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ABSTRACT 

This thesis advances game theory by formally analysing the implications of 

replacing some of its most stringent assumptions with alternatives that –at least in 

certain contexts– have received greater empirical support. Specifically, this thesis 

makes two distinct contributions in the field of learning game theory and one in 

the field of evolutionary game theory. The method employed has been a symbiotic 

combination of computer simulation and mathematical analysis. Computer 

simulation has been used extensively to enhance our understanding of various 

formal systems beyond the current limits of mathematical tractability, and also to 

illustrate, complement and extend various analytical derivations.  

 

The two extensions to learning game theory presented here abandon the orthodox 

assumption that players are fully rational, and assume instead that players follow 

one of two alternative decision-making processes –case-based reasoning or 

reinforcement learning– that have received strong support from cognitive science 

research. The formal results derived in this part of the thesis add to the growing 

body of work in learning game theory that supports the general principle that the 

stability of outcomes in games depends not only on how unilateral deviations 

affect the deviator but also, and crucially, on how they affect the non-deviators. 

Outcomes where unilateral deviations hurt the deviator (strict Nash) but not the 

non-deviators (protected) tend to be the most stable.  

 

The contribution of this thesis to evolutionary game theory is a systematic study 

of the extent to which the assumptions made in mainstream evolutionary game 

theory for the sake of tractability are affecting its conclusions. Our results show 

that the type of strategies that are likely to emerge and be sustained in 

evolutionary contexts is strongly dependent on assumptions that traditionally have 

been thought to be unimportant or secondary (e.g. number of players, continuity 

of the strategy space, mutation rate, population structure…). This latter 

contribution is focused on the evolutionary emergence of cooperation. 

 

Following the presentation of the main results and the discussion of their 

implications, this thesis provides some guidance on how the models analysed here 

could be parameterised and validated.  
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1.   Introduction 

This thesis advances game theory by formally analysing the implications of some 

of its most stringent assumptions. The approach followed here consists in 

examining the consequences of replacing some of the assumptions made in game 

theory for the sake of mathematical tractability with alternatives that –at least in 

some contexts– are more plausible. The method employed to conduct this research 

has been a symbiotic combination of computer simulation and mathematical 

analysis. Our results suggest that some of the most fundamental assumptions 

embedded in game theory may have deeper philosophical implications than 

commonly assumed. 

1.1. Motivation 

The value of advancing game theory seems clear: it is widely agreed that game 

theory has become one of the cornerstones of the social sciences (Hargreaves 

Heap and Varoufakis, 1995). There are widespread claims that it “provides solid 

microfoundations for the study of social structure and social change” (Elster, 

1982), and that it “may be viewed as a sort of umbrella or ‘unified field’ theory 

for the rational side of social science” (Aumann and Hart, 1992). More recently, 

Gintis (2000) has stated that “game theory is a universal language for the 

unification of the behavioral sciences”. Even in the biological sciences it has been 

argued that some game theoretical concepts represent “one of the most important 

advances in evolutionary theory since Darwin” (Dawkins, 1989).  

 

However, while extremely informative, game theory is at present somewhat 

limited in the sense that it is dominated by assumptions of full rationality, it 

generally ignores the dynamics of social processes, and it often requires disturbing 

and unrealistic hypotheses about individuals’ assumptions about other individuals’ 

cognitive capabilities and beliefs in order to derive specific predictions. 

Furthermore, it is often the case that even with heroic assumptions about the 

computational power and beliefs that every individual attributes to every other 

individual, game theory cannot reduce the set of expected outcomes significantly. 
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Thus, whilst acknowledging that the work conducted in game theory has been 

tremendously useful, a growing inter-disciplinary community of scientists think 

the time has come to extend game theory beyond the boundaries of full rationality, 

common-knowledge of rationality, consistently aligned beliefs, static equilibria, 

and long-term convergence. These concerns have led various researchers to 

develop formal models of social interactions within the framework of game 

theory, but relaxing its most stringent assumptions. Such models are providing not 

only valuable insights for the specific questions they address, but also the basis to 

assess how robust the results obtained in classical game theory are. This thesis is a 

contribution to this emergent programme of research. 

1.2. Aim, approach and methodology 

The overall aim of this thesis is to advance non-cooperative game theory by 

formally studying the implications of some of its assumptions that have been 

made for the sake of tractability and are not generally supported by empirical 

evidence. This has been done following two approaches:  

• The first approach consists in examining the formal implications of replacing 

the unsupported assumptions in mainstream non-cooperative game theory 

relating to individual decision-making with assumptions that stem from 

empirical research. In particular, this thesis abandons the assumptions of 

complete information, common knowledge of rationality and consistently 

aligned beliefs, and contemplates instead members of two classes of decision 

making algorithms that have received strong support from cognitive science 

research: reinforcement learning and case-based reasoning. 

• The second approach is used to extend mainstream evolutionary game theory. 

It consists in exploring the implications of a wide range of competing 

assumptions –all of them consistent with the essence of the theory of 

evolution– within a common framework. The results obtained using different 

assumptions are then contrasted in a coherent and systematic way.  

 

In terms of methodology, there are four features that distinguish the work 

conducted in this thesis from most of the previous research undertaken in the 

same emerging field.  
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• First, the contributions made in this thesis have been placed in an overall 

framework that can encompass, in admittedly broad terms, most of the 

research conducted in game theory until now. This has permitted a more 

transparent comparison between the assumptions investigated here and those 

that have been addressed so far, and also between the results derived from 

this research and those obtained under other assumptions.  

• Secondly, in terms of method, since most of the assumptions investigated in 

this thesis have not been formulated to allow for mathematical tractability, 

but to advance our formal understanding of social interactions in real life, 

new methodologies have had to be employed to supplement mathematical 

analyses. In particular, computer simulation has been used extensively to 

enhance and complement mathematical derivations. These two techniques 

have been combined in a way that is not common in the literature of game 

theory or in the field of social simulation. To be specific, most of the 

simulations reported in this thesis are just small advances at the edge of 

theoretical understanding. They are advances sufficiently small so that 

simplified versions of them (or certain aspects of their behaviour) can be fully 

understood in mathematical terms –thus retaining analytical rigour–, but they 

are steps large enough to significantly extend our understanding beyond what 

is achievable using the most advanced mathematical techniques available. In 

this way, simulations will be shown to extend theoretical knowledge in a 

rigorous, formal, and almost continuous way (Probst, 1999).  

• The symbiotic use of mathematical analysis and computer simulation has 

allowed us to characterise both the short-term and the long-term dynamics of 

the models investigated in this thesis. This is in contrast with most game 

theoretical research –which is most often concerned with the identification of 

asymptotic equilibria– and with most research in the field of social simulation 

–which is often mainly concerned with the short-term dynamics. 

• Finally, a great effort has been made to ensure that all models and simulations 

reported in this thesis can be easily scrutinised, used, replicated and 

reimplemented by independent researchers. In particular, all the computer 

programs used to conduct the research presented here have been released 

under the GNU general public licence (GPL), which is one of the licences 
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that scores best against the criteria set out by Polhill and Edmonds (2007) for 

releasing scientific software. GNU GPL grants the right to inspect, copy and 

distribute the source code, to modify it, and also to copy and distribute any 

modifications. It also guarantees that any modifications will be issued under a 

licence that preserves these rights (i.e. copyleft protection). Furthermore, 

following Polhill and Edmonds’ (2007) guidelines, a substantial amount of 

work has been devoted in this thesis to facilitate the process of scientific 

critique of this research, by carefully commenting the code, providing 

extensive documentation, and creating several user guides for all the 

developed software. All the programs and documentation are included in the 

Supporting Material of this thesis. 

1.3. Overall framework and specific contributions 

To appreciate more precisely the specific contribution of this thesis to human 

knowledge, it becomes necessary to formalise some terms related to game theory 

first. In this thesis, a clear distinction is made between game theory used as a 

framework, and the different branches of non-cooperative game theory as we 

know them nowadays – e.g. classical game theory, evolutionary game theory and 

learning game theory.  

 

Game theory as a framework is a methodology used to build models of real-world 

social interactions. The result of such a process of abstraction is a formal model 

that typically comprises the set of individuals who interact (called players), the 

different choices available to each of the individuals (called strategies), and a 

payoff function that assigns a (usually numerical) value to each individual for each 

possible combination of choices made by every individual. In most branches of 

game theory, payoffs represent the preferences of each individual over each 

possible outcome of the social interaction. The notable exception is evolutionary 

game theory, where payoffs most often (but not always) represent Darwinian 

fitness. 

 

The feature of the social interaction to be modelled that makes game theory a 

particularly useful framework to employ is its strategic nature: the fact that the 

outcome of the interaction for any individual player generally depends not only on 
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her own choices, but also on the choices made by every other individual. Thus, 

game theory could arguably be defined as “the theory of interdependent decision-

making” (Colman, 1995, pg. 3). 

 

Game theory used as a framework provides a formal description of the social 

setting where the players are embedded. Importantly, it does not account for the 

players’ behaviour, neither in a normative nor in a positive sense. It is just not the 

realm of game theory as a framework to do so. It is only when different 

assumptions about how players behave –or should behave– are included in the 

framework, that game theory as a framework gives rise to the different branches 

that compose game theory as we know it nowadays. Here we outline the main 

features of the three most developed branches of deductive non-cooperative game 

theory at this time: 

 

Classical game theory: Classical game theory was chronologically the first branch 

to be developed (Von Neumann and Morgenstern, 1944), the one where most of 

the work has been focused historically, and the one with the largest representation 

in most game theory textbooks and academic courses. Classical game theory is a 

branch of mathematics devoted to the study of how instrumentally rational players 

should behave in order to obtain the maximum possible payoff in a formal game.  

 

The main problem in classical game theory is that, in general, rational behaviour 

for any one player remains undefined in the absence of strong assumptions about 

other players’ behaviour. Hence, in order to derive specific predictions about how 

rational players should behave, it is often necessary to make very stringent 

assumptions about everyone’s beliefs (e.g. common knowledge of rationality) and 

their interdependent consistency. Since such strong assumptions rarely hold in the 

real world, it is not surprising that when game theoretical solutions have been 

empirically tested, disparate anomalies have been found (see, for example, work 

reviewed by Colman (1995) in chapters 7 and 9, Roth (1995), Ledyard (1995), 

and Camerer (2003)). To make matters worse, even when the most stringent 

assumptions are in place, it is often the case that several possible outcomes are 

possible, and it is not clear which –if any– may be achieved, or the process 

through which this selection would happen. Thus, the general applicability of 
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classical game theory is limited. A related limitation of classical game theory is 

that it is an inherently static theory: it is mainly focused on the study of end-states 

and possible equilibria, paying hardly any attention to how such equilibria might 

be reached. 

 

Evolutionary Game Theory: Some time after the emergence of classical game 

theory, biologists realised the potential of game theory as a framework to formally 

study adaptation and coevolution of biological populations (Lewontin, 1961; 

Hamilton, 1967). For those situations where the fitness of a phenotype is 

independent of its prevalence, optimisation theory is the proper mathematical tool. 

However, it is most common in nature that the fitness of a phenotype depends on 

the composition of the population (Nowak and Sigmund, 2004). In such cases 

game theory becomes the appropriate framework.  

 

In evolutionary game theory, players are no longer taken to be rational. Instead, 

each player –most often meant to represent an individual animal– always selects 

the same (potentially mixed) strategy
1
 –which represents its behavioural 

phenotype–, and payoffs are usually interpreted as Darwinian fitness. The 

emphasis is then placed on studying which behavioural phenotypes (i.e. strategies) 

are stable under some evolutionary dynamics, and how such evolutionary stable 

states are reached. Despite having its origin in biology, the basic ideas behind 

evolutionary game theory –that successful strategies tend to spread more than 

unsuccessful ones, and that fitness is frequency-dependent– have extended well 

beyond the biological realm. 

 

The main shortcoming of mainstream evolutionary game theory is that it is 

founded on assumptions made to ensure that the resulting models are 

mathematically tractable. Most of the work assumes one single infinite and 

homogeneous population where players using one of a finite set of strategies are 

randomly matched to play an infinitely repeated 2-player symmetric game. In the 

last few years various alternative models (e.g. finite populations, stochastic 

                                                   

1 This assumption, which is not always made in models of cultural evolution, is explained in detail 

in chapter 2.  
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strategies, multi-player games, structured populations) are being explored, but 

unsystematically.  

 

Learning game theory: Like evolutionary game theory, learning game theory 

abandons the demanding assumptions of classical game theory on players’ 

rationality and beliefs. However, unlike its evolutionary counterpart, learning 

game theory assumes that individual players adapt, learning over time about the 

game and the behaviour of others (e.g. through reinforcement, imitation, or belief 

updating). This learning process is explicitly modelled (Vega-Redondo, 2003, pg. 

398). These investigations are being undertaken experimentally and formally 

(both analytically and using computer simulation), and special emphasis is being 

paid to the study of backward-looking learning algorithms, which seem to be 

more plausible than the forward-looking methods of reasoning employed in 

classical game theory. The latter appear to be very demanding for human agents 

(let alone other animals) and remain undefined in the absence of strong 

assumptions about other players’ behaviour and beliefs. Some of the most studied 

classes of decision-making algorithms in the literature are: reinforcement learning 

(with experimental studies conducted by e.g. Erev et al. (1999), theoretical work 

done by e.g. Bendor et al. (2001b), and studies of the dynamics carried out by e.g. 

Macy and Flache (2002)), belief learning (with theoretical work on fictitious play 

developed by e.g. Fudenberg and Levine (1998)), and the EWA (Experience 

Weighted Attraction) model (Camerer and Ho, 1999), which is a hybrid of  

reinforcement and belief learning.  

 

This thesis makes two specific contributions to the development of learning game 

theory and one in the field of evolutionary game theory. The first contribution to 

learning game theory is to elucidate the implications of assuming that players use 

a simple form of reinforcement learning as decision-making algorithm. 

Reinforcement learning, being one of the most widespread adaptation mechanisms 

in nature, has attracted the attention of many scientists and engineers for decades. 

This interest has led to the formulation of various different models and –when 

feasible– to the theoretical analysis of their dynamics. This thesis provides an in-

depth analysis of the transient and asymptotic dynamics of one of the best known 
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stochastic models of reinforcement learning (Bush and Mosteller, 1955) for 2-

player 2-strategy games. 

 

The second contribution to learning game theory is a detailed exploration of the 

implications of case-based reasoning as decision-making approach in strategic 

contexts. Case-based reasoning consists in “solving a problem by remembering a 

previous similar situation and by reusing information and knowledge of that 

situation” (Aamodt and Plaza, 1994). Case-based reasoners do not employ 

abstract rules as the basis to make their decisions, but instead they use similar 

experiences they have lived in the past. Such experiences are stored in the form of 

cases. The distinguishing feature of case-based reasoning as problem-solving 

mechanism is that “thought and action in a given situation are guided by a single 

distinctive prior case” (Loui, 1999). To our knowledge, the implications of this 

type of reasoning in strategic contexts have not been explored before. 

 

Finally, the contribution of this thesis to evolutionary game theory is a systematic 

exploration of the impact of various assumptions made in this field; this 

exploration is undertaken by studying the structural robustness of evolutionary 

models of cooperation using a computational tool built for this specific purpose: 

EVO-2x2. EVO-2x2 is a computer simulation modelling framework designed to 

formally investigate the evolution of strategies in 2-player 2-strategy (2x2) 

symmetric games under various competing assumptions. 

 

A significant part of the work conducted in this thesis is sufficiently general to be 

valid in a wide range of social interactions, but some of it has had to be focused 

on particular types of social interactions. Whenever there has been a need to select 

a specific type of social interaction to investigate (even if the only purpose was to 

illustrate the applicability of more general findings), we have always studied 

social dilemmas (Dawes, 1980). Social dilemmas are social interactions where 

individual rationality leads to outcomes for which there is at least one feasible 

alternative preferred by everyone. In such situations, decisions that make sense to 

each individual can aggregate into outcomes in which everyone suffers (Macy and 

Flache, 2002). The focus of this thesis has been on social dilemmas because of 

their importance in the social and biological sciences, and because the predictions 
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of classical game theory in this context clash with widely shared intuitions and 

empirical results (see, for instance, work reviewed by Gotts et al. (2003b) and by 

Colman (1995) in chapters 7 and 9). 

1.4. Outline of the thesis 

The structure of this thesis is as follows: chapter 2 outlines the main assumptions 

made in game theory. We analyse each of the following branches in turn: game 

theory used as a framework, classical game theory, evolutionary game theory, and 

learning game theory. This critical review of the main assumptions made in 

deductive game theory will serve as a framework to clearly identify those 

assumptions that will be abandoned in the subsequent chapters of this thesis, and 

those that will be retained. Chapter 3 clarifies the scope of this thesis within game 

theory and explains social dilemma games in detail. It also describes the methods 

that have been used to formally analyse the models developed in chapters 4, 5 and 

6. Chapter 4 is an in-depth analysis of the transient and asymptotic dynamics of 

the Bush-Mosteller reinforcement learning algorithm for 2-player 2-strategy 

games. Chapter 5 is an exploration of cased-based reasoning as decision-making 

algorithm in strategic contexts. Chapter 6 describes EVO-2x2, the modelling 

framework developed in this thesis to assess the impact of various assumptions 

made in mainstream evolutionary game theory for the sake of mathematical 

tractability. The use of EVO-2x2 is illustrated by conducting an investigation on 

the structural robustness of evolutionary models of cooperation. Chapter 7 is a 

general discussion of the results obtained in chapters 4, 5 and 6. We also discuss 

the value of the models developed in this thesis, and how they could be validated. 

Chapter 8 summarises the main conclusions of this work and identifies areas for 

further research. The proofs of the theoretical results derived in this thesis can be 

found in the appendices. This thesis also comprises extensive supporting material, 

including the source code of every computer program we have used in this 

research, together with user guides and instructions to replicate every experiment 

reported here.  
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2.   Main assumptions in game theory 

This chapter is a critical dissection of the main assumptions embedded in each of 

the most advanced branches of deductive game theory at this time. We distinguish 

between game theory as a framework (which makes no assumptions about 

individuals’ behaviour or beliefs), classical game theory, evolutionary game 

theory, and learning game theory. Given the breadth and depth of game theory 

work, this thesis cannot present an exhaustive list of all the assumptions 

considered in the field. We focus on the most prevalent and relevant ones. The 

critical review of deductive game theory in this chapter is meant to serve as a 

framework where the assumptions whose impact is investigated in the subsequent 

chapters of this thesis can be precisely identified. It will also serve to identify 

what assumptions are retained in the models developed in this thesis. The last 

section of this chapter briefly describes some of the branches of game theory that 

are not purely deductive.  

2.1. Game theory as a framework 

Game theory as a framework is a methodology used to build models of real-world 

social interactions. The result of the modelling exercise is a game, i.e. a formal 

abstraction of the social interaction which is typically defined by
2
: 

• the set of individuals who interact (called players),  

• the different choices available to each of the individuals (called strategies),  

• and a payoff function that assigns a (usually numerical) value to each 

individual for each possible combination of choices made by every 

individual.  

Importantly, the abstract model developed within this framework does not make 

any assumptions about the players’ behaviour, neither in a normative nor in a 

positive sense. 

 

                                                   

2 We use here the representation of a game in strategic form for the sake of clarity. If the 

sequential structure of the game is complex (in terms of order of movement, players’ asymmetries 

and information flow), the representation of the game in extensive form (which explicitly details 

the order of events, the order of moves, and the information sets) may be more adequate (see 

chapter 1 in Vega-Redondo (2003) for details). 
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Game theory as a framework is particularly useful to describe and analyse 

decision-making in social interactions where the outcome potentially depends on 

the decisions made by several individuals (i.e. interdependent decision-making 

processes). According to the Stanford Encyclopaedia of Philosophy, “game theory 

is the most important and useful tool in the analyst’s kit whenever she confronts 

situations in which what counts as one agent’s best action (for her) depends on 

expectations about what one or more other agents will do, and what counts as 

their best actions (for them) similarly depend on expectations about her” (Ross, 

2006).  

 

As with any formal model, some of the complexity of the real-world situation 

represented will be lost in the process of abstraction. The rationale to undertake 

such a process of abstraction, which implies loss of descriptive accuracy to some 

extent, is that it will yield insights beyond those that could be achieved without 

the model. Furthermore, the knowledge acquired from the analysis of the abstract 

formal model can still be valid in other real-world situations whose important 

features are captured by the same formal model even though the model was not 

initially developed with such situations in mind. To the extent that the formal 

model captures the essence of the situation under study, enables us to establish 

inference processes that we could not undertake otherwise, and yields insights that 

can be transferred to other domains, we consider that the formal model is useful 

(Colman, 1995, pg. 6). 

 

Game theory as a framework makes two important assumptions. The first one is 

ontological and it refers to how social interactions are modelled in game theory. 

The framework used in game theory makes a clear distinction between structure 

(i.e. rules of the game) and action. The rules of the game fully constrain the set of 

possible actions that can be taken, i.e. there is no room for action to change 

structure. Obviously this is not the only ontological view that one can take when 

trying to distil the essence of social interactions. This clear cut between structure 

and action will prove useful in many circumstances, but it may not always be 

adequate; therefore it is important to be aware that there are many other ways of 

modelling social interactions (Hargreaves Heap and Varoufakis, 1995, chapter 1).  
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Assuming that the essence of the social interaction to be modelled is captured by 

the formal abstraction to a satisfactory extent (in terms of context, interplay 

between action and structure, history effects…) the most important assumption 

made when using game theory as a framework relates to the definition of the 

payoff function. In most branches of game theory, payoffs are meant to represent 

individuals’ preferences for each possible outcome of the social interaction. The 

notable exception is evolutionary game theory, where payoffs most often (but not 

always) represent Darwinian fitness. The following two sections explain this in 

detail. 

2.1.1. Payoffs interpreted as preferences 

The payoff function for each player is effectively a preference ordering over the 

set of possible outcomes. Behind the concept of “payoff function” is the implicit 

assumption that preferences will guide action (otherwise there would not be much 

point in defining a payoff function). While seemingly innocuous, this underlying 

assumption does have certain philosophical implications which, though 

fascinating, fall out of the scope of this thesis (Hargreaves Heap and Varoufakis, 

1995, pg. 12). 

 

A common misconception about game theory relates to the roots of players’ 

preferences. There is no assumption in game theory (not even as a framework) 

that players’ preferences are formed in complete disregard of each other’s 

interests. On the contrary, preferences in game theory are assumed to account for 

everything, i.e. they may include altruistic motivations, moral principles, and 

social constraints, for example (Colman, 1995, pg. 301; Vega-Redondo, 2003,   

pg. 7). 

 

Game theory as a framework assumes that players’ preference order is well 

defined, i.e. it satisfies the conditions of reflexivity, completeness, and transitivity 

(Hargreaves Heap and Varoufakis, 1995, pg. 6); and that their preference order 

does not change. If no further assumption is made on individuals’ preferences, 

these are said to be ordinal. Ordinal preferences provide no information about the 

strength of preferences, so arithmetic operations on ordinal payoffs are not 

meaningful. An admittedly obvious point, but one which may be worth noting, is 
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that direct comparisons of ordinal preferences between different players (e.g. 

“player A likes outcome X more than player B does”) are meaningless. 

 

In almost all game theoretical models, however, preferences are assumed to be 

cardinal, i.e. payoffs take numerical values on an interval scale. With this 

assumption, payoffs give a measure of the strength of the preferences, and 

therefore payoff differences are indeed meaningful. If nothing more than 

cardinality is assumed, comparisons of preferences between different players are 

still meaningless.  

 

Most game theoretical models go beyond the assumption of cardinal preferences: 

they interpret payoffs as von Neumann-Morgenstern utilities (Colman, 1995, 

section 2.1; Hargreaves Heap and Varoufakis, 1995, section 1.2; Vega-Redondo, 

2003, pg. 7). The benefit of making such a strong assumption is that it allows 

game theorists to use expected utility theory to evaluate probability distributions 

over possible outcomes of the game. (Note that payoffs relate to outcomes that are 

certain). It is important to remember that these models are –implicit or explicitly– 

assuming considerably more about players’ preferences than just cardinality: 

cardinality by itself is not enough to formally justify models where individuals 

maximise expected payoffs. Expected payoff maximisation requires preferences to 

be well defined (see above) and three extra assumptions: continuity, preference 

increasing with probability, and independence (Hargreaves Heap and Varoufakis, 

1995, pg. 10). When all these assumptions hold, payoffs embody players’ 

attitudes to risk, and then it is true that an individual who acts on her preference 

ordering acts as if she is maximising her expected payoff (see chapter 2 in Colman 

(1995) for details). 

 

Finally, the strongest assumption on preferences relates to social comparisons. 

There are (relatively few) models where payoffs interpreted as preferences are 

compared across players. This is a very strong assumption which finds its roots in 

the social philosophy of utilitarianism, and is not commonly observed in game 

theoretical models that interpret payoffs as preferences; however, it can certainly 

be found in the literature (see e.g. Bendor et al. (2004)). In stark contrast, it will 

be shown in the next section that most models in evolutionary game theory 
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interpret payoffs as fitness, and they actually require comparing the payoffs 

obtained by different players (and often performing arithmetic operations with 

them). 

