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Abstract

This paper examines occupational choices using a discrete choice model that
accounts for the fact that self-reported occupation data is measured with error.
Despite evidence from validation studies which suggests that there is a substan-
tial amount of measurement error in self-reported occupations, existing research
has not corrected for classi�cation error when estimating models of occupational
choice. This paper develops a panel data model of occupational choices that
corrects for misclassi�cation in occupational choices and measurement error in
occupation-speci�c work experience variables. The model is used to estimate
the extent of measurement error in self-reported occupation data and quantify
the bias that results from ignoring measurement error in occupation codes when
studying the determinants of occupational choices and estimating the e¤ects of
occupation-speci�c human capital on wages. The parameter estimates reveal
that 9% of occupational choices in the 1979 cohort of the National Longitudinal
Survey of Youth are misclassi�ed. Ignoring misclassi�cation biases the median
parameter in the occupational choice model by 25%.
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1 Introduction

Occupational choices have been the subject of considerable research interest by economists be-

cause of their importance in shaping employment outcomes and wages over the career. Topics

of study range from the analysis of job search and occupational matching (McCall 1990, Neal

1999) to studies of the determinants of wage inequality (Gould 2002) to dynamic human capital

models of occupational choices (Keane and Wolpin 1997). Despite the large amount of research

into occupational choices and evidence from validation studies such as Mellow and Sider (1983)

which suggests that as many as 20% of one-digit occupational choices are misclassi�ed, it is

surprising that existing research has not corrected for classi�cation error in occupations when

estimating models of occupational choice. The existence of classi�cation error in occupations is a

serious concern because in the context of a nonlinear discrete choice occupational choice model,

measurement error in the dependant variable results in biased parameter estimates.1

This paper develops a panel data model of occupational choices that corrects for the mea-

surement error in the dependant variable created by misclassi�cation of occupations, estimates

the extent of misclassi�cation in the data, and demonstrates the substantial bias in parameter

estimates caused by ignoring classi�cation error when estimating an occupational choice model.

The estimation method developed in this paper also employs simulation methods to correct

for measurement error in the occupation speci�c work experience variables used as explanatory

variables in the model.

The classi�cation error literature consists of two broadly de�ned approaches to estimating

parametric models in the presence of classi�cation error.2 One approach uses assumptions about

1See Bound, Brown, and Mathiowet� (2001) for a discussion of the e¤ects of measurement error in dependant

and independent variables for both linear and nonlinear models.
2An alternative approach to dealing with misclassi�cation derives nonparametric bounds under relatively

weak assumptions about misclassi�cation. See, for example, Boll������s (1996) study of mismeasurered binary
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the measurement error process along with auxiliary information on error rates, which typically

takes the form of validation or re-interview data, to correct for classi�cation error. Examples

of this approach to measurement error are found in work by Abowd and Zellner (19�5), Chua

and Fuller (19�7), Poterba and Summers (1995), Magnac and Visser (1999), and Chen, Hong,

and Tamer (2005). The second approach to estimating models in the presence of misclassi�ed

data corrects for misclassi�cation without relying on auxiliary information. Examples of this

approach are found in Hausman, Abrevaya, and Scott-Morton (199�) who develop a maximum

likelihood estimator that corrects for misclassi�cation in the dependant variable of a binary choice

model, and Li, Trivedi, and �uo (2003) who estimate a count model with misclassi�cation. A

related methodology is employed by Dustmann and van Soest (2001), who estimate a model of

the relationship between language �uency and earnings that corrects for misclassi�cation in self

reported language �uency.

The occupational choice model developed in this paper combines features of the two existing

approaches to misclassi�cation. Instead of relying solely on auxiliary information that provides

direct evidence on misclassi�ed occupational choices, information about misclassi�cation is de-

rived from observed wages. This approach takes advantage of the fact that observed wages

provide information about true occupational choices because wages vary widely across occupa-

tions. Intuitively, the occupational choices identi�ed by the model as likely to be misclassi�ed are

the ones where the observed wage is unlikely to be observed in the reported occupation. Also,

the model developed in this paper uses additional information provided by the fact that true

occupational choices are strongly in�uenced by observable variables such as education to draw

inferences about the extent of misclassi�cation in the data.

The model of occupational choices presented in this paper builds on the models of self selec-

independent variables in a linear regression, and Kreider and Peppe	
s (2004A, 2004B) work on misclassi�cation

in disability status.
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tion in sectoral and occupational choices used by �eckman and Sedlacek (19�5,1990) and ould

(2002). Workers in the model self select into one-digit occupations based on their skills and pref-

erences which in�uence the wages and non-pecuniary utility received while employed in each of

the eight occupations in the economy. The model expands on previous occupational choice mod-

els by explicitly allowing for misclassi�cation in observed occupational choices by incorporating

misclassi�cation probabilities that indicate the probability of observing a worker in each occupa-

tion conditional on the worker�s actual occupational choice. The misclassi�cation probabilities

are estimated along with the other parameters of the model, and these estimates provide direct

evidence on the extent of misclassi�cation in the data as well as information about the patterns

of misclassi�cation between occupations. In addition, the model allows misclassi�cation rates to

be heterogenous across people. It is necessary to control for this person-speci�c heterogeneity

because in panel data, some individuals may persistently provide poor descriptions of their oc-

cupations that are likely to be misclassi�ed when these verbatim descriptions are translated into

occupation codes.3

One key contribution of this work is that it develops a method of dealing with the problems

created in panel data models when misclassi�cation in the dependant variable creates measure-

ment error in the explanatory variables in the model. This situation arises in a panel data

occupational choice model because when a current period occupational choice is misclassi�ed it

creates measurement error in future occupation speci�c work experience variables.4 This prob-

lem has not been addressed in existing models of misclassi�cation or in the occupational choice

literature. It is addressed in this work by using the model of misclassi�cation to derive the dis-

3See Dustmann and van Soest (2001) for a model of misclassi�cation applied to panel data that allows for

person-speci�c heterogeneity in propensity to falsely report language �uency.
4This is the case because the amount of occupation speci�c work experience that a worker has accumulated as

of year t in occupation q is simply the total number of times that the individual reported working in occupation

q in the previous years.
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tribution of true occupation speci�c work experience conditional on the observed occupational

choices, wages, and other explanatory variables in the model. The distribution of the true oc-

cupation speci�c experience variables for a given person is used to integrate out the e¤ects of

measurement error on each individual�s likelihood contribution. This approach creates serious

computational problems because treating occupation speci�c work experience as an unobserved

state variable creates a likelihood function composed of high dimensions integrals that are ex-

tremely di¢ cult to evaluate. This research addresses this problem by employing recent advances

in integral simulation techniques to approximate the otherwise intractable integrals over the

distribution of true occupation speci�c experience that appear in the likelihood function. This

application of simulation methods adds to a growing literature that uses simulation methods

to solve problems created by missing data and measurement error.5 The simulation algorithm

developed in this paper is applicable in a wide range of settings beyond occupational choice

models. For example, a natural application of these techniques would be to studies of labor

force participation or unemployment, where current labor force status is measured with error

and accumulated work experience impacts the probability of employment.

The parameter estimates show that a substantial fraction of occupational choices (9%) are

misclassi�ed in the NLSY data. The extent of misclassi�cation varies widely across occupations,

with 96% of craftsmen classi�ed in the correct occupation, while only 77% of service workers

are correctly classi�ed. The estimates also indicate that observed wages provide a large amount

of information about which occupational choices in the data are likely to be a¤ected by mis-

classi�cation. For example, the model predicts that 91% of professionals with reported wages

in the top 10% of the professional wage distribution are correctly classi�ed as professionals, but

5For example, Lavy, Palumbo, and Stern (199�� and Stinebrickner (1999) use simulation methods to solve

estimation problems created by missing data, and Stinebrickner and Stinebrickner (2004) develop a model of

college outcomes that uses simulation methods to correct for measurement error in self-reported study time.
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only 75% of those observed in the bottom 10% of the professional wage distribution are correctly

classi�ed as professionals. There is a similarly strong and intuitively plausible relationship be-

tween education and misclassi�cation in occupation codes. For example, 71:8% of workers who

are correctly classi�ed as professionals graduated from college, while only 30:2% of workers who

are incorrectly classi�ed as professionals graduated from college.

The bias caused by ignoring classi�cation error when estimating a one-digit occupational

choice model is substantial. The average parameter is biased by 60% when classi�cation error is

ignored, while the median parameter is biased by 25%. The largest biases are found in parameters

that measure the transferability of occupation speci�c human capital across occupations. For

example, ignoring misclassi�cation in occupation codes overstates the e¤ect of experience as a

craftsman or operative on wages in the professional occupation by 3�% and 73%, respectively.

Classi�cation error in occupations creates serious bias in estimates of the parameters of an

occupational choice model, so researchers should be careful to examine the robustness of their

results to misclassi�cation when studying occupational choices and the returns to occupation

speci�c human capital.6

An additional application of the model developed in this paper is that it can be used to

simulate occupational choice data that is free from misclassi�cation, because estimating the

model recovers the distribution of true occupational choices conditional on observed occupational

choices and wages. This simulated data can be used in place of the noisy occupational choice

data in a wide range of applications, ranging from simple descriptive analyses of the patterns in

occupational mobility to estimation of dynamic structural models of occupational choices.

The remainder of this paper is organized in the following manner. Section 2 discusses the

6While estimating the returns to �rm speci�c and general work experience has long been a major research

topic for economists, in recent years attention has turned to the importance of occupation and industry speci�c

work experience. See, for example, Neal (1995), Parent (2000), and Kambourov and Manovskii (2006).
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data. Section 3 presents the occupational choice model with misclassi�cation, and Section 4

presents the parameter estimates. Section 5 discusses how the model can be used to simulate

occupational choice data that is free from misclassi�cation and examines the simulated data.

Section 6 concludes examines the sensitivity of the results to the existence of measurement error

in wages, and Section 7 concludes.

2 Data

The National Longitudinal Survey of Youth (NLSY) is a panel dataset that contains detailed

information about the employment and educational experiences of a nationally representative

sample of young men and women who were between the ages of 14 and 21 when �rst interviewed

in 1979. The employment data contains information about the durations of employment spells

along with the wages, hours, and three-digit 1970 U.S. Census occupation codes for each job.

This analysis uses only white men ages 1� or older from the nationally representative core

sample of the NLSY. Individuals who ever report serving in the military, working as farmers, or

being self-employed are excluded from the sample. The NLSY work history �les are used to con-

struct a monthly history of each individual�s primary employment using the weekly employment

records. This analysis considers only full time employment, which is de�ned as a job where the

weekly hours worked are at least 20. The intent of this analysis is to follow workers from the

time they make a permanent transition to the labor market and start their career. There is no

clear best way to identify this transition to the labor market, so this analysis follows people from

the month they reach age 1� or stop attending school, whichever occurs later. Individuals are

followed until they reach age 35, or exit from the sample due to missing data.

The weekly labor force record is aggregated into a monthly employment record based on the

number of weeks worked in each full time job in each month. An individual�s primary job for
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each month is de�ned as the one in which the most weeks were spent during that month. The

monthly employment record is used to create a running tally of accumulated work experience in

each occupation for each worker.

Descriptions of the one-digit occupation classi�cations along with average wages are presented

in Table 1a. The highest paid workers are professional and managerial workers, while the lowest

paid workers are found in the service occupation. Descriptive statistics are presented in Table

1b. There are 954 individuals in the sample who contribute a total of 10,573 observations to the

data. On average, each individual contributes approximately 11 observations to the data.

�.� M�as�r�m��t Err�r �� Occ�pat��� C���s& ��scr�pt�v� Stat�st�cs

The NLSY provides the U.S. Census occupation codes for each job. Interviewers question respon-

dents about the occupation of each job held during the year with the following two questions:

What kind of work do you do? That is, what is your occupation? Coders use these descriptions

to classify each job using the three-digit Census occupation coding scheme. Misclassi�cation

of occupation codes may arise from errors made by respondents when describing their job, or

from errors made by coders when interpreting these descriptions. Evidence on the extent of

misclassi�cation is provided by Mellow and Sider (19�3), who perform a validation study of

occupation codes using occupation codes found in the CPS matched with employer reports of

their employee s occupation. They �nd agreement rates for occupation codes of 5�% at the

three digit level and �1% at the one digit level. As one would expect, there appears to be less

measurement error in the fairly broadly de�ned one digit classi�cations compared to the more

narrowly de�ned three digit groupings. Additional evidence on measurement error in occupation

codes is presented by Mathiowet! (1992). Mathiowet! (1992) independently creates one and

three-digit occupation codes based on occupational descriptions from employees of a large man-
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ufacturing �rm and job descriptions found in these worker"s personnel �les. The agreement rate

between these independently coded one-digit occupation codes is 76%, while the agreement rate

for three-digit codes is only 52%. In addition to comparing the three and one-digit occupation

codes produced by independent coding, Mathiowet# (1992) also conducts a direct comparison of

the company record with the employee"s occupational description to see if the two sources could

be classi�ed as same three-digit occupation. This direct comparison results in an agreement rate

of 87% at the three-digit level.

Table 1a lists the one digit occupation classi�cations used throughout this study along with

the mean wage in each occupation. Average wages vary widely across occupations, with managers

earning the highest average hourly wage of $12.%9, and service workers earning the lowest wage

of $6.34. Table 2 provides information about occupational mobility in the form of a transition

matrix. The top entry in each cell represents the percentage of employment spells in the NLSY

data that start in the left column occupation and end in the top row occupation. Table 2 shows

that persistence in occupational choices varies widely across occupations. For example, 74.7% of

professionals remain in the professional occupation from one employment spell to the next, while

only 36.2% of laborers remain in the laborer occupation from one spell to the next. Mobility

occurs frequently between the closely related blue collar occupations of operatives, craftsmen,

and laborers. Mobility is also quite common from the sales to managerial occupation, although

mobility in the opposite direction is roughly half as common.

3 'cc()at*+,a- /h+*c0 4+50- w*th 4*sc-ass*�cat*+,
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The model of occupational choices developed in this paper builds on previous models of sectoral

and occupational choices such as Keckman and Sedlacek (19L5, 1990) and Nould (2002). These

models are all based on the framework of self selection in occupational choices introduced by Roy

(1951). Let V �iqt represent the utility that worker i receives from working in occupation q at time

period t. Let N represent the number of people in the sample, let T (i) represent the number

of time periods that person i in the sample, and let Q represent the number of occupations.

Assume that the value of working in each occupation is the following function of the wage and

non-pecuniary utility,

V �iqt = wiqt +Hiqt + "iqt; (1)

where wiqt is the log wage of person i in occupation q at time t; Hiqt is the non-pecuniary utility

that person i receives from working in occupation q at time t, and "iqt is an error term that

captures variation in the utility Pow from working in occupation q caused by factors that are

observed by the worker but unobserved by the econometrician.

The log wage equation is

wiqt = �iq + Zit�q +

QX

k=1

�qkExpikt + eiqt; (2)

where �iq is the intercept of the log wage equation for person i in occupation q, Zit is a vector

of explanatory variables, and Expikt is person iQs experience at time t in occupation k. This

speci�cation allows for a full set of cross-occupation experience e¤ects, so the parameter estimates

provide evidence on the transferability of skills across occupations.7 Note that the commonly

estimated log wage equation which assumes that only total work experience inPuences wages,

7See Keane and Wolpin (1997) for an example of a paper that allows for cross-occupation experience e¤ects.

Their occupational choice model allows blue collar and white collar experience to enter into the wage equations

in both the blue and white collar occupations.
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rather than occupation speci�c work experience, is nested within this speci�cation. Equation (2)

reduces to this �standardR wage equation when all the �Ts in the model are equal, (�11 = �qk; q =

1; :::; Q; k = 1; :::; Q). The �nal term, eiqt, represents a random wage shock. The non-pecuniary

utility Uow equation is speci�ed as

Hiqt = Xit�q +

QX

k=1

qkExpikt +

QX

k=1

�qkLastoccikt + �iq; (3)

where Xit is a vector of explanatory variables, Expikt is person iTs experience at time t in

occupation k, Lastoccikt is a dummy variable equal to 1 if person i worked in occupation k at

time t� 1. This variable allows switching occupations to have a direct impact on non-pecuniary

utility, as it would if workers incur non-pecuniary costs when switching occupations. The �nal

term, �iq; represents person iTs innate preference for working in occupation q.

