikt + eijt.

If physician h is uninformed about drug j at time t, his/her expected utility of choosing drug j

becomes:

E[uijt|I
h(t)] = E[uijt|I

p
j ] (13)

= α − exp(−rqp

j
+

1

2
r2(σp2

j + σ2
δ )) − πppjt + ζikt + eijt.

9This is equivalent to modeling physicians’ choice as a two-stage nested process, where they choose between

the inside goods and the outside good in the first stage, and then choose an alternative among the inside goods

in the second stage.
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It should be noted that patient heterogeneity components of the utility function (ζikt, eijt) reap-

pear in the expected utility equation because they are stochastic only from the econometrician’s

point of view.

Equations (11)-(13) apply only to the inside alternatives. In each period, physicians

may also choose an outside alternative that is not included in our analysis (i.e., other non-

bioequivalent drugs). We assume the expected utility associated with the outside alternative

takes the following functional form:

E[ui0t|I
h(t)] = α0 + πtt + ζi0t + ei0t. (14)

The time trend of the outside alternative allows the model to explain why the total demand for

inside goods may increase or decrease over time.

The quantity demand, njt, can be expressed as,

njt = Sizet · S(j|Dt, (E[qj|I(t)], σj(t),Mjt−1)
2
j=1; θd) + ǫjt, (15)

where Sizet is the size of the market, S(j|·) is the market share of drug j, ǫjt represents a

measurement error, and θd is a set of demand side parameters.

3.4 Empirical Implications and Identification

To illustrate some empirical implications of our model for the effectiveness of detailing, we

consider the case of two products. In this case, there are four types of physicians (22) who

differ in their information sets. Let sjt(Ij, Ik) be the probability of choosing drug j at time t

by physicians who have the information sets Ij and Ik for drugs j and k, respectively (j 6= k).

Then the market share for drug j at time t is given by,

Sjt = MjtMktsjt(Ij(t), Ik(t)) + Mjt(1 − Mkt)sjt(Ij(t), I
p
k) (16)

+(1 − Mjt)Mktsjt(I
p
j , Ik(t)) + (1 − Mjt)(1 − Mkt)sjt(I

p
j , I

p
k),

where sjt(Ij, Ik) has a closed form expression given that we use the nested logit framework. It

follows that the marginal return of detailing on current market share for drug j is,

∂Sjt

∂Djt

=
∂Mjt

∂Djt

× {Mkt∆sjt(Ik(t)) + (1 − Mkt)∆sjt(I
p
k)}, (17)
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where ∆sjt(Ik) ≡ sjt(Ij(t), Ik)− sjt(I
p
j , Ik). Intuitively, ∆sjt(Ik) is the change in the probability

of choosing j when a physician switches his/her information set for drug j from Ip
j to Ij(t),

conditional on his/her information set for drug k being Ik. Equation (17) shows that the marginal

return of detailing depends on ∆sjt(Ik(t)) and ∆sjt(I
p
k), which are weighted by Mkt and 1−Mkt,

respectively. This weighted average is further adjusted by ∂Mjt/∂Djt. It is worth noting that

∂Sjt/∂Djt increases (decreases) with Mkt if (∆sjt(Ik(t)) − ∆sjt(I
p
k)) is positive (negative).

Consider a situation where a new drug enters a market with a matured incumbent (in the

sense that the representative opinion leader has learnt the true quality of the incumbent, i.e.,

Ik(t) → Ik(∞)). Conditional on M , equations (16) and (17) imply that the entrant’s marginal

return of detailing will increase with its market share. Moreover, the detailing elasticity of de-

mand in our model could increase or decrease over time partly depending on how I(t) evolves.

In particular, even after the uncertainty about the drug quality is completely resolved, detailing

still affects demand as long as φI > 0, and its effect depends on I(t), Ip and Mjt−1 (i.e., GI
jt−1).

On the contrary, previous models of learning and informative detailing/advertising, which follow

the framework of Erdem and Keane (1996), imply that the detailing/advertising elasticity of

demand diminishes over time as uncertainty about product quality is slowly resolved. This

demonstrates that the empirical implications from our model are quite different from those from

the previous models.

A new feature in our model is the way detailing builds/maintains the measure of well-

informed physicians. It is worth discussing the identification of β1 and φI . It may first appear

that it is hard to separately identify them, because intuitively the effect on M due to an increase

in β1 (which captures the role of building up M) could be canceled by increasing φI (which

captures the depreciation rate of M) appropriately. However, a more careful examination of

equations (8) and (9) reveals that there are subtle differences in terms of how M is generated

by β1 and φI . In particular, equation (8) implies that a change in φI has a multiplier effect on

M (and it translates to a multiplier effect on demand), while equation (8) implies that a change

in β1 does not has such a multiplier effect.10

10For the identification of learning parameters, please refer to Ching (2008b).
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4 Estimation

4.1 Overview of the Data

Having described our model, we now turn to an application. We estimate our model using

Canadian data for ACE-inhibitor with diuretic, which treats hypertension. ACE-inhibitor (An-

giotensin Converting Enzyme Inhibitor) works by limiting the production of a substance that

promotes salt and water retention in the body. Diuretic induces the production and elimination

of urine, which helps in lowering blood pressure. This class of combination drugs is usually not

prescribed until therapy is under way.