2.1.2. Payoffs in evolutionary models  

In evolutionary game theory models, the emphasis is not so much on the players, 

but on the strategies. In fact, it is most often understood that each player is pre-

programmed to play a certain (pure or mixed) strategy, thus establishing 

equivalence between players and strategies. The interest then lies in studying the 

evolution of large populations of players who repeatedly interact to play a game. 

The aim is identifying which strategies (i.e. type of players) are most likely to 

thrive in this “ecosystem” and which will be wiped out by selection forces. In this 

context, payoffs are not interpreted as preferences, but as a value that measures 

the success of a strategy in relation to the others. Selection forces then act to 

favour strategies with higher payoffs. Thus, in models of biological (as opposed to 

cultural) evolution, payoffs are most often interpreted as Darwinian fitness. The 

crucial point here is that payoffs obtained by different players will be compared 

and used to determine the relative frequency of different types of players (i.e. 

strategies) in succeeding generations. This may not be a major assumption when 

modelling biological evolution, but it is one that cannot be ignored if evolution is 

interpreted in cultural terms.  

2.2. Classical game theory 

Classical game theory is devoted to the study of how instrumentally rational 

players should behave in order to obtain the maximum possible payoff in a formal 

game. Thus, as a deductive and normative branch of game theory, one could argue 

that classical game theory itself is incapable of being empirically tested and 

falsified (Colman, 1995, pg. 6). What we can clearly infer from the combination 

of empirical research and game theory is that, if empirical observations clash with 

game theoretical solutions, then (a) the observed real-world situation does not 

correspond to the abstracted game, or (b) at least one assumption made by game 

theory does not hold (or both (a) and (b)). Hence the importance of clearly 

identifying the assumptions made in classical game theory. The following sections 
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analyse the two most relevant ones: complete availability of information and 

instrumental rationality. 

2.2.1. Availability of information 

A major assumption embedded in classical game theory (CGT) relates to 

information availability. This is a key issue, since information availability 

crucially affects what course of action may be regarded as rational. As an 

example, if players did not know anything about the game (not even its strategic 

nature) beyond the payoff they obtain after playing certain actions, many very 

simple learning models could be regarded as rational. CGT is mostly concerned 

with games of complete information. In these games, it is assumed that players 

not only know the rules of the game and their own payoffs, but also their 

counterparts’ payoff functions. Furthermore, complete availability of information 

is assumed to be common knowledge. Common knowledge (CK) in game theory 

often comes with a certain order: zero-order CK of X is just the assumption that X 

prevails for every player (e.g. zero-order common knowledge of complete 

information (CKCI) means that every player has complete information); first-

order CK is the assumption that every player knows that X prevails for every 

player (e.g. first-order CKCI means that every player knows that every player has 

complete information); in general, (n)th-order CK is the assumption that (n-1)th-

order CK is known by every player. If no order is specified, it is assumed that the 

order is infinite (this produces an infinite recursion of shared assumptions). For 

different accounts of the meaning of common knowledge see Vanderschraaf and 

Sillari (2007).  

 

CGT also considers games of incomplete information. As a matter of fact, if one 

is happy to accept certain (strong) conditions on what may count as a “rational 

belief”, the distinction between complete and incomplete information is not 

essential, since games of incomplete information can be easily transformed into 

games of complete information (Harsanyi, 1967a, b, 1968). The basic idea behind 

this transformation consists in assuming that there are different “types of players”, 

each of them with a different payoff function. Then, one must see each player’s 

uncertainty about her counterparts’ payoff functions as deriving from the player’s 

uncertainty about which types of players her counterparts are. Finally, the 
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transformation requires applying Harsanyi and Aumann’s argument about the 

impossibility of players with mutual knowledge of rationality “agreeing to 

disagree” (Aumann, 1976). This last step ensures that rational players hold 

common beliefs about the probabilities that their counterparts will turn out to be 

of one type or another. Once this assumption is made, the analysis of the game 

with incomplete information is essentially the same as one of complete 

information. 

2.2.2. Instrumental rationality 

The concept of instrumental rationality in classical game theory finds its clearest 

roots in Hume’s Treatise on Human Nature. In CGT rationality is understood as 

the capacity of identifying the actions that best satisfy the person’s predefined 

objectives (Hargreaves Heap and Varoufakis, 1995, pg. 7), i.e. rationality plays no 

role in setting objectives. This basically means that instrumentally rational players 

have unlimited computational capacity devoted to maximise their individual 

payoff function, which is defined in advance. The assumption of rationality in 

CGT has been widely challenged. One of the alternatives that has received great 

attention is Simon’s (1957) original concept of procedural rationality, later recast 

as bounded rationality (Simon, 1982) mainly for modelling purposes. Simon 

(1982) emphasises that people have limited knowledge of their situations, limited 

ability to process information, and limited time to make choices. 

 

In any case, the main challenge within CGT comes from the fact that in most 

games there is no maximising strategy for any given player regardless of her 

counterparts’ actions, i.e. rationality remains undefined in the absence of beliefs 

about what the other players will do. Naturally, this belief-dependency of 

rationality has led to different concepts of rationality based on different 

assumptions about what beliefs about other players’ behaviour are allowed. The 

following sections explain the three most important approaches, namely: 

1. Dominance reasoning. 

2. Rationalisable strategies. 

3. Consistently aligned beliefs: Nash equilibrium.   
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It is worth mentioning at this point that –most often– the three approaches 

outlined above make use of two extra assumptions, namely: common knowledge 

of complete information (CKCI; explained in the previous section), and common 

knowledge of rationality (CKR). Following the definition of common knowledge 

outlined in the previous section, first-order CKR is the assumption that every 

player knows that every player is rational (rationality is understood following one 

of the 3 interpretations mentioned above); (n)th-order CKR is the assumption that 

(n-1)th-order CKR is known by every player. If no order is specified, it is 

assumed that the order of CKR is infinite (see Aumann (1976) for a formal 

definition). CKCI and CKR are embedded in the definitions of approaches (2) and 

(3) mentioned above. Without assuming CKCI and CKR, most games are not 

solvable regardless of the approach taken. For the sake of clarity the following 

subsections will discuss the role of CKR assuming that CKCI comes with it. 

Dominance reasoning 

Rationality can be minimally identified with “not playing (strictly) dominated 

strategies”
3
 (Vega-Redondo, 2003, pg. 32). This view of rationality does not 

require any assumption about the behaviour of other players: there is no belief that 

a player could hold about the other players’ strategies such that it would be 

optimal to select a dominated strategy. In general, one has the option to reject only 

those strategies that are dominated by other pure strategies or, alternatively, 

choose to reject the (potentially larger) set of strategies that are dominated by 

some mixed strategy.  

 

The elimination of dominated strategies by each player rarely leads to one single 

profile of strategies (the one-shot Prisoner’s Dilemma is an exception for this), so 

CKR is usually brought into play. CKR allows the process of successive 

elimination of dominated strategies: with this interpretation of rationality, first-

order CKR means that players assume that no player will select a dominated 

strategy. The elimination of certain strategies when assuming (n)th-order CKR 

may open the door to eliminate more strategies by assuming (n+1)th-order CKR. 

                                                   

3 For a player A, strategy SA is (strictly) dominated by strategy S*A if for each combination of the 

other players’ strategies, A’s payoff from playing SA is (strictly) less than A’s payoff from playing 

S*A (Gibbons, 1992, p. 5). 
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This iterative process goes on until no strategies can be further eliminated. When 

this process leads to one single strategy for every player (i.e. one single outcome) 

then the game is said to be dominance solvable. 

Rationalisable strategies 

A stronger interpretation of rationality dictates that rational players maximise their 

expected payoff on the basis of some expectations about what the others will do 

(clearly this interpretation prevents players from playing dominated strategies). 

Using this concept of rationality and assuming CKR leads to the definition of 

rationalisable strategies: rationalisable strategies are those that remain after 

making such assumptions (Bernheim, 1984; Pearce, 1984). The term 

rationalisable derives from the fact that every player can defend choosing such a 

strategy (i.e. rationalise it) on the basis of beliefs that are consistent with the 

assumption of CKR. However, given that each player may have many different 

rationalisable strategies (by holding different beliefs about her counterparts’ 

beliefs), it could well be the case that once the game is played (i.e. once every 

player has selected a specific rationalisable strategy), some of these beliefs are 

proven wrong. To be clear, a set S of rationalisable strategies (one for each player) 

may derive from beliefs where one of the players is assuming that one of her 

counterparts will select a (rationalisable) strategy different from the one assigned 

to this counterpart in the set S itself. Informally, this would occur if one of the 

players presumes that one of her counterparts will “make a mistake” by expecting 

something that the player does not intend to do (even though this “mistaken 

belief” is perfectly consistent with CKR). In other words, the beliefs underlying 

rationalisable strategies must be consistent with the assumption of CKR for each 

individual player independently, but they may be inconsistent across players. 

Hargreaves Heap and Varoufakis (1995, pp. 51-52) give a 2-player example 

where both players select a rationalisable strategy on the basis of beliefs that are 

inconsistent across players. The following section explains that imposing 

consistency of beliefs across players leads to the (stronger) concept of Nash 

equilibrium. 

 

Let us conclude this section by relating the concept of rationality explained here 

and that assumed when conducting dominance reasoning (see previous section). 
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As mentioned above, rationalisable strategies are necessarily undominated; a 

natural question is then: are iteratively undominated strategies always 

rationalisable? The answer to this question for 2-player games is yes (Pearce, 

1984). In other words, for two player games these two concepts are equivalent. 

This is not true, however, for games involving more than two players. In such 

games, there can be iteratively undominated strategies that are not best response 

to any strategy profile. The subtle difference between these two concepts of 

rationality is brilliantly explained by Vega-Redondo (2003, pp. 66-68).  

Consistently aligned beliefs: Nash equilibrium 

The previous section showed that if players select rationalisable strategies, the 

outcome of the game may be such that the beliefs of some players are proven 

wrong by the choices actually made by other players. The concept of Nash 

equilibrium derives from imposing the additional constraint that beliefs must be 

consistently aligned across players. Thus, a Nash equilibrium is a set of 

rationalisable strategies (one for each player) whose implementation confirms the 

expectations of each player about the other players’ choices (Hargreaves Heap and 

Varoufakis, 1995, pg. 53). A corollary of this definition is that Nash equilibria are 

formed by sets of strategies that are best replies to each other. This simple 

shortcut through the cumbersome web of players’ beliefs over their counterparts’ 

beliefs is probably one of the main factors that explain the success of the Nash 

equilibrium (NE) in the social sciences. Another reason is that NEs can be 

interpreted in a number of meaningful and useful ways (Holt and Roth, 2004). 

The concept of NE, however, is not free from problems. There are many games 

without any NE in pure strategies, and many others with more than one. In these 

cases, the assumption of consistently aligned beliefs is particularly problematic. 

How can players coordinate their beliefs in the absence of communication? The 

problem of multiple NE is particularly acute in repeated games, as illustrated by 

the extensive variety of “folk theorems” available in the literature. In broad terms, 

“folk theorems” demonstrate that repeated interactions typically allow for a wide 

range of equilibrium behaviour. Vega-Redondo (2003, chapter 8) reviews several 

“folk theorems”, differing in their time horizon (finite or infinite), information 

conditions (complete or incomplete information, and perfect or imperfect 

observability), and equilibrium concept (Nash or subgame perfect). 
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Let us conclude this section by stating that the concept of NE is significantly 

stronger than that of rationalisable strategies. In particular, Bernheim (1984) 

showed by example that one can find rationalisable strategies that are not part of 

any NE (i.e. there is no NE that assigns a positive weight to them). In other words, 

there are outcomes where all players are selecting a rationalisable strategy, and 

which cannot be interpreted as the result of a mis-coordination among players that 

were hoping to arrive at a NE. This clearly indicates that the notion of 

rationalisability embodies something broader than equilibrium mis-coordination 

(Vega-Redondo, 2003, pg. 65).  

Refinements of Nash equilibrium 

The problem of multiple Nash equilibria outlined in the previous section has led 

to the proposal of countless refinements aimed at eliminating those NEs that are 

not considered plausible or desirable for not fulfilling some additional condition 

(see van Damme (1987) for a comprehensive study). Unfortunately, so many 

refinements have been developed by now that “in many games which have 

multiple Nash equilibria, each equilibrium could be justified by some refinement 

present in the literature” (Alexander, 2003). In this section we briefly present only 

one, namely “trembling hand perfection” in its strategic-form version (see Vega-

Redondo, 2003, chapter 4), since the idea underlying this refinement will be used 

extensively in this thesis.    

 

The “trembling hand perfect” refinement, which was proposed by Selten (1975), 

eliminates those Nash equilibria that are not robust to small mistakes. The 

refinement process assumes that players’ hands may tremble, i.e. players may 

select an unintended action (i.e. deviate from the equilibrium) with small 

probability. An alternative view of the same phenomenon is that players may 

experiment with small probability. Some NEs may resist the possibility of these 

trembles and some may not: those NEs that do not survive arbitrarily small 

trembles are eliminated. Slightly more formally, the set of trembling hand perfect 

equilibria in a game is the limit of the sequence of Nash equilibria in perturbed 

versions of the game (i.e. versions of the game played with trembles) as the 

probability of trembles goes to zero. In 2-player strategic-form games, an 

equilibrium is perfect if and only if it is a Nash equilibrium that involves no 
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weakly dominated strategies by either player (Van Damme, 1987, Theorem 3.2.2). 

The reasoning behind this refinement will prove to be very useful to reduce the set 

of possible outcomes of the game in the models developed in chapters 4 and 5 of 

this thesis. 

2.3. Evolutionary game theory 

Many biological and socio-economic systems are governed, at least to some 

extent, by evolutionary pressures. Such evolutionary systems may be composed of 

entities of very different nature, such as molecules, cells, genes, animals, 

organisations, ideas, behaviours… but they all share the three common features 

that characterise any evolutionary system: diversity, selection, and replication.   

 

Diversity: entities in the system are not all the same; they show dissimilarities that 

affect their so-called individual fitness. Fitness is just a measurable indicator that 

determines how a population of entities evolves: entities with higher fitness will 

tend to spread relatively more than those with lower fitness. The precise 

mechanism that links current fitness with future population composition is the 

selection mechanism, which is explained in the next point. Note that in general 

this selection mechanism reduces the diversity of the system, since it favours 

some existing entities over others. There may be, however, mechanisms that tend 

to preserve the heterogeneous nature of the system: most evolutionary systems are 

subject to processes that create and maintain diversity. This diversity-generating 

mechanism acts in the opposite direction to the selection force, and it is the only 

mechanism that may preclude the system from locking-in. In biological systems, 

diversity generally stems from genetic mutations whereas in many socio-

economic systems, it is innovations, asymmetries in the flow of information, or 

even simple mistakes, which are often responsible for the incessant appearance of 

different forms of behaviour. The process by which new entities appear in an 

evolutionary system is usually called mutation in biological contexts and 

experimentation or innovation in socio-economic contexts.  

 

Selection: The mechanism of selection is a discriminating force that favours some 

specific entities rather than others. By selecting only certain entities from the 

population, this selection force diminishes the heterogeneity of the system. As 
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mentioned above, the criterion by which some entities are selected among the 

population rather than others is usually called fitness. In evolutionary game theory 

strategies (which may be seen as behavioural phenotypes) are selected on the 

basis of the payoff they obtain, i.e. the relative frequency of strategies which 

obtained higher payoffs in the population will increase at the expense of those 

which obtained relatively lower payoffs.  

 

Replication / Inheritance / Preservation: The properties of the entities in the 

system (or the entities themselves) are preserved, replicated or inherited from one 

generation to the next at least to some extent. Replication mechanisms can be 

carried out through a range of processes, from genetic transmission in biological 

systems to social learning processes such as imitation in some socio-economic 

contexts. 

 

The main assumption underlying evolutionary thinking is that the entities which 

are more successful
4
 at a particular time will have the best chance of being present 

in the future. In biological and economic contexts, this assumption often derives 

from competition among entities for scarce resources or market shares. In social 

contexts, evolution is often understood as cultural evolution, where this refers to 

changes in behaviour, beliefs, or social norms over time (Alexander, 2003), and 

may be justified by “the tendency of human behaviour to adjust in response to 

persistent differentials in material incentives” (Sethi and Somanathan, 1996,      

pg. 783). 

 

Evolutionary game theory (EGT) is devoted to the study of the evolution of 

strategies. In biological systems, players are most often assumed to be pre-

programmed to play one given strategy, so studying the evolution of a population 

of strategies becomes formally equivalent to studying the evolution of a 

population of players. By contrast, in socio-economic models, players are usually 

assumed to live forever, and switch their strategy following evolutionary 

pressures. The role of players relative to the role of strategies is irrelevant for the 

formal analysis of the system, where –in both cases– it is strategies that are 

                                                   

4 Note that this is a measure of relative performance. 
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actually subjected to evolutionary pressures. Thus, without loss of generality and 

for the sake of clarity, we take here the biological stand and assume that players 

select always the same strategy.  

 

Thus, EGT is devoted to the study of large populations of players who repeatedly 

interact to play a game. Strategies are subjected to selection pressures in the sense 

that the relative frequency of strategies which obtain higher payoffs in the 

population will increase at the expense of those which obtain relatively lower 

payoffs. The aim is to identify which strategies (i.e. type of players) are most 

likely to thrive in this “evolving ecosystem of strategies” and which will be wiped 

out by selective forces. As mentioned before, payoffs in evolutionary contexts are 

not interpreted as preferences; instead they provide the value that is used to 

measure the relative success of one strategy in relation to the others. 

2.3.1. Evolutionary stability: evolutionary stable strategies 

The study of dynamic systems often begins with the identification of their stable 

states. This is often called static analysis, as it does not consider the dynamics of 

the system explicitly, but only its rest points. The most important concept in the 

static analysis of EGT is the concept of Evolutionary Stable Strategy (ESS), 

proposed by Maynard Smith and Price (1973). Very informally, a population 

playing an ESS is uninvadable by any other strategy (Weibull, 2002). To be more 

precise, consider a very large population of players who are repeatedly drawn at 

random to play a 2-player symmetric game. Initially all players are selecting the 

same (incumbent) strategy. That strategy is an ESS if there exists a positive 

invasion barrier such that for any given mutation that may occur and assuming 

that the population share of individuals playing the mutant strategy falls below 

this barrier, the incumbent strategy earns a higher payoff than the mutant strategy 

(Weibull, 1995, pg. 33). The original concept of ESS has proven to be 

tremendously useful, but it is important to be aware of the assumptions 

underpinning its theoretical framework: the ESS is derived for a system composed 

of a single infinite population of individuals who are repeatedly randomly drawn 

to play a 2-player symmetric game; furthermore, it only considers monomorphic 

populations (all individuals are playing the same strategy) which can be invaded 

by only one type of mutant strategy at a time.  
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In particular, the assumption of one single infinite population has a number of 

important implications. For a start, this assumption is in effect a mean-field 

approximation used to equate the average payoff actually obtained by a 

population with the expected value of a probability distribution of payoffs (which 

would be obtained by explicitly modelling players’ interactions). It is also the 

assumption that justifies treating as equivalent a mixed strategy and a population 

profile where pure strategies are played in the population with the frequency 

induced by the corresponding probability in the mixed strategy (see Vega-

Redondo, 2003, pp. 356-7). Finally, it effectively eliminates the impact of 

arbitrarily small invasions on the incumbent population. This last point is best 

explained with a simple example. Consider a 2-player population where player i 

can impose a punishment of magnitude P on player j at a cost of C < P. Clearly, 

punishing j would give a relative advantage to i over j, so this behaviour would be 

evolutionary favoured. Now consider a large population of potentially punishable 

players j, and think of the effect of the same single punishment conducted by one 

mutant i on one of the players in the incumbent population. Player i will incur the 

cost C, but the average payoff of the incumbent population will only decrease in P 

divided by the size of the population n. If n is infinite, then the effect of i’s 

punishment on the incumbent population is just zero. This reasoning is important 

because it is behind the (correct) argument that the concept of ESS is a refinement 

of (symmetric 2-player games) Nash equilibrium. Without the assumption of 

infinite populations, the argument does not necessarily hold (see Galán and 

Izquierdo (2005) for an illustration). To avoid this issue without having to impose 

infinite populations, an alternative is to make sure that the smallest invasion 

barrier expressed as a population share exceeds 1/n (Weibull, 1995, pp. 33-34).  

2.3.2. Evolutionary dynamics: the replicator dynamics 

Naturally, to study the dynamics of an evolutionary system explicitly (i.e. beyond 

the analysis of its rest points), it becomes necessary to specify the particular 

process that governs such dynamics. The most extensively studied dynamic 

process in EGT is the replicator dynamics, proposed by Taylor and Jonker (1978).  

In the replicator dynamics (RD), payoffs are interpreted as the number of viable 

offspring that inherit the same behavioural phenotype (i.e. strategy) as their 

(single) parent. The theoretical model underpinning the basic RD also assumes a 
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single infinite population of individuals who are repeatedly randomly drawn to 

play a 2-player symmetric game. Furthermore, individuals can only play one out 

of a finite set of pure strategies, and mutations (and random drift) are not 

allowed
5
. This set of assumptions is enough to fully determine a deterministic 

dynamic process in which the rate of change in the frequency of any given 

strategy is equal to the relative difference between its average payoff and the 

average payoff obtained across all strategies in the population. Most often, time is 

treated as a continuous variable, and this allows the formalisation of the dynamic 

process as a system of ordinary differential equations. 

 

With these assumptions in place, game theorists have been able to derive a chain 

of useful mathematical results that link the concept of ESS, the dynamics of the 

basic RD and the concept of NE. The logical chain is as follows: the population 

profile induced by an ESS is asymptotically stable in terms of the RD (Hofbauer 

et al., 1979); the mixed strategy corresponding to an asymptotically stable 

equilibrium of the RD is in (symmetric) perfect Nash equilibrium with itself (see 

proof in e.g. Weibull, 1995, section 3.4); and finally, a mixed strategy played at a 

symmetric Nash equilibrium (in a 2-player symmetric game with a finite set of 

pure strategies) induces a stationary population state of the RD (see proof in e.g. 

Vega-Redondo, 2003, pg. 367). 

2.3.3. Further developments 

While undoubtedly extremely useful, the assumptions embedded in the original 

concept of ESS and in the basic RD limit the applicability of the analytical results 

obtained with them, particularly in social (rather than biological) contexts (see e.g. 

Probst, 1999; Gotts et al., 2003b; Vega-Redondo, 2003, pg. 372). These concerns 

led to the development of more general frameworks which would encompass as 

particular cases not only the RD but also a wider range of dynamic processes, and 

could be applied not only to 2-player symmetric games, but also to general games. 

Of special interest are the multi-population models with regular and payoff 

monotonic dynamics.  

                                                   

5 Mutations can be superimposed as a separate component of the dynamic process (see e.g. Imhof 

et al. 2005). 
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• Multi-population models study n-player games, where each player is 

randomly drawn from a distinct (infinite) population. This setting allows 

modelling any finite game in normal form where players in different 

positions are subjected to independent evolutionary pressures.  

• Regularity ensures that the proportional rates of change of strategies are 

well defined and are continuously differentiable.  

• Finally, payoff monotonicity is a mild condition which imposes that for 

any given pair of strategies in any particular population, their proportional 

rates of change are ordered in the same way as their respective average 

payoffs (Vega-Redondo, 2003, pg. 377).  

 

It turns out that most of the analytical results linking the concepts of ESS, NE, and 

the dynamics of the basic RD can be carried over to this general framework (once 

the appropriate generalisations for these concepts have been defined; see e.g. 

Weibull (1995, chapter 5) and Vega-Redondo (2003, chapter 10)). This type of 

general framework
6
 represents a remarkable step forward in generality and, 

consequently, the applicability of the analytical results obtained with them is 

greatly increased. However, these general models still make two assumptions that 

somewhat limit their applicability to social contexts (Probst, 1999): regularity and 

infinite populations.  

 

As pointed out by Probst (1999), the assumption of regularity rules out many 

adaptation mechanisms that are considered of much interest in modelling social 

systems (e.g. best-response dynamics). This assumption, which is rarely made in 

learning game theory (LGT), is one of the main differences between EGT models 

and LGT models, in terms of the mathematical properties of the induced formal 

systems.  

 

The assumption of infinite populations effectively averages out the stochasticity 

of the system, so the obtained deterministic dynamics can be formalised as a 

system of differential equations. This assumption has greater implications than 

one may initially suspect. As Traulsen et al. (2006) point out, “the finiteness of 

                                                   

6 There are various similar versions (see Weibull, 1995). 
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populations may indeed lead to fundamental changes in the conventional picture 

emerging from deterministic replicator dynamics in infinite populations”. To be 

more precise, any model with finite populations can be formalised as a Markov 

process, and the system of differential equations is the approximation of the 

Markov process in the limit as the population tends to infinity. Also, one is often 

interested in studying the behaviour of the system in the long run, which involves 

calculating the limit of the dynamics as time goes to infinity. The problem in 

doing this is that results can be dramatically different depending on the order in 

which one takes these two limits. This will be clearly illustrated in a somewhat 

different context in chapter 4. Fortunately, our theoretical knowledge of these 

issues has progressed immensely in the last few years. In particular, the seminal 

paper by Benaim and Weibull (2003) is a breakthrough in the field of stochastic 

approximation in EGT. In any case, it is clear that “care is therefore needed in the 

application of these approximations” (Beggs, 2002).  