Let Oit represent the occupational choice observed in the data for person i at time t. This

variable is an integer that takes a value ranging from 1 to Q. A personTs true occupational choice

may di¤er from the one observed in the data if classi�cation error exists. Let bOit represent the

true occupational choice, which is simply the occupation that yields the highest utility,

bOit = q if V �iqt = maxVV �i1t; V �i2t; :::; V �iQtg: (4)

The model of misclassi�cation used in this paper builds on the model of misclassi�cation in a

binary dependant variable developed by Wausman, Abrevaya, and Scott-Morton (199X) and the

multinomial logit model with misclassi�cation developed by Poterba and Summers (1995).Y In

this framework the probability of misclassi�cation depends on the value of the latent variable

V �iqt. The misclassi�cation probabilities are denoted as

�jk = Pr(Oit = j j bOit = k); for j = 1; :::; Q; k = 1; :::; Q: (5)

[An important distinction between these two papers is that \]usman et al. ^_``ab estimate misclassi�cation

probabilities jointly with the other parameters of their binary choice model, while Poterba and Summers (1995)

consider the case where misclassi�cation rates are known.
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That is, �jk represents the probability that the occupation observed in the data is j, conditional

on the actual occupational choice being k. The �jj terms are the probabilities that occupational

choices are correctly classi�ed. There are Q � Q misclassi�cation probabilities, but there are

only [(Q�Q)�Q] free parameters because the misclassi�cation probabilities must sum to one

for each possible occupational choice,

QX

j=1

�jk = 1; for k = 1; :::; Q: (6)

Throughout this paper the term cmisclassi�cation probabilitiesk will be used when refer-

ring to all of the �jkqs, but of course only the terms where j r= k truly represent misclassi�cation

probabilities, since the terms with j = k are actually kcorrect classi�cation probabilities.k Note

that this occupational choice model nests a standard occupational choice model which assumes

that occupations are always correctly classi�ed. When �jj = 1 for (j = 1; :::; Q), and �jk = 0

for j r= k and (j; k = 1; :::; Q), occupations are never misclassi�ed. This model builds on existing

models of misclassi�cation such as Douglas, Smith Conway, and Ferrier (1995), sausman, Abre-

vaya, and Scott-Morton (199x), and Dustmann and van Soest (2001). Following studies of this

type, the model assumes that the misclassi�cation probabilities y�jk : k = 1; ::; Q; j = 1; :::; Q{

depend only on j and k, and not on the other explanatory variables in the model. This is a

standard assumption in this type of model.

One possible shortcoming of this baseline model of occupational misclassi�cation is that it

rules out person speci�c heterogeneity in the propensity to misclassify occupations that may

be present in panel data such as the NLSY. For example, it is possible that some workers

consistently provide poor descriptions of their occupations over the course of their career which

results in frequent misclassi�cations. On the other hand, other workers may provide very detailed

descriptions that are much less likely to result in misclassi�cation. Section 3.4 of this paper
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presents an extension of the model that allows for this type of within-person correlation in

misclassi�cation rates.

This model of misclassi�cation implies that the occupation speci�c experience variables,

Expiqt, will be measured with error, since measurement error in a current occupational choice

creates measurement error in future experience variables because the experience variables are

calculated using a worker|s sequence of observed occupations. This measurement error is non-

classical because it is correlated with observed choices. A method for dealing with this problem

is presented in the next section.

It is necessary to specify the distributions of the error terms in the model before deriving the

likelihood function. Assume that "iqt } iid extreme value and eiqt } N(0; �
2
eq). Let �i represent

a Q� 1 vector of person i|s preferences for working in each occupation, and let �i represent the

Q � 1 vector of person i|s log wage intercepts in each occupation. Let F (�; �) denote the joint

distribution of the wage intercepts and occupational preferences.

Let � represent the vector of parameters in the model, � = ~�k; kj; �kj; �kj; �k; �jk; �ek; F (�; �) :

k = 1; :::; Q; j = 1; :::; Q�: De�ne bPit(q; wobsit ) as the joint probability that person i chooses to

work in occupation q in time period t and receives a wage of wobsit . For brevity of notation, when

it is convenient I suppress some or all of the arguments ~�; Zit; Xit; Expikt; Lastoccikt; w
obs
it � at

some points when writing equations for probabilities and likelihood contributions, even though

the choice probabilities and likelihood contributions are functions of all of these variables. De�ne

f(e�q) as the joint density of the wage error terms excluding the error term for occupation q.

12



The outcome probability is

bPit( q; wobsit � �; �) = Pr(V �iqt = max�V
�
i1t; V

�
i2t; :::; V

�
iQt� � wiqt = w

obs
it ) (7)

= Pr(V �iqt = max�V
�
i1t; V

�
i2t; :::; V

�
iQt� � wiqt = w

obs
it )� Pr(wiqt = w

obs
it )

=

Z
� � �

Z
exp(wobsit +Hiqt)

exp(wobsit +Hiqt) +
P

j 6=q exp(wijt +Hijt)
f(e�q)de�q�

1

�eq
�(
wobsit � �iq � Zit�q �

PQ

k=1 �qkExpikt

�eq
) ;

where � represents the standard normal pdf. During the evaluation of the likelihood function

the integral over the distribution of f(e�q)de�q is simulated by taking random draws from the

distribution and computing the average of bPit( q; wobsit � �; �) over the draws.9 The likelihood

function for the observed data is constructed using the misclassi�cation probabilities and the

true choice probabilities. De�ne Pit(q; w
obs
it ) as the probability that person i is observed working

in occupation q at time period t with a wage of wobsit . This probability is the sum of the true

occupational choice probabilities weighted by the misclassi�cation probabilities,

Pit(q; w
obs
it � �; �) =

QX

k=1

�qk bPit(k; wobsit � �; �): (�)

Note that the outcome probability imposes the restriction that the observed wage is drawn

from the worker�s actual occupation, which rules out situations where a worker intentionally

misrepresents his occupation and simultaneously provides a false wage consistent with the false

occupation. This assumption implies that observed wages provide information about true occu-

pational choices. The likelihood function is simply the product of the probabilities of observing

the sequence of occupational choices observed in the data for each person over the years that

9During estimation, 60 draws are used to simulate the integral. Antithetic acceleration is used to reduce the

variance of the simulated integral. As a check on the sensitivity of the estimates to the number of simulation draws

the optimi�ation routine was re-started using 600 draws. The parameter estimates (and value of the likelihood

function at the maximum) were essentially unchanged by this increase in the number of simulation draws.

13



they are in the sample,

L(�) =

NY

i=1

Z T (i)Y

t=1

QX

q=1

1�Oit = q�Pit(q; w
obs
it � �; �)dF (�; �) (9)

=

NY

i=1

Z
Li(���; �)dF (�; �); (10)

where 1��� denotes the indicator function which is equal to 1 if its argument is true and 0

otherwise. The likelihood function must be integrated over the joint distribution of skills and

preferences, F (�; �). Following �eckman and Singer (19�4), this distribution is speci�ed as a

discrete multinomial distribution.10 Suppose that there areM types of people, each with a Q�1

vector of wage intercepts �m and Q�1 vector of preferences �m. Let !m represent the proportion

of the mth type in the population. The unconditional likelihood function is simply a weighted

average of the type speci�c likelihoods,

L(�) =
NY

i=1

Z
Li(���; �)dF (�; �)

=

NY

i=1

MX

m=1

!mLi(� � �i = �
m; �i = �

m)

=

NY

i=1

Li(�) (11)

��� ��a��at��� t�� �������  ¡ £��ct� �

The parameters of the model can be estimated by maximi¤ing the likelihood function shown in

equation number (11). The major complication arises from the fact that classi�cation error in

occupation codes creates measurement error in the occupation speci�c work experience variables

and previous occupational choice dummy variables that are used as explanatory variables. This

section describes the relationship between measurement error in occupation codes and measure-

10There is a large literature advocating the use of discrete distributions for unobserved heterogeneity. See, for

example, Mr¥¦ (1999).

14



ment error in occupation speci�c work experience variables and explains how simulation methods

can be used to correct for this measurement error during the evaluation of the likelihood function.

The intuition behind this approach is that the model of misclassi�cation of occupational

choices presented in the previous section de�nes a relationship between the occupational choices

observed in the data and the true occupational choices predicted by the model. This relationship

implies that conditional on the occupational choices, wages, and other explanatory variables ob-

served in the data, the model implies there is a distribution of true values of occupation speci�c

experience and true lagged occupational choices. The distribution of the true data conditional on

the observed data can be used to integrate out the e¤ects of measurement error. Unfortunately,

the distribution of true lagged occupational choices and experience variables is intractably com-

plex. This work overcomes this limitation by using simulation methods to evaluate the otherwise

intractable integrals that arise when misclassi�ed occupational choices creates measurement error

in explanatory variables.

Let dExpiqt represent person i§s true experience in occupation q in time period t. De�ne

dExpit as a Q � 1 vector of experience in each occupation. These experience variables are not

observed in the data, because the data only contains information about reported occupation

speci�c experience, Expiqt, which is measured with error. Let dLastoccit represent a Q � 1

vector of dummy variables where the qth element is equal to 1 if person i§s true occupational

choice was q in time period t. Let F (dExp; dLastocc) represent the distribution of true occupation

speci�c experience and lagged occupational choices. This distribution is a function of each

person§s observed characteristics, and observed choices and wages. The likelihood function must

be integrated over this distribution when it is evaluated during estimation,

L(�) =
NY

i=1

Z
Li(�¨dExp; dLastocc)dF (dExp; dLastocc): (12)

The likelihood function is di© cult to evaluate because the distribution of actual occupation
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speci�c experience and lagged choices is intractably complex, but recent advances in integral

simulation methods provide a way to evaluate the likelihood function. The likelihood function

can be simulated using a modi�edªeweke (1991), «ajivassiliou (1990), and Keane (1994) (ª«K)

algorithm to simulate the likelihood contribution. Simulation methods have not been used ex-

tensively in this manner to solve problems created by measurement error, although it is a natural

application of these techniques.

¬®¯ °±² ³´µ¶·at´¸¹ A·º¸r´t±µ

This section provides the details of the simulation algorithm used to evaluate the likelihood

function. For simplicity, the algorithm is outlined for the case where the number of unobserved

heterogeneity types (M) equals one. In the case of multiple types, the algorithm is simply

repeated for each type to obtain the type-speci�c likelihood contributions found in the likeli-

hood function, because the likelihood function is simply a weighted average of the type-speci�c

likelihood contributions. The object that must be simulated is

L(�) =
NY

i=1

Z T (i)Y

t=1

QX

q=1

1»Oit = q¼Pit(q; w
obs
it ½�; Zit;Xit;dExpikt; dLastoccikt)dF (dExp; dLastocc)

=

NY

i=1

Z T (i)Y

t=1

Lit(Oit; w
obs
it ½�; Zit;Xit;dExpikt; dLastoccikt)dF (dExp; dLastocc) (13)

Let variables with a � superscript represent simulated variables, and let r = 1; :::; R in-

dex simulation draws. Using this notation, O�it(r½�; Oit; w
obs
it ; Zit;Xit; Exp

�
it; Lastocc

�
it) is a sim-

ulated occupational choice, Exp�it+1(r½�;Oit; w
obs
it ; Zit;Xit; Exp

�
it; Lastocc

�
it) is a Q � 1 vector of

simulated occupation speci�c experience, and Lastocc�it+1(r½�; Oit; w
obs
it ; Zit;Xit; Exp

�
it; Lastocc

�
it)

is a vector of dummy variables representing the simulated occupational choice in the previ-

ous period, and L�it(r; Oit; w
obs
it ½�; Zit;Xit; Exp

�
it; Lastocc

�
it) is a simulated likelihood contribution.

For brevity of notation, de�ne the set of conditioning variables for the simulated choices as
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� = ¾�; Oit; w
obs
it ; Zit;Xit; Exp

�
it; Lastocc

�
it¿. The simulation algorithm for person i is:

1. Start in time period t = 1, simulation draw r = 1. All experience variables equal Àero at

the start of the career by de�nition since the career begins at the �rst job, so initialiÀe

the simulated experience vector to Àero for time periods t = 1; :::; T : Exp�i1(r) = 0;and

Lastocc�i1(r) = 0:

2. Evaluate and store L�it(r; Oit; w
obs
it Á�; Zit;Xit; Exp

�
it(r); Lastocc

�
it(r)): This is the simulated

likelihood contribution for year t, simulation draw r.

3. Compute and store the probability that person iÂs true choice in time period t ( bOit) is each of

the Q possible occupations, conditional on the parameter vector (�), observed choice (Oit),

observed wage (wobsit ), explanatory variables (Zit;Xit), and simulated previous occupational

choice (Lastocc�it) and experience variables (Exp
�
it). Let 
it(r; qÁ�) for q = 1; :::; Q represent

the conditional probability for simulation draw r that the true occupational choice is q for

person i in time period t. These probabilities can be written using BayesÂrule as a function

of the previously de�ned outcome probabilities ( bPit(Ã)) and misclassi�cation probabilities

(�Âs),


it(r; qÁ�) = Pr( bOit = q Á �) (14)

=
�Oit;1

bPit(q; wobsit )PQ

k=1 �Oit;k
bPit(k; wobsit )

: (15)

Recall that bPit(Ã) is a function of all of the variables that 
it(Ã) is conditioned on, but

they are suppressed here as they were in equation (7). This implies that the observed wage

and all the explanatory variables provide information about the conditional true choice

probabilities (
it(Ã)).

4. Use the Q computed conditional true choice probabilities, 
it(r; qÁ�); to de�ne the discrete
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distribution of true occupational choices ÄPr(O�it = q) = 
it(r; qÅ�)Æ; q = 1; :::; QÆ: Next,

randomly draw a simulated true occupational choice O�it(rÅ�) for person i at time period

t from the discrete distribution of the Q possible true occupational choices.

5. Use the simulated choice O�it(rÅ�) to update the vectors of simulated experience and lagged

occupational choice vectors, Exp�it+1(rÅ�) and Lastocc
�
it+1(rÅ�): The updating rules are to

increase the element of the experience vector by one in the simulated occupation, and

leave all other elements of the vector unchanged. For the previous occupation dummy, set

the element of the Lastocc�it+1 vector corresponding to the simulated occupation in time t

equal to one and set all other elements of the vector to Çero. More precisely, increment the

jth element of the vector Exp�it+1(r) by one if O
�
it(r) = j, and leave all other elements of

Exp�it+1(r) unchanged from their values in time period t: Set the jth element in the vector

Lastocc�it+1(r) equal to one, and set all other elements of Lastocc
�
it+1(r) equal to Çero.

6. If t = T (i) (the �nal time period for person i); go to step 7. Otherwise, Set t = t + 1 and

go back to step 2.

7. Compute the likelihood function for simulated path r,

Lri (�) =

T (i)Y

t=1

L�it(r; Oit; w
obs
it Å�; Zit;Xit; Exp

�
it; Lastocc

�
it):

È. Repeat this algorithm R times, and the simulated likelihood function is the average of the

R path probabilities over the R draws,

L�i (�) =
1

R

RX

r=1

Lri (�):

During estimation, antithetic acceleration is used to reduce the variance of the simulated

integrals. The number of simulation draws is set at R = 60. Increasing the number of simulation
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draws to R = 600 leads to only a :01% change in the value of the likelihood function at the

simulated maximum likelihood parameter estimates.11

ÉÊÉ ËÌÍÎtÏÐcatÏÑÎ

This section presents the identi�cation conditions for the occupational choice model with mis-

classi�cation and discusses the intuition behind how the misclassi�cation model identi�es certain

occupational choices as likely to be misclassi�ed.

ÒÓÒÓÔ ÕÖ×ØtÙÚcatÙÛØ ÜÛØÖÙtÙÛØs

The identi�cation conditions for a model of misclassi�cation in a binary dependant variable are

presented by Ýausman, Abrevaya, and Scott-Morton (199Þ). This condition is extended to the

case of discrete choice models with more than two outcomes by Ramalho (2002). The parameters

of the model are identi�ed if the sum of the conditional misclassi�cation probabilities for each

observed outcome is smaller than the conditional probability of correct classi�cation. In the

context of the occupational choice model presented in this paper this condition amounts to the

following restriction on the misclassi�cation probabilities,

X

k 6=j

�jk < �jj; j = 1; :::; Q: (16)

This condition implies that on average, the occupational choices observed in the data are correct.