We choose Canada and ACE-inhibitor with diuretic for three reasons. First, most of the

patients who have high blood pressure are elderly, and their prescription drugs are covered by

the Canadian government. Moreover, Canada has price regulations on brand-name drugs. The

Patented Medicine Price Review Board restricts Canadian prices of patented drugs to be below

the median prices of G7 countries. There is evidence which suggests that this constraint is

binding on average (Elgie 2001). These institutional details, which suggest that price does not

play an important role in determining demand, allow us to treat prices as exogenous and focus

on modeling the effects of detailing. Second, the market of ACE-inhibitor with diuretic does

not have direct-to-consumer (DTC) advertising. DTC advertising has increased dramatically in

the U.S. since 1997. It is believed that it plays an important role in the demand for prescription

drugs. However, the way that DTC advertising influences physicians’ choice is likely to be

different from detailing. Modeling the effects of DTC advertising is beyond the scope of this

paper. Third, the market of ACE-inhibitor with diuretic only has two dominant drugs. We feel

that it is sensible to first apply our framework to this simple market before tackling markets

with more competitors.

Data sources for this study come from IMS Canada, a firm that specializes in collecting

sales and advertising data for the Canadian pharmaceutical industry. The revenue data is

drawn from their Canadian Drugstore and Hospital Audit (D&H); the number of prescriptions

is drawn from their Canadian Compuscript Audit (CCA); the number of detailing minutes is
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drawn from their Canadian Promotion Audit (CPA). Although D&H does not include purchases

made by the government, mail order pharmacies, and nursing homes or clinics, IMS believes

that it covers about 90% of total sales. The price is obtained by dividing the revenue by the

number of prescriptions. We deflated the prices using the consumer price index in the Canadian

pharmaceutical industry. We note that on average less than one percent of sales is from hospital

purchases. Due to its dominance, we only model the segment of the drugstore market and ignore

how hospitals reach their purchase decisions.

The data set contains monthly data from March 1993 to February 1999. There are two main

brand-name drugs in the market – Vaseretic and Zestoretic. Vaseretic is marketed by Merck; its

generic ingredients are enalapril and hydrochlorothiazide. It was approved by Health Canada in

September 1990. Zestoretic is marketed by AstraZeneca; its generic ingredients are lisinopril and

hydrochlorothiazide. It was approved in October 1992. Both of them are present throughout

the sample period, and they capture more than 80% of sales of the ACE-inhibitor with diuretic

category. We therefore focus our analysis on these two drugs. Treating product/month as one

observation, the total sample size is 144. We report the summary statistics in Table 1.

For an overview of the data, we plot the number of prescriptions filled for Vaseretic and

Zestoretic in Figure 1. The sales of both drugs increase over time. The monthly sales of

Vaseretic grow slowly and steadily from 2,500 prescriptions to 4,500 prescriptions, while Ze-

storetic’s monthly sales grow at a much faster rate from around 300 prescriptions to more than

14,000 prescriptions. Being the incumbent of the ACE-inhibitor with diuretic, the sales of

Vaseretic is about eight times that of Zestoretic at the beginning of the sample period (March

1993). It took Zestoretic more than two years to overtake Vaseretic’s sales. By the end of the

sample period (February 1999), the sales of Zestoretic is more than three times that of Vaseretic.

The sales trend of Zestoretic is remarkable, and illustrates the slow diffusion of new drugs well

documented in this industry. The potential size of the market is defined as the total number

of prescriptions for drugs that belong to ACE-inhibitor, Thiazide Diuretic, and ACE-inhibitor

with diuretic. It increases from 655,000 to 860,000 during the sample period.

We also plot detailing minutes in Figure 2. The average detailing minutes of Zestoretic

are about the same as those of Vaseretic before t = 30. But after t = 30, about the time when
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Zestoretic overtakes Vaseretic, the average detailing minutes of Zestoretic becomes higher than

Vaseretic. It should also be noted that detailing minutes fluctuates a lot. The fluctuation should

help us identify the parameters of that determine the measure of well-informed physicians (i.e.,

β0, β1, and φI).

4.2 Simultaneity Problem

If prices and detailing are exogenous, then we can form a likelihood function simply based

on demand equations (i.e., equation (15)), and choose parameters to maximize the likelihood.

However, as we argued above, although we are willing to assume price is exogenous, we feel

that detailing could be potentially endogenous. It is plausible that manufacturers observe I(t)

before detailing takes place in each period. If this is true, detailing could be a function of I(t).

In particular, we expect that Djt may be correlated with E[qj|I(t)] and σj(t). For instance, if

E[qj|I(t)] is higher than E[qk|I(t)], manufacturer j may have an incentive to increase Djt so as

to disseminate the information. If we ignore this correlation, the parameters for building up the

measure of well-informed physicians will likely be biased upward. In other words, maximizing

the likelihood function simply based on equation (15) might give us biased estimates.