 

In summary, the study of the evolution of finite populations is significantly 

different from that of infinite populations (both in terms of the methods that are 

adequate for their analysis and on the results obtained with them); thus, it is not 

surprising that the analysis of finite evolutionary systems is nowadays a field of 

great scientific dynamism (see e.g. Nowak et al., 2004; Taylor et al., 2004; Imhof 

et al., 2005; Santos et al., 2006; Traulsen et al., 2006).  

2.3.4. Stochastic finite systems 

Once it has been acknowledged that stochasticity plays an important role in the 

analysis of finite evolutionary systems, the main challenge for current EGT seems 

to lie in understanding the impact of the various other assumptions made in 

traditional EGT on these finite stochastic systems.  

 

A feature of the system that has been long known to play a crucial role is the 

mechanism by which individuals pair to play the game. The pairing algorithm 

does not necessarily have to be imposed by a fixed population structure, but may 

be actively conducted by the players themselves (Eshel and Cavalli-Sforza, 1982). 

Naturally, the impact of the standard assumption (random encounters) is 

investigated by considering other pairing mechanisms. One of the first studies to 
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show the relevance of different population structures in finite systems was 

conducted by Nowak and May (1992; 1993), who used a spatial model (where 

local interactions occurred between individuals occupying neighbouring nodes on 

a square lattice) to show that stable population states for the prisoner's dilemma 

depend upon the specific form of the payoff matrix. For a review of several 

studies in the context of social dilemmas that consider populations where some 

pairs of agents are more likely to interact than others see Gotts et al. (2003b). Of 

particular interest is the field of study on tags (Holland, 1993). Tags are arbitrary 

social marks that, in principle, are not linked to any particular form of behaviour, 

but they do influence the way individuals interact: individuals with similar tags 

have a preference to interact with each other (see e.g. Riolo, 1997; Hales, 2000; 

Riolo et al., 2001; Edmonds and Hales, 2003). In chapter 6 we investigate various 

pairing mechanisms and, in particular, we analyse one which is formally 

equivalent to the use of tags. For a recent illustration of the latest developments in 

the field of structured populations in finite systems, see Santos et al. (2006), who 

study social dilemma games played in (fixed) networks with various degrees of 

heterogeneity in the degree distributions. The most recent literature in this field is 

mainly focused on studying the emergence of cooperation in spatially structured 

populations (see e.g. Hauert and Doebeli, 2004; Doebeli and Hauert, 2005; 

Németh and Takács, 2007). For a recent illustration of the fact that allowing 

players to selectively choose their partners can have dramatic effects on the 

emergence of cooperation in finite systems see e.g. Joyce et al. (2006).  

 

In chapter 6 we also investigate various selection mechanisms (i.e. algorithms that 

determine how the population composition varies as a function of the payoffs 

obtained by each individual). This is another area of research where a substantial 

amount of work has been conducted in the last few years. In a recent paper, 

Traulsen et al. (2006) develop a framework within which one can explore various 

intensities of selection, i.e. different ways in which payoffs relate to fitness (where 

fitness is the function that determines the potential to reproduce). This selection 

framework makes use of the Fermi distribution function from statistical 

mechanics to control the balance between selection and random drift in finite 

populations. Using this function, Traulsen et al. (2006) explore different 

intensities of selection –ranging from neutral, random drift, up to the extreme 
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limit of cultural imitation dynamics– in the three 2-player 2-strategy social 

dilemma games (these are explained in detail in section 3.1). Traulsen et al. 

(2006) are able to calculate the fixation probabilities of different strategies, and 

they also use stochastic approximation theory to relate their results on finite 

populations to those obtained with infinite populations. 

 

An assumption that –to our knowledge– has not been investigated in depth in 

evolutionary stochastic finite systems is the one relating to the properties of the 

set of strategies that players are allowed to select. In chapter 6 of this thesis we 

show that this assumption may have wider implications than one may initially 

suspect. 

 

There are many other ways in which several authors have addressed some of the 

limitations of EGT outlined above. Unfortunately (but probably inevitably), the 

study of the implications of various assumptions made in mainstream EGT is 

being undertaken in a somewhat disorganised fashion. This inconvenience is 

probably a consequence of the dynamism of this field, and it will hopefully be 

corrected in time through the creation of general frameworks that facilitate 

rigorous and transparent comparisons between different models and the results 

obtained with them. Chapter 6 of this thesis is meant to be a step in this direction, 

by providing a single coherent framework within which results obtained from 

different stochastic finite models can be contrasted and compared. 

2.4. Learning game theory 

Like evolutionary game theory, learning game theory (LGT) abandons the 

demanding assumptions of classical game theory on players’ rationality and 

beliefs. However, unlike evolutionary game theory –where players are often 

assumed to be pre-programmed to play a fixed strategy–, LGT assumes that 

players are able to learn over time about the game and the behaviour of others 

(through e.g. reinforcement, imitation or belief updating), and this learning 

process is explicitly modelled (Vega-Redondo, 2003, pg. 398). This distinction 

means that the level at which dynamic processes are defined in EGT and LGT is 

fundamentally different (Fudenberg and Levine, 1998). Models in EGT are 

aggregate in the sense that they describe the aggregate behaviour of a population 
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of players through various generations; the population is subject to evolutionary 

pressures (and therefore the population adapts), but the individual components of 

the population have a predefined fixed behaviour. On the other hand, models in 

LGT comprise players who individually adapt through learning, and it is this 

learning process that is formally described. Models in LGT explicitly represent 

the learning processes that each individual player carries out, and the dynamics 

that are generated at the aggregate level (which are most often stochastic and non-

regular) emerge out of the strategic interactions among the players.  

 

Another fundamental difference between LGT and EGT relates to the relationship 

between the number of players in the game and the number of players in the 

population. Models in LGT tend to focus on one very small population of n 

players (most often n = 2), who play an n-player game (all individuals in the 

population play the game at once). This is in stark contrast with EGT models, 

where individuals within a large (usually infinite) population are drawn to play a 

2-player game. As explained in section 2.3.1, this distinction can have very 

important implications.  

 

Despite these differences, theoretical work linking results from EGT and LGT 

seems to indicate that we may be close to a point where the integration of the two 

approaches is within reach (Weibull, 1998). This is a question that is further 

discussed in section 7.4. 

 

Interestingly, there seem to be two fundamentally different motivations to study 

learning models in the LGT literature. One is mainly concerned with identifying 

learning algorithms that will lead to NE or, ideally, to refinements of NE. The 

following quote by Vega-Redondo nicely summarises this motivation: “In 

particular, our concern is to identify different classes of games in which the 

corresponding learning processes bring about long-run convergence to some Nash 

equilibrium. As we shall see, many of the proposed models fare reasonably well 

for certain games but induce quite unsatisfactory performance for some others.” 

[our emphasis] (Vega-Redondo, 2003, pg. 398). 
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This thesis follows another motivation: we are mainly concerned with identifying 

the strategic implications of decision-making algorithms that have received 

support from cognitive science research. Work following this second rationale has 

sometimes been labelled “cognitive game theory” (CogGT) in the literature (e.g. 

Flache and Macy, 2002). Nowadays, an increasing number of researches use 

CogGT to investigate animal –often human– behaviour in strategic contexts using 

models that seem more plausible than those deriving from classical game theory. 

Thus, CogGT models are often used to identify learning mechanisms that will 

lead to patterns of behaviour observed in real-world interactions (and these 

patterns often do not correspond to NE). The following summarises some features 

that characterise the way players are modelled in CogGT (Flache and Macy, 2002; 

Macy and Flache, 2002), in contrast with classical game theory: 

• Players base their decisions on experience of past events as opposed to 

logical deductions about the future. This inductive approach requires fewer 

assumptions about other players and may be more adequate to model 

animal (including human) behaviour. Since inferences about other players’ 

strategies –or about future payoffs– is made in the light of the history of 

the game, they can only lead to probable −rather than necessarily true− 

conclusions (even if the evidence used is accurate).  

• Players have feedback on their actions; otherwise learning cannot occur. 

Learning takes many forms, depending on the available feedback, the 

available knowledge, and the way these are used to modify behaviour.  

• The fact that players learn from experience means that they often cannot 

undertake an optimal behaviour (since inferences about other players’ 

behaviour cannot be guaranteed to be true). An optimal approach requires 

knowledge that sometimes has to be inferred from experience. In the 

process of acquiring the necessary knowledge, suboptimal behaviour can 

occur as a result of exploring different actions or having drawn imperfect 

conclusions from experience. When modelling players who learn from 

experience, it often seems reasonable to assume that they satisfice rather 

than optimise. The concept of ‘satisficing’ was introduced by Simon 

(1957) to indicate that agents often seek for a solution to a problem until 

they have found one which is ‘good enough’, rather than persisting in the 

hope of finding an optimal solution (which could be nonexistent, 
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incalculable, or unidentifiable). The ‘good enough’ solution is usually 

defined by setting a certain aspiration threshold.  

 

The distinction between the two different motivations outlined above becomes 

clear when one considers social dilemmas. In most single-stage social dilemma 

games, the cooperative strategy is dominated (i.e. it cannot lead to NE); however 

empirical studies have generally found that, while it is not easy to establish 

cooperation, levels of cooperation tend to be higher than would be expected if the 

assumptions made in CGT held true. Thus, when studying social dilemmas, 

researchers in LGT following the “NE motivation” would presumably consider 

models leading to cooperative solutions generally unsatisfactory. In stark contrast, 

in the context of social dilemmas, CogGT has been mainly concerned with 

identifying a set of model-independent learning principles that are necessary and 

sufficient to generate cooperative solutions (Flache and Macy, 2002). 

Interestingly –if unsurprisingly–, it seems that researchers more inclined towards 

CogGT tend to use computer simulation (instead of mathematical analysis) 

relatively more than those researchers following the “NE motivation”.  

2.4.1. Different learning algorithms 

As mentioned above, the process of learning can take many different forms, 

depending on the available knowledge, the available feedback, and the way these 

are used to modify behaviour. The assumptions made in these regards give rise to 

different models of learning. In most models of LGT, players use the history of 

the game to decide what action to take. In the simplest models (e.g. reinforcement 

learning) this link between acquired information and action is direct (e.g. in a 

stimulus-response fashion); in more sophisticated models players use the history 

of the game to form expectations about the other players’ behaviour, and they then 

react optimally to these inferred expectations. Following Vega-Redondo (2003, 

chapter 11) we briefly present here some of the most studied learning models in 

ascending order of sophistication, according to the amount of information that 

players use and their computational capabilities. 
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Reinforcement learning 

Reinforcement learning models will be discussed at length in section 4.1. Let us 

say for now that they are arguably the simplest family of learning algorithms 

investigated in LGT. Reinforcement learning is also one of the most widespread 

adaptation mechanisms in nature. Reinforcement learners use their experience to 

choose or avoid certain actions based on their immediate consequences. Actions 

that led to satisfactory outcomes (i.e. outcomes that met or exceeded aspirations) 

in the past tend to be repeated in the future, whereas choices that led to 

unsatisfactory experiences are avoided. In general, reinforcement learners do not 

use more information than the immediately received payoff, which is used to 

adjust the probability of the conducted action accordingly. The specific details of 

how this general principle is implemented in different models can lead to 

substantially different dynamics, as explained in section 4.1. 

Static perceptions; better and best (myopic) response 

In this more sophisticated family of learning models, each player is assumed to 

know not only the payoff she receives in each possible outcome of the game, but 

also the actions that every player selected at a certain time t. When making her 

decision for time (t + 1) every player assumes that every other player will keep 

her strategy unchanged (i.e. static perception of the environment); then, each 

individual player, working under such assumption and knowing the payoff 

structure of the game in what pertains to her own payoff, can identify the set of 

strategies that will lead to an improvement in her current payoff (if possible). In 

better-response models, one of these payoff-improving strategies is selected at 

random; in best-response models, only those strategies that give the highest payoff 

given the prevailing assumptions are considered for selection. In these models 

players assume that their environment is static and deterministic, and respond to it 

in a myopic fashion, i.e. ignoring the implications of current choices on future 

choices and payoffs. Vega-Redondo (Vega-Redondo, 2003, pp. 415-420) 

summarises several results for this type of learning algorithm. 

Fictitious play 

Fictitious play models were first proposed by Brown (1951). Fudenberg and 

Levine (1998) provide a recent and comprehensive account of this family of 
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models. As in best (myopic) response models, players in fictitious play (FP) 

models are assumed to have a certain model of the situation and decide optimally 

on the basis of it. The higher level of sophistication introduced in FP models 

concerns the (still stationary) model of the environment that players hold. FP 

players assume that the mixed strategy played by every other player at a certain 

time is equal to the frequency with which they have selected each of their 

available actions up until that moment. Thus, instead of considering the actions 

taken by every other player only in the immediately preceding time-step (as in the 

models explained in the previous section), they implicitly take into account the 

full history of the game. After forming her beliefs about every other player’s 

strategy, a FP player (myopically) responds optimally to them.  

 

In 2-player games, the belief sequence induced by FP is known to converge to a 

profile that defines a Nash equilibrium. This result, however, may be somewhat 

misleading, as it does not imply that players will play the strategy profile induced 

by such a sequence of beliefs in an uncorrelated fashion (Fudenberg and Kreps, 

1993), randomising their decisions independently from each other as the definition 

of a Nash equilibrium requires. As an example, imagine that the belief sequence 

in a 2x2 game converges to a strategy profile (i.e. an assignment of frequencies to 

all the strategies available to a player) where fictitious player 1 selects action A1 

with frequency 1/3 (and action B1 with frequency 2/3) and fictitious player 2 

selects action A2 with frequency 1/3 (and action B2 with frequency 2/3). The 

mathematical result mentioned above guarantees that there is a Nash equilibrium 

with the strategy profile FP converges on. This would seem to suggest that the 

pattern of play in fictitious play will be the same as the pattern of play induced by 

a Nash equilibrium, but this is not necessarily the case. Thus, in our example, the 

Nash equilibrium in mixed strategies would imply that any outcome has a positive 

probability of occurring (e.g. outcome [A1, B2] would occur with probability 2/9). 

On the contrary, by setting players’ initial beliefs appropriately (which are 

determined by numerical weights, one for each of the other player’s pure 

strategies) one can construct examples where player 1 selects action A1 if and 

only if player 2 selects action A2 (Fudenberg and Kreps, 1993). This, in particular, 

would imply that outcome [A1, B2] would never occur. Thus, the payoff obtained 

by each player in this latter case can be completely different from the expected 

 35



payoff obtained if players selected action Ai or Bi in an uncorrelated fashion. 

Therefore, each component of the belief sequence in FP must be understood as a 

marginal distribution for each player separately; the joint distribution may be very 

different from that resulting from Nash equilibrium play. 

Smooth fictitious play 

The perverse correlation effects outlined in the previous section motivated a 

stochastic version of the original fictitious play named smooth fictitious play 

(SFP, Fudenberg and Kreps, 1993). As in the original fictitious play, players in 

SFP assume that the mixed strategy played by every other player at a certain time 

is equal to the frequency with which they have selected each of their available 

actions up until that moment. In SFP models, however, players are no longer 

assumed to respond to their beliefs about the other players’ strategies in the knife-

edge fashion implied by the best-response correspondence; instead they respond 

in a continuous, differentiable way. The step-like determinism of the best-

response correspondence used in FP is replaced by a smooth-looking function that 

returns a probabilistic response to the other players’ inferred strategies in SFP. In 

SFP (as in FP), the rate of adjustment of behaviour slows down at a rate that 

permits the use of stochastic approximation theory, and this has facilitated the 

derivation of several theoretical results. In particular, SFP players’ strategies are 

guaranteed to converge to Nash equilibrium in 2x2 games (Fudenberg and Levine, 

1998). 

Rational learning 

The most sophisticated model of learning in LGT was proposed by Kalai and 

Lehrer (1993a; 1993b). Players in this model are assumed to be fully aware of the 

strategic context they are embedded in. They are also assumed to have a set of 

subjective beliefs over the behavioural strategies of the other players. Informally, 

as put by Vega-Redondo (2003, pg. 434), the only assumption made about such 

beliefs is that players cannot be “utterly surprised” by the course of the play, i.e. 

players must assign a strictly positive probability to any belief that is coherent 

with the history of the game. Finally, players are assumed to respond optimally to 

their beliefs with the objective of maximising the flow of future payoffs 

discounted at a certain rate. A detailed explanation of the (very powerful) results 
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obtained with this model seems to fall out of the scope of this brief account of 

learning models. We refer the interested reader to Vega-Redondo (2003, pp. 433-

441), who provides a brilliant account of this part of the literature, and concludes 

that “some of the assumptions underlying the rational-learning literature […] 

should be interpreted with great care”.  

 

Let us conclude this section by pointing out a common weakness of most current 

models in LGT (including those developed in this thesis): they almost invariably 

assume that every player in the game follows the same decision-making 

algorithm. This seems to be the natural first step in exploring the implications of a 

decision-making algorithm; however, it is clear that in many of these models the 

observed dynamics are very dependent on the fact that the game is played among 

“cognitive clones”. Confronting the investigated learning algorithm with other 

decision-making algorithms seems to be a promising second step in LGT studies.  

2.4.2. Assumptions in the learning models developed in this thesis 

Reinforcement learning 

Chapter 4 is an in-depth analysis of the transient and asymptotic dynamics of the 

Bush-Mosteller reinforcement learning algorithm for 2-player 2-strategy games. 

The following summarises the main assumptions made in this model in terms of 

the nature of the payoffs, the information players require and the computational 

capabilities that they have.  

• Payoffs: In this model, payoffs and aspiration thresholds are not 

interpreted as von Neumann-Morgenstern utilities (for which the 

distinction between positive and negative values is irrelevant), but as a set 

of variables measured on an interval scale that is used to calculate stimuli 

(this is explained in detail in section 4.2).  

• Information: Each player is assumed to know the range of possible actions 

available to her, and the maximum absolute difference between any payoff 

she might receive and her aspiration threshold. Players do not use any 

information regarding the other players. 
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• Memory and computational capabilities: Players are assumed to know 

their own (potentially) mixed strategy at any given time. They need to be 

able to conduct arithmetic operations.  

Case-based reasoning 

Chapter 5 is an exploration of cased-based reasoning as a decision-making 

algorithm in strategic contexts. The following summarises the main assumptions 

made in this model in terms of the nature of the payoffs, the information players 

require and the computational capabilities that they have.  

• Payoffs: In this model, payoffs can be interpreted as preferences measured 

on an ordinal scale.  

• Information: Each player is assumed to know the range of possible actions 

available to her, and her own aspiration threshold. Players do not use any 

information regarding the other players. 

• Memory and computational capabilities: For each possible state of the 

world they may perceive, players are assumed to store in memory the last 

payoff they received for each of the possible actions available to them. 

They need to be able to rank their preferences. 

2.5. Non-strictly-deductive branches of game theory  

This thesis aims to be an advancement in the field of deductive game theory. It is 

important to note that there are other branches of game theory which are not 

purely deductive; these non-strictly-deductive branches tend to use game theory as 

a framework to fit observed empirical data and understand the underlying 

mechanisms that may be producing the observed results. There is clearly a lot to 

gain from the interaction of deductive and non-deductive game theory. 

Traditionally, deductive game theory has developed almost entirely from 

introspection and theoretical concerns. Unless this is corrected in the coming 

years, deductive game theory may suffer the danger of becoming practically 

irrelevant or, in less dramatic terms, not fulfilling all its potential as a useful tool 

to analyse real-world social interactions. On the other hand, if the objective is to 

find a model that fits empirical data to a satisfactory extent, it is crucial to 

understand the behaviour of different models in detail; if one is not content with 

fitting only, but some level of understanding is also pursued, then it becomes 
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fundamental to know the implications of various cognitive mechanisms (i.e. 

assumptions) for the development of the game. Thus, it seems very clear that 

empirical studies have also a lot to gain from theoretical analyses. These issues 

will be discussed in chapter 7, but let us say for now that the work reported in this 

thesis has tried to be relevant by (a) studying the strategic implications of 

decision-making algorithms that have received empirical support from the 

cognitive sciences and (b) building frameworks to clearly identify the factors (i.e. 

types of assumption) that may have the greatest impact in the outcome of a social 

interaction (i.e. a game).  

 

There are a number of learning models that have been proposed to explain 

experimental data (see chapter 6 in Camerer, 2003), and many of them have been 

investigated in purely theoretical terms. The transition from theoretical learning 

models to non-strictly deductive branches of game theory is very smooth. Here we 

mention two: psychological game theory and behavioural game theory. 

Psychological game theory is a term coined by Colman (2003). 

 

“Psychological game theory […] overlaps behavioral game theory but 

focuses specifically on non-standard reasoning processes rather than other 

revisions of orthodox game theory such as payoff transformations. 

Psychological game theory seeks to modify the orthodox theory by 

introducing formal principles of reasoning that may help to explain 

empirical observations and widely shared intuitions that are left unexplained 

by the othodox theory” (Colman, 2003). 

 

Overlapping psychological game theory, behavioural game theory is completely 

driven by empirical (especially experimental) data, and models are assessed 

according to how well they are fitted to data. While models in cognitive game 

theory are designed to help us reflect on a certain process, behavioural game 

theory builds on models which are usually designed to represent the actual 

process.  

 

“Behavioral game theory is about what players actually do. It expands 

analytical theory by adding emotion, mistakes, limited foresight, doubts 
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about how smart others are, and learning to analytical game theory. 

Behavioral game theory is one branch of behavioral economics, an approach 

to economics which uses psychological regularity to suggest ways to 

weaken rationality assumptions and extend theory.” (Camerer, 2003, p.3) 

 

Let us finish the chapter by stating that learning models have been reported to 

outperform classical game-theoretic predictions on experimental data (see Macy, 

1995; Roth and Erev, 1995; Erev and Roth, 1998; Camerer, 2003, chapter 6). The 

empirical support of learning models in game theory will be expanded for 

reinforcement learning and case-based reasoning in the following chapters. 
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3.   Scope and Method  

This thesis provides some general results for n-player games; however, most of 

the research has been focused on 2-player 2-strategy (2x2) games. In several 

cases, it has been convenient to illustrate the obtained findings using specific 

types of 2x2 games, and for that purpose I have often selected 2x2 social dilemma 

games
7
. The first section of this chapter explains what social dilemmas are and 

how they can be formalised as 2x2 games; it also gives a brief account of some of 

the most relevant results obtained within each of the main branches of deductive 

game theory on the most famous 2x2 social dilemma, i.e. the Prisoner’s Dilemma, 

and of how these results relate to empirical findings. The second section of this 

chapter outlines the range of formal methods that have been used to analyse the 

models developed in this thesis. 

3.1. Social dilemmas 

Social dilemmas are social interactions where everyone enjoys the benefits of 

collective action, but any individual would gain even more without contributing to 

the common good (provided that the others do not follow her defection). Social 

dilemmas are by no means exclusive to human interactions: in many social 

contexts, regardless of the nature of their component units, we find that individual 

interests lead to collectively undesirable outcomes for which there is a feasible 

alternative where every individual would be better off. The problem of how to 

promote cooperation in these situations without having to resort to central 

authority has been fascinating scientists from a broad range of disciplines for 

decades. The value of understanding such a question is clear: in the social and 

biological sciences, the emergence of cooperation is at the heart of subjects as 

diverse as the first appearance of life, the ecological functioning of countless 

environmental interactions, the efficient use of natural resources, the development 

of modern societies, and the sustainable stewardship of our planet. From an 

engineering point of view, the problem of understanding how cooperation can 

emerge and be promoted is crucial for the design of efficient decentralized 

systems where collective action can lead to a common benefit despite the fact that 

                                                   

7 In chapter 5 I also investigate an n-player social dilemma. 
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individual units may (purposely or not) undermine the collective good for their 

own advantage. 

 

At the most elementary level, social dilemmas can be formalised as two-person 

games where each player can either cooperate or defect. For each player i, the 

payoff when they both cooperate (Ri, for Reward) is greater than the payoff 

obtained when they both defect (Pi, for Punishment); when one cooperates and the 

other defects, the cooperator obtains Si (Sucker), whereas the defector receives Ti 

(Temptation). Assuming no two payoffs are equal, the essence of a social dilemma 

is captured by the fact that both players prefer any outcome in which the opponent 

cooperates to any outcome in which the opponent defects (min(Ti, Ri) > max(Pi, 

Si)), but they both can find reasons to defect. In particular, the temptation to cheat 

(if Ti > Ri) or the fear of being cheated (if Si < Pi) can put cooperation at risk. 

There are three well-known social dilemma games: Chicken, Stag Hunt, and the 

Prisoner’s Dilemma. In Chicken the problem is greed but not fear (Ti > Ri > Si > 

Pi; i = 1, 2); in Stag Hunt, the problem is fear but not greed (Ri > Ti > Pi > Si; i = 1, 

2); and finally, both problems coincide in the paradigmatic Prisoner’s Dilemma 

(Ti > Ri > Pi > Si; i = 1, 2).  

 

Social dilemmas have been studied from different perspectives, including 

empirical approaches (both experimental and field studies), discursive theoretical 

work, game theory, and computer simulation. Within the domains of these four 

approaches much of the work has been devoted to the study of the Prisoner’s 

Dilemma (PD) or variations of it, often leading to conflicting conclusions 

(particularly relevant is the conflict between empirical work and classical game 

theory).  

 

The most widespread results about the PD come from classical game theory. 