The intuition behind this identi�cation condition is that it is not possible to estimate the extent

of misclassi�cation along with the rest of the parameter vector if the quality of the data is so poor

that one is more likely to observe a misclassi�ed occupational choice than a correctly classi�ed

occupational choice. A key implication of this identi�cation condition is that when the likelihood

11As a further check on the robustness of the parameter estimates to the choice of R, the model was re-estimated

using R = 30_0. The program converged to essentially the same parameter vector as it did when R = 60 was used.
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function is being maximißed during simulated maximum likelihood (SML) estimation, the SML

parameter vector is con�ned to an area of the parameter space where the true occupational

choices generated by the model correspond to those observed in the data to a certain minimum

extent. This rules out extreme situations where misclassi�cation accounts for the majority of the

observed occupational choices in the data. For example, this assumption rules out the extreme

case where the model evaluated at the SML parameter vector assigns extremely low true choice

probabilities to every occupational choice observed in the data and instead accounts for all

observed occupational choices through misclassi�cation.12

àáàáâ Aã äååæstratçèé êëaìíåé

This section presents an actual occupational choice sequence drawn from the NLSY and discusses

how the misclassi�cation model uses the predicted true choice probabilities and wage data to

infer the probability that an occupational choice is misclassi�ed. Consider the following sequence

of occupational choices found in the data for a particular person in the NLSY.

Age 24 25 26 27

Observed occupation Professional Craftsman Professional Professional

Observed wage î10.75 î11.ï5 î13.ï3 î13.90

Years of College 4 4 4 4

At the time that this person is observed switching from the professional occupation to the

craftsmen occupation he has worked as a professional for two years and has never worked as a

craftsman. In addition, this worker is a college graduate, and college graduates do not typically

12During estimation, the identi�cation constraint (
P

k ð=j �jk < �jj ; j = 1; :::; Q) was never directly imposed on

the parameter vector. One could do this by parameterñòñóg the �ôs in such a way that the condition is required

to hold, or by adding a penalty function to the likelihood function, but neither of these approaches was used

during estimation. Although it was possible for the identi�cation to be violated during the course of estimation,

in practice this never occured during runs of the estimation program.
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work as craftsmen. Also, the mean wage for a professional is õ11.19, while the mean wage for

a craftsman is only õö.53. ÷iven this information, it seems plausible that this transition from

professional to craftsmen employment is a false one created by classi�cation error. From an intu-

itive standpoint, the consistent pattern of this worker choosing professional employment over his

career, the cycling between professional and craftsmen employment, the patterns in the observed

wages, and the relationship between college graduation and occupational choices all combine to

make this a suspicious occupational transition. As the following discussion will demonstrate, the

misclassi�cation model incorporates all of these considerations when it determines whether or

not an occupational choice is likely to be misclassi�ed.

First, consider the information provided by the panel nature of the data. The identi�cation

condition shown in equation 16 implies that on average the occupational choices observed in

the data are correct, so it would require an extremely unlikely sequence of misclassi�cations to

account for a person being falsely observed as a professional over the course of their entire career.

Consistently observing a worker as a professional and observing the associated wages provides

information about a personøs ability and preference for professional employment relative to other

occupations.

At this point it is useful to �rst examine a simple occupational choice model with misclas-

si�cation that does not incorporate wage data. This model is the one found in Section 3 under

the restriction that wiqt = 0. For simplicity, suppose that there are only two occupations, where

the professional occupation is de�ned as occupation 1 and the craftsman occupation is de�ned

as occupation 2. The probability that this person is observed as a craftsman is

Pit(2) = �22 bPit(2) + �21 bPit(1); (17)

where �22 is the probability that this person is correctly classi�ed as a craftsman and bPit(2) is

the probability that working as a craftsman is the optimal choice. Recall that the true occupa-
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tional choice probabilities ( bPitùs) are functions of all of the explanatory variables in the model,

such as education. Estimating the parameters of the model with maximum likelihood involves

maximiúing a likelihood function composed of observed choice probabilities of this form. The

derivatives of the observed choice probability with respect to the �ùs are

@Pit(2)

@�22
= bPit(2) and

@Pit(2)

@�21
= bPit(1): (1û)

This example shows that, roughly speaking, when it is very likely that this person actually

chooses to work in occupation 2 ( bPit(2) is large) this particular personùs contribution to the

likelihood function will be maximiúed by making �22 large. In the context of this example, if

college educated workers are on average very unlikely to work as craftsmen, but very likely to

work as professionals, then bPit(2) will be small relative to bPit(1). This example illustrates that

the estimates of the misclassi�cation probabilities will be determined by the extent to which the

choices observed in the data are likely to be generated as optimal occupational choices by the

model.

One clear shortcoming of the preceding model is that potentially useful information found in

wages is excluded. The outcome probabilities in the model that incorporates wages include the

joint density of observed choices and wages,

Pit(2; w
obs
it = $11:12) = �22 bPit(2; w2 = $11:85) + �21 bPit(1; w1 = $11:85); (19)

where bPit(2; w2 = $11:85) is the joint probability that occupation 2 is the optimal choice and

a wage of ü11.û5 is observed in occupation 2. The derivatives of this outcome probability with

respect to the aùs are

@Pit(2)

@�22
= bPit(2; w2 = $11:85) and

@Pit(2)

@�21
= bPit(1; w1 = $11:85): (20)

Once wages are incorporated into the model, the derivatives of the outcome probabilities with

respect to the �ùs depend on the probability of observing a wage of ü11.û5 in each occupation in
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addition to the choice probabilities predicted by the model, which capture the e¤ect of variables

such as education on true occupational choices. The model takes into account how consistent

the observed wage is with the wage distribution in each occupation while the �ýs are being

estimated. If, for example, a wage of þ11.ÿ5 is unlikely to be observed in the craftsman occupation

(occupation 2) but is much more likely to be observed in the professional occupation (occupation

1), then �22 should be relatively small, while the misclassi�cation probability �21 should be

relatively large. In addition, the fact that wages vary strongly with occupation speci�c work

experience provides further variation in the wage distribution across occupations that helps to

identify wages that donýt appear to �t well in the reported occupation. For example, a craftsman

with 15 years of experience may be fairly likely to earn a wage of $11:85, but it is probably very

unlikely for a person working as a craftsman for the �rst time to earn a wage of $11:85 when the

mean wage in the craftsmen occupation is only $8:53. In general, choice-wage combinations where

the reported wage is unlikely to be observed in the reported occupation and where the observed

occupational choice is unlikely to be generated as an optimal choice in the model are the ones

that support the existence of misclassi�cation. Estimates of the misclassi�cation probabilities

will be determined by the likelihood of the choices observed in the data being generated by the

model and by the extent to which observed wages are consistent with reported occupational

choices.

3.4 An Extended Model: Heterogeneity in Misclassi�cation Rates

The model of misclassi�cation presented in Section 3.1 assumes that all individuals have the

same probability of having one of their occupational choices misclassi�ed. In a panel data set-

ting such as the NLSY, it is possible that during the yearly NLSY interviews some individuals

consistently provide poor descriptions of their jobs that are likely to lead to measurement error

23



in the occupation codes created by the NLSY coders. On the other hand, some workers may be

more likely to provide accurate descriptions of their occupations that are extremely unlikely to

be misclassi�ed. This type of time-persistent misclassi�cation has been examined by Dustmann

and van Soest (2001) in their model of misclassi�cation of self reported language �uency. Dust-

mann and van Soest (2001) allow for several subpopulations who have di¤erent propensities to

over or under report their language �uency, and they estimate the subpopulation-speci�c mis-

classi�cation rates along with the proportions of each subpopulation in the overall population.

The remainder of this section extends the occupational choice model with misclassi�cation to

allow for time persistent misclassi�cation by using an approach similar to the one adopted by

Dustmann and van Soest (2001).

The primary goal of the extended model is to allow for person-speci�c heterogeneity in mis-

classi�cation rates in a way that results in a tractable empirical model. Suppose that there

are three subpopulations of workers in the economy, and that these subpopulations each have

di¤erent probabilities of having their occupational choices misclassi�ed. De�ne the occupational

choice misclassi�cation probabilities for subpopulation y as

�jk(y) = Pr(Oit = jj bOit = k); j = 1; :::; Q; k = 1; :::; Q; (21)

QX

j=1

�jk(y) = 1; k = 1; :::; Q; y = 1; 2; 3: (22)

Denote the proportion of subpopulation y in the economy as �(y); where y = 1; 2; 3 and

3X

y=1

�(y) =

1: This speci�cation of the misclassi�cation rates allows for time-persistence in misclassi�cation,

since the �jk(y)�s are �xed over time for each subpopulation. For example, if �11(2) > �11(3),

then conditional on the true occupational choice being occupation 1, a person from subpopulation

2 is always more likely to be correctly classi�ed in occupation 1 over his entire career than a

person from subpopulation 3. Note that there are 3� [(Q�Q)�Q] misclassi�cation probabilities
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that must be estimated when there are three subpopulations in the economy. During estimation

the �(y)�s and �jk(y)�s of each subpopulation are estimated along with the other parameters of

the model, so it is necessary to specify the misclassi�cation model in such a way that the number

of parameters in the model does not become unreasonably large. In order to keep the number of

parameters at a tractable level, the number of subpopulations is set to a small number (3), and the

misclassi�cation probabilities are restricted during estimation so that the occupational choices

of subpopulation 1 are always correctly classi�ed. Under this restriction the misclassi�cation

probabilities for subpopulation one are: �jk(1) = 1 if j = k, �jk(1) = 0 if j 6= k, for j = 1; :::; Q;

and k = 1; :::; Q.13 The misclassi�cation parameters for the second and third subpopulations are

not restricted during estimation. Note that the subpopulation probabilities are estimated, so

although this speci�cation restricts members of subpopulation 1 to always be correctly classi�ed,

this is not a restrictive assumption because as �(1) approaches zero the proportion of people who

are always correctly classi�ed approaches zero.

This model of misclassi�cation incorporates the key features of heterogeneous misclassi�ca-

tion rates in a fairly parsimonious way. Some fraction of the population (�(1)) is always correctly

classi�ed, and the remaining two subpopulations are allowed to have completely di¤erent misclas-

si�cation rates, so that both the overall level of misclassi�cation and the particular patterns in

misclassi�cation are allowed to vary between subpopulations. Estimating the parameters of the

model reveals the extent of misclassi�cation in occupations and the importance of person-speci�c

heterogeneity in misclassi�cation rates.

The likelihood function presented in section 3.1 can be modi�ed to account for person-speci�c

heterogeneity in misclassi�cation. The observed choice probabilities presented are easily modi�ed

13This version of the model already has 421 parameters that must be estimated, so in order to keep the model

tractable it was never estimated with more than three subpopulations.
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so that they are allowed to vary by subpopulation,

Pit(q; w
obs
it � �; �; y) =

QX

k=1

�qk(y) bPit(k; wobsit � �; �); (23)

where y = 1; 2; 3 indexes subpopulations. Conditional on subpopulations, the likelihood function

is

L(��y) =
NY

i=1

Z T (i)Y

t=1

QX

q=1

1fOit = q�Pit(q; w
obs
it � �; �; y)dF (�; �) (24)

=

NY

i=1

Z
Li(���; �; y)dF (�; �); (25)

The subpopulation that a particular person belongs to is not observed, so the likelihood function

must be integrated over the distribution of the type-speci�c misclassi�cation rates. The distribu-

tion is discrete, so the integral is simply a probability weighted sum of the subpopulation-speci�c

likelihood contributions,

L(�) =

NY

i=1

3X

y=1

MX

m=1

�(y)!mLi(� �y; �i = �
m; �i = �

m) (26)

=
NY

i=1

Li(�) :

� Param�t�r �st�mat�s

This section presents the simulated maximum likelihood parameter estimates for the occupational

choice model. First, the parameters that reveal the extent of classi�cation error in reported occu-

pations are discussed, and then the parameter estimates from the occupational choice model that

corrects for classi�cation error and allows for person-speci�c heterogeneity in misclassi�cation

are compared to the estimates from a model that does not correct for measurement error. Next,

the sensitivity of the estimates to measurement error in wages is examined. Finally, the model

is used to simulate data that is free from classi�cation error in occupation codes.
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The estimates of the misclassi�cation probabilities for subpopulations 2 and 3 along with the

estimated proportions of each type in the population are presented in Panels A and B of Table

3. The bottom row of panel A shows that correcting for classi�cation error results in a large

improvement in the �t of the model, since the likelihood function improves from �18; 695 when

classi�cation error is ignored to �17; 821 when classi�cation error is corrected for. The proba-

bility in row i, column j is the estimate of �ij(y), which is the probability that occupation i is

observed in the data conditional on occupation j being the actual choice for a person in subpop-

ulation y. For example, the entry in the third column of the �rst row indicates that condition of

being a member of subpopulation 2, there is a 2:6% chance that a person who is actually a sales

worker will be misclassi�ed as a professional worker. The diagonal elements of the two panels of

Table 3 show the probabilities that occupational choices are correctly classi�ed. Averaged across

all occupations, the probability that an occupational choice is correctly classi�ed is .868 for sub-

population 2 and :840 for subpopulation 3. One striking feature of the estimated misclassi�cation

probabilities is the large variation in misclassi�cation rates across occupations. In subpopulation

2 the probability that an occupational choice is correctly classi�ed ranges from a low of :56 for

sales workers to a high of :99 for craftsmen, while in subpopulation 3 the probability that an

occupational choice is correctly classi�ed ranges from a low of :60 for sales workers to a high of

:98 for operatives.

The estimates of the probabilities that a person belongs to subpopulations 2 and 3 are 42%

and 19%, which leaves an estimated 38% of the population belonging to subpopulation 1, the

group whose occupational choices are never misclassi�ed. The fact that a substantial fraction of

the population belongs to the subpopulation whose occupational choices are never misclassi�ed
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highlights the importance of allowing for person-speci�c heterogeneity in misclassi�cation rates.

The subpopulation-speci�c misclassi�cation rates discussed in the previous paragraph must be

averaged over the three subpopulations to produce an estimate of the overall extent of misclas-

si�cation in the NLSY data. The estimates indicate that (:42� :86 + :19� :84 + :38� 1 = 91%)

of one-digit occupational choices are correctly classi�ed. This estimate of the overall extent of

misclassi�cation in the NLSY data is lower than the misclassi�cation rates reported in validation

studies based on other datasets. For example, Mellow and Sider (1983) �nd an agreement rate of

81% at the one-digit level between employee�s reported occupations and employer�s occupational

descriptions in the January 1977 Current Population Survey (CPS). Mathiowet� (1992) �nds a

76% agreement rate between the occupational descriptions given by workers of a single large

manufacturing �rm and personnel records.

One possible explanation for the lower misclassi�cation rate found in this study compared to

the validation studies is that the NLSY occupation data is of higher quality than both the CPS

data and the survey conducted by Mathiowet� (1992). It would be possible to test this hypothesis

by re-estimating the occupational choice model developed in this paper using the CPS data. This

extension is left for future research, since it appears that the procedures used by the CPS and

NLSY in constructing occupation codes are quite similar. Given these similarities, it is not clear

that one should expect the NLSY data to have a lower misclassi�cation rate than the CPS. An

alternative explanation is that the employer reports of occupation codes that are assumed to be

completely free from classi�cation error in validation studies are in fact measured with error.14

If this is true, then comparing noisy self reported data to noisy employer reported data would

cause validation studies to overstate the extent of classi�cation error in occupation codes. The

14It is widely acknowledged that although validation studies are frequently based on the premise that one source

of data is completely free from error, in reality no source of data will be completely free from measurement error.

See Bound, Brown, and Mathiow��� (2001) for a discussion of this issue.
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idea that this type of validation study may result in an overstatement of classi�cation error

in occupation or industry codes is not a new one. For example, Krueger and Summers (19��)

assume that the error rate for one-digit industry classi�cations is half as large as the one reported

by Mellow and Sider (19�3) as a rough correction for the overstatement of classi�cation error in

validation studies.

The wide variation in misclassi�cation rates across occupations along with the patterns in

misclassi�cation show that certain types of jobs are likely to be misclassi�ed in particular direc-

tions. Simpler models of misclassi�cation that restrict the probability of misclassi�cation to be

constant across occupations or impose symmetry in the misclassi�cation rate matrix are clearly

inadequate. The estimates of the misclassi�cation probabilities for subpopulation 2 show that

the sales occupation is the occupation that is most frequently misclassi�ed. Conditional on a

person being employed as a sales worker, there is a 21% chance that in the data they will be

misclassi�ed as a manager. The classi�cation error matrix is highly asymmetric. Note that there

is only a 1.4% chance that a manager will be misclassi�ed as a sales worker, but there is a 21%

chance that a sales worker will be misclassi�ed as a manager. The high misclassi�cation rate for

sales workers may be due in part to the existence of a three-digit occupation of sales managers,

which falls under the one-digit classi�cation of managers.

