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Combinatorics is an honest subject. No adles, no sigma-algebras.

You count balls in a box, and you either have the right number or

you havent. Gian Carlo Rota.

DYNAMIC CONDITIONING AND CREDIT CORRELATION

BASKETS

CLAUDIO ALBANESE AND ALICIA VIDLER

Abstract. Dynamic conditioning is a technique that allows one to formu-
late correlation models for large baskets without incurring in the curse of
dimensionality. The individual price processes for each reference name can

be described by a lattice model specified semi-parametrically or even non-
parametrically and which can realistically have about 1000 sites. The time

discretization step is chosen so small to satisfy the Courant stability condi-
tion and is typically of about a few hours. This constraint ensures needed
smoothness for the single name probability kernels which can thus be directly
manipulated. A flexible multi-factor correlation model can be obtained by
means of conditioning trees corresponding to binomial processes with jumps.
There is one conditioning tree associated to each reference names, one associ-
ated to each industry sector and a global one to the basket itself. Since the

conditioning trees are correlated, the underlying processes are also mutually
correlated.

In this paper, we discuss a modeling framework for CDOs based on dynamic
conditioning in greater detail than previously done in our other papers. We

also show that the model calibrates well to index tranches throughout in the
period from 2005 to the Spring of 2008 and yields instructive insights.
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1. Introduction

The quest for a satisfactory modeling framework for bespoke CDOs has attracted
considerable interest in recent years. At this time, the pause in new issuance in the
structured credit market has altered the business context and also shifted the nature
of the modeling problem. As the once established standards for rating and pricing
were confronted with severe market volatility, more detailed models that provide a
more faithful representation of the economic fundamental drivers have become even
more desirable. As we discuss in the last section of this article, applications include
not only relative value analysis of illiquid bespoke structures but price dislocations
across the capital structure in the index baskets themselves.

We can hardly make justice of the extensive literature in this area by quoting
references. A sample of papers which we found stimulating are (Duffie et al. 2006),
(Duffie et al. 2000), (Andersen and Sidenius 2004),(Giesecke and Goldberg 2005),
(Hull and White 2003), (Joshi and Stacey 2005), (Lucas et al. 2001), (O’Kane and
Livesey 2004), (Li 2000), (Schonbucher 2006), (di Graziano and Rogers 2006). The
authors first developed models combining jumps and local volatility for single name
credit derivatives using analytically solvable schemes (Albanese et al. 2003), (Al-
banese and Chen 2005a), (Albanese and Chen 2005b), (Albanese and Chen 2004).
Then we shifted towards rating models specified semi-parametrically (Albanese et

al. 2005-2006) and incorporated detailed volatility information in a fully structural,
credit-equity model in (Albanese and Vidler 2006).

We concluded that to meet the many objectives of this complex problem, one
requires to specify the single name process semi-parametrically and have a flexible
correlation framework capturing separately correlations between small moves and
correlations between large jumps. The essence of the problem we tackle in this
paper, is how to build a model agnostic engineering framework that allows for all
the required flexibility. Having accomplished this task, the next is to build an
economic model which is as faithful as possible, in the knowledge that modeling
assumptions will not affect computational performance.

Dynamic conditioning is a technique that allows one to bypass the curse of di-
mensionality and build lattice models for complex basket derivatives such as CDOs.
We developed the theory over the years and documented early versions of it in (Al-
banese et al. 2005-2006), (Albanese and Vidler 2006) and (Albanese 2006). The
version described in this paper is the most advanced we released so far. We give
a thorough description of all the equations, sum rules and calibration methods
involved in a practical implementation.

Conceptually, dynamic conditioning is not a specific model, but rather a model
agnostic engineering framework. The framework allows one to specify single name
models flexibly as high dimensional lattice models with stochastic volatility, jumps
and all the richness of a generic Markov process one may desire. The vision is to
calibrate the single name processes in a pre-processing phase and store intermediate
results in the form of conditional probabilities. Single name conditioning is derived
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from a super-imposed event tree. The key point is that although the single name
processes themselves are technically difficult to correlate, one can still correlate
directly the simpler conditioning trees. The conditional probabilities can then be
reassembled whenever one needs to price a specific basket, essentially combining
the single-name conditional probabilities with each other using combinatorial coef-
ficients which derive out of a correlation model. The correlation model is specified
at run-time and is meant to correlate in a fairly arbitrary and flexible way, the
single name conditioning trees.

From a mathematical viewpoint, the method is based on the calculation of quar-
terly transition probability kernels using fast exponentiation, a method based on full
matrix multiplications which is equivalent to a direct method with a time discretiza-
tion step satisfying the Courant condition, i.e. typically as short as a few hours.
Choosing a very short time step is essential to ensure sufficient smoothness for the
transition probability kernels. See (Albanese 2007) for a proof of convergence of the
method in the graph-uniform norm under these conditions, a mathematical result
showing how a small time step ensures smoothness. Kernel smoothness is important
for applications to dynamic conditioning as modeling correlations requires defining
kernel splitting rules, i.e. involves direct manipulation of the transition probability
kernels. The numerical robustness of the method is such that all sum-rules are
satisfied with relative errors of less than 10−10.

From an engineering viewpoint, the implementation can be divided into a pre-
processing stage and a pricing stage. The first involves calculations that depend
only on the single name model specification, while the pricing stage depends on
the specifications of the correlation model. In the practical example we discuss,
the preprocessing stage takes around 138 seconds while the CDO pricing stage
takes around 8 seconds on standard hardware with GPU acceleration. The method
is numerically very efficient as changes in CDS spreads and correlations do not
require a new preprocessing stage, only changes in the underlying equity dynamics
do. The method is based on numerical linear algebra and can safely be implemented
by multiplying matrices using a single precision engine. As desired, the performance
is independent of the model specification.

In this paper, we illustrate applications of our CDO model to datasets from
the years 2006-2007, analyzing in the light of the model the changes in the struc-
tured credit market that recently took place. We find that the dynamic condi-
tioning model calibrates well to both equity and senior tranches, that it fits the
index and satisfies all rigorous sum rules. Interesting insights on the pricing of
the mezzanine tranches can be gained out of this analysis. Model parameters are
time-homogeneous with only few exceptions such as an exogenous interest rate. We
find that a slowly varying inverted term structure for jump correlation is needed
for the more recent datasets, not the older ones which calibrate well with time-
homogeneous parameters.

To express the correlation model, we condition each single name process by
means of a process on a binomial tree with quarterly branchings which also admits
jumps to the lowest vertex. See Fig.1 for an illustration. Furthermore, as illustrated
in Fig.2, we introduce a binomial tree for each industry sector factor we decide to
include and a final binomial tree for the global economy. These trees also have jump
transitions to the lowest vertex and they condition each other as illustrated in Fig.2.
The conditioning process is described in detail in Section 3. An important aspect
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Figure 1. Conditioning tree expressing a binomial process with
jumps to the bottom vertex and restrictions on the minimum and
maximum height achievable.

of the correlation model is that not only the evolution along bonds is correlated,
but also jumps to the lowest vertex are correlated. From a calibration standpoint,
bond correlations affect to a greater degree the equity tranches while the strength
of jump correlation affects to a greater degree the senior and super-senior tranches,
thus allowing for a joint calibration at the two opposite sides of the capital structure.
Also important is the probability of jump to the lowest vertex in the conditioning
lattices: the greater this probability is, the heavier is the weight in the far tail of
the loss distribution and the higher are the senior tranche spreads.

In Section 3, we evaluate the marginal and the joint probabilities on the con-
ditioning trees. In Section 4, we discuss how the conditioning process applies to
the single name dynamics. Single name calibration involves fitting the initial term
structure of CDS spreads for each name. This is achieved by adding jump to de-
fault probabilities on the lowest nodes of the single name conditioning trees. The
procedure is explained in Section 5. In Section 6, we explain how to evaluate
the loss distribution and to price CDO tranches. Finally, in Section 7, we discuss
benchmarks and applications to three datasets.