When the PD is played once by instrumentally rational agents, the expected 

outcome is bilateral defection: rational players do not cooperate since there is no 

belief that a player could hold about the other player’s strategy such that it would 

be optimal to cooperate (the cooperative strategy is strictly dominated by the 

strategy of defecting). The situation is very different when the game is played 

repeatedly. In the (finite or infinitely) repeated game, the range of possible 
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strategies and outcomes is much wider and defecting in every round is no longer a 

dominant strategy. In fact, in the repeated PD, there is not necessarily one best 

strategy irrespective of the opponent’s strategy. As an example, Kreps et al. 

(1982) showed that a cooperative outcome can be sustained in the finitely 

repeated PD if a rational player believes that there is at least a small probability 

that the other player is playing “Tit for Tat” (TFT)
8
. 

 

Since assuming players are instrumentally rational is not enough to narrow the set 

of solutions of the repeated PD sufficiently, common knowledge of rationality is 

brought into play. Assuming common knowledge of rationality it can be proved 

using backwards induction that a series of bilateral defections is the only possible 

outcome of the finitely repeated PD (Luce and Raiffa, 1957)
9
. Put differently, any 

two strategies which are an optimal response to each other necessarily lead to a 

series of bilateral defections in the finitely repeated game. However, when the 

number of rounds is not limited in advance, a very wide range of possible 

outcomes where the two players are responding optimally to each other’s strategy 

still exists, even when assuming that the two players have detailed pre-planned 

strategies and these are common knowledge. Specifically, the “Folk Theorem” 

states that any individually-rational outcome
10

 can be a Nash equilibrium in the 

infinitely-repeated PD if the discount rate of future payoffs is sufficiently close to 

one. In this case, orthodox game theory has little to say about the dynamics 

leading a set of players to one among many possible equilibria. 

 

When classical game theoretical solutions of the PD and related games have been 

empirically tested, disparate anomalies have been found (see, for example, work 

reviewed by Colman (1995) in chapters 7 and 9, Roth (1995), Ledyard (1995), 

and Camerer (2003)). Generally, empirical studies have found that there is a wide 

variety of factors in addition to economic payoffs that affect our behaviour, and 

also that, while it is not easy to establish cooperation, levels of cooperation tend to 

                                                   

8 This is the strategy consisting of starting by cooperating, and thereafter doing what the other 

player did on the previous move. 

9 For a detailed analysis of the finitely repeated Prisoner’s Dilemma, see Raub (1988). 

10 An outcome giving each player at least the largest payoff that they can guarantee receiving 

regardless of the opponents’ moves. 
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be higher than those predicted by classical game theory (see e.g. Dawes and 

Thaler, 1988). The explanation of the clash between classical game theory and 

empirical evidence is, of course, that the assumptions required to undertake a 

game theoretical analysis do not hold: economic payoffs do not readily 

correspond to preferences (e.g. considerations of fairness frequently influence 

behaviour); actual preferences are sometimes neither consistent nor static nor 

context-independent; players’ cognitive capabilities are indeed limited, and 

players’ assumptions of others’ preferences and rationality assumed by game 

theory are therefore often wrong. 

 

Research on the PD within evolutionary game theory was boosted by the 

computer simulations and empirical studies undertaken by Axelrod (1984). 

Axelrod’s work represents a key event in the history of research on the PD. By 

inviting entries to two repeated PD computer tournaments, Axelrod studied the 

success of different strategies when pitted against themselves, all the others, and 

the random strategy. The strategy TFT won both tournaments and an extension of 

the second one. The extension, called ecological analysis, consisted of calculating 

the results of successive hypothetical tournaments, in each of which the initial 

proportion of the population using a strategy was determined by its success in the 

preceding tournament. Axelrod explains that TFT’s success is due to four 

properties: TFT is nice (it starts by cooperating), provocable (it retaliates if its 

opponent defects), forgiving (it returns to play cooperatively if the opponent does 

so), and clear (it is easy for potentially exploitative strategies to understand that 

TFT is not exploitable). TFT’s success is even more striking when one realises 

that it can never get a higher payoff than its opponent. Though severely criticised 

by some game theorists for drawing excessively on computer simulation and 

being partially flawed, Axelrod’s work is widely accepted to have greatly 

stimulated analytical work within the domain of evolutionary game theory and 

further research on the PD using computer simulation. Findings on the repeated 

PD from evolutionary game theory are summarised by Bendor and Swistak (1995; 

1998) and Gotts et al. (2003b); in particular, Gotts et al. (2003b) conclude that the 

assumptions about the dynamics of competition between strategies in mainstream 

EGT make the analytical results much less plausible as good approximations in 
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social than in biological contexts. Gotts et al. (2003b) have also extensively 

reviewed work on social dilemmas using computer simulation. 

 

As explained in the previous chapter, there are many different models in the 

branch of learning game theory, and their predictions for social dilemma games 

are far from uniform. In very general terms, models that have been designed to 

converge to Nash equilibria predict uncooperative solutions (see e.g. Fudenberg 

and Levine, 1998), while models including players who satisfice predict 

cooperative outcomes for certain ranges of aspiration thresholds (e.g. Karandikar 

et al., 1998; Bendor et al., 2001a, 2001b). There are also learning models where 

players do not satisfice and which lead to cooperative solutions; an interesting 

example is given by Erev and Roth (2001). Erev and Roth (2001) point out that 

the performance of reinforcement learning models in explaining human behaviour 

in games that facilitate reciprocation (i.e. games where players can coordinate and 

benefit from mutual cooperation, like the Prisoner’s Dilemma) had traditionally 

been remarkably less successful than in explaining other types of games (e.g. 

zero-sum games and games with unique mixed strategy equilibria, see McAllister, 

1991; Mookherjee and Sopher, 1994; Roth and Erev, 1995; Mookherjee and 

Sopher, 1997; Chen and Tang, 1998; Erev and Roth, 1998; Erev et al., 1999). As 

mentioned above, many people do learn to cooperate in the repeated Prisoner’s 

Dilemma, whilst most simple models of reinforcement learning used in 

experimental game theory predicted uncooperative outcomes. Interestingly, Erev 

and Roth (2001) show that such a result does not reflect a limitation of the 

reinforcement learning approach but derives from the fact that previous models 

used to fit experimental data assumed that players can only learn over immediate 

actions (i.e. stage-game strategies) but not over a strategy set including repeated-

game strategies (like e.g. tit-for-tat).  

3.2. Method 

In the following chapters we characterise the dynamics of various stochastic 

systems using a range of different techniques. The typical system investigated in 

this thesis contains a (potentially variable) finite number of players who interact to 

get certain payoffs, and are subject to stochasticity (either in their individual 

behaviour or in the dynamics of the population they belong to). In these systems, 
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each of the players can adapt its behaviour (i.e. learn), or the population of players 

as a whole adapts through an evolutionary process. The payoff obtained by each 

of these players depends on the actions undertaken by other players; this feature is 

what makes game theory a useful framework to study the system.  

 

This thesis makes extensive use of two distinct approaches to analyse the 

dynamics of these systems: computer simulation and mathematical analysis. As in 

Gotts et al. (2003a), it will be shown by example that mathematical analysis and 

simulation studies should not be regarded as alternative and even opposed 

approaches to the formal study of social systems, but as complementary. They are 

both extremely useful tools to analyse formal models, and they are 

complementary in the sense that they can provide fundamentally different insights 

on the same model (and also on one same question using different models, as 

argued by Gotts (2003b)). Chapter 4 will clearly illustrate the fact that the level of 

understanding gained by using these two techniques together could not be 

obtained using either of them on their own. Furthermore, each technique can 

produce both problems and hints for solutions for the other. The following 

explains how these two techniques have been used in this thesis.  

3.2.1. Computer simulation 

Simulations can usually provide an explicit and fully accurate representation of 

the original system and its stochastic dynamics. In this way, simulations allow us 

to explore the properties of formal models that are intractable using mathematical 

analysis, and they can also provide fundamentally new insights even when such 

analyses are possible.  

 

The specific modelling technique used in this thesis is called agent-based 

modelling (ABM). ABM is a modelling paradigm with the defining characteristic 

that entities within the target system to be modelled –and the interactions between 

them– are explicitly and individually represented in the model (Edmonds, 2000). 

Because of this, ABM is especially appropriate to simulate game theoretical 

models, where the description of the system in terms of the behavioural and 

adaptive rules of the individual players is usually very simple. Clearly, running a 

stochastic agent-based model in a computer provides a formal proof that a 
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particular micro-specification is sufficient to generate the pattern of behaviour that 

is observed during the simulation. However, one is usually interested not only in 

how the system can behave, but also in determining how the system behaves in 

general, which involves finding the probability distribution of different patterns. 

For this, it becomes necessary to run a large number of simulations with different 

random seeds and appropriately chosen initial conditions (see e.g. section 6.5.1). 

Most often, simulations cannot provide general closed-form results about how the 

system behaves, or about how it responds to changes in the parameter space. 

Thus, there is great value in complementing simulation with mathematical 

analysis. 

 

In the work reported in this thesis simulation is often used as a starting point. 

There are two reasons for this. First, the very nature of the systems analysed here 

(see beginning of section 3.2) means that they can be easily described (and 

implemented) within an ABM framework. Secondly, the models developed here 

have not been designed to be mathematically tractable, but to study phenomena 

that we considered particularly interesting; thus, at least at first, they often seem to 

be mathematically intractable. Mathematical work is then used to analyse the 

patterns observed in the initial simulations, and this analysis sometimes leads to 

the production of simpler models that exhibit similar behavioural patterns and 

which are amenable to more detailed mathematical analysis. An example of this 

interaction between simulation and mathematical analysis is the development of 

deterministic approximations (i.e. simpler models) of the stochastic dynamics of a 

more complex system (e.g. see chapter 4). Simulation and mathematical analyses 

are therefore used complementarily: with simulation allowing us to explore 

intractable models, to extract the key features of such models, and to build new 

simpler models that still keep such key features; and mathematical work 

illuminating the behaviour of the initial models, and providing in-depth analyses 

of the simpler models. In many cases simulations have also suggested promising 

ways of pursuing new theoretical results. 

 

As mentioned in the introduction, a great effort has been made in this thesis to 

make sure that every computational experiment conducted here can be easily 

inspected, rerun, scrutinised, reimplemented, and modified by independent 
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researchers. Given the amount of care put on this task, I place as much confidence 

on the results obtained using computer simulation as I do on the mathematical 

derivations.   

3.2.2. Mathematical analysis 

The original systems investigated in this thesis can all be meaningfully formalised 

as Markov processes. However, the (sometimes infinite) number of states and the 

nature of the transitions between different states often mean that traditional 

Markov analysis cannot be readily applied. In the presence of these difficulties, 

there are two approaches that have been followed to characterise these systems 

using mathematical analysis: (a) partial analysis of the original Markov process, 

and (b) in-depth analysis of an approximation to the original Markov process.  

 

The partial analysis often starts by finding out whether the Markov process is 

ergodic. If the process is ergodic, this means that the probability of finding the 

system in each of its states in the long run is unique (i.e. initial conditions are 

immaterial). This probability is also the long-run fraction of the time that the 

system spends in each of its states. Although calculating such probabilities may be 

unfeasible, one can always estimate them using computer simulation (see e.g. 

section 6.5.1). If the process is not ergodic, one can try to identify its various 

transient and recurring classes (see e.g. sections 4.7 and 5.4). This task may 

involve using very specific techniques which may be adequate only for certain 

types of Markov processes. A particular feature of Markov processes that often 

determines which techniques may be most appropriate for their analysis is how (if 

at all) the speed of change (e.g. the rate of learning) itself varies with time. As an 

example, it will be shown in chapter 4 that when the magnitude of change remains 

constant in time (e.g. in models where learning does not fade away in time), 

results from the theory of distance diminishing models (Norman, 1968, 1972) can 

be particularly useful. Another useful analysis that can be conducted on non-

ergodic Markov chains with various absorbing states consists in identifying which 

of these absorbing states are robust to small perturbations (Foster and Young, 

1990; Young, 1993; Ellison, 2000). This sort of analysis has been conducted in 

sections 4.8 and 5.7.3. 
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A complementary approach to the partial analysis of the original Markov process 

consists in studying a simpler approximation to it. In this thesis I have made 

extensive use of mean-field approximations. The use of mean-field (or expected- 

motion) approximations to understand the dynamics of complex stochastic models 

is common in the game theoretical literature (see e.g. Fudenberg and Levine, 

1998; Vega-Redondo, 2003). Note, however, that these are approximations whose 

validity may be constrained to specific conditions. As a matter of fact, there is a 

whole field in mathematics, namely stochastic approximation theory (Benveniste 

et al., 1990; Kushner and Yin, 1997), devoted to analysing under what conditions 

the expected and the actual motion of a system should become arbitrarily close in 

the long run. This is generally true for processes whose motion slows down at an 

appropriate rate (as explained by e.g. Hopkins and Posch (2005) when studying 

the Erev-Roth reinforcement model), but not necessarily so in other cases.  

 

In any case, mean-field approximations can be very useful even when it is known 

that they cannot be used to characterise the dynamics of the system in the long-

run. As an example, in chapter 4 we use the expected motion of the system to get 

insights about what areas of the state space may be particularly stable (or 

unstable), to identify their basins of attraction, to clarify the crucial assumptions 

of the model, to assess its sensitivity to various parameters, and to characterise 

and graphically illustrate the transient dynamics of the model. We also show that 

the expected-motion approximation, while valid over bounded time intervals, 

deteriorates as the time horizon increases. In fact, the approximation becomes 

very misleading when studying the asymptotic behaviour of the model.  

 

It is also worth mentioning that mean-field approximations are often used in the 

literature not only to average stochasticity out, but also to average out 

heterogeneity among players (e.g. see the studies conducted by Galán and 

Izquierdo (2005), Edwards et al. (2003), Castellano, Marsili, and Vespignani 

(2000), and Huet et al (2007)). Such approximations provide simpler, more 

abstract models which are often amenable to mathematical analysis and graphical 

representation. However, as pointed out above, even though they are usually 

useful, one should not forget that the insights provided by these mathematical 

abstractions could be misleading. 
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To conclude, let us mention that a range of other mathematical techniques (e.g. 

Brouwer’s fixed-point theorem in section 4.9, and graph theory in section 5.7.3) 

have been used to analyse various properties of the models developed in this 

thesis.  
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4.   Dynamics of the Bush-Mosteller Reinforcement 

Learning Algorithm in 2x2 Games♣ 

4.1. Introduction 

Reinforcement learners interact with their environment and use their experience to 

choose or avoid certain actions based on the observed consequences. Actions that 

led to satisfactory outcomes (i.e. outcomes that met or exceeded aspirations) in the 

past tend to be repeated in the future, whereas choices that led to unsatisfactory 

experiences are avoided. The empirical study of reinforcement learning dates back 

to Thorndike’s animal experiments on instrumental learning at the end of the 19
th

 

century (Thorndike, 1898). The results of these experiments were formalised in 

the well known ‘Law of Effect’, which is nowadays one of the most robust 

properties of learning in the experimental psychology literature: 

 

Of several responses made to the same situation those which are 

accompanied or closely followed by satisfaction to the animal will, other 

things being equal, be more firmly connected with the situation, so that, 

when it recurs, they will be more likely to recur; those which are 

accompanied or closely followed by discomfort to the animal will, other 

things being equal, have their connections to the situation weakened, so 

that, when it recurs, they will be less likely to occur. The greater the 

satisfaction or discomfort, the greater the strengthening or weakening of 

the bond.  

(Thorndike, 1911, p. 244) 

 

Nowadays there is little doubt that reinforcement learning is an important aspect 

of much learning in most animal species, including many phylogenetically very 

distant from vertebrates (e.g. earthworms (Maier and Schneirla, 1964) and fruit 

flies (Wustmann et al., 1996)).  

 

In strategic contexts, empirical evidence for reinforcement learning is strongest in 

animals with limited reasoning abilities or in human subjects who have no 

                                                   

♣ Some parts of the material presented in this chapter are in press in Izquierdo, L.R., Izquierdo, 

S.S., Gotts, N.M. and Polhill, J.G. (2007), “Transient and asymptotic dynamics of reinforcement 

learning in games”, Games and Economic Behavior , and others have been accepted for 

publication in the Journal of Artificial Societies and Social Simulation. 
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information beyond the payoff they receive and specifically may be unaware of 

the strategic nature of the situation (Mookherjee and Sopher, 1994; Roth and 

Erev, 1995; Bendor et al., 2001a; Camerer, 2003; Duffy, 2006). In the context of 

experimental game theory with human subjects, several authors have used simple 

models of reinforcement learning successfully to explain and predict behaviour in 

a wide range of games (McAllister, 1991; Mookherjee and Sopher, 1994; Roth 

and Erev, 1995; Mookherjee and Sopher, 1997; Chen and Tang, 1998; Erev and 

Roth, 1998; Erev et al., 1999; Erev and Roth, 2001). Reinforcement models in the 

literature tend to differ in the following, somewhat interrelated, features: 

 

 Whether learning slows down or not, i.e. whether the model accounts for the 

‘Power Law of Practice’ (e.g. Erev and Roth (1998) vs. Börgers and Sarin 

(1997)). 

 Whether the model allows for avoidance behaviour in addition to approach 

behaviour (e.g. Bendor et al. (2001b) vs. Erev and Roth (1998)). Approach 

behaviour is the tendency to repeat the associated choices after receiving a 

positive stimulus; avoidance behaviour is the tendency to avoid the associated 

actions after receiving a negative stimulus (one that does not satisfy the 

player). Models that allow for negative stimuli tend to define an aspiration 

level against which achieved payoffs are evaluated. This aspiration level may 

be fixed or vary endogenously (Bendor et al., 2001a, 2001b). 

 Whether “forgetting” is considered, i.e. whether recent observations weigh 

more than distant ones (Erev and Roth, 1998; Rustichini, 1999; Beggs, 2005).  

 Whether the model imposes inertia – a positive bias in favour of the most recently 

selected action (Bendor et al., 2001a, 2001b). 

 

Laslier et al. (2001) present a more formal comparison of various reinforcement 

learning models. Each of the features above can have important implications for 

the behaviour of the particular model under consideration and for the 

mathematical methods that are adequate for its analysis. For example, when 

learning slows down, theoretical results from the theory of stochastic 

approximation (Benveniste et al., 1990; Kushner and Yin, 1997) and from the 

theory of urn models can often be applied (e.g. Ianni, 2001; Beggs, 2005; Hopkins 

and Posch, 2005), whereas if the learning rate is constant, results from the theory 

 52 



of distance diminishing models (Norman, 1968, 1972) tend to be more useful (e.g. 

Börgers and Sarin, 1997; Bendor et al., 2001b). Similarly, imposing inertia 

facilitates the analysis to a great extent, since it often ensures that a positive 

stimulus will be followed by an increase in the probability weight on the most 

recently selected action at some minimum geometric rate (Bendor et al., 2001b). 

 

A popular model of reinforcement learning in the game theory literature is the 

Erev-Roth (ER) model (Roth and Erev, 1995; Erev and Roth, 1998). 

Understanding of the ER model (also called Cumulative Proportional 

Reinforcement model by Laslier et al. (2001) and Laslier and Walliser (2005)) 

and its relation with an adjusted version of the evolutionary replicator dynamics 

(Weibull, 1995) has been developed in papers by Laslier et al. (2001), Hopkins 

(2002), Laslier and Walliser (2005), Hopkins and Posch (2005) and Beggs (2005). 

An extension to the ER model covering both partial and full informational 

environments (in the latter, a player can observe the payoffs for actions not 

selected), as well as linear and exponential adjustment procedures, is analysed for 

single person decision problems by Rustichini (1999).  

 

Arthur (1991) proposed a model differing from the ER model only in that the step 

size of the learning process in ER is stochastic whereas it is deterministic in 

Arthur’s model – but step sizes are of the same order in both (see Hopkins and 

Posch (2005) for details). Theoretical results for Arthur’s model in games and its 

relation with the ordinary evolutionary replicator dynamics are given by Posch 

(1997), Hopkins (2002), Hopkins and Posch (2005) and Beggs (2005): despite 

their similarity, the ER model and Arthur’s model can have different asymptotic 

behaviour (Hopkins and Posch, 2005). 

 

Another important set of reinforcement models are the aspiration-based models, 

which allow for negative stimuli (see Bendor et al. (2001a) for an overview). The 

implications of aspiration-based reinforcement learning in strategic contexts have 

been studied thoroughly by Karandikar et al. (1998) and Bendor et al. (2001b). 

This line of work tends to require very mild conditions on the way learning is 

conducted apart from the assumption of inertia. Assuming inertia greatly 

facilitates the mathematical analysis, enabling the derivation of sharp predictions 
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for long-run outcomes in 2-player repeated games, even with evolving aspirations 

(see e.g. Karandikar et al. (1998), Palomino and Vega-Redondo (1999), and 

Bendor et al. (2001b)). 

 

The model analysed here is a variant of Bush and Mosteller’s (1955) linear 

stochastic model of reinforcement learning (henceforth BM model). The BM 

model is an aspiration-based reinforcement learning model, but does not impose 

inertia. In contrast to the ER model and Arthur’s model, it allows for negative 

stimuli and learning does not fade with time. A special case of the BM model 

where all stimuli are positive was originally considered by Cross (1973), and 

analysed by Börgers and Sarin (1997), who also related it to the replicator 

dynamics. Börgers and Sarin (2000) studied an extension of the BM model where 

aspirations evolve simultaneously with choice probabilities in single person 

decision contexts. Here, we develop Börgers and Sarin’s work by analysing the 

dynamics of the BM model in 2×2 games where aspiration levels are fixed, but 

not necessarily below the lowest payoff, so negative stimuli are possible. These 

dynamics have been explored by Hegselmann and Flache (2000), Macy and 

Flache (2002) and Flache and Macy (2002) in 2×2 social dilemmas using 

computer simulation. Here we formalize their analyses and extend their results to 

cover any 2×2 game. 

 

In contrast to other reinforcement learning models in the literature, we show that, 

in general, the asymptotic behaviour of the BM model cannot be approximated 

using the continuous time limit version of its expected motion. Such an 

approximation may be valid over bounded time intervals but it can deteriorate as 

the time horizon increases. This important point –originally emphasized by 

Boylan (1992; 1995) in a somewhat different context– was already noted by 

Börgers and Sarin (1997) in the BM model for strictly positive stimuli, and has 

also been found in other models since then (Beggs, 2002). The asymptotic 

behaviour of the BM model is characterized in the present chapter using the 

theory of distance diminishing models (Norman, 1968, 1972). Börgers and Sarin 

(1997) also used this theory to analyse the case where aspirations are below the 

minimum payoff; here we extend their results for 2×2 games where aspiration 

levels can have any fixed value.  
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4.2. The BM model 

The model we analyse here is an elaboration of a conventional Bush-Mosteller 

(Bush and Mosteller, 1955) stochastic learning model for binary choice. In this 

model, players decide what action to select stochastically: each player’s strategy is 

defined by the probability of undertaking each of the two actions available to 

them. After every player has selected an action according to their probabilities, 

every player receives the corresponding payoff and revises her strategy. The 

revision of strategies takes place following a reinforcement learning approach: 

players increase their probability of undertaking a certain action if it led to payoffs 

above their aspiration level, and decrease this probability otherwise. When 

learning, players in the BM model use only information concerning their own past 

choices and payoffs, and ignore all the information regarding the payoffs and 

choices of their counterparts.  

 

More precisely, let I = {1, 2} be the set of players in the game, and let Yi be the 

pure-strategy space for each player i ∈ I. For convenience, and without loss of 

generality, later we will call the actions available to each of the players C (for 

Cooperate) and D (for Defect). Thus Yi = {C, D}. Let ui be the payoff function that 

gives player i’s payoff for each profile y = (y1, y2) of pure strategies, where yi ∈ Yi 

is a pure strategy for player i. As an example, ui(C, D) denotes the payoff obtained 

by player i when player 1 cooperates and player 2 defects. Let Y = ×i∈ I Yi be the 

space of pure-strategy profiles, or possible outcomes of the game. We can 

represent any mixed strategy for player i as a vector pi in the unit simplex Δ1
, 

where the jth coordinate pi,j ∈ R of the vector pi is the probability assigned by pi to 

player i’s jth pure strategy. A mixed-strategy profile is a vector p = (p1, p2), where 

each component pi ∈ Δ1
 represents a mixed strategy for player i ∈ I.  

 

In the BM model, strategy updating takes place in two steps. First, after outcome 

 in time-step n, each player i calculates her stimulus s),(
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where Ai is player i’s aspiration level. Hence the stimulus is always a number in 

the interval [–1, 1]. Note that players are assumed to know . 

Secondly, having calculated their stimulus s
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n) after the outcome yn, each player i 
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where  is player i’s probability of undertaking action y
n

yi i
p , i in time-step n, and li 

is player i’s learning rate (0 < li < 1). Thus, the higher the stimulus magnitude (or 

the learning rate), the larger the change in probability. The updated probability for 

the action not selected derives from the constraint that probabilities must add up 

to one.  

 

A 2×2 BM model parameterization requires specifying both players’ payoff 

function ui, aspiration level (Ai), and learning rate (li). Unless otherwise stated, the 

analysis conducted here is valid for any 2×2 game but, for illustrative purposes, 

we focus on 2×2 symmetric social dilemma games where both players are 

parameterised in exactly the same way (homogeneous models). A certain 

parameterisation of such a homogeneous model will be specified using the 

template [ Temptation , Reward , Punishment , Sucker | A | l ]
2
.  