The estimated misclassi�cation probabilities for the blue collar occupations shown in panel

A of Table 3 show that these workers are most commonly misclassi�ed into closely related low

skill occupations, although there are several exceptions. Reading down the laborers column of

panel A of Table 3 shows that laborers are frequently misclassi�ed as service workers (22%), but

service workers are very unlikely to be misclassi�ed as laborers (.39%). Service workers are most

frequently misclassi�ed as professionals (6.4%) and sales workers (7.7%). The misclassi�cation

rates between service and professional employment provide another example of asymmetry in
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the misclassi�cation rate matrix, since professional workers are unlikely to be misclassi�ed as

service workers (.1�%), but service workers are frequently misclassi�ed as professionals (6.4%).

The relatively large number of service workers misclassi�ed as professionals may be caused by

health service workers such as health aides and nursing aides who are incorrectly coded as health

professionals. Ignoring this type of misclassi�cation may result in serious biases in studies of wage

di¤erences between occupations, since professionals are one of the highest paid occupations, while

service workers are the lowest paid one-digit occupation.

The overall rate of misclassi�cation rate for subpopulation 3 is approximately 3 percentage

points higher than the misclassi�cation rate found in subpopulation 2, but the similarity of

the overall misclassi�cation rates masks several large di¤erences between subpopulations in the

patterns of misclassi�cation between occupations. For example, only 71% of service workers are

correctly classi�ed in subpopulation 3, and these workers are largely misclassi�ed as managers

(25%). In contrast, �2% of service workers are correctly classi�ed in subpopulation two, and these

workers are relatively unlikely to be misclassi�ed as managers (2%). Similarly, sales workers in

subpopulation two are frequently misclassi�ed as managers (21%), but in subpopulation three

the corresponding misclassi�cation rate is only �%. Overall, these results show that there is

considerable heterogeneity in the patterns of misclassi�cation across people in the NLSY. In

addition, the occupations of a si�eable fraction of the population (3�%) are never misclassi�ed.

The variation in misclassi�cation rates across subpopulations suggests that a si�eable component

of the measurement error in occupation codes is due to errors or ambiguities in the occupational

descriptions provided by survey respondents, rather that due to errors introduced by coders as

they translate the job descriptions into occupation codes. If all misclassi�cation in occupation

codes arises from mistakes made by coders, then one would not expect to �nd evidence of person-

30



speci�c heterogeneity in misclassi�cation rates.15
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The parameter estimates for the occupational choice model estimated with and without correcting

for classi�cation error are presented in Table 6. In addition, this table presents the percent change

in each parameter from the model that corrects for classi�cation error compared to the model

that ignores classi�cation error. Let �E represent the estimated parameter in the misclassi�cation

model, and let �B represent the same parameter in the baseline model that does not incorporate

classi�cation error. The percent bias in absolute value resulting from ignoring classi�cation error

and examining occupational choices using the model that does not correct for classi�cation error

is

% abs dev =
,�B � �E,

,�E,
:

Before examining the e¤ects of classi�cation error in occupations on individual parameters it is

useful to summari-e the overall e¤ects of ignoring classi�cation error on the parameter estimates

of the occupational choice model. The preceding section demonstrates that misclassi�cation rates

are substantial, but the most important question to be addressed when examining measurement

error in occupation codes is the bias resulting from estimating models that do not take into

account misclassi�cation. The average and median of the percent absolute deviations between

the baseline and misclassi�cation models are presented in Table 4. The average parameter

in the occupational choice model is biased by 59.9% when the occupational choice model is

estimated without accounting for misclassi�cation in occupation codes. The large average bias

is driven upwards by a number of large outliers, but the median bias is still substantial at 24.7%.

15In the NLSY, the occupation coders translated the occupational descriptions into census occupation codes

after each yearly survey was conducted, so there is little chance of coder-speci�c measurement error. In addition,

when coding the occupations for a given year each occupation coder did not have access to the occupational

descriptions provided by the respondent in previous interviews.
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These results indicate that ignoring classi�cation error creates signi�cant bias in estimates of the

parameters of an occupational choice model. These �ndings are consistent with the results of

/ausman et al. (1990), who �nd that even small amounts of misclassi�cation in the dependant

variable of a binary discrete choice model creates substantial bias in parameter estimates.

5797; Wa<= >q?at@AB

While theoretical results regarding the e¤ects of measurement error in simple linear models have

been derived, there are no clear predictions for nonlinear models such as this occupational choice

model.16 One obvious problem created by the misclassi�cation of occupations is that some wage

observations used to estimate occupation speci�c wage function are classi�ed into the wrong

occupation. The patterns of misclassi�cation present in the data will be a key determinant of

the magnitude and direction of the resulting bias. If workers are generally misclassi�ed into

occupations with wage distributions similar to their actual occupation, one would expect the

bias to be less than if workers are frequently misclassi�ed from low to high paying occupations.

The second problem created by misclassi�cation is measurement error in occupation speci�c

experience variables that arises when reported occupations are used to create experience variables.

Again, it seems likely that the patterns in misclassi�cation will be a key factor in determining the

severity of the bias resulting from measurement error in occupation speci�c experience variables.

Table 5 shows how the bias in wage equation parameters in each occupation varies with

misclassi�cation rates by listing the probability of a worker being misclassi�ed �out ofD or �intoD

each occupation along with the average and median percent deviations of the wage equation

parameters in the baseline model from those in the classi�cation error model. For example,

the �rst row of Table 5 shows that the probability of a worker being falsely classi�ed as a

16See Bound, Brown, and MathiowetF (2001) for a discussion of the e¤ects of measurement error in both linear

and nonlinear models.

32



professional worker is :07, while the probability of a professional worker being misclassi�ed into

another occupation is :06. The average bias caused by ignoring classi�cation error for a parameter

in the professional wage equation is 110%, and the median bias is 59%. There is considerable

variation in the misclassi�cation rates into (:04 to :22) and out of (:02 to :42) occupations as well

as in the median bias created by ignoring misclassi�cation (14% to 59%). There is no obvious

relationship between the misclassi�cation rates and the bias created by misclassi�cation. This

result highlights the fact that the level of misclassi�cation is not the sole determinant of how much

bias is created by misclassi�cation, it is the level weighted by the importance of the misclassi�ed

choices and observed wages. For example, the largest median bias is found in the professional

wage equation even though this occupation has among the lowest rates of misclassi�cation.

The wage equation parameter estimates are presented in Panel A of Table 6. There are a

large number of wage equation parameters because there is a separate wage equation for each

occupation, so this section focuses on the e¤ects of ignoring classi�cation error in occupation

codes on selected parameter estimates. The estimates of the wage equation in the professional

occupation show large changes in the estimated e¤ects of occupation speci�c work experience

on wages between the model that ignores classi�cation error in occupations and the one that

accounts for classi�cation error. For example, the e¤ect of a year of managerial experience

on wages in the professional occupation is biased downward by 42% from :064 to :037 when

misclassi�cation is ignored. The model that ignores classi�cation error overstates the e¤ect

of experience as a craftsman or operative on professional wages by 38% (:0280 to :0203) and

73% (:0447 to :0259). Accounting for classi�cation error removes false transitions in the data

where craftsmen and operatives are observed switching to professional employment, and so the

e¤ects of craftsman and operative experience on professional wages are greatly reduced. The

substantial bias in estimates of the value of experience in other occupations on wages in the
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professional occupation is relevant for studies of wage growth over the career as well as studies of

occupational mobility because wage changes accompanying occupational switches partly reIect

the transferability of skills across occupations. The bias in these particular parameters is also

interesting because the estimated misclassi�cation probabilities show that professionals are rarely

misclassi�ed as managers (�21(2) = :0066; �21(3) = :0099), and managers are rarely misclassi�ed

as professionals (�12(2) = :0018; �12(3) = :0043). Similarly, the misclassi�cation rates averaged

across subpopulations between the professional and operatives and craftsmen occupations are

below 1%. The low misclassi�cation rates between these occupations combined with the large

bias in the experience coe¢ cients shows that even a small amount of misclassi�cation can produce

large biases in estimates of the transferability of human capital across occupations.

Sales workers are the most frequently misclassi�ed workers in both subpopulations 2 and 3.

Averaged across all three subpopulations, only 72% of sales workers are correctly classi�ed. In

the most common subpopulation, sales workers are most likely to be misclassi�ed as managers

(�23(2) = :21), so one might expect signi�cant bias in estimates of the parameters of the man-

agerial and sales wage equations. The estimates show that ignoring classi�cation error results in

a relatively small overestimate of the e¤ect of a year of sales experience on wages in the manage-

rial occupation (:0888 vs. :0879), while the value of experience as a manager in the managerial

occupation is overstated by 19%. Correcting for classi�cation error also causes large changes in

estimates of the e¤ects of experience on wages in the sales occupation. The model that ignores

classi�cation error indicates that a year of sales experience increases a sales workerJs wages by

17%, but this estimate falls by 13% to 15% once classi�cation error is accounted for. The e¤ect

of clerical experience on a sales workerJs wages is overstated by 197% when classi�cation error

is ignored, even though misclassi�cation rates between the sales and clerical occupations are

low relative to the misclassi�cation rate between sales and managerial employment. Ignoring
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classi�cation error leads to the misleading conclusion that clerical experience has a large and

statistically signi�cant e¤ect on wage in the sales occupation, but correcting for classi�cation

error shows that clerical experience does not have a statistically signi�cant e¤ect on sales wages

at any conventional signi�cance level. Similarly, ignoring classi�cation error leads to a 11K%

overstatement in the value of professional experience in the sales occupation (.0672 vs. .030K).

The bias in these parameters is another example of large biases in estimates of the e¤ects of

human capital on wages resulting from ignoring classi�cation error in occupations.

Further evidence of large changes in estimates of the transferability of human capital across

occupations are found in the remaining occupations. For example, there are several large changes

in the wage equation for craftsmen and operatives between the models with and without clas-

si�cation error. The model that does not correct for classi�cation error implies that a year of

professional experience increases a craftsmanLs wages by 2:9%, and this e¤ect is statistically sig-

ni�cant at the 5% level: Once classi�cation error is accounted for this e¤ect falls to 1:8% and

it is not statistically di¤erent from Nero at the 5% level. This �nding suggests that the type

of skills accumulated during employment as a professional have little or no value in craftsman

jobs. It appears that the false transitions created by classi�cation error lead to an overstatement

of the transferability of human capital between the professional occupation and this seemingly

unrelated lower skill occupation. Even though misclassi�cation leads to relatively few of these

false transitions, the bias is substantial.

The estimates of the service occupation wage function show that ignoring classi�cation error

leads to a 17K% overstatement of the value of clerical experience in the service occupation, and

a 307% overstatement of the value of operative experience in the service occupation. On the

other hand, the transferability of skills between the laborer and service occupations is vastly

understated when classi�cation error is ignored (.0177 vs. .0674).
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The estimates of the wage equations show that misclassi�cation creates substantial bias in

wage equation parameter estimates. The average wage equation parameter is biased by 59%,

while the median parameter is biased by 21%. The e¤ects of misclassi�cation are quite compli-

cated, and parameters may be biased upwards or downward by measurement error. One of the

key insights derived from these estimates is that substantial bias is created by classi�cation error

even in occupations where approximately 98% of choices are correctly classi�ed. An important

implication of these results is that an analysis of human capital wage functions that does not take

into account classi�cation error in occupations will lead in some cases to misleading conclusions

about the e¤ects of occupation speci�c human capital on wages. Qiven that misclassi�cation

results in many false transitions between occupations, it seems reasonable that some of the most

seriously biased parameters are those that measure the transferability of human capital across

occupations.

The �nal parameters of the wage equation are the standard deviations of the random shock

to wages in each occupation, �eq, for q = 1; :::; 8. The estimates of these standard deviations

show that random Suctuations in wages are overstated in six out of the eight occupations in

the model that ignores classi�cation error. Ignoring classi�cation error biases the estimate of

the standard deviation of the wage shock upwards by 36% for professionals, 4U% for managers,

13% for craftsmen, 25% for operatives, and 16% for service workers. The intuition behind

the direction of this bias is that when classi�cation error is ignored the model must provide

an explanation for the large number of short duration occupation switches that occur in the

data. One way the model can explain these transitions is through large wage shocks that create

short duration occupation switches. The model that allows for classi�cation error provides an

alternative explanation which is that some occupation switches are created by classi�cation error.

Once this alternative explanation is available, the variance of the wage shocks is reduced because
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classi�cation error provides an explanation for some of the patterns in observed occupational

mobility and observed wages that is more consistent with the data than large wage shocks.
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The occupational choice model presented in this paper allows occupational choices to depend on

non-pecuniary utility }ows as well as wages. The importance of modelling occupational choices

in a utility maximi~ing framework rather than in an income maximi~ing framework is demon-

strated in work by Keane and Wolpin (1997) and �ould (2002). The parameter estimates for

the non-pecuniary utility }ow equations for the models estimated with and without accounting

for classi�cation error are presented in Panel B of Table 6. These results show that the average

parameter in the non-pecuniary utility }ow equations is biased by 59% when classi�cation error

is ignored, and the median parameter is biased by 30%. Ignoring classi�cation error leads to sig-

ni�cant biases in estimates of the e¤ects of variables such as age, education, and work experience

on occupational choices.

The non-pecuniary utility }ow parameters are all measured in log-wage units relative to the

base choice of service employment. For example, the estimate of the e¤ect of working as a

professional in the previous time period on the professional utility }ow is 2:469 in the model that

ignores classi�cation error. This means that a person who previously worked as a professional

receives utility that is 2:469 log wage units higher than a person who was previously employed as

a service worker but is currently employed as a professional. The e¤ect of previous professional

employment on the professional utility }ow is biased downwards by 21% when classi�cation error

is ignored. It appears that the false transitions between occupations created by classi�cation error

lead to an understatement of the importance of state dependence in professional employment.

Overall, the estimates of the e¤ects of lagged occupational choices on current occupation speci�c
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utility �ows are extremely sensitive to classi�cation error. This result seems sensible since one

would expect estimates of the e¤ects of lagged choices to be quite sensitive to the false transitions

between occupations created by classi�cation error.

Estimates of the e¤ects of occupation speci�c work experience on non-pecuniary utility are

also quite sensitive to classi�cation error in occupation codes. For example, the e¤ect of experi-

ence as a manager on the non-pecuniary utility �ow from being employed as a manager is biased

downward by 24% when classi�cation error is ignored. Estimates of the e¤ects of experience in

other occupations on the operative utility �ow are biased by even larger amounts. The e¤ect of

craftsman experience on operative utility is biased downward by 51%, and the e¤ect of laborer

experience on operative utility is biased downward by 82%. Ignoring classi�cation error leads to

serious bias in estimates of the e¤ects of occupation-speci�c work experience on non-pecuniary

utility.

The estimates of the wage intercepts (��s) and non-pecuniary intercepts (��s) for the three

types of people in the model are presented in Panel C of Table 6. These parameter estimates

reveal the extent of unobserved heterogeneity in skills and preferences for employment in each

occupation. The estimates of the wage and non-pecuniary intercepts for the model that corrects

for classi�cation error show that preferences for employment in each occupation vary widely

across types. For example, the professional non-pecuniary intercept ranges from �4:72 for a

type 1 person to �2:82 for a type 3 person, and the clerical non-pecuniary intercept ranges from

�1:79 to �:56 across types. These intercepts are measured relative to the value of employment

in the service occupation.

The �nal section of Panel C of Table 6 shows the averages of the wage and non-pecuniary

intercepts across the three types of people for the models that correct for and ignore classi�cation

error in occupation codes. The largest bias among these parameters occurs in parameters that
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measure preferences for employment in each occupations (��s). The average preference for work-

ing as a craftsman changes from :048 in the model that ignores classi�cation error to :23 in the

model that corrects for classi�cation error, a change of 79%. The average preference for employ-

ment as operatives and laborers are each biased by approximately 60% when classi�cation error

is ignored, while the average preference for employment as a sales worker is biased by 69%. The

large biases in estimates of preference parameters caused by ignoring classi�cation error occurs

because unobserved heterogeneity in preferences helps explain occupational transitions that are

not well explained by the other parts of the model. When classi�cation error is ignored and all

occupational transitions are treated as true occupation switches, the model attempts to explain

transitions that are not well explained by wages or the deterministic portion of non-pecuniary

utility �ows in part through preference heterogeneity.

The bias in estimates of the average occupation-speci�c ability parameters (��s) is much lower

than the bias in the preference parameters. The bias in the mean wage intercepts is lower than

14% across all occupations. The bias is extremely low in the clerical (3.�%) and laborer (.5%)

occupations. It appears that ignoring classi�cation error causes the model to explain observed

patters in occupational mobility largely though unobserved heterogeneity in preferences rather

than heterogeneity in ability, which results in larger bias for parameters that measure preferences

compared to those that measure ability.