2. The Equity-Driven Single Name Process

The key concept behind model design is that one wants to decouple the economic
modeling task from the engineering aspects of pricing. The model itself is specified
flexibly in a semi-parametric fashion, resting assured that performance and precision
do not depend on model specification. In particular, closed form solvability is never
assumed and all calculations are purely numerical.
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Figure 2. Scheme for multifactor conditioning involving industry
sector factors and a global economics factor.

Each reference name follows a combination of two processes: an equity driven
process defined by means of a Markov generator and a jump to default process
overlayed on it in such a way to achieve a precise fit of the term structure of CDS
spreads. This section describes the equity-driven process.

Let T > 0 be the final maturity and let Nj be the number of periods in which

the interval [0, T ] is subdivided. Let j = 0...Nj be an integer, let ∆T = T
Nj

and let

Tj = j∆T .
The single name process is defined on a lattice Y labeled by pairs y = (x, m),

where x = 0, 1, ....Nx − 1 is a variable associated to the single name stock price
level and m = 0, ...Nm − 1 labels regimes. The points of the form (x = 0,m) for
any m = 0, ...Nm − 1 are identified with a single state as they all correspond to the
state of default, where we impose absorbing boundary conditions. Let S(x; j) be
a monotonously increasing function with S(0; j) = 0 which gives the equity value
corresponding to the state variable x in the time interval (Tj , Tj+1].

We make the simplifying assumption that the equity driven process for each
reference name is described by the very same process specification. What differen-
tiates one name from another are (i) the initial condition, (ii) the jump to default
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process and (iii) the recovery rate. In this Section, we discuss only the Markov
generator for the underlying process. In principle, one could use more than one
generator if one wanted to model several separate classes of names characterized by
processes with different economic characteristics. The impact of such choice would
be to increase the preprocessing time by a multiple equal to the number of different
dynamic specifications used. The performance of the tranche pricing stage instead
would not be affected.

We have described approaches to build and calibrate single name Markov gener-
ators in other papers such as (Albanese and Vidler 2006), (Albanese and Osseiran
2007), (Albanese 2006), and we refer to them for more detailed explanations and ex-
amples concerning the choice of coefficients. Here we just mention that the Markov
generator can often be modeled in the special format

(1) L(x,m;x′,m′; t) = L(x, x′|m; t)δmm′ + L(m,m′|x; t)δxx′ .

The reduced Markovian L(x, x′|m; t) gives the dynamics in the regime m while the
reduced Markovian L(m,m′|x; t) gives the regime dynamics for a fixed value of the
equity state variable x. More general forms are also possible, but this restriction is
sufficient for most purposes.

The operator L(x, x′|m) can be chosen to be of the form of a jump process, i.e.

(2) L(x, x′|m; t) = µ(x,m; t)∇j(x, x′) − σ(x, m; t)φ(−∆j ; t)(x, x′)

where t ∈ (Tj , Tj+1],

(3) ∇j(x, x′) =

{
δx+1,x′−δx−1,x′

S(x+1;j)−S(x−1;j) x = 1, ..Nx − 2

0 otherwise,

(4) ∆j(x, x′) =

{
δx+1,x′+δx−1,x′−2δx,x′

(S(x;j)−S(x−1;j))(S(x+1;j)−S(x;j)) x = 1, ..Nx − 2

0 otherwise,

and φ(λ) is a Bernstein function. The choice φ(λ) = λ corresponds to the case
of ordinary diffusions and otherwise one obtains a process with jumps. A possible
choice for Bernstein corresponds to the gamma subordinator with variance rate
ν > 0 given by

(5) φV G(λ; ν) =
1

ν
log(1 + νλ) =

1

ν

∫ ∞

0

(1 − e−λt)t−1e−t/νdt.

The Markov generator is assumed to depend on time in a piecewise constant
fashion. We assume that the Markov generator L(x,m;x′,m′; t) is constant for
each t ∈ (Tj , Tj+1] and all j = 0, ...Nj . On each interval, we value the period
propagator U(j;y1, y2) by means of the fast exponentiation method. Namely, let
δtj > 0 be the largest time interval for which both of the following properties are
satisfied:

(FE1) min
y∈Λ

(1 + δtjL(y, y; t)) ≥ 1/2

(FE1) log2

∆T

δtj
= n ∈ N

for t ∈ (Tj , Tj+1] (recall that the Markov generator is modeled as constant as a
function of time in each such interval). To compute the propagator

(6) U(j;y1, y2) = e∆TL(t)(y1, y2; t)
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for t ∈ (Tj , Tj+1], we first define the elementary propagator

(7) uj,δt(y1, y2) = δy1y2
+ δtL(y1, y2; t)

for and then evaluate kernels iteratively, as follows:

uj,2δt = uj,δt · uj,δt,

uj,4δt = uj,2δt · uj,2δt,

....

uj,2nδt = uj,2n−1δt · uj,2n−1δt.(8)

3. The conditioning trees

The conditioning trees are binomial trees with jumps to the lowest node. In this
Section, we define the tree dynamics and show how to correlate two trees and find
joint probability distributions.

3.1. Tree geometry. We build a binomial tree which branches off at the time
nodes Tj , see Fig. 1. The associated stochastic process describes a random walk
starting from the root vertex and visiting vertices at later times. As the conditioning
state variable evolves from a vertex at time Tj on to a vertex at time Tj+1, the
process can either follow a bond originating from the starting vertex or jump to
the lowest vertex in the tree. The tree itself is not a full binomial tree but it is
truncated at the bottom and at the top for the sole purpose to economize memory
and CPU time by cutting off states of the world that could be reached only with
very small probability.

More precisely, consider the untruncated binomial tree in the period (Tj , Tj+1].
Let Nn(j) be the number of bonds in this interval and let Nv(j) be the number of
vertices at time Tj . If b is a bond in the time interval (Tj , Tj+1], let V→(j, b) be
the vertex at time Tj+1 where the bond b terminates and let V←(j, b) be the vertex
at time Tj where the bond b originates. Let us define dir(b) =ր if the bond b is
directed upwards while dir(b) =ց if the bond b is directed downwards.

To define the truncated tree we introduce three integers hmin < h0 < hmax. Let
h(v, j) be the height of the vertex v at time Tj . This function is defined recursively
so that the height of the root vertex is given by h(v, 0) = h0 and so that if b is a
bond in the interval (Tj , Tj+1], then

(9) h(V→(j, b), j) = h(V←(j, b), j) + δdir(b),ր − δdir(b),ց.

The truncated tree is defined as the subtree comprising all vertices of height such
that hmin < h(v, j) < hmax and all the bonds joining pairs of such vertices. Let
bmin(j) be the index of the lowest bond in the interval (Tj , Tj+1] in the truncated
tree and let bmax(j) be the highest bond. Similarly, let vmin(j) be the index of
the lowest vertex at time Tj and let vmax(j) be the highest vertex. There is some
freedom on how to define these indices as the offset is arbitrary.

3.2. Tree parameters. The parameters of the correlation model can be listed as
follows:

• hmin: the minimum height;
• hmax: the maximum height;
• q(ր): the probability of an up move in the conditioning tree;
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• q(ց): the probability of a down move along a bond in the conditioning
tree;

• q(↓): the jump probability;
• h0: the height of the root vertex;
• ρab(a, j): the bond correlation term structure for the name a conditioning

process and the conditioning process for the corresponding sector sec(a);
• ρsecb(sec, j) : the bond correlation term structure between the conditioning

process for sector sec and the global conditioning process;
• ρaj(a, j): the jump correlation term structure for the conditioning process

relative to the reference name a and the conditioning process for the cor-
responding sector;

• ρsecj(a, j) : the jump correlation term structure for the conditioning process
relative to the sector sec and the global conditioning process.