A popular method to estimate this class of model using product level data is developed

by Berry et al. (1995) (BLP). They show that there is a one-to-one mapping between the mean

utility levels and the observed market shares, conditional on a parameter vector. As a result, it

is possible to construct a GMM objective function based on the mean utility function without

explicitly solving the supply side model. However, as pointed out by Chernozhukov and Hong

(2003), BLP’s GMM objective function is highly nonconvex with many local optima. This poses

a formidable challenge when minimizing it in practice. Another way to handle this endogeneity

problem is to explicitly model manufacturers’ decision on detailing, and incorporate their de-

tailing policy functions in a full-information maximum likelihood procedure. Since detailing has

a long-lived effect, this would involve developing a forward-looking dynamic oligopoly structural

model. Unfortunately, estimating this type of dynamic oligopoly model using a full-solution

method has proved to be infeasible given today’s computational power.
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In this paper, we estimate our model using the approach developed by Ching (2000; 2008b).

Similar to BLP, this method does not require solving the dynamic oligopolistic supply side model.

To take the endogeneity of detailing into account, he proposes to approximate manufacturers’

policy functions by expressing it as a polynomial of the state variables (both observed and

unobserved), and then jointly estimate this pseudo-policy function and the demand model.11

This approach does not require us to make any strong assumptions about the equilibrium

solution, and whether drug manufacturers maximize their total discounted profits or current

profits. So we can avoid some risks of misspecifying the supply side, which may result in biased

estimates. More importantly, it allows us to avoid the computational burden of solving a dynamic

oligopoly model when estimating the demand model. However, there are two drawbacks in this

approach: (i) It increases the number of parameters to estimate due to the pseudo-detailing

policy functions; (ii) The estimates are not as efficient as full-information maximum likelihood

because the supply side model is not explicitly modeled in the estimation.

Regardless of whether manufacturers are forward-looking or myopic, the state variables of

our model consist of (E[qj|I(t)], σ2
j (t),Mjt−1)

2
j=1. We therefore assume that the detailing policy

function depends on these variables. The detailing policy function may also depend on variables

that we do not explicitly model. For instance, the total detailing minutes by manufacturer j

in the cardiovascular drug category could affect Dj. It is possible that a manufacturer sets

its detailing budget for the entire cardiovascular drug category first, and then determines the

detailing for individual drugs in the category. We therefore include the total detailing minutes

by manufacturer j in the cardiovascular drug category net Dj in the pseudo-detailing policy

function.12 This variable is useful in identifying the parameters associated with detailing in

the demand model (i.e., β0, β1, and φI) because it plays the role of exclusion restriction, and

essentially serves as an instrumental variable for Djt. Berndt et al. (2003) use this variable as

the instrument for detailing in their reduced form model.

11This method can also be applied to address price endogeneity. See Ching (2008b) for further details.

12Cardiovascular drug category includes ACE-Inhibitor, Antihypertensive, Beta-Blocker, Calcium Channel

Blocker, Diuretic, etc.
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When specifying the pseudo-detailing policy function, ideally one would use a flexible high

order polynomial to do the approximation if the sample is large. In practice, however, one may

need to make some trade-offs between flexibility and the number of parameters by choosing a

functional form carefully. After experimenting with a number of functional forms, we specify

the detailing policy function as follows: For j, k = 1, 2, and j 6= k,

log(Djt) = λj0 + (λj1 + λj2 ∗ Mkt−1) ∗ (1 − Mjt−1) ∗ |∆uq
jkt| ∗ I(∆uq

jkt > 0)

+(λj3 + λj4 ∗ Mkt−1) ∗ Mjt−1 ∗ |∆uq
jkt| ∗ I(∆uq

jkt < 0)

+λj5 ∗ IVjt + νjt, (18)

where

∆uq
jkt = E[uq

jt|I(t)] − E[uq
kt|I(t)], (19)

E[uq
jt|I(t)] = −exp(−rE[qj|I(t)] +

1

2
r2(σ2

j (t) + σ2
δ )), (20)

νjt is the prediction error, I(·) is an indicator function, and IVjt is the instrumental variable

described above. Note that E[uq
jt|I(t)] is part of the expected utility that depends on E[qj|I(t)]

and σ2
j (t). ∆uq

jkt is difference between this partial expected utility from choosing drug j and k.

Our model suggests that manufacturer j has an incentive to increase detailing if ∆uq
jkt > 0.

Such an incentive is stronger if Mjt−1 is small because of the diminishing return of ∂Mj/∂Dj. We

therefore interact (1−Mjt−1) with |∆uq
jkt| when ∆uq

jkt > 0. We expect the coefficient associated

with the interaction term to be positive (i.e., λj1 > 0). Similarly, when ∆uq
jkt < 0, we interact

Mjt−1 with |∆uq
jkt|. We expect that manufacturer j would have less incentives to detail when

Mjt−1 is large. However, when Mjt−1 is small, manufacturer j, if forward-looking, may still detail

more in order to build up Mj earlier even though ∆uq
jkt < 0. This is because manufacturer j

may take into consideration the stochastic nature of ∆uq
jkt, which could become positive later.

The sign of the coefficient for the interaction term (i.e., λj3) is therefore ambiguous.

As shown in equation (17), the static marginal return of detailing depends on the measure

of well-informed physicians for a competing drug as well. This implies that the dynamic marginal

return of detailing for drug j will also depend on Mkt, j 6= k. Therefore, we also allow Mkt−1 to

interact with Mjt−1 and ∆uq
jkt. Following from equation (17), if manufacturers are myopic, the

sign of λj2 and λj4 would be positive if ∆sjt(Ik(t)) > ∆sjt(I
p
k), and vice versa. If manufacturers
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are forward-looking, they will take the future stochastic evolution of I(t) into account, and the

sign of λj2 and λj4 would be ambiguous.