� �����at��� �ata t�at �s �r�� �r�� ��sc�ass��cat���

One useful application of the model presented in this paper is that the estimated model can be

used to simulate occupational choice data that is free from classi�cation error. Estimating the

parameters of the model amounts to estimating the distribution of true occupational choices con-

ditional on the choices and wages observed in the data, so it is fairly straightforward to simulate
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occupational choices by drawing from this distribution. The simulation algorithm outlined in

section 3.2.1 explains how the model can be used to simulate true occupational choices for each

person in the sample conditional on the observed choices, wages, and other explanatory variables

found in the data. The only minor complication is that each person must be randomly assigned

both a type (vectors of ��s and ��s) and a misclassi�cation subpopulation before their occupa-

tional choices are simulated. De�ne wi as a vector of person i�s observed wages over his entire

career: wi = �wit; t = 1; :::; T (i)�. De�ne Xi, Zi; Expi; and Lastocci as the analogous vectors

of these explanatory variables over person i�s career, and let �i = �Xi; Zi; Expi; Lastocci�: The

conditional probability that a particular person is of type k and subpopulation (pop) j is

Pr(type = k; pop = j�Oi; wi;�i) =
Pr(Oi; wi�type = k; pop = j;�i) Pr(type = k; pop = j)

Pr(Oi; wi��i)

=
Li(Oi; wi�type = k; pop = j;�i)!k�j

Li(Oi; wi��i)
:

Occupational choices are simulated by �rst computing Pr(type = k; pop = j�Oi; wi;�i) for each

person in the sample, and then randomly assigning a type and subpopulation to each person

using these probabilities. Then, occupational choices are simulated conditional on the simulated

type and subpopulation using the algorithm outlined in section 3.2.1.
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Table 2 presents occupational transition matrices for the actual data (top entry) and simulated

data (bottom entry) together to facilitate a comparison of the changes in the patterns of occupa-

tional mobility that result from correcting for classi�cation error in occupations. The simulated

data is based on 2; 000 simulated careers. The diagonal elements of the matrix are larger in the

simulated data compared to the actual data. This indicates that the net e¤ect of misclassi�cation

is to create false transitions between occupations that lead to an overstatement of occupational
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mobility. Eliminating the false transitions created by classi�cation error leads to the largest

increase in the persistence of occupational choices for professional workers (74.7% to 7¯.5%) and

service workers (59.5% to 63.7%).

The fact that occupational choices become more persistent in the simulated data provides

information about the types of occupational choices that are likely to be °agged as misclassi�ed

by the misclassi�cation model. One possible concern is that wage outliers may cause the model to

incorrectly °ag occupational choices as misclassi�ed because workers have (accurately measured)

wage outliers at certain points over their career. If this concern is valid, one would expect

occupational transitions to increase in the simulated data. ±owever, the fact that the simulated

data shows more persistence in occupational choices than the noisy data provides evidence against

this concern, because overall the misclassi�cation model is removing occupational transitions, not

creating new transitions.17

The increase in the persistence of occupational choices is of course accompanied by a cor-

responding decreases in occupational mobility. Some of the noteworthy decreases in mobility

occur between the sales and managerial occupations and the service and managerial occupations.

Classi�cation error causes the data to overstate the mobility of sales workers into managerial em-

ployment by 62%, overstate the mobility of sales workers into clerical employment by 22%, and

overstate the mobility of clerical workers into professional employment by 18%. The simulated

data indicates that across all occupations, 9% of all occupational choices are misclassi�ed.

²³´³´ µ¶·c¶ µ¸r¹ºrs arº »·sc¼ass·½º¾¿

One explanatory variable that is of central importance when investigating occupational choices is

education. There is strong sorting across occupations based on completed education. Àiven this

17Section 5.1.2 presents evidence that the misclassi�cation model also does not repeatedly Áag individuals as

misclassi�ed who have unusually high or low wages in their reported occupation.
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fact, it is useful to see how completed education levels vary between choices that are identi�ed

as misclassi�ed choices in the simulated data compared to choices that are identi�ed as correctly

classi�ed choices. This type of analysis provides information about the extent to which the model

uses variation in occupational choice probabilities with education levels to identify misclassi�ed

occupations.

Table 7 shows the distribution of completed education for correctly classi�ed and misclassi�ed

occupational choices, disaggregated by occupation. For example, the table shows that 10.Â% of

those workers who are correctly classi�ed as professionals have not completed any years of college,

while 4Â.6% of workers who are misclassi�ed as professionals have not completed any years of

college. A correctly classi�ed professional has a 71.Â% change of being a college graduate, while a

worker misclassi�ed as a professional has only a 30.2% chance of being a college graduate. Clearly,

education serves as a strong predictor of which observations are likely to be true professionals as

opposed to observations that are falsely classi�ed as professionals. When the model is used to

generate simulated occupational choices it tends to remove workers who have not completed any

college from the professional occupation. These results are consistent with the fact that the jobs

located in the professional occupation are overwhelmingly ones that require a college degree, or

at least some level of completed higher education. It is reassuring that the model tends to Ãag

workers as misclassi�ed who appear to have reported education levels that are inconsistent with

their reported occupation.

Across the other occupations, similarly strong and sensible relationships exist between edu-

cation and misclassi�cation. For example, in blue collar occupations, one would expect to see

the opposite relationship between misclassi�cation and education from the one found in the pro-

fessional occupations, since college graduates are unlikely to work in low skill occupations. This

is in fact what the results in Table 7 show. For example, the percentage of correctly classi�ed
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workers who have graduated from college is 2.1% for craftsmen, 2.5% for operatives, and 3.2% for

laborers. In contrast, for workers who are falsely classi�ed in these occupations the percentage

of workers who are college graduates is 1Ä.7% for craftsmen, 21.5% for operatives, and 11.7%

for laborers. In general, the workers who are misclassi�ed into these blue collar occupations are

much more likely to be college graduates compared to workers who are correctly classi�ed in

these occupations.

ÅÆÇÆÈ ÉÊË ÌrËÍÎËÏcÐ ÑÒ ÓÔscÕassÔÖcatÔÑÏ ×ØËr aÏ ÙÏÚÔØÔÚÎaÕÛs ÜarËËr

Ýiven the panel nature of the data, the simulated occupational choice data can be used to

examine how often occupational choices are misclassi�ed over a typical individualÞs career. Table

Ä presents the distribution of the total number of times that occupational choices are misclassi�ed

over the course of a personÞs career. The �nal column of Table Ä shows that across all three

subpopulations, 57.2% of people never have any of their occupational choices misclassi�ed at any

point during their career. The relatively large number of people who are never misclassi�ed is

made up of two groups. First, an estimated 39% of the population belongs to subpopulation

1 and therefore by de�nition never experience misclassi�cation. Second, some members of the

other two subpopulations never experience misclassi�cation because of the random nature of

misclassi�cation. Reading down the �nal column of Table Ä shows that the majority of workers

never experience misclassi�cation (57.2%), 17.6% of workers are misclassi�ed once over their

career, and 11.5% of workers are misclassi�ed twice over their career. To provide some context

for these results, recall that the average worker contributes approximately 11 observations to the

data set.

One important feature of Table Ä is that it shows that it is very unlikely that a workerÞs

occupational choices will be consistently misclassi�ed over the course of his career. For example,
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only 4.3% of the sample is misclassi�ed more than �ve times over the course of the career. Another

notable feature of Table ß is that the number of times that a person is misclassi�ed is extremely

similar for subpopulations 2 and 3. This result is driven by the fact that the misclassi�cation

rates averaged across occupations are quite close for the two subpopulations (.ß7 for subpop. 1

and .ß4 for subpop. 2). While subpopulations 2 and 3 experience substantial di¤erences in the

patterns of misclassi�cation between occupations, the overall error rates are quite similar. More

detail about misclassi�cation over the course of the career is presented in Table ß, which provides

information about the lengths of misclassi�cation spells. Table ß shows the distribution of the

number of times a person is consecutively misclassi�ed, conditional on being misclassi�ed. For

example, the �rst entry in the �nal column of Table 9 shows that conditional on an occupational

choice being misclassi�ed, there is a 72.9% chance that the person will be correctly classi�ed in

the next survey. Conditional on being misclassi�ed, there is an 1ß.3% chance that a person will

be misclassi�ed in two consecutive periods, and there is only a 5.2% chance that a person will

be misclassi�ed in three consecutive periods.1à

áâãâä åræç èccæéatêëìaí îïëêcçsð èbsçrñçò îïëêcçsð aìò óaôçs

The comparison of the occupational transition matrix observed in the data with the transition

matrix generated by the model highlights the overall changes in occupational mobility when

classi�cation error in occupations is corrected for. Table 10 extends this analysis by showing

the average true occupational choice probabilities conditional on observed choices and observed

wages. This analysis shows how classi�cation error rates vary with observed wages across oc-

cupations and provides a more detailed analysis of the type of occupational choice and wage

1õOne implication of the relatively short durations of misclassi�cation spells is that the model does not tend to

repeatedly öag individuals as misclassi�ed who have consistently high (or low) wages for their reported occupation

over the course of their entire career.
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combinations that are likely to be a¤ected by classi�cation error.

Observed occupational choices are listed in the far left column of Table 10, while actual

occupational choices are listed in the top row. Conditional on the observed choice and wage (and

all of the other explanatory variables), the model is used to calculate the conditional probability

that the actual choice is each of the eight occupations for each occupational choice observed in the

data. The average of each probability for each occupation is presented in Table 10. Probabilities

are disaggregated by the percentile of the observed wage in the wage distribution of the observed

occupation to show how misclassi�cation rates vary with observed wages. For example, the top

left cell of Table 10 shows that a worker observed in the data as a professional worker with a

wage in the top 10% of the professional wage distribution has a 90.9% chance of being correctly

classi�ed as a professional worker. ÷owever, a worker observed as a professional with a wage

in the bottom 10% of the professional distribution has only a 75.7% chance of actually being a

professional worker. People observed in the data as low wage professional workers are primarily

service workers (9.5%).

Among workers observed in the data classi�ed as managers, ø5.ø% of those in the middle 10%

of the managerial wage distribution are actually managers, 56.5% of the highest paid workers

are actually managers, while only 54.4% of those in the bottom 10% of the managerial wage

distribution are correctly classi�ed. The vast majority of workers misclassi�ed as managers are

actually sales workers. The wide variation in misclassi�cation rates with observed wages lends

support to the use of wages to identify false occupational choices. Apparently, the variation in

the wage distribution across occupations provides enough information for the model to assign

true choice probabilities that vary substantially with observed wages. Combinations of choices

and wages that do not �t the wage distribution are assigned high misclassi�cation probabilities

by the model.
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Similar patterns of misclassi�cation are found in the sales and clerical occupations, where

workers in certain areas of the wage distribution are more likely to be misclassi�ed than those

in other areas of the wage distribution. For example, 91:6% of clerical workers in the top 10%

of the clerical wage distribution are correctly classi�ed, but 3:9% of those observed as high wage

clerical workers are actually professionals. The simulated choices reveal that conditional on being

observed at the top of the clerical wage distribution there is a signi�cant chance that the worker is

actually a misclassi�ed professional worker (3.9%). ùowever, the unconditional probability that

a professional is misclassi�ed as a clerical worker is much lower (�41(2) = :013; �41(3) = :013), so

the simulations demonstrate that wages provide a substantial amount of information about which

occupational choices are misclassi�ed. The di¤erence between the unconditional misclassi�cation

probabilities and the misclassi�cation probabilities that condition on wages highlights the value

of using wages to identify misclassi�ed occupational choices.

There are some patterns present for workers observed as operatives that are worth discussing.

Conditional on being in the bottom 10% of the operative wage distribution there is an ú6.9%

chance that the worker is correctly classi�ed as an operative. The model suggests that the

majority of these low wages workers misclassi�ed as operatives are actually sales workers (11.9%).

A similar pattern of misclassi�cation is found for craftsmen, where the simulations indicate

that 12% of those observed as low wage craftsmen are actually sales workers. These patterns

of misclassi�cation are somewhat surprising because the operatives and sales occupations are

composed of jobs that appear to be quite di¤erent overall. ùowever, a closer look a the three-

digit occupations that make up the sales category shows that this occupation includes three-digit

occupations such as ûmanufacturing industry salesü and ûconstruction salesü. These jobs may

be the ones where respondentsýdescriptions of their sales jobs could be mistaken for descriptions

of craftsman or operative employment.
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The fraction of service workers that are correctly classi�ed is fairly stable across wage deciles,

ranging from :719 � :732. The majority of workers misclassi�ed as service workers are actually

employed in the closely related low skill occupation of laborers, but a number of those observed

as high wage service workers are actually professionals (5.4%). In addition, a siþeable fraction of

those observed as low wage professionals are actually service workers (9.5%). These patterns of

misclassi�cation are somewhat surprising, since the unconditional probability that a professional

worker is misclassi�ed as a service worker is quite low (�81(2) = :0011; �81(3) = :0049), but

conditional on observed wages the probabilities are fairly large. One explanation for the rela-

tionship between observed wages and predicted misclassi�cation is that there are certain high

paying professional jobs that are misclassi�ed as closely related, but much lower paying service

occupations. For example, low wage health aides and nursing aids being falsely classi�ed as high

wage health professionals.

ÿ.2 Sensitivity Analysis: Measurement Error in Wages

One important question regarding the model presented in this paper is the sensitivity of the

results to the existence of measurement error in wages. It is widely known that wages are

measured with error, so it is important to examine whether or not the existence of measurement

error in wages a¤ects the estimates of the extent of measurement error in occupation codes. One

way of addressing this question is to simulate noisy wage data, re-estimate the model using the

noisy wage data (leaving the rest of the NLSY data unchanged), and see how the estimates of

misclassi�cation parameters change when the noisy wage data is used in place of the actual wages

found in the NLSY data. The noisy wages (wmeit ) are generated using the following equation,

wmeit = w
obs
it + �it; where �it � N(0; �

2
�): (27)
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Recall that wobsit is a log wage, so the extent of measurement error in the noisy log wage data

is captured by �2� . A number of validation studies have quanti�ed the extent of measurement

error in wages, see Bound, Brown, and Mathiowetz (2001) for a thorough survey of this literature.

Actual estimates of �2� do not exist for the NLSY, so in simulating the noisy data the measurement

error term is set towards the upper end of the reported estimates found in the literature based

on other data sources. The exact value used is �2� = :10: This value of �
2
� creates a substantial

amount of measurement error in the noisy wage data, since in the noisy data, measurement error

accounts for approximately one third of the total variation in log wages.

Rather that presenting a complete set of parameter estimates for the misclassi�cation model

estimated using the noisy data, it is su¢ cient to summarize the overall e¤ect that the noisy

wage data has on the parameter estimates. The parameter estimates found in Table 3 and the

columns in Table 6 labelled "correct for classi�cation error" serve as the baseline, since these

parameter estimates were obtained using the NLSY wage data. When the noisy wage data is used

in place of the NLSY wage data the average parameter in the model changes by approximately

2%, so it appears that the overall bias introduced by measurement error is relatively small.

The primary concern about measurement error in wages is that it may impact the estimates of

the extent of measurement error in occupation codes. The overall extent of misclassi�cation is

summarized by the diagonal elements of the misclassi�cation rate matrices for subpopulations

two and three, �jj(y); j = 1; :::; Q; y = 2; 3. Recall that these parameters re�ect the probabilities

that occupational choices are correctly classi�ed. Across both subpopulations, the use of noisy

wage data results in the average probability of correct classi�cation ( 1
2Q

P
y=1;2

P
j=1;Q �jj(y))

decreasing by only �:006 from :8546 to :8486. Adding measurement error slightly increases the

overall estimated rate of misclassi�cation, but the magnitude of the increase is quite small. The

corresponding average absolute change in the probability of correct classi�cation is only :008, so
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it appears that estimates of the overall extent of misclassi�cation in the NLSY occupation data

are quite robust to measurement error in wages.

Of course, it is possible for the overall level of misclassi�cation to remain approximately

constant while the patterns in misclassi�cation between occupations change substantially, so it is

necessary to check if the o¤ diagonal elements of the misclassi�cation matrices (�jk(y); j 6= k) are

a¤ected by measurement error in wages. The average absolute change in these misclassi�cation

rates is only :0015, so these o¤ diagonal elements are not greatly impacted by measurement error

in wages. The results of this simulation exercise show that even with a substantial amount of

measurement error in wages that accounts for 30% of total variation in wages, the estimates of

the misclassi�cation parameters are extremely robust.