In our example, we make the simplifying assumption that there exist two func-
tions ρb(j) and ρj(j) such that

(10) ρab(a, j) = ρsecb(sec, j) = ρb(j)

and

(11) ρaj(a, j) = ρsecj(sec, j) = ρj(j)

for all reference names a and all sectors sec.
Let πb(j, b) be the conditional probability for a transition to the bond b, condi-

tioned to knowing that the starting vertex is V←(j, b). Similarly, let π↓(j, v) be the
conditional probability of a jump in the tree conditional to starting from the vertex
v at time Tj . Let b be a bond and suppose that a total of two bonds originate from
the vertex v = V←(j, b). In this case, we set

(12) πb(j, b) = q(dir(b)) and π↓(j, v) = q(↓).

If instead only the bond b originates from the starting vertex v = V←(j, b), then we
set

(13) πb(j, b) = 1 − q(↓), π↓(j, v) = q(↓).

3.3. Marginal Probabilities. Let us introduce the following notations:

• Pb(j, b) is the occupation probability for the bond b in the time interval
j = 0..Nj − 1.

• P↓(j, v) is the probability that a jump occurs from the vertex v at time Tj

to the bottom vertex vmin(j + 1) at time Tj+1.
• Pv(j, v) is the probability that the vertex v at time Tj is occupied.

If j = 0, we have that

Pv(j, 0) = 1(14)

Pb(j, 0) = πb(j, 0)(15)

Pb(j, 1) = πb(j, 1)(16)

P↓(j, 0) = π↓(j, 0).(17)

Next, suppose that j = 1, ..Nj , let b1 be a bond in the interval (Tj , Tj+1] and let
v = V→(j, b1). Assume first that v > vmin(j), i.e. v is not a lowest vertex. Then, if
there exists a second bond b2 which also terminates at v, we set

(18) Pv(j, v) = Pb(j − 1, b1) + Pb(j − 1, b2).
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Otherwise, if b1 is the single bond terminating at v, then

(19) Pv(j, v) = Pb(j − 1, b1).

If v = vmin(j) instead, these formulas read as follows:

(20) Pv(j, vmin(j)) = Pb(j − 1, b1) + Pb(j − 1, b2) +

vmax(j−1)∑

v1=vmin(j−1)

P↓(j − 1, v1)

in case two bonds emerge from v, otherwise

(21) Pv(j, vmin(j)) = Pb(j − 1, b1) +

vmax(j−1)∑

v1=vmin(j−1)

P↓(j − 1, v1).

If j = 1, ..Nj − 1, the bond occupation probabilities are given by

(22) Pb(j, b) = πb(j, b) · Pv(j, V←(j, b))

and the jump occurrence probabilities are

(23) P↓(j, v) = π↓(j, v) · Pv(j, v).

3.4. Conditional Joint Probabilities. In the following, we consider two corre-
lated trees. The discussion is general and applies to all situations of interest in the
CDO model. For instance, the first tree could be a single name conditioning tree
and the second could be a sector tree. Or the first tree could be a sector tree and
the second tree the global conditioning tree. In the following set of definitions, we
denote with the subscript 1 a bond or vertex in the first tree and with the subscript
2 a bond or vertex in the second tree. Also, bonds referred b1, b2 to in the paragraph
below are both in the interval (Tj , Tj+1] while vertices v1, v2 are both at time Tj .

• πbb(b1, b2) is the conditional joint probability for the pair of bonds (b1, b2) in
the interval (Tj , Tj+1], conditional to the pair of vertices (V←(j, b1), V←(j, b2))
being visited at time Tj ;

• πjb(j, v1, b2) is the conditional joint probability for the vertex v1 in the first
tree being visited at time Tj and a jump occurring from there to the lowest
node while the bond b2 is visited on the second tree. This probability is
conditional to the event that the vertex V←(j, b2)) on the second tree is also
visited at time Tj ;

• πbj(j, b1, v2) is the conditional joint probability for the vertex v2 in the
second tree being visited at time Tj and a jump occurring from there to the
lowest node while the bond b1 is visited on the first tree. This probability
is conditional to the event that the vertex V←(j, b1)) on the first tree is also
visited at time Tj ;

• πjj(j, v1, v2) is the conditional joint probability for the vertex v1 in the first
tree being visited at time Tj and a jump occurring from there to the lowest
node while the vertex v2 in the second tree is also visited and a jump also
occurs from there to the lowest node.

In the following, a bond b is called a single bond if it is the only bond emerging
from the vertex V←(b). The bond b is called twin bond if there are two bonds
originating from the vertex V←(b).

Assuming that transition probabilities are height-independent in the tree, these
conditional joint probabilities are all given in terms of the following constants:
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• q(ց,ց) = πbb(b1, b2) in case b1 and b2 are both twin bonds and they both
go down;

• q(ց,ր) = πbb(b1, b2) in case b1 and b2 are both twin bonds, b1 goes down
and b2 goes up;

• q(ց, ↓) = πbj(b1, v2) in case b1 is a twin bond going down and v2 is a vertex;
• q(↓, ↓) = πjj(v1, v2) where v1 and v2 are vertices;
• q(ր,ր) = πbb(b1, b2) in case b1 and b2 are both twin bonds and they both

go up;
• q(ր, ↓) = πbj(b1, b2) in case b1 is a twin bond going up and v2 is a vertex;
• q(ց,→) = πbb(b1, b2) in case b1 is a twin bond going down and b2 is a single

bond;
• q(ր,→) = πbb(b1, b2) in case b1 is a twin bond going up and b2 is a single

bond;
• q(→, ↓) = πbj(b1, v2) in case b1 is a single bond and v2 is a vertex;
• q(→,→) = πbb(b1, b2) in case b1 and b2 are both single bonds.

We have that

q(ց,ց) =(1 − ρj(j)) · (1 − ρb(j)) · q(ց)
2

+ (1 − ρj(j)) · ρb(j) ·
q(ց)

2

q(ց) + q(↓)

+ ρj(j) · (1 − ρb(j)) ·
q(ց)

2

1 − q(↓)
+ ρj(j) · ρb(j) · q(ց)

(24)

q(ր,ր) =(1 − ρj(j)) · (1 − ρb(j)) · q(ր)
2

+ (1 − ρj(j)) · ρb(j) ·
q(ր)

2

q(ր) + q(↓)

+ ρj(j) · (1 − ρb(j)) ·
q(ր)

2

1 − q(↓)
+ ρj(j) · ρb(j) · q(ր),

(25)

q(ց,ր) =(1 − ρj(j)) · (1 − ρb(j)) · q(ց)q(ր),+ρj(j) · (1 − ρb(j)) ·
q(ր) · q(ց)

1 − q(↓)
,

(26)

q(ց, ↓) =(1 − ρj(j)) · (1 − ρb(j)) · q(ց) · q(↓),+(1 − ρj(j)) · ρb(j) ·
q(ց) · q(↓)

q(ց) + q(↓)
,

(27)

q(ր, ↓) =(1 − ρj(j)) · (1 − ρb(j)) · q(ր) · q(↓),+(1 − ρj(j)) · ρb(j) ·
q(ր) · q(↓)

q(ր) + q(↓)
,

(28)

q(↓, ↓) =(1 − ρj(j)) · (1 − ρb(j)) · q(↓)
2
,

+ (1 − ρj(j)) · ρb(j) · q(↓) ·

(
1 −

q(ց)

q(ց) + q(↓)
−

q(ր)

q(ր) + q(↓)

)
,

+ ρj(j) · (1 − ρb(j)) · q(↓) + +ρj(j) · ρb(j) · q(↓),

q(ց,→) = q(ց) − q(ց, ↓),(29)
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q(→, ↓) = q(↓) − q(↓, ↓),(30)

q(ր,→) = q(ր) − q(ր, ↓),(31)

q(→,→) = q(ց) + q(ր) − q(→, ↓).(32)