 

The following notation will also be useful. A parameterized model will be 

denoted S (for System). Since the state of any particular system can be fully 

characterized by the strategy profile p, p will also be named state of the system. 

Note, however, that there are only two independent variables in p, so the state of 

the game can be determined using a two-dimensional vector [ p1,C , p2,C ], where 

pi,C is player i’s probability to cooperate (the actual name of the action is 

irrelevant for the mathematical analysis). Let Pn(S) be the state of a system S in 

time-step n. Note that Pn(S) is a random variable and p is a particular value of that 

variable; the sequence of random variables {Pn(S)}n≥0 constitutes a discrete-time 

Markov process with potentially infinite transient states. In a slight abuse of 

notation we refer to such a process {Pn(S)}n≥0 as the BM process Pn. 
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4.3. Attractors in the Dynamics of the System 

Using computer simulation, Macy and Flache (2002) described two types of 

learning-theoretic equilibria that govern the dynamics of the BM model: self-

reinforcing equilibria (SRE), and self-correcting equilibria (SCE). These are not 

static equilibria, but strategy profiles which act as attractors in the sense that, 

under certain conditions, the system will tend to approach them or linger around 

them. Here, we formalize these two concepts. 

 

We define an SRE as an absorbing state of the system (i.e. a state p that cannot be 

abandoned) where both players receive a positive stimulus11. An SRE corresponds 

to a pair of pure strategies (pi,j is either 0 or 1) such that its certain associated 

outcome gives a strictly positive stimulus to both players (henceforth a mutually 

satisfactory outcome). For example, the strategy profile [ p1,C , p2,C ] = [ 1 , 1 ] is an 

SRE if both players’ aspiration levels are below their respective Rewardi. Escape 

from an SRE is impossible since no player will change her strategy. More 

importantly, SREs act as attractors: near an SRE, there is a high chance that the 

system will move towards it, because there is a high probability that its associated 

mutually satisfactory outcome will occur, and this brings the system even closer 

to the SRE. The number of SREs in a system is the number of outcomes where 

both players obtain payoffs above their respective aspiration levels. 

 

Flache and Macy (2002, p. 634) define SCEs in the following way: “The SCE 

obtains when the expected change of probabilities is zero and there is a positive 

probability of punishment as well as reward”. In this context, punishment means 

negative stimulus while reward means positive stimulus; the expected change of 

probability for one player is defined as the sum of the possible changes in 

probability the player might experience weighted by the likelihood of such 

changes actually happening. As we show below, SCEs defined in this way are not 

necessarily attractors, but may be unstable saddle points where small 

                                                   

11
 The concept of SRE is extensively used by Macy and Flache but we have not found a clear definition 

in their papers (Flache and Macy, 2002; Macy and Flache, 2002). Sometimes their use of the word SRE 

seems to follow our definition (e.g. Macy and Flache, 2002, p. 7231), but often it seems to denote a 

mutually satisfactory outcome (e.g. Macy and Flache, 2002, p. 7231) or an infinite sequence of such 

outcomes (e.g. Macy and Flache, 2002, p. 7232). 
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perturbations can cause expected probabilities to move away from them. Figure 

4-1 represents the expected movement after one time-step for different states of 

the system in a Stag Hunt game. The Expected Motion (EM) of a system S in state 

p for the following iteration is given by a function vector EMS(p) whose 

components are, for each player, the expected change in the probabilities of 

undertaking each of the two possible actions. Mathematically, 

)()( pSPSPp nn =≡ )(|)(ΔEEM S  

In the context of 2×2 social dilemma games, the two independent components of 

the equation above can be rewritten as follows: 

DDCDCCCDCCCC

C

Pr{DD}Pr{DC}Pr{CD}Pr{CC}

  )(EM

,,,,

,

iiii

S

i

pppp Δ⋅+Δ⋅+Δ⋅+Δ⋅

=p

 

where  is the expected change in player i’s probability to cooperate, 

and {CC, CD, DC, DD} represent the four possible outcomes that may occur. 

Note that in general the expected change will not reflect the actual change in a 

simulation run, and to make this explicit we have included the trace of a 

simulation run starting in state [ p

 )(EM C pS

i ,

1,C , p2,C ] = [ 0.5 , 0.5 ] in Figure 4-1. The 

expected change – represented by the arrows in Figure 4-1 – is calculated 

considering the four possible changes that could occur (see equation above), 

whereas the actual change in a simulation run – represented by the numbered balls 

in Figure 4-1 – is only one of the four possible changes (e.g. 
CCC,ipΔ , if both 

agents happen to cooperate). The source code used to create every figure in this 

chapter is available in the Supporting Material. 
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Figure 4-1. Expected motion of the system in a Stag Hunt game parameterised as [ 3 , 4 , 1 , 0 | 0.5 

| 0.5 ]2, together with a sample simulation run (40 iterations).  The arrows represent the expected 

motion for various states of the system; the numbered balls show the state of the system after the 

indicated number of iterations in the sample run. The background is coloured using the norm of the 

expected motion. For any other learning rate the size of the arrows would vary but their direction 

would be preserved.  

 

The state [ p1,C , p2,C ] = [ 0.5 , 0.5 ] in Figure 4-1 is an example of a strategy 

profile that satisfies Flache and Macy’s requirements for SCE, but where small 

deviations tend to lead the system away from it (saddle point). To avoid such 

undesirable situations where an SCE is not self-correcting, we redefine the 

concept of SCE in a more restrictive way: an SCE of a system S is an 

asymptotically stable critical point (Mohler, 1991) of differential equation [4-2] 

(the continuous time limit approximation of the system’s expected motion).  

)(EM ff S=&  [4-2] 

Roughly speaking this means that all trajectories in the phase plane of Eq. [4-2] 

that at some instant are sufficiently close to the SCE will approach the SCE as the 

parameter t (time) approaches infinity and remain close to it at all future times. 

Note that, with this definition, there could be a state of the system that is an SRE 
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and an SCE at the same time (this is not possible using Flache and Macy’s 

definitions of SRE and SCE).  

 

Figure 4-2 shows several trajectories for the differential equation corresponding to 

the Stag Hunt game used in Figure 4-1. It can be clearly seen that state [p1,C , p2,C] 

= [0.5 , 0.5] is not an SCE according to our definition, since there are trajectories 

that get arbitrarily close to it, but then escape from its neighbourhood. 

 

 

Figure 4-2. Trajectories in the phase plane of the differential equation corresponding to a Stag 

Hunt game parameterised as [ 3 , 4 , 1 , 0 | 0.5 | 0.5 ]2, together with a sample simulation run (40 

iterations). The background is coloured using the norm of the expected motion.   

 

Figure 4-3 shows some trajectories of the differential equation corresponding to 

the Prisoner’s Dilemma parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]
2
. This system 

exhibits a unique SCE at [ p1,C , p2,C ] = [ 0.37 , 0.37 ] and a unique SRE at [ p1,C , 

p2,C ] = [ 1 , 1 ]. The two independent components of the function EM(p) for this 

system can be written as follows: 
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And the associated differential equation is 
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Figure 4-3. Trajectories in the phase plane of the differential equation corresponding to the 

Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, together with a sample simulation 

run ( l = 2−4 ). This system has a SCE at [ p1,C , p2,C ] = [ 0.37 , 0.37 ]. The background is coloured 

using the norm of the expected motion.  
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Let fx(t) denote the solution of the differential equation [4-2] for some initial state 

x. As an example, Figure 4-4 shows fx(t) for the Prisoner’s Dilemma game 

parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]
2
 for different (and symmetric) initial 

conditions [ p1,C , p2,C ]  = [ x0 , x0 ]. For this particular case and settings, the two 

independent components of fx(t) corresponding to each player’s probability to 

cooperate – denoted fi,x(t) – take the same value at any given t, so the 

representation in Figure 4-4 corresponds to both these independent components. 

Convergence to the SCE at [ 0.37 , 0.37 ] can be clearly observed for every initial 

condition [ x0 , x0 ], except for [ x0 , x0 ] = [1, 1], which is the SRE. 

 

Figure 4-4. Solutions of differential equation [4-2] for the Prisoner’s Dilemma game parameterised 

as [ 4 , 3 , 1 , 0 | 2 | l ]2 with different (and symmetric) initial conditions [ p1,C , p2,C ]  = [x0 , x0]. 

This system has a unique SCE at [ p1,C , p2,C ]  = [ 0.37 , 0.37 ] and a unique SRE at [ p1,C , p2,C ]  = 

[ 1 , 1 ].  

 

The expected motion at any point p in the phase plane is a vector tangent to the 

unique trajectory to which that point belongs. The use of expected motion (or 

mean-field) approximations to understand simulation models and to design 

interesting experiments has already proven to be very useful in the literature (e.g. 

Huet et al (2007); Galán and Izquierdo (2005); Edwards et al. (2003); Castellano, 

Marsili, and Vespignani (2000)). Note, however, that such approaches are 

approximations whose validity may be constrained to specific conditions: as we 

can see in Figure 4-3, simulation runs and trajectories will not coincide in general.  

A crucial question to characterize the dynamics of learning models, and one to 

which stochastic approximation theory (Benveniste et al., 1990; Kushner and Yin, 

1997) is devoted, is whether the expected and actual motion of the system should 
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become arbitrarily close in the long run. This is generally true for processes whose 

motion slows down at an appropriate rate (as explained by Hopkins and Posch 

(2005) when studying the ER model), but not necessarily so in other cases. We 

show in the next sections that the BM model’s asymptotic behaviour can be 

dramatically different from that suggested by its associated ODE, which is, 

however, very relevant for characterizing the transient dynamics of the system, 

particularly with small learning rates. From now on we will use our definitions of 

SRE and SCE. 

4.4. Attractiveness of SREs 

Macy & Flache’s experiments (Flache and Macy, 2002; Macy and Flache, 2002) 

with the BM model showed a puzzling phenomenon. A significant part of their 

analysis consisted in studying, in a Prisoner’s Dilemma in which mutual 

cooperation was mutually satisfactory (i.e. Ai < Rewardi = ui(C, C)), the proportion 

of simulation runs that “locked” into mutual cooperation. Such ”lock-in rates” 

were reported to be as high as 1 in some experiments. However, starting from an 

initial state which is not an SRE, the BM model specifications guarantee that after 

any finite number of iterations any outcome has a positive probability of occurring 

(i.e. strictly speaking, lock-in is impossible)
12

. To investigate this apparent 

contradiction we conducted some qualitative analyses that we present here to 

familiarise the reader with the complex dynamics of this model. Our first 

qualitative analysis consisted in studying the expected dynamics of the model. 

Figure 4-5 illustrates the expected motion of a system extensively studied by 

Macy & Flache: the Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 

0.5 ]
2
. As we saw before, this system features a unique SCE at [ p1,C , p2,C ]  = [ 

0.37 , 0.37 ] and a unique SRE at [ p1,C , p2,C ]  = [ 1 , 1 ]. Figure 4-5 also includes 

the trace of a sample simulation run. Note that the only difference between the 

                                                   

12
 The specification of the model is such that probabilities cannot reach the extreme values of 0 or 1 

starting from any other intermediate value. Therefore if we find a simulation run that has actually ended 

up in an SRE starting from any other state, we know for sure that such simulation run did not follow the 

specifications of the model (e.g. perhaps because of floating-point errors). For a detailed analysis of the 

effects of floating point errors in computer simulations, with applications to this model in particular, see 

Izquierdo and Polhill (2006), Polhill and Izquierdo (2005), Polhill et al. (2006),  Polhill et al. (2005). 
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parameterisation of the system shown in Figure 4-3 and that shown in Figure 4-5 

is the value of the learning rate. 

 

Figure 4-5. Expected motion of the system in a Prisoner’s Dilemma game parameterised as  

[ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation run.  

 

Figure 4-5 shows that the expected movement from any state is towards the SCE, 

except for the only SRE, which is an absorbing state. In particular, near the SRE, 

where both probabilities are high but different from 1, the distribution of possible 

movements is very peculiar: there is a very high chance that both agents will 

cooperate and consequently move a small distance towards the SRE, but there is 

also a positive chance, tiny as it may be, that one of the agents will defect, causing 

both agents to jump away from the SRE towards the SCE. The improbable, yet 

possible, leap away from the SRE is of such magnitude that the resulting expected 

movement is biased towards the SCE despite the unlikelihood of such an event 

actually occurring. The dynamics of the system can be further explored analysing 

the most likely movement from any given state, which is represented in Figure 

4-6.  
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Figure 4-6 Figure showing the most likely movements at some states of the system in a Prisoner’s 

Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation run. The 

background is coloured using the norm of the most likely movement. 

 

Figure 4-6 differs significantly from Figure 4-5; it shows that the most likely 

movement in the upper-right quadrant of the state space is towards the SRE. Thus 

the walk towards the SRE is characterized by a fascinating puzzle: on the one 

hand, the most likely movement leads the system towards the SRE, which is even 

more likely to be approached the closer we get to it; on the other hand, the SRE 

cannot be reached in any finite number of steps and the expected movement as 

defined above is to walk away from it (see Figure 4-5).  

 

It is also interesting to note in this game that, starting from any mixed (interior) 

state, both players have a positive probability of selecting action D in any future 

time-step, but there is also a positive probability that both players will engage in 

an infinite chain of the mutually satisfactory event CC forever, i.e., that neither 

player will ever take action D from then onwards. This latter probability can be 

calculated using a result derived by Professor Jörgen W. Weibull (see Appendix 

A). The probability of starting an infinite chain of CC events depends largely on 

the value of the learning rate l. Figure 4-7 shows the probability of starting an 

infinite chain of the mutually satisfactory outcome CC in a Prisoner’s Dilemma 

game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]
2
, for different learning rates l, and 
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different initial probabilities to cooperate x0 (the same probability for both 

players). For some values, the probability of immediately starting an infinite chain 

of mutual cooperation can be surprisingly high (e.g. for l = 0.5 and initial 

conditions [ x0 , x0 ] = [ 0.9 , 0.9 ] such probability is approximately 44%).  

 

Figure 4-7. Probability of starting an infinite chain of the Mutually Satisfactory (MS) outcome CC 

in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2. The 5 different (coloured) 

series correspond to different learning rates l. The variable x0, represented in the horizontal axis, is 

the initial probability of cooperating for both players.  

 

In summary, assuming that aspirations are different from payoffs, a BM process 

that starts in an initial state different from an SRE will never reach an SRE in 

finite time, and there is always a positive probability that the process leaves the 

proximity of an SRE. However, if there is some SRE, there is also a positive 

probability that the system will approach it indefinitely (i.e. forever) through an 

infinite chain of the mutually satisfactory outcome associated to the SRE.   

4.5. Three Dynamic Regimes 

In the general case, the dynamics of the BM model may exhibit three different 

regimes: medium run, long run, and ultralong run. This terminology is borrowed 

from Binmore and Samuelson (1993) and Binmore et al. (1995, p. 10), who 

reserve the term short run for the initial conditions. The medium run is ‘the time 

intermediate between the short run [i.e. initial conditions] and the long run, during 

which the adjustment to equilibrium is occurring’. The long run is ‘the time span 
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needed for the system to reach the vicinity of the first equilibrium in whose 

neighborhood it will linger for some time’. Finally, the ultralong run is ‘a period of 

time long enough for the asymptotic distribution to be a good description of the 

behavior of the system’.  

 

Binmore et al.’s terminology is particularly useful for our analysis because it is 

often the case in the BM model that the transient dynamics of the system are 

dramatically different from its asymptotic behaviour. Whether the three different 

regimes (i.e. medium, long, and ultralong run) are clearly distinguishable strongly 

depends on the players’ learning rates. For high learning rates the system quickly 

approaches its asymptotic behaviour and the distinction between the different 

regimes is not particularly useful. For small learning rates, however, the three 

different regimes can be clearly observed.  

 

In brief, it is shown in the following section that with sufficiently small learning 

rates li and number of iterations n not too large (n·li bounded), the medium run 

dynamics of the system are best characterised by the trajectories in the phase 

plane of eq. [4-2]. Under these conditions, SCEs constitute the ‘the first 

equilibrium in whose neighborhood it [the system] will linger for some time’ and, as 

such, they usefully characterize the long run dynamics of the system. After a 

potentially very lengthy long-run regime in the neighborhood of an SCE, the 

system will eventually reach its ultralong run behaviour, which in most BM 

systems consists in approaching an SRE asymptotically (see formal analysis 

below). 

 

For an illustration of the different regimes, consider once again the Prisoner’s 

Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]
2
. It is shown below that this 

system asymptotically converges to its unique SRE with probability 1 regardless 

of the value of l. The evolution of the probability to cooperate with initial state 

[p1,C , p2,C] = [ 0.5 , 0.5 ] (with these settings the probability is identical for both 

players) is represented in the rows of Figure 4-8 for different learning rates l.  



Figure 4-8. Histograms representing the probability to cooperate for one player (both players’ probabilities are identical) after n iterations, for different learning rates li = l, 

with Ai = 2, in a symmetric Prisoner’s Dilemma with payoffs [ 4 , 3 , 1 , 0 ]. Each histogram has been calculated over 1,000 simulation runs. The initial probability for both 

players is 0.5. The significance of the gray arrows will be explained later in the text.
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For l = 0.5 (see top row in Figure 4-8), after only 2
9
 = 512 iterations, the 

probability that both players will be almost certain to cooperate is very close to 1, 

and it remains so thereafter. For l = 2
-4

 and lower learning rates, however, the 

distribution is still clustered around the SCE even after 2
21

 = 2097152 iterations. 

With low learning rates, the chain of events that is required to escape from the 

neighbourhood of the SCE is extremely unlikely, and therefore this long run 

regime seems to persist indefinitely. However, given sufficient time, such a chain 

of coordinated moves will occur, and the system will eventually reach its 

ultralong run regime, i.e. almost-certain mutual cooperation. The following 

sections are devoted to the formal analysis of the transient and asymptotic 

dynamics of the BM model. The proofs of every proposition in this chapter are 

included in Appendix A. 

4.6. Transient Dynamics 

As mentioned above, when learning takes place by large steps the system quickly 

approaches its asymptotic behaviour, and no clear (transient) patterns are observed 

before it does so (see top row in Figure 4-8). With small learning rates, however, 

the two transient regimes, which may be significantly different from the 

asymptotic regime, are clearly distinguishable. This section shows that SCEs are 

powerful attractors of the actual dynamics of the system when learning occurs by 

small steps. Specifically, it is demonstrated that the BM process Pn follows the 

trajectories of its associated ODE with probability approaching 1 as learning rates 

decrease and n is kept within certain limits.  

 

Consider a family of BM systems Sl whose members, indexed in l = l1, only differ 

in both players’ learning rates, and such that l1/l2 is a fixed constant for every 

model in the family. Let  be the family of stochastic processes 

associated with such a family of systems S

)( l

n

l

n SPP =

l. As an example, note that Figure 4-8 

shows simulation runs of seven stochastic processes ( , …) 

belonging to one particular family F

)( 5.0FPn )( 25.0FPn

l. Consider the ODE given by eq. [4-3] below, 

and let fx(t) be the trajectory of this ODE with initial state x.  

)(
1

ff
lS

EM
l

=&  [4-3] 
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The ODE in eq. [4-3] is common to every member of a given family, and its 

solution trajectories fx(t) only differ from those given by eq. [4-2] (which 

determines a different ODE for each member) in the time scale, i.e. the 

representation of the trajectories of ODEs [4-2] and [4-3] in the phase plane is 

identical: the learning rate determines how quickly the path is walked, but the path 

is the same for every model of a family. Similarly, SCEs and SREs are common 

to every model in a family. The following proposition characterizes the medium-

run (statements (i) and (ii)) and the long-run (statement (iii)) dynamics of the BM 

model when l is small. No conditions are imposed on players’ aspirations. 

 

Proposition 4-1: Consider the family of stochastic processes  with initial 

state  for every l. Let K be an arbitrary constant. For learning by small 

steps (l → 0) and transient behaviour (n·l ≤ K < ∞), we have: 

0}{ ≥n

l

n

xP ,

xP =l

0

i. For fixed ε > 0 and l sufficiently small,  

),(})(max{ ,

)/(
KlClnl

n
lKn

≤>⋅−
≤

   Pr
  

εx

x fP  

where, for fixed K< ∞ , C(l, K) → 0 as l → 0. Thus, for transient behaviour and 

learning by small steps, we have uniform convergence in probability of  to 

the trajectory f

xP ,l

n

x of the ODE in [4-3]. 

ii. The distribution of the variable 
l

lnl

n )(, ⋅− x

x fP
 converges to a normal 

distribution with mean 0 and variance independent of l as l → 0 and 

 n·l → K < ∞. 

iii. Let Lx be the limit set of the trajectory fx(t). For n = 0, 1… N < ∞, and for any 

δ > 0, the proportion of values of  within a neighborhood BxP ,l

n δ(Lx) of Lx 

goes to 1 (in probability) as l → 0 and N·l → ∞. 

 

To see an application of Proposition 4-1, consider the particular family Fl (Figure 

4-8). Statement (i) says that when n is not too large (n·l bounded), with probability 

increasingly close to 1 as l decreases, the process  with initial state 

 follows the trajectory f

)( l

n FP x

xFP =)(
l

0 x(n·l) of the ODE in [4-3] within a distance 

never greater than some arbitrary, a priori fixed, ε > 0. (This proves the conjecture 

put forward by Börgers and Sarin (1997) in remark 2.) The trajectories 
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corresponding to  are displayed in )( l

n FP Figure 4-3, and the convergence of the 

processes to the appropriate point in the trajectory fx(n·l) as l → 0 can be 

appreciated following the gray arrows (which join histograms for which n·l is 

constant) in Figure 4-8. Figure 4-9 illustrates this convergence in the phase plane. 

The grey arrows in Figure 4-8 also illustrate statement (ii): the distribution of 

 approaches normality with decreasing variance as l→0, keeping n·l 

constant.  

)(
l

n FP x

 

Figure 4-9. Three sample runs of a system parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2 for different 

values of n and l. The product n·l is the same for the three simulations; therefore, for low values of 

l, the state of the system at the end of the simulations tends to concentrate around the same point.  

 

The fact that the trajectory fx is a good approximation for the medium-run 

dynamics of the system for slow learning shows the importance of SCEs as 

attractors of the actual dynamics of the system. To illustrate this, consider family 

Fl again. It can be shown using the square of the Euclidean distance to the SCE as 

a Liapunov function that every trajectory starting in any state different from the 

SRE [p1,C , p2,C] = [ 1 , 1 ] will end up in the SCE [p1,C , p2,C] = [ 0.37 , 0.37 ] – i.e. 

the limit set Lx is formed exclusively by the SCE for any x ≠ SRE (see Figure 

4-3). This means that starting from any initial state x ≠ SRE, if K is sufficiently 

large and n < K/l (i.e. if in Figure 4-8 we consider the region to the left of a grey 

arrow that is sufficiently to the right), the distribution of  will be tightly 

clustered around the SCE [ 0.37 , 0.37 ] and will approach normality as n 

increases. Furthermore, statement (iii) says that, for any x ≠ SRE, any δ > 0, and  

n = 0, 1… N < ∞, the proportion of values of  within a neighbourhood 

B

)(
l

n FP x

)(
l

n FP x

Bδ(SCE) of the SCE goes to 1 (in probability) as l → 0 and N·l → ∞. This is the 
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long run. Remember, however, that given any l,  will eventually converge 

to the unique SRE [1, 1] in the ultralong run (n → ∞). This is proved in the 

following section. 

)(
l

n FP x

4.7. Asymptotic Behaviour 

This section presents theoretical results on the asymptotic (i.e. ultralong run) 

behaviour of the BM system. Note that with low learning rates the system may 

take an extraordinarily long time to reach its ultralong-run behaviour (e.g. see 

bottom row in Figure 4-8). 

 

Proposition 4-2: In any 2×2 game, assuming players’ aspirations are different 

from their respective payoffs (ui(d) ≠ Ai for all i and d) and below their respective 

maximin
13

, the BM process Pn converges to an SRE with probability 1 (the set 

formed by all SREs is asymptotically reached with probability 1). If the initial 

state is completely mixed, then every SRE can be asymptotically reached with 

positive probability. 

 

Proposition 4-3: In any 2×2 game, assuming players’ aspirations are different 

from their respective payoffs and above their respective maximin: 

i. If there is any SRE then the BM process Pn converges to an SRE with 

probability 1 (the set formed by all SREs is asymptotically reached with 

probability 1). If the initial state is completely mixed, then every SRE can be 

asymptotically reached with positive probability. 

ii. If there is no SRE then the BM process Pn is ergodic
14

 with no absorbing 

state.  

 

                                                   

13
 Maximin is the largest possible payoff players can guarantee themselves in a single-stage game using 

pure strategies. 

14
 Following Norman (1968, p. 67), by ‘ergodic’ we mean that the sequence of stochastic kernels 

defined by the n-step transition probabilities of the Markov process associated with the BM system 

converges uniformly to a unique limiting kernel independent of the initial state. Intuitively, this means 

that the asymptotic probability distribution over the states of the system (i.e. the distribution of Pn when 

n→∞) is unique and does not depend on the initial state.   
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Corollary to Proposition 4-3: Consider any of the three 2×2 social dilemma games: 

Prisoner’s Dilemma, Chicken, and Stag Hunt (see section 3.1). Assuming players’ 

aspirations are different from their respective payoffs and above their respective 

maximin: 

i. The BM process Pn is ergodic. 

ii. There is an SRE if and only if mutual cooperation is satisfactory for both 

players. In that case, the process converges to the unique SRE (i.e. certain 

mutual cooperation) with probability 1. 