There are a number of reasons why the estimates of the misclassi�cation parameters are robust

to a relatively large amount of measurement error in wages. The �rst reason is that, as discussed

earlier in the paper, wages are not the only source of information that the model uses to infer that

an occupational choice is misclassi�ed. For example, the panel nature of the data as well as the

strong relationship between observable variables (such as education) and occupational choices

provide a large amount of information about misclassi�cation. Another key point is that many

of the occupational choices that are �agged in the simulations as misclassi�cations are associated

with extremely large wage changes. Wage changes of this magnitude are unlikely to be generated

in large numbers by measurement error in wages that is of the magnitude found in validation

studies. For example, the median wage for workers who are identi�ed in the simulations as falsely

classi�ed professionals is $5.59, while the median wage for workers who are correctly classi�ed

as professionals is $10.32.
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� C��c��s���

Although occupational choices have been a topic of considerable research interest, existing re-

search has not studied occupational choices in a framework that addresses the biases created by

classi�cation error in self-reported occupation data. This paper develops an approach to estimat-

ing a panel data occupational choice model that corrects for classi�cation error in occupations

by incorporating a model of misclassi�cation within an occupational choice model. Estimating

this model provides a solution to the problems created by measurement error in the discrete de-

pendant variable of an occupational choice model. Methodologically, this approach contributes

to the literature on misclassi�cation in discrete dependant variables by demonstrating how sim-

ulation methods can be used to address the problems created in a panel data setting where

measurement error in a discrete dependant variable creates measurement error in explanatory

variables. The simulation technique is applicable to any discrete choice panel data model where

misclassi�cation in a current period dependent variable creates measurement error in future ex-

planatory variables. This paper also contributes to the literature on misclassi�cation by using

observed wages within the framework of an occupational choice model to obtain information

about misclassi�ed occupational choices.

The main �ndings of this paper are that a substantial number of occupational choices in the

NLSY are a¤ected by misclassi�cation, with an overall misclassi�cation rate of 9%. The results

also suggest that person-speci�c heterogeneity in misclassi�cation rates is an important feature

of the data. An estimated 3�% of the population never experiences a misclassi�ed occupational

choice, and the remaining two subpopulations have substantially di¤erent propensities to have

their occupational choices misclassi�ed in particular directions. The parameter estimates also

indicate that misclassi�cation rates vary widely across occupations, and that the probability of a

worker being misclassi�ed into each occupation is strongly in�uenced by the worker�s actual oc-
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cupation. Most importantly, this paper demonstrates the large bias in parameter estimates that

results from estimating a model of occupational choices that ignores the fact that occupations are

frequently misclassi�ed. Consistent with existing research in the area of misclassi�ed dependant

variables, the results show that even relatively small amounts of misclassi�cation create substan-

tial bias in parameter estimates. The median parameter is biased by 25% when classi�cation

error in occupations is ignored, and the magnitude and direction of the bias varies widely across

parameters. Especially large biases are found in parameters that measure the transferability of

occupation speci�c work experience across occupations, since these parameters are quite sensi-

tive to the false occupational transitions created by classi�cation error. Ignoring classi�cation

error also creates signi�cant biases in estimates of the importance of unobserved heterogeneity

in preferences and random wage shocks in determining career choices.

Overall, the results indicate that one should use caution when interpreting the parameter

estimates from occupational choice models that are estimated without correcting for classi�cation

error in self-reported occupations. In addition, these results suggest that similar bias may arise

when occupation dummy variables are used as explanatory variables, as is commonly done in a

wide range of studies. A possible avenue for future research would be to investigate the e¤ects of

classi�cation error in occupation codes on parameter estimates in this wider class of models, such

as simple wage regressions, that make use of self-reported occupation data. Another interesting

avenue for future research would be to examine classi�cation error in three-digit occupation codes

as opposed to the more broadly de�ned one-digit codes considered in this paper. However, the

extremely detailed nature of the three-digit occupation codes makes this a challenging problem

for future research.
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Table 1a: Description of Occupations 
 

One-Digit Occupation Mean Wage Example Three-Digit Occupations 

Professional, technical & kindred 
workers 

$11.19 
Accountants, chemical engineers, physicians, 
social scientists 

Managers & administrators $12.89 
Bank officers, office managers, school 
administrators 

Sales workers $9.05 
Advertising salesmen, real estate agents, stock 
and bond salesmen, salesmen and sales clerks 

Clerical & unskilled workers $7.48 Bank tellers, cashiers, receptionists, secretaries 

Craftsmen & kindred workers $8.53 
Carpenters, electricians, machinists, 
stonemasons, mechanics 

Operatives $7.20 
Dry wall installers, butchers, drill press 
operatives, truck drivers 

Laborers $7.01 
Garbage collectors, groundskeepers, freight 
handlers, vehicle washers 

Service workers $6.34 
Janitors, child care workers, waiters, guards and 
watchmen 

Notes: Based on the U.S Census occupation codes found in the 1979 cohort of the NLSY. Wages 
in 1979 dollars. 

 
Table 1b: Descriptive Statistics 

 

Variable Mean Standard Deviation 

Age 27.09 2.24 

Education 14.26 .91 

North central .34 .47 

South .29 .45 

West .17 .37 

Number of observations 10,573  

Number of individuals 954  

Notes: Based on the U.S Census occupation codes found in the 1979 cohort of the NLSY. Wages 
in 1979 dollars. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 2: Occupational Transition Matrix – NLSY Data (top entry) and Simulated 

Data (bottom entry) 

 Professional Managers Sales Clerical Craftsmen Operatives Laborers Service Total 

Professional  
74.7 
78.5 

6.9 
5.6 

2.3 
4.2 

4.5 
3.7 

5.0 
3.2 

3.0 
2.2 

1.3 
1.4 

2.2 
1.2 

100 

Managers  
6.4 
6.6 

57.4 
58.5 

7.2 
9.4 

7.3 
7.4 

10.7 
10.3 

3.5 
2.9 

2.5 
2.6 

5.0 
2.3 

100 

Sales  
8.0 
7.6 

14.9 
9.2 

53.5 
55.2 

7.7 
6.3 

5.4 
6.8 

5.2 
5.9 

2.2 
5.2 

3.2 
3.6 

100 

Clerical  
10.3 
8.7 

12.4 
11.4 

5.9 
7.2 

44.8 
45.8 

6.8 
6.3 

7.0 
6.8 

8.3 
9.8 

4.6 
4.0 

100 

Craftsmen  
2.9 
2.0 

5.3 
4.7 

1.0 
2.3 

2.2 
2.0 

66.6 
67.4 

11.1 
10.8 

8.1 
9.6 

2.6 
1.2 

100 

Operatives 
2.4 
1.9 

2.2 
1.3 

2.1 
3.3 

3.1 
2.9 

18.4 
18.3 

56.8 
56.3 

10.1 
11.6 

4.9 
4.4 

100 

Laborers 
2.7 
2.5 

3.3 
2.7 

1.8 
4.0 

7.9 
7.3 

23.2 
21.6 

18.6 
16.5 

36.2 
39.1 

6.1 
6.2 

100 

Service  
3.9 
3.7 

7.8 
4.2 

1.5 
2.8 

3.5 
3.1 

8.4 
6.8 

6.8 
6.2 

8.6 
9.5 

59.5 
63.7 

100 

Total 
14.0 
13.9 

11.5 
9.5 

5.3 
7.9 

7.6 
7.3 

25.8 
25.2 

16.9 
16.2 

9.6 
11.5 

9.4 
8.4 

100 

Entries are the percentage of employment spells starting in the occupation listed in the left 
column that end in the occupation listed in the top row. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3, Panel A: Parameter Estimates- Misclassification Probabilities for Subpopulation 2 

(αjk(2)) 

Observed/Actual Professional Managers Sales Clerical Craftsmen Operatives Laborers Service 

Professional  
.9570 

(.0023) 
.0018 

(.0096) 
.0264 

(.0025) 
.0017 

(.0074) 
.0033 

(.0002) 
.0007 

(.0004) 
.0380 

(.0004) 
.0641 

(.0017) 

Managers  
.0066 

(.0041) 
.9762 

(.0042) 
.2128 

(.0026) 
.0052 

(.0082) 
.0013 

(.0002) 
.0021 

(.0015) 
.0011 

(.0022) 
.0238 

(.0003) 

Sales  
.0036 

(.0016) 
.0148 

(.0046) 
.5578 

(.0001) 
.0133 

(.0045) 
.0000 

(.0015) 
.0029 

(.0017) 
.0019 

(.0040) 
.0774 

(.0009) 

Clerical  
.0131 

(.0002) 
.0031 

(.0101) 
.0131 

(.0055) 
.9579 

(.0046) 
.0002 

(.0016) 
.0021 

(.0022) 
.0046 

(.0067) 
.0042 

(.0033) 

Craftsmen  
.0055 

(.0023) 
.0022 

 (.0045) 
.1063 

(.0098) 
.0052 

(.0025) 
.9897 

(.0054) 
.0055 

(.0030) 
.0204 

(.0121) 
.0024 

(.0023) 

Operatives 
.0121 

(.0025) 
.0000 

(.0064) 
.0456 

(.0005) 
.0013 

(.0082) 
.0000 

(.0039) 
.9849 

(.0058) 
.0063 

(.0009) 
.0004 

(.0223) 

Laborers 
.0000 

(.0003) 
.0000  

(.0131) 
.0164 

(.0043) 
.0136 

(.0085) 
.0054 

(.0021) 
.0016 

(.0082) 
.7029 

(.0014) 
.0039 

(.0079) 

Service  
.0018 

(.0002) 
.0018 

(.0043) 
.0213 

(.0008) 
.0014 

(.0086) 
.0000 

(.0018) 
.0000 

(.0022) 
.2243 

(.0012) 
.8235 

(.0068) 

Pr(subpopulation 2) 
.4243 

(.0211) 
       

 
Ignore 

misclassification 
Correct for 

misclassification 
      

Log-likelihood -18,695 -17,821       

Notes: Element α(i,j) of this table, where i refers to the row and j refers to the column is the probability that occupation i is 

observed, conditional on j being the true choice: α(j,k)=Pr(occupation j observed | occupation k is true choice). Standard 
errors in parentheses. 

 

Table 3, Panel B : Misclassification Probabilities for Subpopulation 3 (αij(3)) 

Observed/Actual Professional Managers Sales Clerical Craftsmen Operatives Laborers Service 

Professional  
.9289 

 (.0022) 
.0043 

 (.0097) 
 .0394 
(.0024) 

 .0012 
(.0079) 

.0357 
(.0005) 

.0007 
(.0003) 

.0104 
 (.0003) 

.0190 
(.0016) 

Managers  
.0099 

 (.0040) 
.9641 
 (.004) 

 .0822 
(.0027) 

.0032 
 (.0081) 

 .0046 
(.0003) 

 .0030 
(.0016) 

.0041 
 (.0021) 

.2548 
 (.0002) 

Sales  
.0096 

 (.0016) 
 .0248 
(.0056) 

 .6007 
(.0001) 

.0125 
(.0046) 

.0002 
(.0016) 

.0003 
 (.0018) 

 .0022 
(.0041) 

.0026 
 (.0008) 

Clerical  
.0126 

 (.0001) 
.0027 

 (.0103) 
 .0052 
(.0054) 

 .9634 
(.0045) 

 .0004 
(.0011) 

.0012 
 (.0023) 

.0031 
 (.0061) 

.0006 
 (.0037) 

Craftsmen  
.0234 

 (.0024) 
.0025 

 (.0043) 
 .0904 
(.0096) 

.0068 
(.0024) 

.9475 
(.0061) 

.0067 
 (.0031) 

.0504 
 (.0130) 

 .0041 
(.0026) 

Operatives 
.0106 

 (.0026) 
.0007 

(.0065) 
 .1335 
(.0005) 

 .0029 
(.0081) 

 .00000 
 (.0047) 

.9833 
 (.0051) 

 .0054 
(.0008) 

.0000 
(.0001) 

Laborers 
.0000 

 (.0001) 
 .0000 
(.0141) 

 .0307 
(.0041) 

.0082 
(.0084) 

.0114  
(.0020) 

.0040 
 (.0084) 

.6215 
 (.0005) 

 .0042 
(.0069) 

Service  
.0049 

 (.0002) 
.0008 

  (.0043) 
 .0176 
(.0009) 

 .0016 
(.0088) 

.0000 
(.0017) 

.0006 
 (.0024) 

.3028 
 (.0008) 

.7139 
 (.0048) 

Pr(subpopulation 3 
.1937 

(.0235) 
       



 
 
 

Table 4: Summary of Bias Caused by Ignoring Classification Error 

 Average % deviation Median % deviation 

Wage equation 59.4 20.6% 

Non-pecuniary utility flow equation 59.2 29.6% 

All parameters 59.9 24.7% 

Notes: Entries are the percent absolute deviations of parameters in the baseline model from the 
model that corrects for misclassification. 

 
 
 
 
 
 
 

Table 5: Misclassification Rates by Occupation and Bias in Wage Equations from 

Ignoring Misclassification 

Occupation 
Misclassified 

into 

Misclassified 

out of 

Average % 

deviation 

Median % 

deviation 

        Professional  .07 .06 110% 59% 

        Managers  .20 .02 27% 14% 

        Sales  .14 .42 27% 14% 

        Clerical  .06 .02 47% 18% 

        Craftsmen  .04 .02 11% 10% 

        Operatives .05 .01 25% 14% 

        Laborers .04 .20 113% 30% 

        Service  .22 .14 70% 26% 

Notes: “Misclassified into” refers to Pr(observed in listed occupation ∩ actually work in another 

occupation). Misclassified out of refers to Pr(actually work in listed occupation  ∩ observed in 
another occupation). Entries in the rightmost two columns are the percent absolute deviations of 
parameters in the baseline model from the model that corrects for misclassification. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6 Panel A: Parameter Estimates – Wage Equation 

 

Wage 

equation 

Professional  % absolute 
deviation 

Managers  % absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
0.0233 

(0.0154) 
0.0079 

(0.0073) 1.9644 
0.0474 

(0.0184) 
0.0351 

(0.0091) 0.3504 

Age2/100 
-0.2280 
(0.0985) 

-0.1434 
(0.0426) 0.5904 

-0.4028 
(0.1230) 

-0.3543 
(0.0630) 0.1368 

Education 
0.0734 

(0.0057) 
0.0626 

(0.0041) 0.1725 
0.0825 

(0.0082) 
0.0837 

(0.0060) 0.0143 

Professional 
experience 

0.0715 
(0.0053) 

0.0687 
(0.0034) 0.0408 

0.0944 
(0.0130) 

0.0896 
(0.0086) 0.0536 

Managerial 
experience 

0.0375 
(0.0158) 

0.0644 
(0.0123) 0.4177 

0.0656 
(0.0071) 

0.0547 
(0.0055) 0.1993 

Sales 
experience 

0.0493 
(0.0147) 

0.0499 
(0.0101) 0.0120 

0.0888 
(0.0135) 

0.0879 
(0.0097) 0.0102 

Clerical 
experience 

0.0430 
(0.0191) 

0.0377 
(0.0162) 0.1406 

0.0191 
(0.0096) 

0.0209 
(0.0073) 0.0861 

Craftsmen 
experience 

0.0280 
(0.0092) 

0.0203 
(0.0100) 0.3793 

0.0488 
(0.0074) 

0.0556 
(0.0062) 0.1223 

Operatives 
experience 

0.0447 
(0.0236) 

0.0259 
(0.0210) 0.7259 

0.0634 
(0.0124) 

0.0705 
(0.0121) 0.1007 

Laborer 
experience 

0.0146 
(0.0291) 

-0.0083 
(0.0232) 2.7676 

0.0416 
(0.0268) 

0.0233 
(0.0179) 0.7854 

Service 
experience 

0.0000 
(0.0224) 

0.0718 
(0.0234) 1.0005 

0.0100 
(0.0140) 

0.0069 
(0.0117) 0.4504 

North central 
-0.0635 
(0.0262) 

-0.0139 
(0.0189) 3.5683 

-0.1063 
(0.0302) 

-0.0667 
(0.0233) 0.5935 

South 
-0.0448 
(0.0245) 

0.0222 
(0.0182) 3.0180 

-0.0726 
(0.0345) 

-0.0849 
(0.0284) 0.1449 

West 
0.0412 

(0.0294) 
0.1046 

(0.0205) 0.6061 
-0.0919 
(0.0438) 

-0.0531 
(0.0311) 0.7307 

Note: Standard errors in parentheses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6 Panel A: Parameter Estimates – Wage Equations 