The following two subsections describe the likelihood function and the initial conditions

problem. Readers who are not interested in details may skip to Section 5 directly.

4.3 The Likelihood Function

Assuming that the prediction error, νjt, in equation (18) is normally distributed, we obtain the

conditional likelihood of observing Dt,

fd(Dt|(E[qj|I(t)], σj(t),Mjt−1)
2
j=1; θs), (21)

where θs is the vector of parameters.

Assuming that the measurement error, ǫjt, in equation (15) is normally distributed, and

denote fn(nt|Dt, (E[qj|I(t)], σj(t),Mjt−1)
2
j=1, Sizet; θd) as the likelihood of observing nt condi-

tional on (Dt, (E[qj|I(t)], σj(t),Mjt−1)
2
j=1, Sizet). The joint likelihood of observing (nt, Dt) is

simply the product of fn(nt|Dt, .) and fd(Dt|.):

l(nt, Dt|(E[qj|I(t)], σj(t),Mjt−1)
2
j=1, Sizet; θd, θs) = (22)

fn(nt|Dt, (E[qj|I(t)], σj(t),Mjt−1)
2
j=1, Sizet; θd)fd(Dt|(E[qj|I(t)], σj(t),Mjt−1)

2
j=1; θs).

Now note that σj(t) is a function of {njτ}
t−1
τ=1 (see (7)). Therefore, one can rewrite (22) as,

l(nt, Dt|(E[qj|I(t)], σj(t),Mjt−1)
2
j=1, Sizet; θd, θs) = (23)

l(nt, Dt|(E[qj|I(t)], {njτ}
t−1
τ=1, Mjt−1)

2
j=1, Sizet; θd, θs).

The likelihood of observing n = {nt}
T
t=1 and D = {Dt}

T
t=1 is,

L(n, D|{E[q|I(τ)],Mτ−1, Sizeτ}
T
τ=1; θd, θs) = (24)

T
∏

t=1

l(nt, Dt|E[q|I(t)], {nτ}
t−1
τ=1,Mt−1, Sizet; θd, θs).

But E[q|I(t)] is unobserved to the econometrician and therefore must be integrated over to form

the unconditional sample likelihood for (n,D). Evaluating such an integral numerically is very
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difficult. It involves high order integrals because E[q|I(t)] is autocorrelated. We resolve this

problem by using the method of simulated maximum likelihood. The details of the simulation

procedures are similar to Ching (2008b).

4.4 Initial Conditions Problem

Notice that both Vaseretic and Zestoretic were introduced before March 1993, the first period

of our data set. Therefore, we do not observe the initial values of the state variables at t = 1:

GI
j0, E[qj|I(1)] and σj(1). Given this initial conditions problem, consistent estimation for fixed T

requires integration over the joint unconditional distribution of the state variables at t = 1. As

discussed in Heckman (1981), this integration is extremely difficult. It requires us to explicitly

incorporate complete dynamic equilibrium since the inception of both drugs into the estimation

procedure. As discussed above, this approach is not computationally feasible at this point.

We therefore adopt a middle-ground approach. We set (DjtIj
, ..., Dj0) equal to the average

Djt for the first 30 observations, where tIj is the period that drug j is introduced. In other words,

for t = tIj , ..., 0, we set Djt = D̄j, where D̄j =
∑

30

t=1
Djt

30
. Also, for t = tIj , ..., 0, we set pjt at the av-

erage observed values. For the size of market, we first run a linear regression of the size of market

on a constant and time trend and then use the predicted values to fill in Sizet, for t = tIj , ..., 0.

Given the imputed values of (DjtIj
, ..., Dj0), (pjtIj

, ..., pj0), and (SizetIj
, ..., Size0), we use our physi-

cian’s choice model to simulate the unconditional joint distribution of (GI
j0, E[qj|I(1)], σj(1)),

which is then incorporated in our likelihood function.

5 Results

5.1 Parameter Estimates

We now discuss the parameter estimates. The total number of structural demand parameters

is 14. Recall that we treat Vaseretic and Zestoretic as inside goods because they compose more

than 80% of the demand for the ACE-inhibitor with diuretic. We combine all other drugs that
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belong to ACE-inhibitor with diuretic, ACE-inhibitor, and Thiazide Diuretic as the outside

good. For identification reasons, we need to normalize the scaling parameter for the number

of consumption experience signals, κ, the intercept term for the utility of the outside good, α0,

and the true mean quality of Vaseretic, q1. We set κ = 1/30000, and α0 = q1 = 0. We also

restrict Io
j = Ip

j ≡ Ij and σo
j = σp

j ≡ σ,∀j because we do not observe the data during the initial

part of the product lifecycle, which is important in identifying their difference. We refer to I as

the market initial prior.