 

Since most BM systems end up converging to an SRE in the ultralong run, but 

their transient dynamics with slow learning are governed by their associated ODE, 

mathematical results that relate SREs with the solutions of the ODE can be 

particularly useful. The following proposition shows that the Nash equilibrium 

concept is key to determining the stability of SREs under the associated ODE. 

 

Proposition 4-4: Consider the BM process Pn and its associated ODE (eq. [4-2] or 

[4-3]) in any 2×2 game: 

i. All SREs whose associated outcome is not a Nash equilibrium are unstable. 

ii. All SREs whose associated outcome is a strict Nash equilibrium where at least 

one unilateral deviation leads to a satisfactory outcome for the non-deviating 

player are asymptotically stable (i.e. they are SCEs too). 

 

Thus, our analysis adds to the growing body of work in learning game theory that 

supports the general principle that to assess the stability of outcomes in games, it is 

important to consider not only how unilateral deviations affect the deviator, but 

also how they affect the non-deviators. Outcomes where unilateral deviations hurt 

the deviator (strict Nash) but not the non-deviators (protected
15

) tend to be the 

most stable. In the particular case of reinforcement learning with fixed aspirations, 

an additional necessary condition for the stability of an outcome is, of course, that 

every player finds the outcome satisfactory. Remark: Proposition 4-4 can be 

                                                   

15 An outcome is protected if unilateral deviations by any player do not hurt any of the other 

players (Bendor et al., 2001b). 
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strengthened for the special case where all stimuli are positive (Phansalkar et al., 

1994; Sastry et al., 1994). 

4.8. Trembling hands process 

To study the robustness of the previous asymptotic results we consider an 

extension of the BM model where players suffer from ‘trembling hands’ (Selten 

1975): after having decided which action to undertake, each player i may select 

the wrong action with some probability εi > 0 in each iteration. This noisy feature 

generates a new stochastic process, namely the noisy process Nn, which can also 

be fully characterized by a 2-dimensional vector prop = [prop1 , prop2] of 

propensities (rather than probabilities) to cooperate. Player i’s actual probability 

to cooperate is now (1 – εi) · propi + εi · (1 – propi), and the profile of propensities 

prop evolves after any particular outcome following the rules given by eq. [4-1]. 

Theorem 2.2 in Norman (1968, p. 67) can be used to prove that this noisy process 

is ergodic in any 2×2 game16. Proposition 4-1 applies to this extension too. 

 

The noisy process has no absorbing states (i.e. SREs) except in the trivial case 

where both players find one of their actions always satisfactory and the other 

action always unsatisfactory – thus, for example, in the Prisoner’s Dilemma the 

inclusion of noise precludes the system from convergence to a single state. 

However, even though noisy processes have no SREs in general, the SREs of the 

associated unperturbed process (SREUPs, which correspond to mutually 

satisfactory outcomes) do still act as attractors whose attractive power depends on 

the magnitude of the noise: ceteris paribus the lower the noise the higher the long 

run chances of finding the system in the neighborhood of an SREUP (see Figure 

4-10). This is so because in the proximity of an SREUP, if εi are low enough, the 

SREUP’s associated mutually satisfactory outcome will probably occur, and this 

brings the system even closer to the SREUP. The dynamics of the noisy system 

will generally be governed also by the other type of attractor, the SCE (see Figure 

4-10). 

                                                   

16
 We exclude here the meaningless case where the payoffs for some player are all the same and equal 

to her aspiration.    
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Figure 4-10. Histograms representing the propensity to cooperate for one player (both players’ 

propensities are identical) after 1,000,000 iterations (when the distribution is stable) for different 

levels of noise (εi = ε) in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0.25 ]2. 

Each histogram has been calculated over 1,000 simulation runs.  

 

Figure 4-11 and Figure 4-12, which correspond to a Prisoner’s Dilemma game 

parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]
2
, show that the presence of noise can greatly 

damage the stability of the (unique) SREUP associated to the event CC. Note that 

the inclusion of noise implies that the probability of an infinite chain of the 

mutually satisfactory event CC becomes zero. 

 

The systems represented on the left-hand side of Figure 4-11, corresponding to a 

learning rate l = 0.5, show a tendency to be quickly attracted to the state [ 1 , 1 ], 

but the presence of noise breaks the chains of mutually satisfactory CC events 

from time to time (see the series on the bottom-left corner); unilateral defections 

make the system escape from the area of the SREUP before going back towards it 

again and again. The systems represented on the right-hand side of Figure 4-11, 

corresponding to a lower learning rate (l = 0.25) than those on the left, show a 

tendency to be lingering around the SCE for longer. In these cases, when a 

unilateral defection breaks a chain of mutually satisfactory events CC and the 

system leaves the proximity of the state [ 1 , 1 ], it usually takes a large number of 

periods to go back into that area again.  
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Figure 4-11. Representative time series of player 1’s propensity to cooperate over time for the 

Prisoner’s Dilemma game parameterised as [4 , 3 , 1 , 0 | 2 | 0.5 ]2 (left) and [4 , 3 , 1 , 0 | 2 | 0.25 ]2 

(right), with initial conditions [ x0 , x0 ] = [ 0.5 , 0.5 ], both without noise (top) and with noise level 

εi = 10-3 (bottom). 

 

Figure 4-12 shows that a greater level of noise implies higher destabilisation of 

the SREUP. This is so because, even in the proximity of the SREUP, the long 

chains of reinforced CC events needed to stabilise the SREUP become highly 

unlikely when there are high levels of noise, and unilateral defections (whose 

probability increases with noise in the proximity of the SREUP) break the stability 

of the SREUP. 
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Figure 4-12. Evolution of the average probability / propensity to cooperate of one of the players in 

a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0. 5 ]2
 with initial state [ 0.5 , 0.5 ], 

for different levels of noise (εi = ε). Each series has been calculated averaging over 100,000 

simulation runs. The standard error of the represented averages is lower than 3·10-3 in every case.  

Stochastic stability 

Importantly, not all the SREs of the unperturbed process are equally robust to 

noise. Consider, for instance, the system [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]
2
, which has two 

SREs: [p1,C , p2,C] = [ 1 , 1 ] and  [p1,C , p2,C] = [ 0 , 0 ]. Using Proposition 4-2 we 

know that the set formed by the two SREs is asymptotically reached with 

probability 1; the probability of the process converging to one particular SRE 

depends on the initial state; and if the initial state is completely mixed, then the 

process may converge to either SRE. Simulations of this process show that, in 

almost every case, the system quickly approaches one of the SREs and then 

remains in its close vicinity. Looking at the line labelled “ε = 0” in Figure 4-13 we 

can see that this system with initial state [ 0.9 , 0.9 ] has a probability of 

converging to its SRE at [ 1 , 1 ] approximately equal to 0.7, and a probability of 

converging to its SRE at [ 0 , 0 ] approximately equal to 0.3.  

 

However, the inclusion of (even tiny levels of) noise may alter the dynamics of 

the system dramatically. In general, for low enough levels of “trembling hands” 

noise we find an ultralong run (invariant) distribution concentrated on 

neighbourhoods of SREUPs. The lower the noise, the higher the concentration 

around SREUPs. If there are several SREUPs, the invariant distribution may 
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concentrate on some of these SREUPs much more than on others. In the limit as 

the noise goes to zero, it is often the case that only some of the SREUPs remain 

points of concentration. These are called stochastically stable equilibria (Foster 

and Young, 1990; Young, 1993; Ellison, 2000) and will be discussed in detail in 

chapter 5. As an example, consider the simulation results shown in Figure 4-13, 

which clearly suggest that the SRE at [ 0 , 0 ] is the only stochastically stable 

equilibrium even though the unperturbed process converges to the other SRE 

more frequently with initial conditions [ 0.9 , 0.9 ]. Note that whether an 

equilibrium is stochastically stable or not is independent on the initial conditions.  

 

 

Figure 4-13. Evolution of the average probability / propensity to cooperate of one of the players in 

a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2
 with initial state  

[ 0.9 , 0.9 ], for different levels of noise (εi = ε). Each series has been calculated averaging over 

10,000 simulation runs. The inset graph is a magnification of the first 500 iterations. The standard 

error of the represented averages is lower than 0.01 in every case.  

 

Intuitively, note that in the system shown in Figure 4-13, in the proximities of the 

SRE at [ 1 , 1 ], one single (possibly mistaken) defection is enough to lead the 

system away from it. On the other hand, near the SRE at [ 0 , 0 ] one single 

(possibly mistaken) cooperation will make the system approach this SRE at  

[ 0 , 0 ] even more closely. Only a coordinated mutual cooperation (which is 

highly unlikely near the SRE at [ 0 , 0 ]) will make the system move away from 
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this SRE. This makes the SRE at [ 0 , 0 ] much more robust to occasional 

mistakes made by the players when selecting their strategies than the SRE at  

[ 1, 1 ], as illustrated in Figure 4-14 and Figure 4-15.   

 

 

Figure 4-14. One representative run of the system parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2
 with 

initial state [ 0.9 , 0.9 ], and  noise εi = ε = 0.1. This figure shows the evolution of the system in the 

phase plane of propensities to cooperate, while figure 15 below shows the evolution of player 1’s 

propensity to cooperate over time for the same simulation run.  

 

 

Figure 4-15. Time series of player 1’s propensity to cooperate over time for the same simulation 

run displayed in Figure 4-14.  
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4.9. Extensions 

The theoretical results on asymptotic behaviour presented in this chapter derive 

from the theory of distance diminishing models developed by Norman (1968; 

1972), which can also be applied to 2-player games with any finite number of 

strategies without losing much generality. The results on transient behaviour when 

learning takes place by small steps (which derive from the theory of stochastic 

approximation (Benveniste et al., 1990; Kushner and Yin, 1997) and the theory of 

slow learning (Norman, 1972)) and Proposition 4-4 (which derives from Sastry et 

al. (1994)) can be easily extended to any finite game.  

 

More immediately, every proposition in this chapter can be directly applied to 

finite populations from which two players are randomly17 drawn repeatedly to 

play a 2×2 game. Indications on how to prove this are given in Appendix A. As an 

example, assume that there is a finite population of BM reinforcement learners 

with aspirations above their respective maximin and below their payoff for mutual 

cooperation, who meet randomly to play a 2×2 social dilemma game (Macy and 

Flache, 2002). Then, every player in the group will end up cooperating with 

probability 1 in the ultralong run. The more players in the group, the longer it 

takes the group to reach universal cooperation. 

 

As for the general existence of SREs and SCEs in games with any finite number 

of players and strategies, note that both solution concepts require that the expected 

change in every player’s strategy is zero – i.e. they are both critical points of the 

expected motion of the system. This is an important property since if any system 

converges to a state, that state must be a critical point of its expected motion. The 

following shows that every game has at least one such critical point for a very 

wide range of models. Consider the extensive set of models of normal-form 

games where every player’s strategy is determined at any time-step by the 

probability of undertaking each of their possible actions. Assume that, after any 

given outcome y in time step n, every player i (i = 1, 2…m) updates her strategy pi 

using an adaptation rule , where  is continuous for every y )(
ny

i

n

i prp =+1
)(

ny

i pr

                                                   

17
 The important point here is that, at any time, every player must have a positive probability of being 

selected to play the game. 
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and every i. Let us call such adaptation rules continuous. Note that BM adaptation 

rules are continuous, and consider the following proposition.  

 

Proposition 4-5:  Assuming that players’ adaptation rules after every possible 

outcome of the game are continuous, every finite normal-form game has at least 

one critical point (a strategy profile where the expected change of every player’s 

strategy is zero). 

 

4.10. Conclusions of this chapter 

This chapter has focused on the study of games played by individuals who use one 

of the most widespread forms of learning in nature: reinforcement learning. This 

analysis (and related literature cited in section 4.1) has shown that the outcome of 

games played by reinforcement learners can be substantially different from the 

expected outcomes when the game is played among perfectly rational individuals 

with common knowledge of rationality. As an example, cooperation in the 

repeated Prisoner’s Dilemma is not only feasible but also the unique asymptotic 

outcome in many cases. More generally, outcomes where players select 

dominated strategies can emerge through social interaction and persist through 

time.  

 

This chapter in particular has characterised the dynamics of the Bush-Mosteller 

(Bush and Mosteller, 1955) aspiration-based reinforcement learning model in 2x2 

games. These dynamics have been shown to depend mainly on three features: 

• The speed of learning. 

• The existence of self-reinforcing equilibria (SREs). SREs are states which 

are particularly relevant for the ultralong-run or asymptotic behaviour of 

the process. 

• The existence of self-correcting equilibria (SCEs). SCEs are states which 

are particularly relevant for the transient behaviour of the process with low 

learning rates. 

With high learning rates, the model approaches its asymptotic behaviour fairly 

quickly. If there are SREs, such asymptotic dynamics are concentrated on the 

SREs of the system. With low learning rates, two transient distinct regimes 
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(medium-run and long-run) can usually be distinguished before the system 

approaches its asymptotic regime. Such transient dynamics are strongly linked to 

the solutions of the continuous time limit approximation of the system’s expected 

motion. 

 

An extension of the Bush-Mosteller model where players suffer from trembling 

hands has also been explored. It has been shown that the inclusion of small 

quantities of noise in the original Bush-Mosteller model can change its dynamics 

quite dramatically. Some states of the system that are asymptotically reached with 

high probability in the unperturbed model (i.e. some SREs) can effectively lose all 

their attractiveness when players make occasional mistakes in selecting their 

actions. A field for further research is the analytical identification of the 

asymptotic equilibria of the unperturbed process that are robust to small trembles 

(i.e. the set of stochastically stable equilibria).   

 

This chapter has characterised not only the asymptotic behaviour of the Bush-

Mosteller model of reinforcement learning, but also its transient dynamics. The 

study of the transient dynamics of learning algorithms has been neglected until 

recently due to the complexity of its formal analysis. Thus, most of the literature 

in learning game theory focuses on asymptotic equilibria. This may be insufficient 

since, as this chapter has illustrated, the transient dynamics of learning algorithms 

may be substantially different from their asymptotic behaviour. In broader terms, 

the importance of understanding the transient dynamics of formal models of social 

interactions is clear: social systems tend to exhibit an impressive ability to adapt 

and reorganize themselves structurally, meaning that most likely it is not 

asymptotic behaviour that we observe in the real world.  
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5.   The Implications of Case-Based Reasoning in 

Strategic Contexts♣ 

 

Though analogy is often misleading, it is the least misleading thing we have. 

−SAMUEL BUTLER 

5.1. Introduction 

Case-Based Reasoning (CBR) is a form of reasoning by analogy within a 

particular domain (Aamodt and Plaza, 1994; Nicolov, 1997). In the context of 

problem solving, analogy can be defined as the process of reasoning from a solved 

problem which seems similar to the problem to be solved (Doran, 1997). Thus, 

CBR basically consists of “solving a problem by remembering a previous similar 

situation and by reusing information and knowledge of that situation” (Aamodt 

and Plaza, 1994). The rationale is that if a solution turned out to be satisfactory 

when applied to a certain problem it might work in a similar situation too.  

 

Case-based reasoners do not employ abstract rules as the basis to make their 

decisions, but instead use similar experiences they have had in the past. Such 

experiences are stored in the form of cases. A case is “a contextualised piece of 

knowledge representing an experience that teaches a lesson fundamental to 

achieving the goals of the reasoner” (Kolodner, 1993, p. 13). Thus, when a case-

based reasoner has to solve a problem, she is reminded of a similar situation that 

she encountered in the past, of what she did then, and of the outcome that resulted 

in the recalled situation. She then uses that ‘similar past case’ as a basis to solve 

the problem in the present. Case-based reasoning generally consists of four main 

tasks (Aamodt and Plaza, 1994):  

                                                   

♣ Some parts of the material presented in this chapter have been published in Izquierdo L.R., 

Gotts, N.M. and Polhill, J.G. (2004) “Case-based reasoning, social dilemmas, and a new 

equilibrium concept”, Journal of Artificial Societies and Social Simulation, 7(3), and in Izquierdo, 

L.R. and Gotts, N.M. (2005) “The implications of case-based reasoning in strategic contexts”, 

Lecture Notes in Economics and Mathematical Systems 564, pp. 163-174. 
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1. Retrieve the most similar case or cases. Generally a case in CBR is rich in 

information and quite complex. Thus, performing similarity judgements is 

often an integral part of CBR. Admittedly, the representation of cases used 

in this chapter is particularly simple and, consequently, similarity 

judgements are straightforward; this is so because the primary objective of 

this research is to study the strategic implications of processes of 

reasoning based on one single distinctive past experience (in contrast with 

rule-based systems), and issues relating case representation are not so 

crucial for our purposes. The simple representation of cases used here may 

mean that certain researchers find the reasoning processes investigated in 

this chapter too unsophisticated to be called CBR; Aamodt and Plaza 

(1994) say: “a feature vector holding some values and a corresponding 

class is not what we would call a typical case description” (because it is 

too trivial). Thus, it is worth noting that the term CBR is used in this 

chapter –in a wider sense than Aamodt and Plaza’s– to denote a process of 

reasoning based on one single distinctive past experience, selected for its 

similarity to the current situation.   

2. Reuse the information and knowledge in the retrieved case to solve the 

current problem. The retrieved knowledge cannot always be directly 

applied, so some adaptation is sometimes required. 

3. Revise the proposed solution. This involves the evaluation of the proposed 

solution.  

4. Retain the relevant information for the future – i.e. learn. 

Case-based reasoning is often used as a problem-solving technique in domains 

where the distinction between success and failure is either fairly easy to make or 

is made externally. However, in decision-making contexts in general, the 

distinction between what is satisfactory and what is not can be far from trivial, 

and thus, the question of whether a particular decision used in the past should be 

repeated, or a new decision should be explored is crucial. This dilemma naturally 

gives rise to Simon’s (1957) notions of satisficing, as noted by Gilboa and 

Schmeidler (2001).  
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An alternative to CBR would be a rule-based system. One could induce the 

appropriate generalisations (rules) from the cases, and, in this view, CBR can be 

seen as a postponement of induction (Loui, 1999). However, when dealing with 

systems that are adaptive themselves (in the sense that they are constituted by 

adaptive agents), the ‘rules’ of the system vary as the system evolves and 

therefore agents must frequently revise their perceptions about the system. This 

could be done by constantly updating the set of induced rules or by using CBR. 

Agents who use CBR store the original cases without building rules that 

summarise them. In that way, cases can suggest solutions even to ill-defined 

problems, such as those arising in social dilemmas, for which there may not be an 

adequate set of general rules. 

Origins and use of case-based reasoning 

CBR arose out of cognitive science research in the late 1970s (Schank and 

Abelson, 1977; Schank, 1982). Schank and Abelson (1977) proposed that the 

general knowledge that we gain from experience is encoded in episodic memory 

as “scripts” that allow us to set up expectations and inferences. New episodes are 

processed by using dynamic memory structures which contain the episodes that 

are most closely related to the new episode; this process is called “reminding”. 

Schank (1982) develops the idea that, far from being an irrelevant artefact of 

memory, reminding is at the root of how we understand and how we learn. 

Reminding occurs during the normal course of understanding, or processing some 

new information, as a natural consequence of the processing of that information. 

He argues that “we understand in terms of what we already understood”.  

 

There are several psychological studies that provide support for the importance of 

CBR as problem-solving process in human reasoning, especially for novel or 

difficult tasks (see Ross (1989) for a summary). Klein and Calderwood (1988) 

studied over 400 decisions made by experienced decision makers performing a 

variety of tasks in operational environments and concluded that “processes 

involved in retrieving and comparing prior cases are far more important in 

naturalistic decision making than are the application of abstract principles, rules, 

or conscious deliberation between alternatives”. Drawing on their empirical 
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studies, they also developed a descriptive model of decision making in which the 

attempt is to satisfice rather than optimise.  

 

More recently, Gayer et al. (2007) have empirically examined the relative 

importance of rule-based versus case-based reasoning in housing asking prices. 

They hypothesise on theoretical grounds that case-based reasoning has relatively 

more explanatory power in the rental apartment market, whilst rule-based 

reasoning is relatively more prevalent in the sales market, and they find empirical 

support for this hypothesis when tested with two databases (rentals and sales) of 

asking prices on apartments in the greater Tel-Aviv area. However, their 

interpretation of case-based reasoning is significantly different from that 

explained above. In their model, case-based reasoning is modelled using a 

similarity-weighted average that makes use of all cases available at the time of 

making a decision. In general terms, they conjecture that, in comparison to rule-

based reasoning, case-based reasoning will be more prevalent in non-speculative 

markets than in speculative ones. They also state their belief that both modes of 

reasoning are likely to play a role in almost any decision-making process, and that 

a variety of factors may affect their relative importance. 

 

It seems therefore that CBR is plausible as at least a partial representation of how 

people make use of past experience: that they recall circumstances similar to those 

they now face and remember what they did and with what outcome (see for 

example Kahneman et al., 1982).  

 

There are also a number of industrial applications of CBR (Watson, 1997), 

particularly in domains where there is a need to solve ill-defined problems in 

complex situations; in such situations, it is difficult or impossible to completely 

specify all the rules (if they exist at all) but there are cases available.  

 

Within the domain of theoretical economics, a Case-Based Decision Theory 

(CBDT) has been proposed by Gilboa and Schmeidler (1995; 2001). CBDT is a 

formal theory of decision based on past experiences which was initially inspired 

by case-based reasoning. Having said that, as noted by the authors, CBDT has not 

much in common with CBR beyond Hume’s basic argument that “from causes 
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which appear similar we expect similar effects”. As pointed out when describing 

the empirical study conducted by Gayer et al. (2007), the main difference between 

CBR and CBDT is that while a defining feature of CBR is that “thought and 

action in a given situation are guided by a single distinctive prior case” (Loui 

1999), in CBDT decision-makers rank available acts according to the similarity-

weighted sum of utilities that resulted in all available cases. For the formalisation 

of an assessment rule based on such a similarity-weighted function see Gilboa et 

al. (2006). In any case, Gilboa and Schmeidler (1995; 2001) do not see case-based 

decision theory (CBDT) as a substitute for expected utility theory (EUT), but as a 

complement. They argue that CBDT may be more plausible than EUT when 

dealing with novel decision problems, or in situations where probabilities cannot 

easily be assigned to different states of the world (uncertainty, as opposed to risk), 

or if such states of the world cannot be easily constructed (ignorance). They also 

highlight that CBDT naturally gives rise to the notions of satisficing decisions and 

aspiration levels. 

 

Pazgal (1997) and Kim (1999) apply CBDT in strategic contexts. Pazgal (1997) 

analyses general games of mutual interest (i.e. games where there exists a unique 

pure strategy profile that gives the highest possible payoff to every player), and 

Kim (1999) focuses on symmetric 2x2 games of mutual interest to study the 

aspiration updating mechanism in greater depth
18

. The decision-making algorithm 

employed by players in these two studies bears very little resemblance to CBR as 

interpreted above: players in Pazgal’s and Kim’s models do not consider different 

cases or experiences, they choose the action that has given them the highest 

cumulative past payoff (relative to their current aspiration) throughout the whole 

history of the game, and their aspiration thresholds are updated using a weighted 

average of its previous value and an average function of received payoffs. This 

                                                   

18 Kim (1999) studies 2x2 games with an outcome (i.e. a pure strategy profile) which every player 

strictly prefers, and refers to these as “common interest” games. Following Aumann and Sorin 

(1989), I use the term “common interest game” to denote the wider class of games where there is a 

unique payoff profile that strongly Pareto dominates all other payoff profiles (and this payoff 

profile may be achieved via several strategy profiles), and I use the more specific term “mutual 

interest game” to denote games where there exists a unique pure strategy profile that gives the 

highest possible payoff to every player.  
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decision-making algorithm (identified by the authors as a form of case-based 

maximisation) is significantly different from that consisting in maximising 

average payoffs (as nicely illustrated by Kim (1999)), but it is also fundamentally 

different from CBR as interpreted in this chapter. As a matter of fact, it seems to 

us that the essence of these two models is closer to reinforcement learning than to 

case-based reasoning, as also noted by Bendor et al. (2001a; 2001b). 

 

To our knowledge, the implications of CBR interpreted as explained above in 

strategic contexts had never been formally explored up until now. In this chapter 

we develop and analyse a game theoretical model where individuals use a very 

simple form of CBR. 

Structure of this chapter 

In this chapter we use social dilemma games to illustrate the strategic implications 

of case-based reasoning. The following section is devoted to explaining why 

social dilemmas in particular are especially revealing to understand the 

differences between reasoning by cases and reasoning by rules. Section 5.3  

presents a simple model that is used to shed light on the conditions under which 

CBR as individual decision mechanism may entail cooperation in social 

dilemmas. The results obtained with this model are presented and discussed in 

sections 5.4 and 5.5 respectively. Section 5.6 presents a generalisation of the 

model analysed in sections 5.4 and 5.5.  In particular, players in the more general 

model may make occasional mistakes in their decisions. The dynamics of this 

second model are explained and discussed in 5.7. Finally, section 5.8 presents the 

conclusions of this chapter.  