These joint probabilities satisfy the following constraints

q(ց,ց) + q(ց,ր) + q(ց, ↓) = q(ց)(33)

q(ց,ր) + q(ր,ր) + q(ր, ↓) = q(ր)(34)

q(ց, ↓) + q(ր, ↓) + q(↓, ↓) = q(↓)(35)

q(ց,ց) + q(ր,ր) + 2 · q(ց,ր) + 2 · q(ց, ↓) + 2 · q(ր, ↓) + q(↓, ↓) = 1,(36)

q(ց,→) + q(ց, ↓) = q(ց),(37)

q(→, ↓) + q(↓, ↓) = q(↓),(38)

q(ց,→) + q(ր,→) + q(→, ↓) = Pb,(39)

q(ր,→) + q(ր, ↓) = q(ր),(40)

q(ց, ↓) + q(ր, ↓) + q(↓, ↓) = q(↓),(41)

q(ց,→) + q(ր,→) + q(→, ↓) + q(ց, ↓) + q(ր, ↓) + q(↓, ↓) = 1,(42)

q(→,→) + q(→, ↓) = Pb,(43)

q(→,→) + 2q(→, ↓) + q(↓, ↓) = 1.(44)

3.5. (Unconditional) Joint Probabilities. Let us introduce the following nota-
tions:

• Pbb(j, b1, b2) is the joint probability for the pair of bonds (b1, b2) being
visited in the period [Tj , Tj+1);

• Pvv(j, v1, v2) is the joint probability for the pair of vertices (v1, v2) being
visited at time Tj ;

• Pjj(j, v1, v2) is the joint probability for the pair of vertices (v1, v2) being
visited at time Tj followed in both cases by jumps to the lowest node;

• Pjb(j, v1, b2) is the joint probability for the vertex v1 on the first tree being
visited at time Tj followed by a jump to the lowest node, while the bond
b2 is visited in the time interval (Tj , Tj+1] in the second tree;

• Pbj(j, b1, v2) is the joint probability for the vertex v2 in the second tree
being visited at time Tj followed by a jump to the lowest node, while the
bond b1 is visited in the time interval (Tj , Tj+1] on the first tree.
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The determination of these joint probabilities proceeds by induction in j. If
j = 0, we set

(45) Pvv(0, 0, 0) = 1.

Iterating over the bonds, if j = 0, ...Nj − 1 we find

Pbb(j, b1, b2) = Pvv(j, V←(j, b1), V←(j, b2)) · πbb(j, b1, b2)(46)

Pbj(j, b1, v2) = Pvv(j, V←(j, b1), v2) · πbj(j, b1, v2)(47)

Pbj(j, b1, v2) = Pvv(j, V←(j, b1), v2) · πbj(j, b1, v2)(48)

Pjj(j, v1, v2) = Pvv(j, v1, v2) · πjj(j, v1, v2).(49)

Next, assume that j = 1, ...Nj and consider the joint probability Pvv(j, v1, v2)
where (v1, v2) is a pair of vertices at time Tj . We have that

Pvv(j, v1, v2) =
∑

b1 : v1 = V→(j − 1, b1)
b2 : v2 = V→(j − 1, b2)

Pvv(j − 1, V←(j − 1, b1), V←(j − 1, b2)) · πbb(j − 1, b1, b2)

+ δv1,vmin(j−1)

∑

w1 = vmin(j − 1)..vmax(j − 1)
b2 : v2 = V→(j − 1, b2)

Pvv(j − 1, w1, V←(j − 1, b2)) · πjb(j − 1, w1, b2)

+ δv2,vmin(j−1)

∑

b1 : v1 = V→(j − 1, b1)
w2 = vmin(j − 1)..vmax(j − 1)

Pvv(j − 1, V←(j − 1, b1), w2) · πbj(j − 1, b1, w2)

+ δv1,vmin(j−1)δw2,vmin(j−1)

∑

w1 = vmin(j − 1)..vmax(j − 1)
w2 = vmin(j − 1)..vmax(j − 1)

Pvv(j − 1, w1, w2) · πjj(j − 1, w1, w2).

(50)

4. Dynamic Conditioning

As a first step, one needs to define an order relationship ≺ in the state space
Y . This can be done using for instance the value of 5 year CDS spreads. Having
done that, one performs an iterative construction in j starting from j = 0 and
constructing all bond conditioned quantities of interest up to j = Nj − 1 and all
vertex conditioned quantities up to j = Nj .

Let us introduce the following notations:

• U(j;y1, y2) is the propagator in the time interval (Tj , Tj+1];
• U(j,ց;y1, y2) is the conditional propagator in the time interval (Tj , Tj+1]

in case the single name conditioning process visits a bond going down;
• U(j,ր;y1, y2) is the conditional propagator in the time interval (Tj , Tj+1]

in case the single name conditioning process visits a bond going up;
• U(j, ↓;y1, y2) is the conditional propagator in the time interval (Tj , Tj+1] in

case the single name conditioning process jumps to the bottom vertex;
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• U(j,→;y1, y2) is the conditional propagator in the time interval (Tj , Tj+1]
in case the single name conditioning follows a bond, i.e. does not jump;

• Deq
a (y, j, b) is the probability of equity driven default in the time inter-

val (Tj , Tj+1] conditional to the process starting from y at time 0 and to
the single name conditioning process to visit the bond b in the same time
interval;

• Deqb
by (y, j, b) is the probability of equity driven default in the time inter-

val (Tj , Tj+1] conditional to the process starting from y at time 0 and to
the single name conditioning process visiting the bond b in the same time
interval;

• Deqj
vy (y, j, v) is the probability of equity driven default in the time interval

(Tj , Tj+1] conditional to the process starting from y at time 0 and to the
single name conditioning process visiting the vertex v at time Tj and then
jumping to the lowest vertex in the subsequent time interval;

• Deq
vy(y, j, v) is the cumulative probability of equity driven default at time

Tj conditional to the process starting from y at time 0 and to the single
name conditioning process to visit the vertex v at time Tj ;

• Deq
y (y, j) is the probability of equity driven default in the time interval

(Tj , Tj+1] conditional to the process starting from y at time 0;

• Deq
y (y, j, v) is the cumulative probability of equity driven default up to time

Tj conditional to the process starting from y at time 0;
• Uv(v; y1, y2) is conditional the propagator in the time interval (T0, Tj ] in

case the single name conditioning process visits the vertex v at time Tj ;
• Ub(b; y1, y2) is conditional the propagator in the time interval (T0, Tj+1]

in case the single name conditioning process visits the bond b in the time
interval (Tj , Tj+1];

• U↓(v; y1, y2) is conditional the propagator in the time interval (T0, Tj+1] in
case the single name conditioning process visits the vertex v at time Tj and
from the jumps to the lowest vertex in the time interval (Tj , Tj+1].

4.1. Propagators with Local Conditioning. Let j = 0, ..Nj − 1. The first step
is to build the unconditional kernel U(j;y1, y2) by fast exponentiation, as explained
in Section 2. Having done that, one finds the kernels U(j, ↓;y1, y2), U(j,ց;y1, y2)
and U(j,ր;y1, y2) in sequence. Let us fix y1 ∈ Y . Let

(51) ξ↓ = inf
≺

{
y3 ∈ Y :

∑

y2≺y3

U(j;y1, y2) ≥ q(↓)

}
.

We set

(52) U(j, ↓;(y1, y2) = q(↓)
−1

U(j;y1, y2)

for all y2 ≺ ξ↓. Furthermore

(53) U(j, ↓;y1, ξ↓) = 1 −
∑

y2≺ξ↓

U(j, ↓;y1, y2)

and otherwise U(j, ↓;y1, y2) = 0 for all y2 ≻ ξ↓.
We then set U(j,ց;(y1, y2) = 0 for all y2 ≺ ξ↓ and

(54) U(j,ց;y1, ξ↓) = U(j;y1, ξ↓) − U(j, ↓;y1, ξ↓).
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Next, let

(55) ξց = inf
≺

{
y3 ∈ Y : U(j,ց;y1, ξ↓) +

∑

y2 ≺ y3

y2 ≻ ξ↓

U(j;y1, y2) ≥ q(↓) + q(ց)

}
.

and set

(56) U(j,ց;y1, y2) = q(ց)
−1

U(j;y1, y2)

for all y2 ≺ ξց and

(57) U(j,ց;y1, ξց) = 1 −
∑

y2≺ξց

U(j,ց;y1, y2).