Table 2 shows the parameter estimates. Model 1 refers to the model presented above. Drug

1 is Vaseretic (incumbent) and drug 2 is Zestoretic (entrant). The time trend of the outside good

(πt) is negative and significant, indicating that the value of the outside good relative to inside

goods is declining over time. This is consistent with the continuous expansion of demand for

both Vaseretic and Zestoretic, as shown in Figure 1. The parameter estimates for the true mean

quality and the initial priors are all statistically significant. The true mean quality of Zestoretic

(q2) is 29.04, which is higher than that of Vaseretic (q1). The initial prior mean qualities of

Vaseretic and Zestoretic are -10.24 and -18.92, respectively, which are lower than their true

mean qualities. This indicates that the market has pessimistic priors about both drugs when

they are first introduced into the market. It should also be noted that the initial prior mean

quality for Vaseretic is better than that for Zestoretic.

All of the preference parameter estimates are statistically significant. The price coeffi-

cient is not significant. This is not surprising because, as mentioned before, Canada provides

prescription drug coverage to patients who are 60 or older, and most of the patients who have

hypertension are elderly. The risk coefficient (r) is positive and significant, indicating risk-averse

behavior. In other words, an increase in the perceived variance of a product will lower the ex-

pected utility of choosing it. However, the estimate for r is 0.05, which is quite small. Given

the functional form of the utility function, this implies that E[qj|I(t)] carries significantly more

weight than σj(t) in physicians’ choice.

The parameters associated with the measure of well-informed physicians are all statistically

significant. The estimate for β0 is -1.42, which implies that nearly 20 percent of physicians will

be well-informed about Ij(t) (i.e., Mj = 0.2) when GI
j = 0. This represents the percentage of
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physicians who keep up with the most updated information about ACE-inhibitor with diuretic

themselves even without any help from detailing. The estimate of φI is close to 3%. The implied

average rate of forgetting is shown in Figure 3. As we discussed before, it exhibits an inverted-U

shape. The average rate of forgetting starts from 0% at around Mjt−1 = 0.2. It increases and

reaches the maximum of 2.1% at around Mjt−1 = 0.6, and then declines. The estimate of β1 is

5.80e-05. To get a sense of the economic significance of β1, in Figure 4 we plot its implied rate

of building Mjt without forgetting (i.e., φI = 0), conditioning on Mjt−1 and Djt = 1300, which

is the average per period detailing for both Vaseretic and Zestoretic in our sample. The rate of

building Mjt starts off at slightly above 6% when Mjt−1 is around 0.2 (i.e., GI = 0). Then it

declines almost linearly at the rate of 0.775% per 0.1 increase in Mjt−1.

Measures of well-informed physicians, expected qualities and perceived variances play cru-

cial roles in our model. They are also potentially important for marketing managers, who need

to make strategic decisions on how to allocate their sales forces. Although these variables are

not directly observed in the data, having explicitly modeled how these elements influence physi-

cians’ choice, we are able to recover them from the evolution of market shares and detailing

data. Figure 5 shows the evolution of the measures of well-informed physicians during the sam-

ple period. For Vaseretic, the measure of well-informed physicians starts off at around 0.57. It

increases to 0.7 after 30 months, and then gradually reduces to around 0.55 at the end of the

sample period. For Zestoretic, the measure of well-informed physicians increases from 0.3 to

around 0.85. Figure 6 shows how E[qj|I(t)] evolves during the sample period. For Vaseretic, it

increases slowly from around -5 to -2. For Zestoretic, it increases at a much faster rate from -18

to 23.13

As for the pseudo-detailing policy functions, most of the parameters are statistically signif-

icant except λ13, λ14, λ15, and λ22. The instrumental variable for Zestoretic (λ25) is positive and

significant while the instrumental variable for Vaseretic (λ15) is not significant. Both λ11 and

λ21 are positive, suggesting that manufacturers respond to favorable information about their

own drugs by increasing the amount of detailing. λ23 is positive, indicating that the incentive to

detail in order to build up M is stronger than the disincentive to detail due to ∆uq
21t < 0. This is

13Since our estimate of r implies that σ2

j (t) does not play an important role in physicians’ choice, we do not

report the evolution of σ2

j (t) in the interest of space. It is available upon request.
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possible given that Zestoretic is a new entrant. Even though Zestoretic’s partial expected utility,

E[uq
2t|I(t)], is lower than the incumbent’s, its manufacturer may be forward-looking and tries to

build up M earlier in anticipating that its E[uq
2t|I(t)] might become higher than its rivals’ later.

In fact, given our parameter estimates, ∆uq
21t changes from negative to positive over time.

Also, both λj2 and λj4 are negative for j = 1, 2, implying that Djt decreases as Mkt−1

increases. This suggests that the marginal return of detailing would decrease as Mkt−1 increases.

Interestingly, using our parameter estimates, we simulate sequences of (∆sjt(I
p
k), ∆sjt(Ik(t))),

and find that ∆sjt(I
p
k) > ∆sjt(Ik(t)) for all j, k and t. It follows from equation (17) that the

implied static marginal return of detailing indeed decreases as Mkt−1 increases. Although this

does not mean the dynamic marginal return of detailing would necessarily decrease, it is likely

that they would move in the same direction. Overall, our results suggest that the endogeneity

problem of detailing is present in this market.