5.2. Case-based reasoning and social dilemmas 

This chapter provides various results on the asymptotic dynamics of a rather 

general form of CBR for any finite normal-form game (see section 5.7). The 

transient dynamics of CBR models, however, strongly depend on the definition of 

the particular CBR algorithm employed by players and also on the specific game 

they play. Thus, to explore the whole dynamics of games played by agents who 

use a simple form of CBR, the scope of study has had to be limited to some 
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extent. In particular, whenever it has been found that the specific parameterisation 

of the game has made a difference I have focused on analysing social dilemmas.  

 

Social dilemmas offer a promising arena to distinguish the differences between 

reasoning by cases (or outcomes
19

) and reasoning by rules (or strategies). The 

following illustrates why this is the case using the Prisoner’s Dilemma. Although 

defining rational strategies in interdependent decision-making problems is by no 

means trivial, it seems sensible to assume that a) rational players choose dominant 

strategies
20

, and b) rational players do not choose dominated strategies
21

. 

Similarly, even though defining rational outcomes cannot be done without 

controversy, it also seems sensible to agree that rational outcomes must be Pareto 

optimal
22

. Assuming only those necessary conditions for the rationality of 

strategies and outcomes, we can state that in the one-shot Prisoner’s Dilemma and 

other social dilemmas, even though there is a clear causal link between strategies 

and outcomes, rational strategies (understood as those chosen by rational players) 

lead to outcomes that are not rational, whereas rational outcomes are generated by 

strategies that are not rational (i.e. those strategies that a rational player would 

never select).  

 

In this chapter we explore two social dilemma games:  a 2-player and an n-player 

version of the Prisoner’s Dilemma (PD). Because of the players’ decision making 

algorithms (explained in sections 5.3 and 5.7), the actual values of the payoffs are 

not relevant as long as they satisfy:  

Temptation > Reward > Punishment > Sucker 

                                                   

19 An outcome is a particular combination of decisions, each of them made by one player. 

20 Recall that, for a player A, strategy SA is (strictly) dominant if for each combination of the other 

players’ strategies, A’s payoff from playing SA is (strictly) more than A’s payoff from playing any 

other strategy (Gibbons, 1992, p. 5). 

21 For a player A, strategy SA is (strictly) dominated by strategy S*A if for each combination of the 

other players’ strategies, A’s payoff from playing SA is (strictly) less than A’s payoff from playing 

S*A (Gibbons, 1992, p. 5). 

22 An outcome is Pareto optimal if there is no other outcome where at least one player is better off  

and no player is worse off. 
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In the n-player social dilemma every player gets a reward as long as there are no 

more than M defectors (M < n). The payoff that defectors get is always higher 

than the payoff obtained by those who cooperate (Def-P > Coop-P). However, 

every player is better off if they all cooperate than if they all defect (Coop-P + 

Reward-P > Def-P). Figure 5-1 shows the payoff matrix for a particular player:  

 

 Fewer than M 

others defect 
M others defect 

More than M 

others defect 

Player cooperates Coop-P + Reward-P Coop-P + Reward-P Coop-P 

Player defects Def-P + Reward-P Def-P Def-P 

Figure 5-1. Payoff matrix of the “Tragedy of the Commons game” for a particular agent. 

 

This game has been called in the literature the “Tragedy of the Commons game” 

(Kuhn, 2001) after the influential paper written by Hardin (1968). Henceforth we 

will refer to this game as the TC game. When the maximum number of defectors 

M for which the reward is given is high, it represents a version of the “volunteer’s 

dilemma” (Brenan and Lomasky, 1984; Diekmann, 1985): a group needs a few 

volunteers, but each member is better off if others volunteer. If the number of 

players is large enough, the case when exactly M others defect is sufficiently 

unlikely that for all intents and purposes it can be ignored. Assuming the latter, we 

have a “social dilemma” as defined by Dawes (1980): “all players have 

dominating strategies that result in a deficient equilibrium”
23

. In any case, we 

have a “problematic social situation” (Diekmann, 1986; Raub and Voss, 1986), or 

social dilemma in a broader sense, which can be defined in game theory terms as a 

game with Pareto inefficient
24

 Nash equilibria. The TC game differs from the 

two-player PD in three important ways: 

1. In the TC game, for a small number of players, the state of “minimally 

effective cooperation” (exactly M defectors) is not negligible, so there is not a 

dominant strategy. 

                                                   

23 An equilibrium is deficient if there exists another outcome which is preferred by every player. 

24 An outcome is Pareto inefficient if there is an alternative in which at least one player is better off 

and no player is worse off. 
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2. In the TC game, using pure strategies, there are two Nash equilibria: everyone 

defecting (universal defection
25

) and exactly M defectors (minimally effective 

cooperation). 

3. In the two-player PD, universal cooperation is a Pareto optimal outcome since 

no player can be better off without making the other player worse off. 

However, in the TC game the only Pareto optimal outcome is the state of 

minimally effective cooperation. 

5.3. The CBR model 

In this section we present a simple CBR decision-making algorithm that players 

will use to decide whether to cooperate or not when confronted with one of the 

two social dilemma games described in the previous section. This model will be 

named “the CBR model”. Individuals play repeatedly the game – once per time-

step – and every time they do so, each player retains a case (representing the 

experience they lived in time-step t) which comprises: 

1. The time-step t when the case occurred. 

2. The perceived state of the world at the beginning of time-step t, characterised 

by the value of the following descriptors in the preceding ml (for memory 

length) time-steps:  

• Descriptor 1 (D1): the number of other defectors. 

• Descriptor 2 (D2): the decision that the player holding the case made.  

As an example, if ml = 2 then the perceived state of the world for the case-

holder will be determined by the number of other defectors and the decision 

she made, both in time-step t – 1 and in time-step t – 2).  

3. The decision the case-holder made in that situation, i.e. whether she 

cooperated or defected in time-step t, having observed the state of the world 

in that same time-step. 

4. The payoff that the case-holder obtained after having decided in time-step t.  

 

Thus the case representing the experience lived by player A in time-step t has the 

following structure: 

                                                   

25 Universal defection is a Nash equilibrium as long as M < n-1. 
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dft-ml … dft-2   dft-1

t 
dt-ml … dt-2   dt-1

dt pt

where  

dft  is the number of defectors (excluding player A) in time-step t, 

dt  is the decision made by player A in time-step t, and 

pt  is the payoff obtained by player A in time-step t. 

 

The number of cases that players can keep in memory is unlimited. It is also worth 

noting that no cases are available for any player until (ml + 1) time-steps have 

gone by in the simulation. Players make their decision whether to cooperate or not 

by retrieving two cases: the most recent case which occurred in a similar situation 

for each of the two possible decisions (i.e. each of the two possible values of dt). 

A case is perceived by the player to have occurred in a similar situation if and 

only if its state of the world is a perfect match with the current state of the world 

observed by the player holding the case. The only function of the perceived state 

of the world is to determine whether two situations look similar to the player or 

not. In a particular situation (i.e. for a given perceived state of the world) a player 

must face one of the following three possibilities: 

1. The player cannot recall any previous situations that match the current 

perceived state of the world. In CBR terms, the Agent does not hold any 

appropriate cases for the current perceived state of the world. In this 

situation the player will decide at random.  

2. The player does not remember a previous similar situation when she made a 

certain decision, but she does recall at least one similar situation when she 

made the other decision. In CBR terms, all the appropriate cases the player 

recalls have the same value for dt. In this situation, the player will explore 

the non-applied decision if the payoff she obtained in the last previous 

similar situation was below her Aspiration Threshold AT; otherwise she will 

keep the same decision she previously applied in similar situations. 

3. The player remembers at least one previous similar situation when she made 

each of the two possible decisions. In this situation, the player will focus on 

the most recent case for each of the two decisions and choose the decision 
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that provided her with the higher payoff
26

. In this way, players adapt their 

behaviour according to the most recent feedback they got in a similar 

situation. 
 

This completes the specifications of “the CBR model”. The UML activity diagram 

of the players’ decision making algorithm is outlined in Figure 5-2. In the 

simulation experiments reported in this chapter, all the players share the same 

aspiration threshold AT and the same memory length ml. These are the two crucial 

parameters in the CBR model, determining when an outcome is satisfactory and 

when two situations are similar, respectively. The behaviour of a slightly more 

advanced socioeconomic Agent which also uses CBR in their decision-making 

algorithm but takes into account social approval is explored in Izquierdo et al. 

(2003).   

 

Figure 5-2. UML activity diagram of the CBR decision making algorithm. 

                                                   

26 A tie is impossible in either of the two games analysed in this chapter. 
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5.4. Results with the CBR model 

The software used to conduct the experiments reported in this section was written 

in Objective-C using the Swarm libraries (http://www.swarm.org) and is available 

in the Supporting Material together with a user guide under the GNU General 

Public Licence. The program is known to work on a PC using Swarm 2.1.1 and on 

a Sun Sparc using Swarm 2001-12-18.  

 

As might be expected, the CBR model is very sensitive to the decisions that 

players make at random. Since the model has stochastic components, the results 

for a given set of parameters cannot be given in terms of assured outcomes but 

only as a range of possible outcomes, each with a certain probability of 

happening. The probability of each outcome can be either estimated by running 

the model several times with different random seeds or, under certain 

circumstances, exactly computed.  

 

Players in the CBR model make decisions at random only when they perceive a 

novel state of the world. Since the number of different states of the world that a 

player can perceive is finite, so is the number of random decisions the player can 

make. Therefore, simulations must end up in a cycle. To study how often players 

cooperate in the PD we define the ‘cooperation rate’ as the number of times 

bilateral cooperation is observed in a cycle divided by the length of the cycle. 

Similarly, we define the ‘reward rate’ in the TC game as the number of times the 

reward is given in a cycle divided by the length of the cycle. 

5.4.1. Prisoner’s Dilemma 

Aspiration  Thresholds 

It is important to realise that when players play the PD, they share the same 

perception of the state of the world (defined by the last ml moves of the two 

Players) in the sense that any two situations that look the same to one player will 

also look the same to the other player and any two situations that look different to 

one player will also look different to the other player. Therefore, at any given time 

in the simulation our players will have visited any given state of the world the 

same number of times. This shared perception of the state of the world means that, 

for a certain state of the world, the only relevant factor is the random decision that 

they make when they first experience that situation. 
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The decision dynamics for a certain state of the world are summarised in Table 

5-1. Consider for now the first four rows of the table (T < AT). These represent the 

case where the aspiration threshold AT (for both players) exceeds T. The first time 

any particular state of the world occurs, both players will choose C (Cooperate) or 

D (Defect) at random (column headed “1
st
 visit”). When the same perceived state 

occurs a second time, the responses will be as shown in the “2
nd

 visit” column, 

and so on. The table shows that by the third visit to that state, either both players 

are cooperating or both players are defecting, and both will then continue to make 

the same response. The other four sets of rows in the table show what happens 

when the AT is in each of four lower ranges of values.  
 

Aspiration 

Thresholds (AT) 

1
st
 visit 

(random) 
2

nd
 visit 3

rd
 visit

4
th

 visit and 

onwards 
x y 

CC DD CC CC 1 - 

CD DC DD DD - 2 

DC CD DD DD - 2 
T < AT 

DD CC CC CC 1 - 

CC DD CC CC 1 - 

CD DD DC DD - 2 

DC DD CD DD - 2 
R < AT ≤ T 

DD CC CC CC 1 - 

CC CC CC CC 0 - 

CD DD DC DD - 2 

DC DD CD DD - 2 
P < AT ≤ R 

DD CC CC CC 1 - 

CC CC CC CC 0 - 

CD DD DD DD - 1 

DC DD DD DD - 1 
S < AT ≤ P 

DD DD DD DD - 0 

CC CC CC CC 0 - 

CD CD CD CD - - 

DC DC DC DC - - 
AT ≤ S 

DD DD DD DD - 0 

Table 5-1. Decisions made by each of the two players in the PD when visiting a certain state of the 

world for the i-th time. In the first column, payoffs are denoted by their initial letter. In columns 2 

to 5, the first letter in each pair corresponds to the decisions of one player, the second letter to 

those of the other. C is cooperation and D is defection. The first imbalance between CC and DD 

for every value of AT has been shadowed. The meaning of x and y is explained in the text. The 

results shown in this table are independent of the memory length.  

 

 95



There are two states of the world that appear to be particularly important in the 

dynamics of the game. One is that where there have been ml successive bilateral 

cooperations (let us call it mlBC); the other is where there have been ml 

successive bilateral defections (let us call it mlBD). Whenever bilateral 

cooperation follows a visit to mlBC, then mlBC is immediately revisited (since 

players observe again that they both cooperated in the last ml time-steps). 

Similarly, whenever bilateral defection follows a visit to mlBD, then mlBD is 

immediately revisited (since players observe again that they both defected in the 

last ml time-steps). We can then define x as the number of times that mlBC has to 

be revisited after it has been abandoned before stable cooperation is reached, and 

y as the number of times that mlBD has to be revisited after it has been abandoned 

before stable defection is reached. As an example, when AT > T, if both players 

happen to cooperate when they observe mlBC for the first time, then they will 

both experience mlBC for the second time in the following time-step. Both of 

them will then defect (2
nd

 visit to mlBC), and in doing so will abandon mlBC. If 

mlBC is then revisited (3
rd

 visit), it will never be left again. In this hypothetical 

example, the number of times x that mlBC had to be revisited after it was 

abandoned before stable cooperation was reached was 1. This information is 

included in Table 5-1 and its significance will be explained later. 

 

When the simulation locks in to a cycle (and it necessarily does), the states that 

make up the cycle are repeatedly visited, leading to outcomes shown in the “4
th

 

visit and onwards” column in Table 5-1. Looking at that column, we can identify 

two values for the aspiration threshold AT that make a particularly important 

difference: Sucker and Punishment.  

• When AT > Sucker, simulations lock in to cycles which are necessarily 

made up of bilateral decisions (both players cooperate or defect at the same 

time), since if a player receives the Sucker payoff in any situation, they will 

never cooperate again in that situation. In this sense our players are 

particularly unforgiving. Players with aspiration thresholds greater than 

Sucker cannot be systemically exploited. The importance of this will be 

discussed later.  

• When AT > Punishment, there is a qualitative jump in terms of average 

cooperation rates. This is because if AT > Punishment, when both Players 
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defect the first time they experience a certain state of the world, they will 

end up cooperating in that state, but they will end up defecting if AT ≤ 

Punishment. 

 

Taking into account the two previous points and looking at the “4
th

 visit and 

onwards” column in Table 5-1, one could then think that average cooperation 

rates should be 25% if AT ≤ Punishment and 50% if AT > Punishment regardless 

of the Memory Length, but one would be wrong. Figure 5-3 shows the importance 

of aspiration thresholds and how they can modify the effect of the memory length. 

  

Cooperation Rates vs Memory Length
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Figure 5-3. Average cooperation rates when modelling two players with Memory Length ml and 

Aspiration Threshold AT, playing the PD. The average cooperation rate shows the probability of 

finding both Players cooperating once they have finished the learning period (i.e. when the run 

locks in to a cycle). The values represented for ml = 1 have been computed exactly. The rest of the 

values have been estimated by running the model 10,000 times with different random seeds. All 

standard errors are less than 0.5 %.  

 

The interactions between the aspiration threshold and the memory length can be 

explained by taking into account two factors. Both factors are related to the fact 

that, as the memory length increases, the number of possible perceived states of 

the world grows exponentially and it becomes less likely for any given state of the 

world to be revisited. From now on let us refer to each payoff by its initial letter. 

 

 97



1. The first factor concerns only the relative frequency of stable bilateral 

cooperation and stable universal defection
27

. This factor is present for any AT > S 

and represents a bias towards cooperation. Looking at Table 5-1, one could expect 

stable bilateral defection to be three times more likely than stable bilateral 

cooperation if S < AT ≤ P, and as likely as stable bilateral cooperation if AT > P. 

However, as the memory length increases, there is a certain bias towards stable 

bilateral cooperation. For the simulation to lock in to stable bilateral cooperation, 

it is required that a bilateral decision (a bilateral cooperation if  

S < AT ≤ P) follows the first visit to the state of the world formed by ml bilateral 

cooperations (mlBC) and that the same state of the world mlBC is revisited x more 

times after it is abandoned; similarly, stable bilateral defection requires a 

unilateral decision (or bilateral defection if S < AT ≤ P) following the first visit to 

the state of the world formed by ml bilateral defections (mlBD) and y more visits 

to that state of the world mlBD after it is abandoned. As we can see in Table 5-1, 

except for the trivial case
28

 where AT ≤ S, the average x is always less than the 

average y for any given aspiration threshold. For high values of the memory 

length, revisiting a state can take a very long time and the fact that stable bilateral 

cooperation needs fewer visits (x) to settle down than stable bilateral defection 

does (y) is an important bias towards the frequency of stable bilateral cooperation. 

 

2. The second factor explains why average cooperation rates not only fail to 

increase, but actually decrease with memory length for S < AT ≤ P and R < AT ≤ 

T. This factor is present for S < AT ≤ T and it represents a bias towards 

cooperation if P < AT ≤ R, and a bias towards defection if S < AT ≤ P or R < AT ≤ 

T. For any AT > S, the simulation ends up in a cycle of bilateral decisions. 

Therefore, it is crucial to study whether there is a bias towards cooperative 

bilateral decisions (CC) or towards defective bilateral decisions (DD) in the 

players’ learning process. Table 5-1 shows the history of decisions made by the 

players having observed any particular state of the world for different aspiration 

thresholds. The first imbalance between CC and DD for every value of AT has 

                                                   

27 This effect is explained in detail by Izquierdo et al. (2003). 

28 If the Aspiration Threshold does not exceed Sucker, Agents repeat the same decision that they 

made at random the first time they visited a certain state of the world whenever they visit the same 

state again. 

 98 



been shadowed (e.g. if S < AT ≤ P the first imbalance occurs in the second visit, 

where DD is three times more likely to happen than CC). Imbalances in the earlier 

visits to a state of the world are more important because those in later stages 

might never materialise if a cycle is reached before they can occur. Imbalances in 

the component parts of the state of the world (CC and DD) make certain states of 

the world more likely to occur than others, hence leading to biases in the 

cooperation rate. What is not obvious is why the importance of such imbalances 

(in terms of reward rates) increases with the value of memory length. This is so 

because, even ignoring the fact that some states of the world are more likely to 

occur than others, not all states of the world are equally likely to form part of a 

cycle; some states can form cycles more easily than others
29

, and their relative 

frequency depends on the memory length. This is certainly the case for mlBC and 

mlBD. Not only are they the only states of the world that can form cycles just by 

themselves (assuming AT > S), but they also need fewer revisits to settle than the 

rest of the possible states of the world (see previous paragraph). Roughly half of 

the simulation runs reported in this paper with AT > S ended up in cycles made up 

by either mlBC or mlBD. This means that an imbalance between the frequency of 

mlBC and mlBD can affect the reward rate substantially. The imbalance between 

mlBC and mlBD given an imbalance between CC and DD does depend on the 

memory length. To clarify this, assume that DD is always z times more likely than 

CC; then mlBD will be z
ml

 times more likely than mlBC. This analysis is not a 

proof since successive states of the world are not independent, but it clarifies why 

imbalances gain importance as the value of the memory length increases. As we 

can see in Table 5-1, if S < AT ≤ P or R < AT ≤ T, the imbalance is towards the 

defective bilateral decision, making mlBD more likely to occur relative to mlBC 

as memory length increases, and thus reducing the average cooperation rate. On 

the other hand, if P < AT ≤ R, the imbalance is towards cooperation. 

 

The summary of the effect of each of the two factors depending on the AT 

outlined above is shown in Table 5-2, together with the total effect found in the 

simulations. We have not yet proved that the two effects explained here are the 

only operating factors. 

                                                   

29 Or, conversely, some cycles comprise fewer different states of the world than others. 
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 AT ≤ S S < AT ≤ P P < AT ≤ R R < AT ≤ T T < AT 

Effect of 

factor 1 
No bias 

Bias towards 

cooperation 

Bias towards 

cooperation 

Bias towards 

cooperation 

Bias towards 

cooperation 

Effect of 

factor 2 
No bias 

Bias towards 

defection 

Bias towards 

cooperation 

Bias towards 

defection 
No bias 

… … … … … … 

Total effect No bias 
Bias towards 

defection 

Bias towards 

cooperation 

Bias towards 

defection 

Bias towards 

cooperation 

Table 5-2. Effect on average cooperation rates of each of the two factors outlined in the text above 

depending on the value of AT, and results from the simulation runs. 

 

It is clear that in CBR, not only what is learnt, but the actual process of learning 

can be of major importance, and aspiration thresholds play a crucial role in that 

process. Consider, for example, the difference between the cases where P < AT ≤ 

R and where R < AT ≤ T. In both cases, players will learn to cooperate in any 

given state of the world if they happen to make the same decision the first time 

they visit that state, and they will end up defecting in that situation otherwise. 

Therefore, for those two values of AT, we could expect average cooperation rates 

to be the same or at least similar. However, because the actual process of learning 

is different, differences in average cooperation rates are substantial and get larger 

as the memory length increases (see Figure 5-3). 

Importance of a common perception of the state of the world 

To study the importance of having a shared perception of the state of the world in 

the PD, we studied the outcome of the game when played by players with partial 

representations of the state of world: players who only look at the other player’s 

actions (only descriptor D1) and players who only look at their own actions (only 

descriptor D2). In both these cases, the two players may perceive the state of the 

world differently. Figure 5-4 shows the results obtained for AT > T. The results for 

other aspiration thresholds are very similar
30

 so they are omitted.  

                                                   

30 Except, again, for the trivial case where AT ≤ S, in which the average cooperation rate is always 

25%. 
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Figure 5-4. Average cooperation rates when modelling two players with Memory Length ml, 

Aspiration Threshold greater than Temptation, and with 3 different representations of the state of 

the world (D1, D2, and D1&D2), playing the PD. The values represented for ml = 1 have been 

computed exactly. The rest of the values have been estimated by running the model 10,000 times 

(ml = 2, 3, 4) or 1,000 times (ml = 5, 6) with different random seeds. All standard errors are less 

than 1%. 

 

The difference in terms of average cooperation rate between the complete 

representation of the state of the world (D1&D2) and the two incomplete 

representations of the state of the world (D1, and D2) is clear and it becomes 

larger the greater the value of memory length ml is. When both the player’s own 

decisions and the other player’s decisions form the perceived state of the world 

(D1&D2) the average cooperation rate is much higher than in the other cases.  

 

As we saw in Table 5-1, except in the trivial case where AT ≤ S, players will never 

cooperate again in a given state of the world after having received the Sucker 

payoff in that state. When using either of the two incomplete perceptions of the 

state of the world, there are sets of situations that are represented by the same 

perceived state of the world for one player but by different perceived states of the 

world for the other. The size of such sets of situations increases as the memory 

length ml increases. In these sets of situations, one of the players will make 

several decisions at random in situations which they perceive as novel, but which 

are represented by one single perceived state of the world for the other player. 
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This fact strongly increases the chances of the latter player getting a Sucker payoff 

and therefore not achieving a cooperative outcome.  

5.4.2. The Tragedy of the Commons game 

Aspiration Thresholds 

The TC game is more complex to analyse than the PD since at any given time in 

the simulation players have not necessarily visited what they perceive as a distinct 

situation the same number of times
31

. Therefore, in a given time-step some 

players may be making decisions at random while some others may not. This 

means that we cannot build a table like Table 5-1 for the TC game. 

 

Figure 5-5 shows the results obtained in the TC game when played by 10 players 

with memory length ml = 1, for different values of M (maximum number of 

defectors for which the reward is given). Similar results have been obtained when 

the game is played by 5 and by 25 players. 
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Figure 5-5. Average reward rates for different values of M in the Tragedy of the Commons game 

played by 10 Players with Memory Length ml = 1. Each represented value has been estimated by 

running the model 1,000 times. All standard errors are less than 1.5%. 

                                                   

31 Recall that players know only whether they cooperated or defected, and how many others 

defected. In the TC game, the information provided to the players is thus not complete in the sense 

that they cannot identify who is defecting, as they could in the PD (since there was only one other 

player). 
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Figure 5-5 shows that levels of cooperation strongly depend on the maximum 

number of defectors for which the reward is given (M). When the requirement is 

too demanding (low values of M), levels of cooperation tend to be low and the 

reward is not usually given. On the other hand, for moderate and high values of M 

(M ≥ 6), the reward is almost always given
32

. If players have aspiration thresholds 

greater than Def-P then the reward will be given more often than if they choose at 

random (AT ≤ Coop-P). The highest levels of cooperation are achieved when the 

aspiration thresholds are just above Def-P. Levels of cooperation then decrease as 

aspiration thresholds separate from the optimal value.  

Importance of a common perception of the state of the world 

To test the importance of a common perception of the state of the world, we put 

our players on a toroidal 2x5 grid so they could only observe their most 

immediate five neighbours in their Moore neighbourhood of radius 1. Results are 

shown in Figure 5-6.  
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Figure 5-6. Average reward rates for different values of M in the Tragedy of the Commons game 

played by 10 Players with Memory Length ml = 1. Every player A can observe other 5 players 

only, who are the only ones that can observe player A. Each represented value has been estimated 

by running the model 1,000 times. All standard errors are less than 1.5%. 