Also U(j,ց;y1, y2) = 0 for all y2 ≻ ξց.
Finally, we set U(j,ր;y1, y2) = 0 for all y2 ≺ ξց,

(58) U(j,ր;y1, ξց) = U(j;y1, ξ↓) − U(j,ց;y1, ξց)

and

(59) U(j,ր;y1, y2) = q(ր)
−1

U(j;y1, y2)

for all y2 ≻ ξց.
We also require the propagator on the interval (Tj , Tj+1] conditional not to have

a jump to the lowest vertex in the single name conditioning process, i.e.

(60) U(j,→;y1, y2) =
q(ր) · U(j,ր;y1, y2) + q(ց) · U(j,ց;y1, y2)

q(ր) + q(ց)
.

4.2. Propagators with Global Conditioning. If j = 0 we set

Deq
vy(j = 0; v, y1) = 0(61)

Uv(j = 0; y1, y2) = δy1,y2
.(62)

Let j > 0 and let v be a vertex at time Tj . Suppose first that v > vmin(j). Let
b1 be the bond with least index such that V→(b1) = v. The existence of a second
bond b2 such that V→(b2) = v is not granted, but in the case such a bond exists,
let us define

p1 =
Pb(j − 1, b1)

Pb(j − 1, b1) + Pb(j − 1, b2)
(63)

p2 =
Pb(j − 1, b2)

Pb(j − 1, b1) + Pb(j − 1, b2)
.(64)

Otherwise, if a second bond b2 such that V→(b2) = v does not exist, we set

(65) p1 = 1 p2 = 0.

If v > vmin(j), then

(66) Uv(j, v, y1, y2) = p1Ub(j − 1, b1, y1, y2) + p2Ub(j − 1, b2, y1, y2).

Next, suppose first that v = vmin(j). Let b1 be the bond with least index such
that V→(b1) = v. Again he existence of a second bond b2 such that V→(b2) = v is
not granted, but in case such a bond exists, let us define

(67) Z = Pb(j − 1, b1) + Pb(j − 1, b2) +

vmax(j−1)∑

v0=vmin(j−1)

P↓(j − 1, v0)
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Otherwise, we set

(68) Z = Pb(j − 1, b1) +

vmax(j−1)∑

v0=vmin(j−1)

P↓(j − 1, v0).

As one proceeds with the iterative construction of conditional propagators, the
bond conditional propagators need to be evaluated after obtaining the vertex con-
ditioned ones. If j = 0, we set

U↓y1, y2) = U(j, ↓;y1, y2)(69)

Uby1, y2) = δdir(b),ցU(j,ց;y1, y2) + δdir(b),րU(j,ր;y1, y2).(70)

Next consider the case j > 0. Let b be a bond. If b is the only bond starting
from the vertex V←(j, b), then we set

Ub(j, b, y1, y2) =
∑

y3

Uv(j, V←(j, b), y1, y3)U(j,→;y3, y2).(71)

Otherwise, we set

Ub(j, b, y1, y2) =
∑

y3

Uv(j, V←(j, b), y1, y3)K(j, dir(b), y3, y2).(72)

Finally

U↓(j, v, y1, y2) =
∑

y3

Uv(j, V←(j, b), y1, y3)U(j, ↓;y3, y2).(73)

The bond-conditional probabilities of default are

Deqb
by (y1, j, b) = Ub(b, j, y1, 0) − Deq

vy(y1, j, V←(b))(74)

while the jump-conditional probabilities of default are

Deqj
vy (y1, j, v) = U↓(v, j, y1, 0) − Deq

vy(y1, j, v).(75)

Finally

Deq
y (y1, j) =

bmax∑

b=bmin

Pb(j, b)D
eqb
by (y1, j, b) +

vmax(j)∑

v=vmin(j)

Pv(j, v)Deqj
vy (y1, j, v).(76)

5. Single Name Calibration

The model needs to be calibrated based on individual CDS spread information
and other inputs. Bootstrapping a CDS curve and finding the implied default
probabilities based on recovery assumptions are standard tasks over which we do
not dwell here. We just assume that we are given the following inputs:

• Z(Tj) the discount factor for the maturity Tj .
• Na is the number of reference names;
• R(a, j) is the input expected recovery rate for name a conditional to default

occurring in the time interval (Tj , Tj+1];
• λa(j) is the implied probability of default in the time interval (Tj , Tj+1]

conditional to know default occurring prior to that;
• y0(a) is the initial condition for the reference name a.
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Defaults in our model correspond to events whereby the stock price variable
S(xt) = 0 at some time t. Defaults can either occur because the xt process as
described above hits the zero boundary. This events are referred to as equity-driven

defaults. As an alternative, in order to calibrate the single name dynamics, we allow
for jump to defaults to take place whenever the single name conditioning process
is visiting the lowest bonds. The bond-dependent probability of jump to default
is adjusted in such a way to precisely fit the term structure of CDS spreads. To
this end, when initializing the state variable for each individual name, one needs to
ensure that the probabilities of equity driven default corresponding to this choice
are strictly bounded from above by the implied probabilities of default as derived
from market CDS spread curves. The procedure to calibrate such probabilities is
given in the remainder of this Section.

We define and value the following functions:

• Deqb
ba (a, j, b) is the probability of equity driven default in the time interval

(Tj , Tj+1] conditional to the process starting from y0(a) at time 0 and to
the single name conditioning process visiting the bond b in the same time
interval;

• Deqj
va (a, j, v) is the probability of equity driven default in the time interval

(Tj , Tj+1] conditional to the process starting from y0(a) at time 0 and to
the single name conditioning process visiting the vertex v at time Tj and
then jumping to the lowest vertex in the subsequent time interval;

• Deq
va(a, j, v) is the cumulative probability of equity driven default at time

Tj conditional to the process starting from y0(a) at time 0 and to the single
name conditioning process to visit the vertex v at time Tj ;

• Dva(a, j, v) is the conditional cumulative probability that reference name
a defaults by time Tj , conditional to the single name conditioning process
visiting the vertex v at time Tj ;

• Da(a, j) is the cumulative probability that reference name a defaults by
time Tj ;

• Djtd
ba (a, j, b) is the conditional probability that a jump-to-default event for

reference name a occurs in the time interval (Tj , Tj+1], conditioned to no
default occurring prior to time Tj and conditioned to the single name pro-
cess visiting the bond b in the same time interval;

• Djtd
a (a, j) is the probability that a jump-to-default event for reference name

a occurs in the time interval (Tj , Tj+1] and no default occurs prior to time
Tj ;

• Dba(a, j, b) is the conditional probability that a default event for reference
name a occurs in the time interval (Tj , Tj+1] and no default occurring prior
to time Tj , conditioned to the single name process visiting the bond b in
the same time interval;

• Dja(a, j, v) is the conditional probability that a default event for reference
name a occurs in the time interval (Tj , Tj+1] and no default occurring prior
to time Tj , conditioned to the single name process visiting the vertex v at
time Tj and then jumping to the lowest vertex immediately thereafter;

• Da(a, j) is the conditional probability that a default event for reference
name a occurs in the time interval (Tj , Tj+1] and no default occurs prior to
time Tj ;
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• πjtd
ba (a, j, b) is the conditional probability that a default event for reference

name a occurs in the time interval (Tj , Tj+1] conditional to no default oc-
curring prior to time Tj and to the conditioning process visiting the bond
b in the same time interval;

• Rb(a, j, b) is the conditional recovery rate for reference name a in the time
interval (Tj , Tj+1], conditional to the conditioning process visiting the bond
b in the same time interval;

• R↓(a, j, v) is the conditional recovery rate for reference name a in the time
interval (Tj , Tj+1], conditional to the conditioning process visiting the ver-
tex v at time Tj and then jumping from there to the lowest vertex;

• La(a, j) is the expected loss for name a in the time interval (Tj , Tj+1];
• Lav(a, j, v) is the expected loss for name a in the time interval (Tj , Tj+1],

conditional to the vertex v being visited by the single name conditioning
process at time Tj ;

• N1
z + 1 is the number of discretization point for the single name loss distri-

bution, so that this is parameterized by an integer z = 0, ...N1
z ;

• Fva(a, j, v, z) is the loss distribution function as indexed by the variable z
for name a in the time interval (Tj , Tj+1], conditional to the vertex v being
visited by the single name conditioning process at time Tj ;

• Fba(a, j, b, z) is the differential of the loss distribution function as indexed
by the variable z for name a in the time interval (Tj , Tj+1], conditional to
the bond b being visited by the single name conditioning process at time
Tj ;

• Fja(a, j, v, z) is the differential of the loss distribution function as indexed
by the variable z for name a in the time interval (Tj , Tj+1], conditional to
the vertex v being visited by the single name conditioning process at time
Tj and conditioned to a jump to the lowest vertex occurring in the same
time interval;

• Ls(sec, j) is the expected loss for the sector sec in the time interval
(Tj , Tj+1];

• Lsv(sec, j) is the conditional expected loss for the sector sec in the time
interval (Tj , Tj+1], conditional to the sector process visiting the vertex v at
time Tj ;

• L(j) is the global basket expected loss in the time interval (Tj , Tj+1].