5.2 Goodness-of-fit

Our estimated model provides a good fit to the data. To illustrate this, we simulate 5000 se-

quences of quantity demanded (expressed in terms of number of prescriptions) for both Vaseretic

and Zestoretic using the demand model and the pseudo-detailing policy functions. We compute

the average predicted quantity by averaging simulated quantities. Figures 7 and 8 plot the

average predicted demand and the actual demand for Vaseretic and Zestoretic, respectively. In

general, the model is able to fit the diffusion pattern of demand very well. This indicates that

even though we only have four types of physicians in our model, it is flexible enough to fit the

data. Figures 9 and 10 plot the average predicted detailing minutes and the actual ones for

Vaseretic and Zestoretic, respectively. As we can see, the average predicted detailing minutes

is able to capture the data trend reasonably well. In particular, the average predicted detailing

minutes is able to mimic the observed fluctuation for Zestoretic. This is mainly due to the pos-

itive correlation between detailing for Zestoretic and its instrument (total detailing minutes by

Zestoretic’s manufacturer in the cardiovascular category net the detailing minutes for Zestoretic)

used in the pseudo-detailing policy function.
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5.3 Effectiveness of Detailing

5.3.1 The effect of a temporary increase in detailing

Measuring the effectiveness of detailing is important for managers because they often need to

decide how to allocate their sales forces. In this subsection, we discuss the effectiveness of

detailing using our parameter estimates. It is worth reiterating that Mjt and E[qj|I(t)] play

important roles in determining the marginal return of detailing in our model. Although these

variables are not directly observed in the data, we are able to use the estimates of our structural

parameters to generate them. We will first illustrate how the marginal impact of detailing on

current demand depends on them.

Notice that the marginal return of detailing for drug j not only depends on Ij(t) and Mjt,

but also I−j(t) and M−jt. To simplify the illustration, we set M1t = M2t for all t. In the baseline

case, for t ≥ 1, we simulate 5000 histories of demand and I(t) by setting D1t = D2t = 1300,

which is the average observed amount of detailing across both drugs. We also set pjt at its

average observed values for all t. Recall that Vaseretic and Zestoretic enter the market before

t = 1 (when our sample begins). To ensure M1t = M2t and obtain the initial value of the

information sets at t = 1, we set M1t = M2t = 0.5 for t < 1 in our baseline simulation. For

t ≥ 1, Mjt is determined by Djt. We evaluate the effects of a one-time increase in detailing at

three different points in time, based on the average expected qualities in the baseline simulation:

(i) t = 1 when the average expected quality for Vaseretic is higher; (ii) t = 23 when the average

expected qualities are about the same for both drugs; (iii) t = 60 when the average expected

quality for Zestoretic is higher. In each case, we increase the detailing amount by 50% for one

of the drugs, holding the other one fixed, and examine its effect on current demand.

Panel 1 of Table 3 shows the results. For Vaseretic, the percentage changes in current

demand are 0.348%, 0.417%, and 0.414% at t = 1, 23, and 60, respectively. The effect at

t = 23 is higher than that at t = 1, mainly because E[q1|I(t)] increases from -5.52 to -3.68

during that period. However, the effect at t = 60 is about the same as that at t = 23 despite

the fact that Vaseretic’s average E[q1|I(t)] improves from -3.68 to -2.06. One reason is that

Zestoretic’s average E[q1|I(t)] improves even more from -3.11 to 19.79 during that period. This
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reduces the attractiveness of Vaseretic to physicians at t = 60. Another reason is that there is

diminishing return in building up the measure of well-informed physicians. During that period,

M1t increases from 0.64 to 0.73. According to equation (17), a lower return in building up M

results in a smaller effect of detailing on current demand.

We find a similar pattern for Zestoretic: The percentage changes in current demand are

0.283%, 0.996%, and 0.903% at t = 1, 23, and 60, respectively. The explanation is similar to

the case for Vaseretic. It should be noted that at t = 23, the percentage change in current

demand is much larger for Zestoretic (0.996%) than for Vaseretic (0.417%) although the average

expected qualities of Vaseretic and Zestoretic are about the same. This is because the initial

prior for Zestoretic’s quality is lower than that for Vaseretic’s. Consequently, it follows from

equation (17) that the marginal impact of detailing is higher for Zestoretic.

The magnitudes of our detailing elasticities are consistent with Berndt et al. (1997).

According to their estimates, the upper bound of the elasticity of demand with respect to

cumulative detailing minutes ranges from 0.67 to 0.92.14 In our simulation above, a 50% increase

in detailing corresponds to increases of 2.6%, 1.9%, and 1.6% in cumulative detailing minutes

at t = 1, 23, and 60, respectively. Thus our elasticity of demand with respect to cumulative

detailing minutes falls in a range between 0.1 and 0.6.15

14Berndt et al. (1997) estimates the following equation using the data on anti-ulcer drugs in the U.S.:

log

(

njt

n1t

)

= β · log

(

GI
jt

GI
1t

)

+ · · · , (25)

where njt is the sales of drug j at time t, GI
jt is the cumulative detailing minutes of drug j at time t, and drug

1 is the first entrant in this market. This equation implies that

εjj = β + ε1j , (26)

where εjk is the elasticity of demand for drug j with respect to cumulative detailing minutes of drug k. If εjk < 0

for j 6= k, β is the upper bound of εjj .