 

Wage 

equation 

Sales  % absolute 
deviation 

Clerical  % absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
0.0662 

(0.0368) 
0.1354 

(0.0272) 0.5110 
0.0480 

(0.0153) 
0.0413 

(0.0157) 0.1622 

Age2/100 
-1.0006 
(0.2662) 

-1.0984 
(0.1886) 0.0890 

-0.4330 
(0.1057) 

-0.3588 
(0.1095) 0.2069 

Education 
0.1837 

(0.0189) 
0.1593 

(0.0268) 0.1528 
0.0528 

(0.0087) 
0.0511 

(0.0081) 0.0333 

Professional 
experience 

0.0672 
(0.0366) 

0.0308 
(0.0542) 1.1818 

0.0957 
(0.0146) 

0.1051 
(0.0230) 0.0899 

Managerial 
experience 

0.1316 
(0.0274) 

0.1089 
(0.0322) 0.2086 

0.0454 
(0.0104) 

0.0418 
(0.0121) 0.0861 

Sales 
experience 

0.1774 
(0.0163) 

0.1571 
(0.0195) 0.1296 

0.0806 
(0.0162) 

0.0888 
(0.0203) 0.0923 

Clerical 
experience 

0.1281 
(0.0333) 

0.0430 
(0.0433) 1.9799 

0.0562 
(0.0085) 

0.0572 
(0.0093) 0.0175 

Craftsmen 
experience 

-0.0183 
(0.0258) 

-0.0453 
(0.0297) 0.5960 

0.0502 
(0.0083) 

0.0646 
(0.0119) 0.2229 

Operatives 
experience 

0.0845 
(0.0284) 

0.0845 
(0.0297) 0.0000 

0.0516 
(0.0118) 

0.0500 
(0.0125) 0.0320 

Laborer 
experience 

0.0507 
(0.0431) 

0.0521 
(0.0552) 0.0269 

0.0420 
(0.0167) 

0.0345 
(0.0153) 0.2174 

Service 
experience 

0.0241 
(0.0295) 

-0.0657 
(0.0826) 1.3668 

0.0191 
(0.0177) 

0.0215 
(0.0183) 0.1116 

North central 
-0.2505 
(0.0754) 

-0.3711 
(0.1051) 0.3250 

-0.1688 
(0.0311) 

-0.1965 
(0.0369) 0.1409 

South 
0.1225 

(0.0764) 
0.1249 

(0.0915) 0.0195 
-0.0847 
(0.0307) 

-0.1030 
(0.0377) 0.1774 

West 
0.0979 

(0.0945) 
0.1015 

(0.1070) 0.0358 
-0.0228 
(0.0342) 

-0.0230 
(0.0362) 0.0087 

Note: Standard errors in parentheses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 6 Panel A: Parameter Estimates – Wage Equations 

 

Wage 

equation 

Craftsmen  % absolute 
deviation 

Operatives  % absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
0.0606 

(0.0068) 
0.0489 

(0.0053) 0.2393 
0.0128 

(0.0085) 
0.0123 

(0.0073) 0.0407 

Age2/100 
-0.5257 
(0.0481) 

-0.4576 
(0.0398) 0.1490 

-0.2230 
(0.0642) 

-0.2605 
(0.0604) 0.1436 

Education 
0.0290 

(0.0048) 
0.0254 

(0.0045) 0.1417 
0.0209 

(0.0054) 
0.0079 

(0.0048) 1.6523 

Professional 
experience 

0.0290 
(0.0120) 

0.0188 
(0.0210) 0.5426 

0.0670 
(0.0229) 

0.0751 
(0.0344) 0.1079 

Managerial 
experience 

0.0558 
(0.0115) 

0.0646 
(0.0113) 0.1362 

0.0432 
(0.0157) 

0.0552 
(0.0152) 0.2174 

Sales 
experience 

0.0100 
(0.0169) 

0.0438 
(0.0183) 0.7717 

0.0200 
(0.0149) 

0.0157 
(0.0176) 0.2739 

Clerical 
experience 

0.0381 
(0.0125) 

0.0366 
(0.0210) 0.0410 

0.0499 
(0.0110) 

0.0370 
(0.0191) 0.3486 

Craftsmen 
experience 

0.0591 
(0.0028) 

0.0605 
(0.0027) 0.0231 

0.0607 
(0.0067) 

0.0764 
(0.0062) 0.2055 

Operatives 
experience 

0.0386 
(0.0052) 

0.0352 
(0.0048) 0.0966 

0.0549 
(0.0045) 

0.0470 
(0.0041) 0.1681 

Laborer 
experience 

0.0217 
(0.0069) 

0.0114 
(0.0066) 0.9035 

0.0708 
(0.0090) 

0.0512 
(0.0077) 0.3828 

Service 
experience 

0.0254 
(0.0094) 

0.0361 
(0.0106) 0.2964 

-0.0023 
(0.0149) 

0.0285 
(0.0147) 1.0811 

North central 
-0.1034 
(0.0197) 

-0.1201 
(0.0185) 0.1392 

-0.0637 
(0.0266) 

-0.0948 
(0.0222) 0.3281 

South 
-0.0786 
(0.0209) 

-0.0828 
(0.0182) 0.0507 

0.0234 
(0.0270) 

0.0026 
(0.0222) 7.8973 

West 
0.0847 

(0.0210) 
0.0868 

(0.0208) 0.0242 
0.0086 

(0.0307) 
-0.0043 
(0.0268) 2.9908 

Note: Standard errors in parentheses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6 Panel A: Parameter Estimates – Wage Equations 

 

Wage 

equation 

Laborers  % 
absolute 
deviation 

Service  % 
absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
0.0268 

(0.0119) 
0.0235 

(0.0119) 0.1404 
-0.0083 
(0.0120) 

-0.0116 
(0.0093) 0.2819 

Age2/100 
-0.3202 
(0.0994) 

-0.3339 
(0.0961) 0.0410 

0.0234 
(0.0889) 

0.0314 
(0.0666) 0.2548 

Education 
0.0331 

(0.0087) 
0.0184 

(0.0077) 0.7989 
0.0965 

(0.0071) 
0.0864 

(0.0070) 0.1169 

Professional 
experience 

0.0715 
(0.0515) 

0.0295 
(0.0905) 1.4237 

0.0285 
(0.0359) 

0.02738 
(0.0258) 0.0409 

Managerial 
experience 

0.0457 
(0.0232) 

0.0597 
(0.0478) 0.2345 

0.0294 
(0.0151) 

0.0419 
(0.0316) 0.2983 

Sales 
experience 

-0.0165 
(0.0633) 

0.0364 
(0.0378) 1.4533 

0.0132 
(0.0178) 

-0.0121 
(0.0414) 2.0909 

Clerical 
experience 

0.0445 
(0.0234) 

0.0401 
(0.0247) 0.1097 

0.0240 
(0.0185) 

0.0086 
(0.0391) 1.7810 

Craftsmen 
experience 

0.0559 
(0.0082) 

0.0683 
(0.0088) 0.1816 

0.0681 
(0.0103) 

0.0167 
(0.0362) 3.0778 

Operatives 
experience 

0.0525 
(0.0083) 

0.0584 
(0.0088) 0.1010 

0.0304 
(0.0179) 

-0.0382 
(0.0199) 1.7958 

Laborer 
experience 

0.0504 
(0.0085) 

0.0556 
(0.0083) 0.0935 

0.0177 
(0.0219) 

0.0674 
(0.0341) 0.7374 

Service 
experience 

0.0040 
(0.0158) 

0.0009 
(0.0195) 3.4222 

0.0562 
(0.0066) 

0.0542 
(0.0062) 0.0369 

North central 
-0.0866 
(0.0393) 

-0.0675 
(0.0363) 0.2830 

-0.2492 
(0.0291) 

-0.2297 
(0.0239) 0.0847 

South 
-0.1109 
(0.0408) 

-0.0859 
(0.0376) 0.2915 

-0.1181 
(0.0304) 

-0.0865 
(0.0315) 0.3649 

West 
-0.0043 
(0.0492) 

0.0235 
(0.0524) 1.1843 

-0.1278 
(0.0290) 

-0.1273 
(0.0307) 0.0037 

Note: Standard errors in parentheses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 6 Panel A: Parameter Estimates – Error Standard Deviations 

Occupation    

 Ignore classification 
error 

Correct for 
classification error 

% absolute 
deviation 

Professional  
0.3249 

(0.0055) 
0.2394 

(0.0069) 
0.3575 

Managers  
0.3701 

(0.0080) 
0.2493 

(0.0163) 
0.4847 

Sales  
0.5724 

(0.0217) 
0.6850 

(0.0248) 
0.1643 

Clerical  
0.2763 

(0.0136) 
0.2636 

(0.0211) 
0.0485 

Craftsmen  
0.3039 

(0.0051) 
0.2683 

(0.0068) 
0.1325 

Operatives 
0.3317 

(0.0063) 
0.2643 

(0.0105) 
0.2547 

Laborers 
0.3364 

(0.0109) 
0.3411 

(0.0122) 
0.0137 

Service  
0.3250 

(0.0090) 
0.2802 

(0.0154) 
0.1597 

      Note: Standard errors in parentheses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6 Panel B: Parameter Estimates – Non-pecuniary Utility 

 

 Professionals  % absolute 
deviation 

Managers  % absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
0.1203 

(0.0799) 
0.0973 

(0.0305) 0.2368 
-0.0409 
(0.0809) 

-0.1448 
(0.0551) 0.7176 

Age2/100 
-0.2295 
(0.6142) 

-0.0345 
(0.0000) 5.6531 

0.4907 
(0.5784) 

1.0633 
(0.4094) 0.5385 

Education 
0.4260 

(0.0543) 
0.4715 

(0.0370) 0.0967 
0.2145 

(0.0570) 
0.2631 

(0.0240) 0.1848 

High school 
diploma 

-0.6393 
(0.2354) 

-0.3529 
(0.2103) 0.8118 

-0.2384 
(0.2213) 

-0.3125 
(0.2106) 0.2371 

College 
diploma 

0.0984 
(0.1881) 

0.3509 
(0.2144) 0.7196 

0.2867 
(0.2013) 

0.5197 
(0.2353) 0.4484 

Professional 
experience 

0.4819 
(0.1484) 

0.4894 
(0.1162) 0.0152 

0.3134 
(0.1468) 

0.3707 
(0.1250) 0.1545 

Managerial 
experience 

-0.0761 
(0.0830) 

-0.0229 
(0.1472) 2.3231 

0.2605 
(0.0688) 

0.3433 
(0.1308) 0.2412 

Sales 
experience 

-0.1569 
(0.1171) 

-0.1803 
(0.1604) 0.1296 

0.0811 
(0.1009) 

0.1052 
(0.1430) 0.2293 

Clerical 
experience 

-0.1028 
(0.1126) 

-0.0184 
(0.1637) 4.5877 

0.1471 
(0.0860) 

0.2410 
(0.1249) 0.3897 

Craftsmen 
experience 

0.1531 
(0.0657) 

0.2813 
(0.1271) 0.4556 

0.2197 
(0.0579) 

0.3523 
(0.1224) 0.3763 

Operatives 
experience 

-0.1836 
(0.0874) 

-0.1056 
(0.1784) 0.7378 

0.0218 
(0.0608) 

0.1383 
(0.1102) 0.8424 

Laborer 
experience 

-0.0459 
(0.1420) 

0.1008 
(0.2052) 1.4554 

-0.0207 
(0.1182) 

0.2366 
(0.1849) 1.0875 

Service 
experience 

-0.4737 
(0.0645) 

-0.8955 
(0.1467) 0.4710 

-0.2765 
(0.0574) 

-0.2843 
(0.0820) 0.0275 

Previously a 
professional 

2.469 
(0.339) 

3.108 
(0.368) 0.2056 

1.237 
(0.379) 

2.022 
(0.484) 0.3880 

Previously a 
manager 

0.792 
(0.340) 

1.181 
(0.665) 0.3295 

2.780 
(0.261) 

3.717 
(0.636) 0.2522 

Previously 
sales 

1.194 
(0.459) 

0.893 
(0.594) 0.3376 

1.703 
(0.432) 

1.623 
(0.591) 0.0492 

Previously 
clerical 

1.628 
(0.354) 

1.546 
(0.364) 0.0529 

1.853 
(0.322) 

2.198 
(0.287) 0.1569 

Previously a 
craftsman 

1.042 
(0.298) 

1.064 
(0.485) 0.0215 

1.673 
(0.294) 

2.482 
(0.472) 0.3260 

Previously an 
operative 

0.752 
(0.305) 

0.537 
(0.488) 0.4004 

0.400 
(0.320) 

0.493 
(0.516) 0.1886 

Previously a 
laborer 

0.634 
(0.346) 

0.341 
(0.509) 0.8592 

0.839 
(0.333) 

0.931 
(0.471) 0.0988 

Note: Standard errors in parentheses. 

 
 
 



Table 6 Panel B: Parameter Estimates – Non-pecuniary Utility 

 

 Sales  % absolute 
deviation 

Clerical  % absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
-0.1327 
(0.1137) 

-0.3511 
(0.0484) 

0.6221 
-0.1327 
(0.1137) 

-0.3511 
(0.0484) 

0.3674 

Age2/100 
1.3350 

(0.8122) 
2.8694 

(0.4692) 
0.5347 

1.3350 
(0.8122) 

2.8694 
(0.4692) 

0.3844 

Education 
0.1403 

(0.0764) 
0.1338 

(0.0563) 
0.0486 

0.1403 
(0.0764) 

0.1338 
(0.0563) 

0.1520 

High school 
diploma 

-0.0762 
(0.3236) 

-0.3263 
(0.2981) 

0.7665 
-0.0762 
(0.3236) 

-0.3263 
(0.2981) 

0.1192 

College 
diploma 

0.6676 
(0.2308) 

0.9465 
(0.2761) 

0.2946 
0.6676 

(0.2308) 
0.9465 

(0.2761) 
0.3700 

Professional 
experience 

0.0865 
(0.1731) 

0.0444 
(0.1797) 

0.9482 
0.0865 

(0.1731) 
0.0444 

(0.1797) 
0.0536 

Managerial 
experience 

0.0223 
(0.0903) 

0.0827 
(0.1555) 

0.7304 
0.0223 

(0.0903) 
0.0827 

(0.1555) 
0.7303 

Sales 
experience 

0.1072 
(0.1016) 

0.0814 
(0.1502) 

0.3171 
0.1072 

(0.1016) 
0.0814 

(0.1502) 
0.3171 

Clerical 
experience 

-0.0090 
(0.1083) 

0.0779 
(0.1501) 

1.1155 
-0.0090 
(0.1083) 

0.0779 
(0.1501) 

0.1556 

Craftsmen 
experience 

0.1471 
(0.0948) 

0.3264 
(0.1370) 

0.5495 
0.1471 

(0.0948) 
0.3264 

(0.1370) 
0.4309 

Operatives 
experience 

0.0325 
(0.0869) 

0.1358 
(0.1214) 

0.7607 
0.0325 

(0.0869) 
0.1358 

(0.1214) 
0.6347 

Laborer 
experience 

-0.0951 
(0.1618) 

0.0596 
(0.1700) 

2.5956 
-0.0951 
(0.1618) 

0.0596 
(0.1700) 

0.9400 

Service 
experience 

-0.3775 
(0.0972) 

-0.4288 
(0.1928) 

0.1198 
-0.3775 
(0.0972) 

-0.4288 
(0.1928) 

0.0543 

Previously a 
professional 

1.312 
(0.476) 

1.934 
(0.599) 

0.3216 
1.312 

(0.476) 
0.1.934 
(0.0599) 

0.2832 

Previously a 
manager 

1.837 
(0.393) 

2.194 
(0.735) 

0.1629 
1.837 

(0.393) 
2.194 

(0.735) 
0.2739 

Previously 
sales 

3.262 
(0.411) 

2.869 
(0.544) 

0.1372 
3.262 

(0.411) 
2.869 

(0.544) 
0.2087 

Previously 
clerical 

2.005 
(0.388) 

1.864 
(0.0427) 

0.0755 
2.005 

(0.388) 
1.864 

(0.427) 
0.0245 

Previously a 
craftsman 

1.358 
(0.407) 

1.778 
(0.573) 

0.2361 
1.358 

(0.407) 
1.778 

(0.573) 
0.2439 

Previously an 
operative 

1.272 
(0.361) 

1.049 
(0.457) 

0.2122 
1.272 

(0.361) 
1.049 

(0.457) 
0.2529 

Previously a 
laborer 

1.358 
(0.457) 

1.015 
(0.545) 

0.3369 
1.358 

(0.457) 
1.015 

(0.545) 
0.1852 

Note: Standard errors in parentheses. 