Firstly, using the results in the previous section on dynamic conditioning and
the single name initialization, we set

Deqb
ba (a, j, b) = Deqb

by (y0(a), j, b),

Deqj
va (a, j, v) = Deqj

va (y0(a), j, v),

Deq
va(a, j, v) = Deq

va(y0(a), j, v).

(77)

The calculation of the quantities above is by iteration in j. Suppose that j > 0
and let v0 be a vertex at time Tj . There is at least one bond terminating at v0,
let’s denote with b1 the lowest one and let v1 = V←(b1). If there is a second bond
with V→(j, b) = v0, then let us denote it with b2 and let v2 = V←(b1). Let 1b2(v0, j)
denote a function which equals one in case the bond b2 exists and zero otherwise.
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Let us introduce the constant

N(v0) = Pb(j − 1, b1) + 1b2(v0, j)Pb(j − 1, b1) + δv0,vmin(j)

vmax(j−1)∑

v3=vmin(j−1)

P↓(j − 1, v3).

(78)

Let us set

Dva(a, j, v0) = N(v0)
−1Pb(j − 1, b1) ·

[
Dva(a, j − 1, v1) + Dba(a, j − 1, b1)

]

+ 1b2(v0, j)N(v0)
−1Pb(j − 1, b2) ·

[
Dva(a, j − 1, v2) + Dba(a, j − 1, b2)

]

+ N(v0)
−1δv0,vmin(j−1)

vmax(j−1)∑

v3=vmin(j−1)

P↓(j − 1, v3) ·
(
Dva(a, j − 1, v3) + Dja(a, j − 1, v3)

)

(79)

Finally

Da(a, j) =
∑

a=1..Na

vmax(j)∑

v0=vmin(j)

Pv(j, v0) · Dva(a, j, v0).(80)

As we iterate through the bonds, we also calibrate to the market CDS curves.
The general expression for Dba(a, j, b) is

Dba(a, j, b) = (1 − Dva(a, j, V←(j, b)))(qb(a, j, b̄) + πjtd
ba (a, j, b) − πjtd

ba (a, j, b)qb(a, j, b̄))

(81)

where

(82) qb(a, j, b) =
Deqb

ba (a, j, b)

1 − Deq
va(a, j, V←(j, b))

.

is the conditional probability that a default occurs in the underlying process in
the time interval (Tj , Tj+1], conditional to no default occurring in the underlying

process up to time Tj . The goal of the calibration algorithm is to choose πjtd
ba (a, j, b)

so to ensure that the market CDS spread curves for each reference name are precisely
reobtained. To be more precise, let us also set

(83) q↓(a, j, v) =
Deqj

va (a, j, v)

1 − Deq
va(a, j, v)

and

(84) Dja(a, j, v) =
(
1 − Dva(a, j, V←(j, b))

)
· q↓(a, j, v).

We have that

Da(a, j) =

bmax(j)∑

b=bmin(j)

Pb(j, b) · Dba(a, j, b) +

vmax(j)∑

v=vmin(j)

Pv(j, v) · Dja(a, j, v).(85)

The goal of the calibration algorithm is to choose πjtd
ba (a, j, b) in such a way that

Da(a, j) = λa(a, j).(86)
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Let j ≥ 0 and consider the conditional probability of equity driven default in the
interval (Tj , Tj+1], conditional to no equity driven default having occurred prior to
time Tj , i.e.

Deq
a (a, j) =

bmax(j)∑

b=bmin(j)

Pb(j, b) · (1 − Dva(a, j, V←(j, b))) · qb(a, j, b)

+

vmax(j)∑

v=vmin(j)

P↓(j, v) · (1 − Dva(a, j, v)) · q↓(a, j, v).(87)

We start adding jumps from the bottom vertex b = bmin(j) and proceed upward by
induction. At each step, if we are looking at the bond of index b ≥ bmin(j), we first
consider setting

(88) πjtd
ba (a, j, b) = 1.

Assuming that the conditional jump probability is 1, as in (88), we find

Dba(a, j, b) = 1 − Dva(a, j, V←(j, b)).(89)

Let us consider the partial sum

(90) ∆(a, j, b) = Deq
a (a, j) +

b∑

b1=bmin(j)

Pb(j, b) · Dba(a, j, b1).

Let b̄ be the first bond encountered proceeding from bmin(j) such that the following
inequality is satisfied:

(91) ∆(a, j, b̄) ≤ λa(a, j).

For all b < b̄, equation (88) is retained as valid and one iterates the construction
to the next bond. Otherwise, one needs to fine-tune the choice of conditional jump
probability to obtain the correct fit to the implied probability of default λa(a, j).
We set

Dba(a, j, b̄) = Pb(j, b̄)
−1(λa(a, j) − ∆(a, j, b̄)) + (1 − Dva(a, j, V←(j, b̄))) · qb(a, j, b̄),

(92)

(93) πjtd
ba (a, j, b̄) = (1 − qb(a, j, b̄))−1

[
Dba(a, j, b̄)

1 − Dva(a, j, V←(j, b̄))
− qb(a, j, b̄)

]
,

and

(94) Djtd
ba (a, j, b̄) = πjtd

ba (a, j, b̄) ·
(
1 − Dva(a, j, V←(j, b̄))

)
.

Having done this, for larger values of b > b̄, it is no longer required to add jump to
default amplitudes to calibrate and one can set

(95) πjtd
ba (a, j, b) = 0, Djtd

ba (a, j, b) = 0

and

Dba(a, j, b) = (1 − Dva(a, j, V←(j, b)))qb(a, j, b̄).(96)

Next, one needs to firm up the conditional recovery rates Rb(a, j, b) and R↓(a, j, v).
One can simply set

(97) Rb(a, j, b) = R↓(a, j, v) = R(a, j).



20 CLAUDIO ALBANESE AND ALICIA VIDLER

Otherwise, one can model stochastic recovery rates by having Rb(a, j, b) depend on
b and R↓(a, j, v) depend on v. In this case, several strategies are possible and we
won’t discuss in further detail here except for saying that an acceptable choice will
satisfy the following constraint:

bmax(j)∑

b=bmin(j)

Pb(j, b) · Dba(a, j, b) · Rb(a, j, b) +

vmax(j)∑

v=vmin(j)

Pv(j, v) · Dja(a, j, v) · R↓(a, j, v) = R(a, j).