15We do not compare our detailing elasticity with those implied by Narayanan et al. (2005) and Mukherji

(2002) because they use detailing expenditures instead of detailing minutes, which is used in our paper.
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5.3.2 The Importance of Endogeneity of Detailing

Our estimates in the pseudo-detailing policy function suggest that detailing is endogenous.

However, it is hard to assess the economic significance of the endogeneity problem from the

estimates. To investigate the extent of the parameter bias if one fails to take the endogeneity

problem of detailing into account, we re-estimate the demand model without using the pseudo-

detailing policy functions. The parameter estimates are reported in Table 2, under Model 2

(demand only model). The estimate for β1 is 6.74e-05. This is higher than the estimate from

the base model (i.e., Model 1), which is 5.80e-05. The depreciation rate of the detailing stock,

φI , is 0.022. This is lower than the estimate 0.029 in the base model. A likelihood ratio test

rejects the hypothesis that the estimates of (β0, β1, φI) in the base model are the same as those in

Model 2 at 5% significance level. This suggests that the estimated marginal return of detailing

is biased upward if we do not take the endogeneity problem into account. To show the extent of

the bias, we plot the implied average rate of forgetting from the demand only model in Figure

3, and the implied rate of building M in Figure 4. The average rate of forgetting is biased

downward, with its peak at 1.5% instead of 2.1%; the rate of building M is biased upward,

starting at around 7% instead of 6%.

To understand how the bias would affect the estimates of the effectiveness of detailing, we

repeat the exercise in Section 5.3.1 by using the parameter estimates from Model 2. We use

the same simulated values of I(t) and Mjt−1 at t = 1, 23, and 60 from the baseline simulation

in Panel 1 of Table 3. Conditional on these simulated I(t) and Mjt−1, we use the parameter

estimates from Model 2 to simulate the effect of the one-time temporary increase in detailing.

The results are reported in Panel 2 of Table 3. The percentage change of the current demand

are 0.412%, 0.510% and 0.509% for Vaseretic, and 0.381%, 1.214% and 1.057% for Zestoretic,

at t = 1, 23, and 60, respectively. Compared with the baseline case (Model 1, Panel 1 of Table

3), this confirms that the effectiveness of detailing would be biased upward if we do not take

the endogeneity into account.
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5.3.3 Policy Experiment: A campaign that encourages sharing drug experiences

We now turn to discuss a policy experiment. In order to enhance the speediness of updating

the safety profile of drugs, public health agencies have been considering various measures to

encourage health care professionals and patients to share their drug experiences with them. For

example, Health Canada set up a program called MEDEffect to promote awareness about the

importance of filing reports using their on-line report system for the general public. It is likely

that such a program would increase the portion of experience signals revealed to the public

(correspond to an increase in κ in our model). How should marketing managers respond to this

kind of campaign? We will use our structural model to address this question. To illustrate this,

we re-simulate the effects of detailing in our model using the procedure above by doubling the

value of κ. Panel 3 of Table 3 shows the results. Compared with the baseline case in Panel 1

of Table 3, the information set, I(t), has improved much quicker, and the percentage changes

of current demand are also higher at t = 1, 23, and 60. In particular, the increases in the

effectiveness of detailing are much higher in the earlier part of the product lifecycle. Given these

results, marketing managers should consider increasing the amount of detailing in this market

if this campaign is carried out, in particular, at the beginning stage of the product lifecycle.

It is important to understand the intuition behind these results. They are mainly driven

by the pessimistic initial prior in this market. As more experience signals are revealed in each

period under this campaign, the expected qualities are revised upward more quickly over time.

Consequently, this shifts up the effectiveness of detailing. Following this argument, it should be

emphasized that the effectiveness of detailing could very well shift down under this campaign if

the market has optimistic initial prior about drug qualities. In that case, the expected qualities

will be revised downward more quickly over time, and the implications would be that marketing

managers should reduce their detailing efforts under such a campaign.

The discussion above again highlights the difference between our model and the traditional

learning models pioneered by Erdem and Keane (1996), which assume that advertising/detailing

signals and consumption experience signals are substitutes for each other in updating the prior

belief about product qualities. In those models, increasing the value of κ will necessarily cause

the marginal return of advertising/detailing to decrease, which suggests that managers should
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reduce their advertising/detailing efforts. This is just the opposite of what our model suggests,

given our parameter estimates.

We should emphasize that this does not mean that our model is necessarily better than

the previous learning models. Clearly, if we consider a market where manufacturers indeed

have complete information about their products throughout the product lifecycle, using our

model to conduct policy experiments may generate misleading managerial implications. Rather,

our results point out that it is crucial for researchers to investigate the mechanisms of how

advertising/detailing convey information in the market that they study, and incorporate its

main features into their model. Here, we demonstrate that different ways to model informative

detailing could generate very different managerial implications.

6 Conclusion

In this paper, we develop a new structural model of physicians’ prescribing decisions and de-

tailing under quality uncertainty. We introduce a representative opinion leader, whose role is

to update the most current information about drug qualities based on past consumption expe-

riences. Unlike the previous literature which assumes detailing is a way to convey noisy signals

about the true quality of the drug to physicians, we assume that detailing changes the measure

of physicians who are informed of the current public information sets maintained by the repre-

sentative opinion leader. This allows our model to directly link the marginal return of detailing

to the measure of well-informed physicians and current information sets. We also explicitly

model physician forgetting by allowing the measure of well-informed physicians to decrease if

current detailing efforts are too low.