 
 
 



Table 6 Panel B: Parameter Estimates – Non-pecuniary Utility 

 

 Craftsmen  % absolute 
deviation 

Operatives  % absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
-0.1896 
(0.0717) 

-0.2998 
(0.0799) 

0.4007 
-0.1519 
(0.0551) 

-0.2535 
(0.0558) 

0.3115 

Age2/100 
1.1693 

(0.5598) 
1.8996 

(0.6139) 
0.3291 

1.3557 
(0.4459) 

2.0207 
(0.4634) 

0.2851 

Education 
0.1443 

(0.0638) 
0.1253 

(0.0678) 
0.1947 

-0.0703 
(0.0479) 

-0.0873 
(0.0422) 

0.1682 

High school 
diploma 

0.2760 
(0.2437) 

0.2466 
(0.1995) 

0.0148 
0.1959 

(0.1839) 
0.1931 

(0.1680) 
0.0537 

College 
diploma 

0.5009 
(0.2163) 

0.7951 
(0.2838) 

0.1359 
-0.4700 
(0.2633) 

-0.4137 
(0.3614) 

20.7143 

Professional 
experience 

0.1874 
(0.1529) 

0.1779 
(0.1211) 

0.0530 
0.1858 

(0.1581) 
0.1962 

(0.1387) 
1.4746 

Managerial 
experience 

0.0188 
(0.0762) 

0.0697 
(0.1283) 

0.6004 
-0.1568 
(0.0753) 

-0.0980 
(0.1321) 

0.0020 

Sales 
experience 

-0.1264 
(0.1093) 

-0.1851 
(0.1752) 

0.2889 
-0.2418 
(0.1272) 

-0.3401 
(0.1816) 

0.1798 

Clerical 
experience 

0.3591 
(0.0857) 

0.4253 
(0.1258) 

0.3213 
-0.1887 
(0.0887) 

-0.1428 
(0.1439) 

0.7116 

Craftsmen 
experience 

0.1197 
(0.0637) 

0.2104 
(0.1293) 

0.2471 
0.3067 

(0.0520) 
0.4074 

(0.1172) 
0.5117 

Operatives 
experience 

0.0786 
(0.0707) 

0.2151 
(0.1136) 

0.6869 
0.0571 

(0.0552) 
0.1824 

(0.1010) 
0.3475 

Laborer 
experience 

0.0089 
(0.1066) 

0.1485 
(0.1601) 

0.8194 
0.0430 

(0.0848) 
0.2381 

(0.1449) 
0.8217 

Service 
experience 

-0.3782 
(0.0623) 

-0.3587 
(0.0787) 

0.0990 
-0.4665 
(0.0448) 

-0.5178 
(0.0697) 

0.0722 

Previously a 
professional 

1.338 
(0.380) 

1.866 
(0.478) 

0.1591 
0.1124 

(0.0394) 
1.337 

(0.526) 
0.2965 

Previously a 
manager 

1.477 
(0.325) 

2.034 
(0.653) 

0.2778 
0.1527 

(0.0312) 
2.115 

(0.651) 
0.3681 

Previously 
sales 

1.710 
(0.457) 

1.415 
(0.618) 

0.3348 
0.1413 

(0.0489) 
1.059 

(0.536) 
0.3292 

Previously 
clerical 

2.804 
(0.301) 

2.874 
(0.097) 

0.0275 
0.1198 

(0.0333) 
1.166 

(0.324) 
0.0207 

Previously a 
craftsman 

1.105 
(0.307) 

1.462 
(0.492) 

0.1381 
0.2903 

(0.0195) 
3.368 

(0.368) 
0.1756 

Previously an 
operative 

0.763 
(0.280) 

0.609 
(0.416) 

0.0752 
0.1521 

(0.0195) 
1.415 

(0.294) 
0.0477 

Previously a 
laborer 

1.672 
(0.286) 

1.411 
(0.399) 

0.2470 
0.1636 

(0.0231) 
1.312 

(0.329) 
0.2746 

Note: Standard errors in parentheses. 

 
 
 



Table 6 Panel B: Parameter Estimates – Non-pecuniary Utility 

 

 Laborers  % absolute 
deviation 

 Ignore 
classification 
error 

Correct for 
classification 
error 

 

Age 
-0.2017 
(0.0634) 

-0.3403 
(0.0650) 0.4072 

Age2/100 
1.8105 
(0.5104) 

2.7642 
(0.5240) 0.3450 

Education 
-0.1514 
(0.0613) 

-0.1099 
(0.0545) 0.3774 

High school 
diploma 

0.2912 
(0.2274) 

0.1422 
(0.2124) 1.0480 

College 
diploma 

0.0821 
(0.3341) 

0.3030 
(0.3584) 0.7291 

Professional 
experience 

-0.4791 
(0.2656) 

-0.3477 
(0.4226) 0.3778 

Managerial 
experience 

-0.2364 
(0.1162) 

-0.3256 
(0.1955) 0.2739 

Sales 
experience 

-0.2337 
(0.1279) 

-0.2623 
(0.1937) 0.1093 

Clerical 
experience 

0.0255 
(0.0883) 

0.0713 
(0.1468) 0.6424 

Craftsmen 
experience 

0.0943 
(0.0594) 

0.1882 
(0.1207) 0.4990 

Operatives 
experience 

0.0370 
(0.0575) 

0.1673 
(0.1032) 0.7788 

Laborer 
experience 

0.3250 
(0.0910) 

0.4753 
(0.1501) 0.3163 

Service 
experience 

-0.4093 
(0.0654) 

-0.4625 
(0.0884) 0.1150 

Previously a 
professional 

0.943 
(0.484) 

0.175 
(0.695) 0.1975 

Previously a 
manager 

0.609 
(0.400) 

0.129 
(0.776) 0.4604 

Previously 
sales 

0.604 
(0.699) 

0.754 
(0.707) 0.1989 

Previously 
clerical 

1.310 
(0.354) 

1.322 
(0.351) 0.0096 

Previously a 
craftsman 

1.525 
(0.240) 

1.832 
(0.435) 0.1673 

Previously an 
operative 

1.139 
(0.204) 

0.976 
(0.311) 0.1675 

Previously a 
laborer 

1.870 
(0.213) 

1.579 
(0.331) 0.1846 

                            Note: Standard errors in parentheses. 

 
 



Table 6 Panel C: Parameter Estimates – Unobserved Heterogeneity: Classification 

Error Model 

 

 Type 1  Type 2  Type 3  

Non-pecuniary intercepts Parameter Std. error Parameter Std. error Parameter Std. error 

Professional  -4.7210 0.3270 -4.1600 0.2920 -2.8250 0.3810 

Managers  -3.1880 0.0930 -3.0920 0.1770 -2.2050 0.2510 

Sales  -6.1960 0.4940 -0.9120 0.3780 0.0160 0.3850 

Clerical  -1.7920 0.3340 -1.7200 0.3460 -0.5640 0.3520 

Craftsmen  -0.1250 0.2410 -0.0660 0.2260 0.5370 0.3130 

Operatives 0.0310 0.2470 0.0570 0.2310 0.6560 0.3100 

Laborers 0.3220 0.2590 0.4030 0.2180 1.2000 0.3180 

Wage intercepts       

Professional  1.9360 0.0220 1.1810 0.0250 1.6380 0.0220 

Managers  1.4510 0.0350 1.0740 0.0260 1.5990 0.0360 

Sales  2.3700 0.2600 -0.2990 0.1770 0.2740 0.1850 

Clerical  1.4400 0.0380 1.1220 0.0450 1.5480 0.0300 

Craftsmen  1.6460 0.0260 1.3670 0.0250 1.9630 0.0300 

Operatives 1.6220 0.0240 1.3810 0.0230 1.9710 0.0260 

Laborers 1.4130 0.0480 1.3000 0.0470 1.7150 0.0420 

Service  1.5020 0.0310 1.0620 0.0240 0.0010 0.1240 

Type probabilities       

Pr(Type 1) 0.1216 .032     

Pr(Type 2) 0.3675 .041     

Pr(Type 3)     .5109 .042     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6 Panel C: Parameter Estimates – Unobserved Heterogeneity: Model that 

Ignores Classification Error 

 

 Type 1  Type 2  Type 3  

Non-pecuniary intercepts Parameter Std. error Parameter Std. error Parameter Std. error 

Professional  -3.6890 0.3330 -3.4730 0.3160 -2.1610 0.3520 

Managers  -2.4600 0.3300 -2.5340 0.3060 -1.5880 0.3640 

Sales  -7.2570 0.7340 -2.0600 0.4340 -1.0310 0.4350 

Clerical  -1.8030 0.2820 -2.0260 0.2860 -0.9600 0.3590 

Craftsmen  -0.1680 0.2170 -0.3450 0.2110 0.5080 0.2910 

Operatives -0.1820 0.2210 -0.1820 0.2180 0.5370 0.2930 

Laborers -0.0110 0.2560 -0.0090 0.2420 0.6280 0.3030 

Wage intercepts
      

Professional  1.7720 0.0630 1.0550 0.0610 1.5460 0.0600 

Managers  1.3740 0.0750 0.9420 0.0720 1.4420 0.0720 

Sales  1.8580 0.1800 -0.0220 0.1420 0.4980 0.1390 

Clerical  1.4640 0.0470 1.1000 0.0510 1.5630 0.0490 

Craftsmen  1.5540 0.0320 1.2910 0.0300 1.8530 0.0340 

Operatives 1.5590 0.0380 1.3020 0.0360 1.7940 0.0360 

Laborers 1.4670 0.0570 1.2880 0.0550 1.7770 0.0600 

Service  1.4630 0.0520 1.0170 0.0480 1.3190 0.0690 

Type probabilities       

Pr(Type 1) 0.0456 .033     

Pr(Type 2) 0.5030 .039     

Pr(Type 3) .4514 .040     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6 Panel C: Average Wage & Non-pecuniary Intercepts Across Types 

Average non-pecuniary 
intercepts (φ’s) 

Ignore classification 
error 

Correct for 
classification error 

% absolute deviation 

Professional  -2.890 -3.546 0.184 

Managers  -2.103 -2.650 0.206 

Sales  -1.832 -1.080 0.696 

Clerical  -1.534 -1.138 0.347 

Craftsmen  0.048 0.234 0.795 

Operatives 0.142 0.359 0.603 

Laborers 0.278 0.800 0.652 

Average wage intercepts (μ’s) 
   

Professional  1.309 1.506 0.130 

Managers  1.187 1.388 0.144 

Sales  0.298 0.318 0.062 

Clerical  1.325 1.378 0.038 

Craftsmen  1.556 1.705 0.087 

Operatives 1.535 1.711 0.102 

Laborers 1.516 1.525 0.005 

Service  1.173 0.5734 1.046 

            Note: Averages computed across types. 
 

Table 7: Completed Education by Observed Occupation for Correctly Classified 

and Misclassified Occupational Choices 

Observed Occupation in NLSY 

Data 

 % No College 

Completed 

% College 

Graduate 

Professional  
Correctly classified 
Misclassified 

10.8% 
48.6% 

71.8% 
30.2% 

Managers  
Correctly classified 
Misclassified 

39.8% 
47.2% 

36.8% 
28.7% 

Sales  
Correctly classified 
Misclassified 

25.2% 
44.8% 

54.2% 
24.7% 

Clerical  
Correctly classified 
Misclassified 

54.9% 
36.0% 

23.7% 
49.0% 

Craftsmen  
Correctly classified 
Misclassified 

77.9% 
53.3% 

2.1% 
18.7% 

Operatives 
Correctly classified 
Misclassified 

85.2% 
61.3% 

2.5% 
21.5% 

Laborers 
Correctly classified 
Misclassified 

83.7% 
73.0% 

3.2% 
11.7% 

Service  
Correctly classified 
Misclassified 

60.2% 
74.2% 

13.7% 
8.1% 

Notes: Generated using the simulated data that identifies occupational choices as correctly or incorrectly 
classified. The “correctly classified” row refers to observations where the occupation in the leftmost 
column matches the true occupation code generated by the model. The “misclassified” row refers to 
observations where a person is observed in the occupation in the leftmost column and the simulated true 
occupation differs from the observed occupation. So, 71.8% of correctly classified professionals graduated 
from college, while only 30.2% of those incorrectly classified as professionals graduated from college. 



Table 8: Distribution of Total Number of Times a Person’s Occupational Choices 

are Misclassified Over the Career 
 

# of times misclassified Subpopulation 2 Subpopulation 3 All 

0 32.8% 30.4% 57.2% 

1 28.4% 27.0% 17.6% 

2 18.8% 17.4% 11.5% 

3 9.9% 10.1% 6.3% 

4 4.2% 5.9% 3.0% 

5 3.1% 4.4% 2.2% 

6-9 2.5% 4.4% 1.9% 

>9 .37% .26% .20% 

 Entries are the frequencies of the number of times that a person’s occupational choices are 
misclassified over the course of the career based on the simulated data. For example, in 
Subpopulation 2, 9.9% of individuals in the simulated data have their occupational choices 
misclassified three times over the course of their career. 
 
 
 
 
 
 
 

Table 9: Distribution of Lengths of Misclassification Spells 
 

# of consecutive times 

misclassified 

Subpopulation 2 Subpopulation 3 All 

1 73.2% 72.2% 72.9% 

2 18.2% 18.5% 18.3% 

3 4.9% 5.8% 5.2% 

4 2.2% .9% 1.8% 

5 .47% 1.3% .7% 

>5 .83% 1.1% .93% 

 Entries are the frequencies of the number of consecutive times that a person’s occupational 
choices are misclassified. For example, in subpopulation 2, conditional on having an occupational 
choice misclassified, 18.2% of these choices are misclassified for two consecutive survey 
observations.



 
Table 10: Average True Choice Probabilities by Observed Choice and Wage Percentile 

Observed/Actual  Professional Managers Sales Clerical Craftsmen Operatives Laborers Service 

Professional  
Top 10% 
Middle 10% 
Bottom 10% 

.909 

.953 

.757 

.000 

.001 

.001 

.074 

.006 

.053 

.000 

.000 

.001 

.000 

.013 

.020 

.000 

.000 

.001 

.004 

.012 

.070 

.011 

.014 

.095 

Managers  
Top 10% 
Middle 10% 
Bottom 10% 

.052 

.020 

.010 

.565 

.858 

.544 

.374 

.067 

.272 

.001 

.002 

.004 

.002 

.003 

.004 

.000 

.002 

.005 

.000 

.001 

.012 

.005 

.046 

.148 

Sales  
Top 10% 
Middle 10% 
Bottom 10% 

.039 

.033 

.004 

.033 

.018 

.005 

.916 

.911 

.834 

.017 

.000 

.016 

.000 

.000 

.000 

.000 

.002 

.007 

.000 

.002 

.007 

.038 

.026 

.127 

Clerical  
Top 10% 
Middle 10% 
Bottom 10% 

.039 

.033 

.004 

.005 

.017 

.005 

.916 

.911 

.834 

.001 

.008 

.016 

.000 

.000 

.000 

.000 

.002 

.007 

.000 

.002 

.007 

.038 

.026 

.127 

Craftsmen  
Top 10% 
Middle 10% 
Bottom 10% 

.031 

.008 

.005 

.001 

.000 

.000 

.091 

.015 

.124 

.000 

.000 

.003 

.872 

.965 

.818 

.000 

.002 

.005 

.003 

.007 

.041 

.000 

.000 

.002 

Operatives 
Top 10% 
Middle 10% 
Bottom 10% 

.084 

.009 

.003 

.000 

.000 

.000 

.110 

.008 

.119 

.000 

.000 

.000 

.000 

.000 

.000 

.801 

.979 
     .869 

.003 

.003 

.006 

.000 

.000 

.000 

Laborers 
Top 10% 
Middle 10% 
Bottom 10% 

.000 

.000 

.000 

.000 

.000 

.000 

.065 

.003 

.071 

.012 

.007 

.004 

.032 

.008 

.003 

.002 

.003 

.002 

.885 

.976 

.915 

.003 

.001 

.004 

Service  
Top 10% 
Middle 10% 
Bottom 10% 

.054 

.005 

.000 

.004 

.001 

.000 

.072 

.001 

.100 

.000 

.001 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.150 

.251 

.174 

.719 

.732 

.725 

 Note: Entries are the average true choice probabilities found in the simulated data conditional on the observed choice and wage. Top, middle, and 
bottom 10% refer to the location of the observed wage in the wage distribution of the observed occupation.
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