(98)

Finally, we consider cumulative losses on vertices v at time Tj+1. If j = 0, we
set

Fva(a, j = 0, v = 0, z) = δz,0.(99)

Let b1 be the lowest bond such that V→(j, b1) = v. Let 1b2(v0, j) be a function
equal to one in case there exists a second bond b2 6= b1 with V→(j, b2) = v. Let the
function N(v0) be defined as in equation (78). We have that

Fva(a, j + 1, v0, z) = N(v0)
−1Pb(j, b1) · (Fva(a, j, v1, z) + Fba(a, j, b1, z))

+ N(v0)
−1Pb(j, b1) · (Fva(a, j, v2, z) + Fba(a, j, b2, z))

+ N(v0)
−1δv0,vmin(j)

vmax(j)∑

v3=vmin(j)

P↓(j, v3) ·
(
Fva(a, j, v3, z) + Fja(a, j, v3, z)

)

(100)

Here

Fba(a, j, b, z) = Dba(a, j, b) ·
(
− δz0 + (z2 − ℓb(a, j, b))δzz1

+ (ℓb(a, j, b) − z1)δzz2

)
,

(101)

where

ℓb(a, j, b) = N1
z · (1 − Rb(a, j, b))

z1 = floor
(
ℓb(a, j, b)

)

z2 = min(z1 + 1, N1
z ).(102)

Furthermore

Fja(a, j, v, z) = Dja(a, j, v) ·
(
− δz0 + (z2 − ℓ↓(a, j, v))δzz1

+ (ℓ↓(a, j, v) − z1)δzz2

)
,

(103)

where

ℓ↓(a, j, b) = N1
z · (1 − R↓(a, j, v))

z1 = floor
(
ℓ↓(a, j, v)

)

z2 = min(z1 + 1, N1
z ).(104)
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Finally, expected cumulative losses are given as follows:

Lav(a, j, v) =
1

N1
z

N1
z∑

z=0

Fva(a, j, v, z) · z

La(a, j) =

vmax(j)∑

v=vmin(j)

Pv(j)(v)Lav(a, j, v)

Lsv(sec, j, v) =
∑

a:sec(a)=sec

Lav(a, j, v)

Ls(sec, j) =
∑

a:sec(a)=sec

La(a, j)

L(j) =
∑

s

Ls(sec, j).

(105)

6. Loss Distribution and Tranche Pricing

Let us introduce the following notations:

• Nz = Na · N1
z ;

• Q1
vv(a, j, v1, v2) is the joint probability that the conditioning process for

name a visits the vertex v1 while the corresponding sector conditioning
process visits vertex v2;

• Q2
vv(sec, j, v2, v3) is the joint probability that the conditioning process for

the sector sec visits the vertex v2 while the corresponding global condi-
tioning process visits vertex v3;

• ℓ(j, z) is the (unconditional) cumulative loss distribution up to time Tj ,
where j = 0, ...Nj and z = 0, ...Nz;

• ℓ12(a, j, v2, z) is the conditional cumulative loss distribution for name a at
time Tj , conditioned to the sector conditioning process visiting the vertex
v2 at time Tj and z = 0, ...Nz;

• ℓ22(sec, j, v2, z) is the conditional cumulative loss distribution for sector
sec at time Tj , conditioned to the sector conditioning process visiting the
vertex v2 at time Tj and z = 0, ...Nz;

• ℓ23(sec, j, v3, z) is the conditional cumulative loss distribution for sector
sec at time Tj , conditioned to the global conditioning process visiting the
vertex v3 at time Tj and z = 0, ...Nz;

• ℓ̂12(sec, j, v3, k) is the Fourier transform in the z variable of the function
ℓ23(sec, j, v3, z) and z = 0, ...Nz;

• ℓ33(j, v3, z) is the conditional cumulative loss distribution for the portfolio
at time Tj , conditioned to the global conditioning process visiting the vertex
v3 at time Tj and z = 0, ...Nz;

• ℓ̂12(j, v3, k) is the Fourier transform in the z variable of the function ℓ33(j, v3, z)
and z = 0, ...Nz;

• P d
tr is the present value at initial time of the default leg for the tranche tr

including only defaults up to time Tj ;
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• P d is the present value at initial time of the default leg for the entire basket
including only defaults up to time Tj ;

• P ra
tr is the present value at initial time of the risky annuity for the tranche

tr including only payments up to time Tj ;
• P ra is the present value at initial time of the risky annuity for the entire

basket including only payments up to time Tj ;
• str is the equilibrium spread at initial time for the tranche tr with maturity

Tj ;
• atr is the percentage attachment point of the tranche tr;
• dtr is the percentage detachment point of the tranche tr;
• ltr is the attachment point of the tranche tr approximated as an integer

and supposing that the loss amount for each individual name is an integer
in the interval [0, ..Nz];

• utr is the detachment point of the tranche tr approximated as an integer
and supposing that the loss amount for each individual name is an integer
in the interval [0, ..Nz];

• ftr is the equilibrium upfront fee at initial time for the tranche tr with
maturity Tj ;

• ℓ(j, z) is the differential of the (unconditional) cumulative loss distribution
up to time Tj , where j = 0, ...Nj and z = 0, ...Nz.

The construction proceeds iteratively in j, starting from j = 0 and arriving to
j = Nj . If j = 0, the initialization conditions are

ℓ12(a, j = 0, v2 = 0, z) = δz0 ∀a,(106)

ℓ22(sec, j = 0, v2 = 0, z) = δz0 ∀sec,(107)

ℓ23(sec, j = 0, v3 = 0, z) = δz0 ∀sec,(108)

ℓ33(j = 0, v3 = 0, z) = δz0,(109)

ℓ(j = 0, z) = δz0.(110)

Assume that j > 0. For all reference names a, we have

ℓ12(a, j, v2, z) =

vmax(j)∑

v1=vmin(j)

Pv(j, v2)
−1Q1

vv(a, j, v1, v2)Fva(a, j, v1, z).(111)

The function Fva(a, j, v1, z) was defined and discussed in Section 6. The sector
cumulative distribution is defined as a convolution product in the z variable, i.e.

ℓ22(sec, j = 0, v2 = 0, ·) = ℓ12(a1, j, v2, ·) ∗ .... ∗ ℓ12(an, j, v2, ·)(112)

where (a1, ...an) are the reference names in the sector sec. We also have that

ℓ23(sec, j, v3, z) =

vmax(j)∑

v2=vmin(j)

Pv(j, v3)
−1Q2

vv(sec, j, v2, v3)ℓ22(sec, j, v2, z).(113)

Evaluating the Fourier transforms

ℓ̂12(sec, j, v3, k) = F
[
ℓ23(sec, j, v3, ·)

]
(k),(114)
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we find

ℓ̂12(j, v3, k) =
∏

sec

ℓ̂12(sec, j, v3, k).(115)

The inverse Fourier transform

ℓ33(j, v3, z) = F−1
[
ℓ̂12(j, v3, ·)

]
(z)(116)

gives the loss distribution conditional to the global conditioning process visiting the
vertex v3 at time Tj . Finally, the cumulative loss distribution is given by

ℓ(j, z) =

vmax(j)∑

v3=vmin(j)

Pv(j, v3) · ℓ33(v3, z).(117)

Given the cumulative loss distribution, one can evaluate tranche spreads. The
attachment and detachment points are given by

ltr(tr) = floor(Nz · atr(tr) + 1),

utr(tr) = floor(Nz · dtr(tr)).(118)

The differential loss distribution is defined as follows:

ℓ(j, z) = ℓ(j + 1, z) − ℓ(j, z).(119)

for all j ≥ 0. Furthermore, we have that

P d
tr(j, tr) = P d

tr(j − 1, tr) + Z(Tj)

Nz−1∑

z=ltr(tr)

ℓ(j, z) · min(z − ltr(tr) + 1, utr(tr) − ltr(tr) + 1).

(120)

Furthermore

P ra
tr (j, tr) = P ra

tr (j − 1, tr) + Z(Tj)∆T

[ ltr(tr)−1∑

z=0

(utr(tr) + 1 − ltr(tr)) · ℓ(j, z)

+

Nz−1∑

z=ltr(tr)

max(utr(tr) − z, 0) · ℓ(j, z)

]
.

(121)

If the tranche trades with no upfront fee, the spread is given by

str(j, tr) =
P d
tr(j, tr)

P ra
tr (j, tr)

.(122)

If instead the tranche trades with a fixed running spread s0(tr), the upfront fee is
given by

ftr(j, tr) =
P d
tr(j, tr) − s0(tr) · P

ra
tr (j, tr)

utr(tr) − ltr(tr) + 1
.(123)

As a check for numerical implementations, it is useful to ensure that the following
sum rule is satisfied:

∑

tr

P d
tr(j, tr) =

j∑

j′=0

∑

a

Z(j′) · (La(a, j′ + 1) − La(a, j′)),(124)
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whenever the summation in the right hand side extends over any set of tranches
covering the entire capital structure without overlaps.