We estimate our model using product level data on the ACE-inhibitor with diuretic market

in Canada. Our estimation approach, which makes use of a pseudo-detailing policy function,

allows us to control for the potential endogeneity of detailing. The results show that our model

is able to fit the diffusion pattern well. We also demonstrate that the effectiveness of detailing

depends on the current information set and the measure of well-informed physicians. We ex-

amine how a public awareness campaign, which encourages physicians/patients to report their
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drug experiences, would affect managerial incentives to detail. Given our parameter estimates,

our model suggests that managers should increase the detailing efforts. The implications are

diametrically different from the previous learning models, which implies that managers should

reduce the detailing efforts under such a campaign. We emphasize that this does not mean that

our model is necessarily better than the previous learning models. Rather, our results point out

the importance of using an appropriate structural model of detailing that would better describe

the institutional details of the market under study.

One limitation of this paper is that we do not explicitly incorporate data from clinical

trials outcomes and side-effect information. Conceivably, such data will be very valuable for

analyzing the effects of detailing. Also, we do not model how direct-to-consumer advertising,

journal advertising, free samples, and educational meetings or conferences sponsored by drug

companies may affect pharmaceutical demand. We leave modeling the role of these marketing

communication mix in the environment we consider here for future research.

Another limitation is that we do not allow for heterogeneous opinion leaders in our model.

Some opinion leaders may obtain more past patients’ experiences than others, (perhaps some

work for larger hospitals and therefore are able to collect more patients’ experiences) and as

a result, they may possess different public information sets representing their various levels of

learning. Physicians may receive more influence from opinion leaders who are located in their

neighborhoods. Although these are attractive features, unfortunately, incorporating them will

dramatically complicate the model. One would also need a richer data set to estimate such a

model. Instead, our approach of using a representative opinion leader leads to a tractable model

which can be estimated simply using product level data, which is the most commonly used

data in this market. We hope future research will extend our framework to allow for multiple

representative opinion leaders. Another interesting research direction is to use individual level

data to examine the role of opinion leaders. A recent study by Bhatia, Manchanda and Nair

(2006) is taking this important step to examine the effects of heterogeneous opinion leaders on

physician decisions.

The third limitation is that our model does not take into account the “bribery” effect.

Sales representatives often give away gifts during their visits. Critics argue that these gifts may
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affect physicians’ prescribing behavior. The main difficulty of incorporating the bribery effect

is that there is no data on the amount of gifts given by sales representatives. The traditional

approach to handle this is to allow a detailing goodwill stock to enter the utility function directly

(e.g., Anand and Shachar 2005, Narayanan et al. 2005). Unfortunately, given the data that we

have, it is not clear how we can separately identify the bribery effect and the informative effect

that we model here (other than relying on the functional form assumptions). If the bribery

effect is important, we would overestimate the informative role of detailing in this paper. We

therefore emphasize that the empirical exercise conducted here is mainly for illustrating the

empirical implications of our model. Disentangling between the bribery and the informative

effects of detailing will be an important topic for future research.

Our model can potentially help a marketing manager evaluate the future return of alter-

native long-term detailing strategies. Conditional on his/her own future detailing strategies and

his/her rivals’ future detailing strategies, we can take the uncertainty about true quality into

account by integrating out the prior distributions of q. However, when the marketing manager

changes his/her own detailing strategies, it is likely that his/her rivals will react and change

theirs as well. Although our pseudo-detailing policy function approach allows us to correct the

endogeneity problem, it does not allow us to predict how rivals react when one changes his/her

own detailing strategy due to its reduced form nature. In order to utilize our demand model to

evaluate alternative future detailing strategies, we would need to combine it with a supply side

model explicitly. By developing a tractable demand side model, we hope that our framework

has laid some groundwork for this challenging research direction.

Finally, although we present our model in the context of pharmaceutical demand, it could

also be applied to other markets such as movies, video games, softwares, restaurants, etc.,

where both sides of the market are uncertain about how new products will perform, and opinion

leaders (e.g., professional critics) may play an important role in influencing consumer purchase

decisions. Given that data on reviews and critics are typically available in the public domain,

it is surprising that structural modeling of opinion leaders is relatively scarce. Our model could

be served as a starting point to analyze their roles and potentially improve our understanding

about how information is transmitted in markets other than prescription drugs.
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Table 1: Summary statistics
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Table 2: Parameter estimates
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Table 3: Effect of a one-time increase in detailing by 50% on current demand
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Figure 1: Total sales vs time
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Figure 2: Detail minutes vs. time
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Figure 3: Rate of forgetting
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Figure 4: Rate of building the measure of well-informed physicians
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Figure 5: Measure of informed physicians
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Figure 6: Expected qualities
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Figure 7: Predicted and Actual Demand for Vaseretic
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Figure 8: Predicted and Actual Demand for Zestoretic
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Figure 9: Predicted and Actual Detailing Minutes for Vaseretic
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Figure 10: Predicted and Actual Detailing Minutes for Zestoretic
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