7. Benchmarks and Datasets

We present results referring to the on-the-run investment grade CDX index
tranches as calibrated on April 2006, March 2007, October 2007 and March 2008.

Task CPU Time in seconds Memory allocated in MB
Preprocessing 137.57 308

Single Name Calibration 2.69 77
CDO Tranche Pricing 8.63 181

Table 1. Execution times on a single processor Xeon machine, 2
GHz, with a nVidia Tesla GPU coprocessor.

We adopted the simplifying assumption that all bond correlations and all jump
correlations are the same. This assumption can obviously be refined at no compu-
tational cost by assuming instead that correlation depends on the reference name
and sector. This hypothesis however allows one to economize on the number of free
parameters. We further assume that the two term structures are constant for the
April 2006 and March 2007 datasets while a mild time dependence is needed for
the October 2007 and March 2008 datasets. In this case, we assume that the term
structure of jump correlation is inverted and linear. (Curiously, an inverted term
structure for correlation is also observed when parameterizing tranche prices with
base correlation). A further free parameter is given by q(↓), while q(ր) and and
q(ց) are assumed to be equal. See Table 2. Hence, the number of free parameters
that we allow ourselves is three for the April 2006 and March 2007 datasets and is
equal to four in the case of the October 2007 and March 2008 datasets.

Dataset q(↓) q(ր) q(ց) ρb(0) ρb(40) ρj(0) ρj(40)
April 2006 0.04% 49.98% 49.98% 65% 65% 85% 85%
March 2007 0.04% 49.98% 49.98% 50% 50% 95% 95%

October 2007 0.20% 49.80% 49.80% 65% 65% 95% 80%
March 2008 0.24% 49.88% 49.88% 95% 95% 80% 99.5%

Table 2. Correlation parameters for the three datasets.

The loss distributions are given in Fig. 7, 8, 9 and 10. The equity upfront fees
are in Fig. 11, 12, 13 and 14. The mezzanine tranche spreads are in Fig. 15, 16,
17 and 18. The senior tranche spreads are in Fig. 19, 20, 21 and 22. These graphs
showcase the use of the model. The calibration to the index is perfect and the equity
and senior tranches are fitted well. The 30-100 super-senior tranche is fitted well
only in the most recent datasets. The fit to the mezzanine tranches, which are often
the most difficult to price, is not of similar quality. The 2007 datasets show that the
market spreads for mezzanine tranches were consistently below the model spreads
across all the mezzanine capital structure. Since the model is arbitrage free, this
is an indication of mispricing and approximate arbitrage. The march 2008 dataset
shows that this arbitrage opportunity has been eliminated and the term structures
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of the mezzanine tranches are correctly reproduced by the model. However, the
supersenior tranche spreads appear excessive and the short term spreads are also
biased downward. Due to the scarce market liquidity and high volatility in recent
times, we find that the quality of the fit is acceptable and the model is a useful
indicator for price dislocations and a predictor of market adjustments.

8. Conclusions

In this paper we carry forward our work on dynamic conditioning and CDO
modeling. We introduce for the first time conditioning trees which are recombining
binomial trees also admitting jumps. This technique allows one to model separately
spread correlations and default correlations. The former is important to understand
the lower portions of the capital structure, the latter matters more for the senior
tranches. Here we describe the model in much further detail than before attempted
and discuss also a version which is of very efficient numerical implementation.

References

Albanese, C. (2006). Operator Methods, Abelian Path Dependents and Dynamic Conditioning.

preprint.
Albanese, C. (2007). Kernel Convergence Estimates for Diffusions with Continuous Coefficients.

arXiv:0711.0132v1 [math.NA].
Albanese, C. and A. Osseiran (2007). Moment Methods for Exotic Volatility Derivatives. preprint.
Albanese, C. and A. Vidler (2006). A Structural Model for Credit-Equity Derivatives and Bespoke

CDOs. Willmott Magazine.
Albanese, C. and O. Chen (2004). Implied migration rates from credit barrier model. The Journal

of Banking and Finance, to appear.
Albanese, C. and O. Chen (2005a). Credit barrier models in a discrete framework. Contemporary

Mathematics 351, Mathematical Finance pp. 1–11.
Albanese, C. and O. Chen (2005b). Discrete credit barrier models. Quantitative Finance 5, 247–

256.
Albanese, C., J. Campolieti, O. Chen and A. Zavidonov (2003). Credit barrier models. Risk

16(6), 109–113.
Albanese, C., O. Chen, A. Dalessandro and A. Vidler (2005-2006). Dynamic Credit Correlation

Modelling. preprint.
Andersen, Leif and Jakob Sidenius (2004). Extensions to the gaussian copula: random recovery

and random factor loadings. Journal of Credit Risk 1, 1:29.
di Graziano, G. and C. Rogers (2006). A Dynamic Approach to the Modelling of Correlation

Credit Derivatives Using Markov Chains. preprint, Cambridge University.
Duffie, D., J. Pan and K. Singleton (2000). Transform analysis and asset pricing for affine jump-

diffusions. Econometrica.
Duffie, Darrell, Andreas Eckner, Guillaume Horel and Leandro Saita (2006). Frailty Correlated

Default. preprint, Stanford University.
Giesecke, Kay and Lisa Goldberg (2005). A top down approach to multi-name credit. Working

paper, Cornell University.
Hull, John and Alan White (2003). Valuation of a cdo and an n-th to-default cds without monte

carlo simulation. Working paper, University of Toronto.
Joshi, Mark S. and Alan Stacey (2005). Intensity gamma: a new approach to pricing portfolio

credit derivatives. Working paper, Royal Bank of Scotland.
Li, David. X. (2000). On default correlation: A copula function approach. working paper 99-07,

Risk Metrics Group.
Lucas, A., P. Klaassen, P. Spreij and S. Staetmans (2001). An analytic approach to credit risk of

large corporate bond and loan portfolios. Journal of Banking and Finance 9, 1635–1664.
O’Kane, D. and M. Livesey (2004). Base correlation explained. QCR Quarterly Q3/4, Lehman

Brothers Fixed Income Quantitative Research.



26 CLAUDIO ALBANESE AND ALICIA VIDLER

Schonbucher, P. (2006). Portfolio losses and the term structure of loss transition rates: a new
methodology for the pricing of portfolio credit derivatives. Working paper, ETHZ.



DYNAMIC CONDITIONING AND CREDIT CORRELATION BASKETS 27

Figure 3. Term structure of bond and jump correlations, April 2006.

Figure 4. Term structure of bond and jump correlations, March 2007.

Figure 5. Term structure of bond and jump correlations, October 2007.

Figure 6. Term structure of bond and jump correlations, March 2008.
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Figure 7. Term structure of cumulative loss distributions, April 2006.

Figure 8. Term structure of cumulative loss distributions, March 2007.

Figure 9. Term structure of cumulative loss distributions, Octo-
ber 2007.

Figure 10. Term structure of cumulative loss distributions,
March 2008.
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Figure 11. 03 equity tranche upfront fee (with 500bp running
spread), April 2006.

Figure 12. 03 equity tranche upfront fee (with 500bp running
spread), March 2007.

Figure 13. 03 equity tranche upfront fee (with 500bp running
spread), October 2007.

Figure 14. 03 equity tranche upfront fee (with 500bp running
spread), March 2008.
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Figure 15. Mezzanine tranche spreads, April 2006.

Figure 16. Mezzanine tranche spreads, March 2007.

Figure 17. Mezzanine tranche spreads, October 2007.

Figure 18. Mezzanine tranche spreads, March 2008.
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Figure 19. Senior tranche spreads, April 2006.

Figure 20. Senior tranche spreads, March 2007.

Figure 21. Senior tranche spreads, October 2007.

Figure 22. Senior tranche spreads, March 2008.
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