                                                   

32 When the game is played by 25 Agents, average reward rates are greater than 80% if M ≥ 15 and 

greater than 99% if M ≥ 19, for any aspiration threshold. 
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When players can observe only their local neighbourhood, the range of values of 

M to which the reward rate is sensitive is shifted and squeezed to the right. The 

use of local neighbourhoods sharpens the global movement from defection to 

cooperation. When players can only observe their neighbours, their global 

response to changes in the reward programme (parameterised by M) is not smooth 

anymore. Instead, the global behaviour is now better characterised by a hard 

threshold whose particular value depends on the aspiration threshold of the 

players forming the society. When players can only observe their neighbours there 

is a very narrow range of values for M where a very small change can make a 

huge difference. 

 

As in the previous case, the highest levels of cooperation are achieved when the 

aspiration thresholds are just above Def-P. It is once again clear from these results 

that in CBR, not only what is learnt is important, but also how it is learnt, and that 

aspiration thresholds play a crucial role in that process. 

5.5. Discussion of the results obtained with the CBR model 

The experiments conducted with the CBR model show that cooperation can 

emerge from the interaction of selfish and unforgiving (but satisficing) case-based 

reasoners. We are aware that the assumption that Agents make their decisions at 

random when confronted with a new situation is difficult to maintain. However, 

Table 5-1 shows that when AT > Maximin
13

, any positive correlation between the 

random decisions taken by the Agents will tend to increase levels of cooperation. 

Similarly, we would expect negative correlations to lead to less cooperative 

outcomes. The experiments have also shown that the optimal value of the 

aspiration threshold is just above Maximin, and that sharing a common perception 

of the state of the world strongly increases levels of cooperation.  

 

More importantly, the experiments conducted have revealed a concept of 

equilibrium which is more relevant than the Nash equilibrium for repeated games 

played by case-based reasoners: strictly undominated outcomes (or individually-

rational outcomes). The concept of strictly undominated outcome is defined for 

one single stage of any game. Its defining property is that no player can be 
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guaranteed a higher payoff by changing their decision
33

 (i.e. every player is 

getting at least their Maximin). The concept of strictly undominated outcome is 

weaker (i.e. less restrictive) than the Nash equilibrium: A Nash equilibrium is 

always a strictly undominated outcome but the reverse is not necessarily true. In 

particular, in the one-shot PD, bilateral cooperation is a strictly undominated 

outcome while it is not a Nash equilibrium.  

 

As opposed to the concept of Nash equilibrium (which makes the assumption that 

the other players will keep their strategies unchanged), the concept of strictly 

undominated outcome accounts for every possible action that the other players 

might take. A strictly undominated outcome as equilibrium concept is best defined 

by negation: if a certain player perceives that by changing their strategy they will 

always get a higher payoff no matter the other players’ response, then the player 

has a clear incentive to deviate from that outcome, so that outcome cannot be an 

equilibrium (it is strictly dominated by other outcomes). If, on the contrary, no 

player has such incentive, the outcome could be an equilibrium. It comes as no 

surprise that this equilibrium concept is based on outcomes rather than strategies, 

since case-based reasoners place the emphasis on the case rather than on the rule.  

 

In the PD, the only strictly undominated outcomes are the two bilateral decisions. 

In the TC the only strictly undominated outcome in which the reward is not given 

is universal defection; all the outcomes in which the reward is given are strictly 

undominated. 

 

It can be mathematically shown that all the non-trivial simulations (i.e. those 

where aspiration thresholds are above the lowest payoff) reported in this chapter 

must end up in cycles made up of strictly undominated outcomes (Izquierdo et al., 

                                                   

33 A slightly more restrictive concept is that of an undominated outcome, in which no player can 

be guaranteed the same or a higher payoff by changing their decision. The concept of undominated 

outcome as equilibrium implies that players deviate from an outcome only if it is certain that they 

will not be worse off by doing so, whereas the strictly undominated concept implies that players 

move away from an outcome only if it is certain that they will be better off by doing so. The 

concept of undominated outcome as equilibrium is neither weaker nor stronger than the Nash 

equilibrium. 
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2004). As we have seen in the previous section, the actual selection among 

different strictly undominated outcomes can be strongly path-dependent and 

depends on the specific type of CBR algorithm that players use.  

 

If their aspiration threshold is high enough, players in the CBR model will not 

accept outcomes in which they are guaranteed a higher payoff by changing their 

decision once their learning process is finished. However, they are quite naive in 

the sense that they are not able to infer that the game has locked in to a persistent 

cycle. In other words, they are not able to infer that the other players will not 

accept outcomes where they are not getting their Maximin either. We can 

conjecture what would happen if the players were sophisticated enough as to 

infer, through repeated interaction and learning, the fact that the rest of the players 

are also non-exploitable (i.e. they do not accept outcomes where they get a payoff 

lower than Maximin). Assuming (or learning) that the rest of the players are not 

exploitable can then enable a player X to infer that certain outcomes which give 

payoffs higher than Maximin to this player X will not be sustainable (because they 

do not yield payoffs higher than Maximin to some other player). This inference 

can make an outcome which was not initially strictly dominated in effect be 

dominated. In other words, the concept of strict dominance can be applied to 

outcomes iteratively just as it is applied iteratively to strategies.  

 

As an example, we have seen that players with a high enough aspiration threshold 

who play the PD will end up in a cycle made up of bilateral cooperations and/or 

bilateral defections (the only two strictly undominated outcomes; see Figure 

5-7b). If through repeated interaction the players were able to infer that the game 

will not have any other outcome (because one of the players will not accept it), 

then they could eliminate the unilateral outcomes from their analysis and apply 

the concept of outcome dominance for the second time to the (two) remaining 

possible outcomes. For this to happen, it would have to be mutual belief
34

 that the 

opponent is not exploitable either. When only bilateral decisions are confronted, 

                                                   

34 A proposition A is mutual belief among a set of players if each player believes that A. Mutual 

belief by itself implies nothing about what, if any, beliefs anyone attributes to anyone else 

(Vanderschraaf and Sillari, 2007). 
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the only strictly undominated outcome is bilateral cooperation (see Figure 5-7c). 

When confronted with bilateral cooperation as the only alternative, bilateral 

defection is not a strictly undominated outcome anymore, since the two players 

are guaranteed a higher payoff by changing their decision. In other words, 

bilateral cooperation is the only outcome that survives two steps of outcome 

dominance in the PD. In the TC game all the outcomes in which the reward is 

given survive two steps of outcome dominance, and they are the only outcomes 

that do so. It can be shown that in any game, after applying any number of steps 

of outcome dominance, the remaining outcomes are not Pareto-dominated by any 

of the outcomes which have been eliminated. 

 

 

Figure 5-7. Elimination of dominated outcomes. Figure b shows the remaining outcomes after 

having applied one step of outcome dominance. Figure c shows the remaining outcomes after 

having applied two steps of outcome dominance. Red crosses represent outcomes which are 

unacceptable for player Red (row), blue crosses represent outcomes which are unacceptable for 

player Blue (column), and black crosses represent outcomes eliminated in previous steps. 

 

How players would be able to move from bilateral defection to bilateral 

cooperation, if indeed they were, is not clear and is a matter for further research. 

We conjecture that this could be achieved by signalling processes to promote 

cooperation, or it could emerge from a form of learning by induction, since once 

the simulation has locked in to a cycle, it does show a general rule or pattern 

(players get a higher payoff when they cooperate than when they defect). Perhaps 

induction would then be produced by the simple forgetting of an episode’s details 

and the consequent blurring together in memory of that episode with other similar 

episodes (Reisberg, 1999). In any case, the movement from bilateral defection to 

bilateral cooperation would require a non-trivial degree of coordination. 
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We have seen that if CBR players have a high enough aspiration threshold they 

are not exploitable in the sense that they do not accept outcomes where they are 

not getting at least Maximin. We find that a more useful definition of rationality in 

games is that of non-systemic-exploitability. Rational players are not systemically 

exploitable. According to this definition, cooperation emerges among selfish 

rational players as soon as it becomes mutual (not necessarily common) belief that 

the game is being played among rational players. Using Macy’s words, 

cooperation would then emerge among self-interested agents “not from the 

shadow of the future but from the lessons of the past” (Macy, 1998). 

5.6. Trembling hands process: the N-CBR model 

While useful as a “tool to think with”, the CBR model is admittedly rather 

unrealistic in the sense that simulations end up necessarily with players locked in 

to a persistent cycle. In this section we consider an extension of the CBR model 

where players may suffer from “trembling hands” (Selten, 1975) –i.e. they 

occasionally experiment (or make mistakes) with small probability. Importantly, 

we also significantly relax the assumptions made about what defines a perceived 

state of the world and about the decision-making algorithm used by players. These 

changes make the model more general, slightly more realistic, and the 

introduction of noise allows us to make more specific predictions. In particular, as 

in chapter 4, we will characterise the set of outcomes where the system spends a 

significant proportion of time in the long-term when players experiment with very 

low probability, i.e. the set stochastically stable outcomes. Such a set of outcomes 

is a subset of the set of outcomes that can be observed in the model without 

experimentation. As an example, we will see that in the prisoner’s dilemma, 

mutual cooperation belongs to the latter set but not to the former. 

 

The definition of a case is substantially more general in the noisy CBR model 

(henceforth N-CBR) than in the CBR model. A case (an experience) lived by 

player i in the N-CBR model comprises: 

• The time-step t when the case occurred. 

• The perceived state of the world at the beginning of time-step t, which is 

determined by a subset of the decisions undertaken by every player in the 

game (potentially all decisions by all players, including the case-holder i) in 
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the preceding mli (for memory length) time-steps. (Note that different players 

may have different memory lengths.) When comparing the N-CBR model 

with the CBR-model it will be assumed that players in the N-CBR model 

build their perceived state of the world as in the CBR model (see section 5.3). 

• The decision made by the case-holder in that situation, in time-step t, having 

observed the state of the world in that same time-step. 

• The payoff that the case-holder obtained after having decided in time-step t.  

As in the CBR model, players in the N-CBR model decide what action to select 

by retrieving the most recent case which occurred in a similar situation for each 

one of the actions available to them. This set of cases, which is potentially empty, 

is denoted Ci. A case is perceived by the player to have occurred in a similar 

situation if and only if its state of the world is a perfect match with the current 

state of the world observed by the case-holder. The definition of the decision-

making algorithm in the N-CBR model is also substantially more general than in 

the CBR model. In a certain situation (i.e. for a given perceived state of the world) 

any particular player i will face one of two possibilities: 

• Not every action available to player i is represented in Ci. Given the fact that 

players in the N-CBR model suffer from trembling hands (this is explained in 

detail below), this is a temporary situation. No assumptions are made in the 

N-CBR about how players make decisions in this situation. When comparing 

the N-CBR model with the CBR-model it will be assumed that players in the 

N-CBR model use, for this situation, the same decision-making algorithm as 

in the CBR model (see section 5.3). 

• Every action available to player i is represented in Ci. As in the CBR model, 

in this situation player i selects randomly among those actions with the 

highest payoff obtained in the set Ci. 

 

As mentioned before, we also assume that players suffer from trembling hands: 

there is some small probability ε·λi  ≠ 0 that player i selects her action randomly 

instead of following the algorithm above. The ratio λi/ λj determines player i’s 

relative tendency to experiment compared with player j’s. The factor ε is a general 

measure of the frequency of experimentation in the whole population of players. 

The event that i experiments is assumed to be independent of the event that j 
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experiments for every i ≠ j. Different players may experiment in different ways, 

but it is assumed that player i’s probability of selecting any action a available to 

her when experimenting (qi(a)) is non-zero, potentially different for different 

actions, and independent of time for all i; these conditions can be relaxed to some 

extent (Young, 1993). This completes the specifications of the N-CBR model. 

 

This chapter will present some mathematical results valid when the overall 

probability of experimentation ε tends to zero; all such results are independent of 

λi and of the particular way each of the players experiments. When presenting 

simulation results, it will be assumed that λi = 1 for all i, and that players select 

one of their actions randomly and without any bias when experimenting. 

5.7. Dynamics of the N-CBR model 

The following explains why the N-CBR model has a unique limiting distribution. 

First, note that any N-CBR model can be formulated as a Markov chain where the 

state of the system is defined by every player’s set of most recent cases that 

occurred in every possible perceived state of the world for each one of the actions 

available to her. Given the definition of the set of different states of the world 

possibly perceived by every player and the nature of the trembling hands noise, it 

is clear that this Markov chain is finite and has a unique recurrent class (where all 

actions available to each player i are represented in the set Ci for every state of the 

world possibly perceived by i). The trembling hands noise guarantees that it is 

possible to go from any recurrent state to any other recurrent state in a finite 

number of steps. This basically means that the N-CBR model can be formulated 

as a uni-reducible Markov chain, which has a unique limiting distribution (Janssen 

and Manca, 2006, Corollary 5.2, pg. 117).  

 

Thus, note that both the CBR and the N-CBR model can be formulated as finite-

state discrete-time Markov chains, but there is a crucial difference between them: 

the CBR model will end up in one of many possible cycles (the period of some of 

these cycles is potentially equal to one), whereas the N-CBR process has one 

unique limiting distribution. Thus, when players suffer from trembling hands, the 

indefinite cycles where players were locked in the CBR model are broken, and 

outcomes that occurred infinitely often in the CBR process (like mutual 
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cooperation in the Prisoner’s Dilemma) turn out not to be robust to small 

trembles. In the following two sections we study the transient and the asymptotic 

behaviour of the N-CBR process. 

5.7.1. Transient dynamics 

To explore the transient dynamics of the N-CBR model we focus on the particular 

N-CBR process merely consisting of adding noise to the CBR model, and we 

study the Prisoner’s Dilemma (PD). As one would expect, the short-term 

dynamics of this N-CBR process –i.e. when only a few trembles have taken 

place– are initially similar to the dynamics of the CBR process. How many “a few 

trembles” are depends on the players’ memory and aspiration thresholds; how 

quickly those “few trembles” occur depends on the probability of trembles 

happening. Figure 5-8 shows the proportion of outcomes where both players are 

cooperating (cooperation rate) in the PD for different values of both players’ 

memory mli = ml and aspiration threshold AT, and for different values of the 

overall probability of trembles ε. The cooperation rates shown in Figure 5-8 are 

calculated over time-steps 1001 to 1100.  

 

A word of caution about Figure 5-8 is that, because it shows the data collected at a 

predetermined range of time-steps (1001–1100), it represents the short-term 

behaviour of those series for which 1000 time-steps are not enough to approach 

their long-term behaviour (e.g. mli = 5) but, on the other hand, it represents the 

long-run behaviour for some other series (e.g. those series for which 1000 time-

steps are enough to reach it, like series with mli = 0, and ε ≠ 0.001).  
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Figure 5-8. Average proportion of outcomes where both players are cooperating in the Prisoner’s 

Dilemma (PD), calculated over 100 time-steps starting at time-step 1001, and using 500 simulation 

runs for each data point. The payoffs in the game are represented by its initial letter: S for Suckers, 

P for Punishment, R for Reward, and T for Temptation. 

 

5.7.2. Asymptotic behaviour 

Once enough trembles have taken place in every situation distinctively perceived 

by any player, the dynamics of the N-CBR model approach its asymptotic 

behaviour. The following proposition shows that a very broad range of N-CBR 

models share the same asymptotic behaviour:  

 

Proposition 5-1: Assuming that every player has a common perception of the state 

of the world
35

, the asymptotic behaviour of the N-CBR process is independent: 

1. of the specific structure of the perceived state of the world (i.e. the 

algorithm used to construct it), and  

2. of the decision-making algorithm employed by each player i when she has 

not explored every action available to her in a similar situation (i.e. when 

not every action available to player i is represented in Ci).  

 

                                                   

35 This means that any two situations that look the same to one player will also look the same to 

every other player and any two situations that look different to one player will also look different 

to every other player. 
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Proposition 5-1, which is proved in Appendix B, implies that the asymptotic 

dynamics of all the simulations shown in Figure 5-8 are independent of the 

players’ memory (see point 1 in the proposition) and of their aspiration thresholds 

(see point 2 in the proposition). Thus, for example, the long-run cooperation rate 

in the PD (calculated analytically) is 4.985·10
–2

 for ε = 0.1, 4.978·10
–3

 for  

ε = 0.01, and 4.998·10
–4

 for ε = 0.001. As we can see in Figure 5-8, the series with 

low memory (mli = 0 or mli = 1) and high probability of trembles (ε = 0.1 or  

ε = 0.01) quickly converge to their limiting values; for those parameterisations 

1000 time-steps are sufficient to reach the long-run behaviour of the process. If 

we represented the data in Figure 5-8 after a sufficiently high number of time-

steps, the value of every data point with ε ≠ 0 would only depend on the 

probability of trembles ε (and on λi and qi(·) generally), and it would approach the 

analytically calculated values presented above (calculated for λi = 1, and qi(·) 

unbiased). Something which is clear in Figure 5-8 is that whereas mutual 

cooperation usually forms part of the cycles in the CBR model, it cannot be 

sustained in the long-term when small trembles occur. 

 

To summarise, the dynamics of the N-CBR model follow a transition from a very 

path-dependent distribution similar to that corresponding to the CBR model, to a 

very different distribution which is only dependent on the probabilities with which 

trembles occur.  

5.7.3. Stochastic stability 

Having seen that the asymptotic behaviour of the N-CBR model is only dependent 

on the structure of trembles (assuming a common perception of the state of the 

world), a natural question is: What outcomes can be observed with probability 

bounded away from zero in the long-run as the probability of trembles ε tends to 

zero? Following Young (1993), such outcomes will be called stochastically 

stable. It turns out that whether an outcome is stochastically stable or not is 

independent of λi and of qi(·) (Young, 1993).  

 

Young (1993) provides a general method to identify stochastically stable states in 

a wide range of models by solving a series of shortest path problems in a graph. In 

our model there are more states than outcomes, but identifying stochastically 
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stable outcomes when the set of stochastically stable states is known is 

straightforward. Young’s method uncovers an important feature of stochastic 

stability: stochastic stability selects states which are easiest to flow into from all 

possible states of the system. This contrasts with most notions of equilibrium 

based on full rationality. As Young (1993) notes, risk dominance “selects the 

equilibrium that is easiest to flow from every other equilibrium considered in 

isolation”. Similarly, Nash stability is determined only by unilateral deviations 

from the equilibrium. 

 

In this section we present some features to identify stochastically stable outcomes 

when reasoning is based on singletons of distinct prior outcomes. We start with a 

necessary condition for outcomes to be stochastically stable in N-CBR models (it 

is not assumed that players must share a common perception of the state of the 

world). 

 

Proposition 5-2: In all N-CBR models, every stochastically stable outcome is 

individually rational. 

 

The proof of Proposition 5-2 can be found in appendix B. Proposition 5-2 is a 

useful necessary condition to identify outcomes which cannot be stochastically 

stable but, except in very simple games (e.g. see Figure 5-9A), it is not sufficient 

to characterise the set of stochastically stable outcomes. To try to identify features 

that make outcomes stochastically stable we developed a computer program in 

Mathematica© that calculates the exact long-run probability that any 2-player 

game is in each possible outcome when the probability of trembles tends to zero. 

To calculate such probabilities, we did have to assume that players share a 

common perception of the state of the world. Using the computer program, we 

came to the following conclusions: 

• Stochastically stable outcomes are not necessarily Nash equilibria (e.g. see 

the game of Chicken in Figure 5-9B).  

• In fact, some players in some stochastically stable outcomes may be 

choosing strictly dominated strategies (e.g. see the game represented in 

Figure 5-9C). 
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• Nash equilibria are not necessarily stochastically stable (e.g. see the game 

of Stag Hunt in Figure 5-9D).  

• Stochastically stable outcomes can be Pareto dominated by outcomes 

which are not stochastically stable (e.g. see the Prisoner’s Dilemma game 

in Figure 5-9E). However, it can be proved that stochastically stable 

outcomes cannot be Pareto dominated by outcomes which are one tremble 

away and which are not stochastically stable. Thus, in the game 

represented in Figure 5-9C, for example, if we knew that outcome (3,3) is 

stochastically stable, then we could infer that (4,4) would have to be 

stochastically stable too. 

• Stochastically stable outcomes can Pareto dominate outcomes which are 

not stochastically stable (e.g. see game represented in Figure 5-9A). 

 

 

Figure 5-9. Stochastically stable outcomes (highlighted in white) in various 2-player 2-strategy 

games. Payoffs are numeric for the sake of clarity, but only their relative order for each player is 

relevant. 

 

Intuitively, note that trembles can destabilise outcomes in two different ways: by 

giving the deviator a higher (or equal) payoff, or by giving any of the non-

deviators a lower payoff
36

. The first possibility is related to the concept of Nash 

equilibrium, whilst the second is related to the concept of “protection” (Bendor et 

al., 2001b). As explained in section 4.7 when studying the Bush-Mosteller 

learning algorithm, an outcome is protected if unilateral deviations by any player 

do not hurt any of the other players. Bendor et al. (2001b) show that under a very 

wide range of conditions, reinforcement learning converges to individually 

rational outcomes which are either Pareto optimal or a protected Nash 

                                                   

36 Non-deviators could get a lower payoff after a tremble and still keep choosing the same action if 

the payoff obtained when the tremble occurs is higher than any of the payoffs that the non-deviator 

obtained when she last selected each of the other possible actions. 
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equilibrium. The same is not true for the model we study in this chapter (see the 

game represented in Figure 5-9F), but protected strict Nash equilibria are very 

relevant here too (as they were proved to be in the Bush-Mosteller model too; see 

section 4.7): if there is a protected strict Nash equilibrium in a game, then there is 

at least one state which is robust to any one single tremble, and the outcome that 

follows such a state in the absence of trembles is the protected strict Nash 

equilibrium. In fact, it can be shown that the only stochastically stable outcome in 

any 2-player 2-strategy game with a (necessarily unique) protected strict Nash 

equilibrium is such equilibrium. The extension of this result to more general 

games is left for future work. 

5.8. Conclusions of this chapter 

This chapter has explored the implications in strategic contexts of reasoning by 

single and distinctive past experiences as opposed to reasoning by abstract rules 

(strategies). While the short-term dynamics of models where players base their 

decisions on past experiences are very dependent on the specifics of such models, 

a very wide range of models behave similarly in the long-term. In particular, a 

large collection of models where players experiment from time to time share the 

same set of stochastically stable outcomes (outcomes that persist in the long-run 

when trembles are very rare). 

 

Stochastically stable outcomes are necessarily individually rational, but a clear 

relationship between them and Nash equilibria, or Pareto optimality, has not been 

found. Nash equilibria may, or may not, be stochastically stable, and 

stochastically stable outcomes may, or may not, be Nash equilibria. The same 

applies for Pareto optimal outcomes. A concept that is indeed closely related to 

stochastic stability is the concept of protected strict Nash equilibrium. In 

particular, in 2-player 2-strategy games with a protected strict Nash equilibrium 

(which is necessarily unique), the only stochastically stable is such an 

equilibrium. The importance of the impact of unilateral deviations on non-

deviators for the stability of outcomes was also highlighted in chapter 4. This 

seems to be a recurring observation in learning game theory: if a unilateral 

deviation harms another player, the non-deviator who has been hurt may choose 

to select a different strategy in the subsequent period, thus compromising the 
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stability of the original strategy profile. A unilateral deviation that does not hurt 

any non-deviator is less likely to trigger a change of strategy in the non-deviators. 

 

In broader terms, this chapter has proposed a new algorithm to narrow the set of 

expected outcomes in games. This method, i.e. iterative elimination of dominated 

outcomes, is a logical process through which outcome-based reasoners can arrive 

at sensible (i.e. Pareto optimal) outcomes in games. The only outcome that 

survives two steps of iterative elimination of dominated outcomes in the 

Prisoner’s Dilemma is mutual cooperation. Thus, this chapter has shown that 

reasoning by outcomes leads to solution concepts significantly different from 

those present in the classical game theory literature (where reasoning is conducted 

using strategies as the key concept). Interestingly, one could argue that there is no 

a priori logical argument why rationality in game theory should be defined in 

terms of strategies rather than outcomes. Players in game theory do select a 

strategy (rather than an outcome), but the payoff they receive (i.e. their measure of 

performance) is determined by the resulting outcome, which is only partially 

determined by their selection of strategy. Thus, when defining rationality in game 

theory, it seems as natural to define it in terms of outcomes as the key concept 

(i.e. rational players do not choose dominated outcomes), as to define it using 

strategies (i.e. rational players do not accept dominated strategies). Reasoning by 

outcomes may even be a more natural way of modelling real human behaviour. 

Admittedly, the definition of rationality by outcomes proposed here implies some 

dynamicity (note the sentence: “players do not accept dominated outcomes”), 

whereas the definition of dominance reasoning does not. However, it is also true 

that, as explained in section 2.2.2, the concept of dominance reasoning is hardly 

ever enough to narrow the set of expected outcomes in games significantly, and 

when stronger concepts of rationality based on strategies are brought into play, 

issues at least as worrying as those that may be raised when defining outcome-

based rationality often appear. These issues will be discussed further in chapter 7. 
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6.   Structural Robustness of Evolutionary Models in 

Game Theory♣ 

6.1. Introduction 

Naturally, the method that scientists have traditionally followed to advance our 

formal understanding of evolutionary social interactions has been to design and 

study models that were tractable with the tools of analysis available at the time. 

Until not long ago, such tools have derived almost exclusively from the realm of 

mathematics, and they have given rise to mainstream Evolutionary Game Theory 

(EGT). Mainstream EGT has proven to be tremendously useful (Weibull, 1995), 

but it is founded on many assumptions made to ensure that the resulting models 

could be mathematically analysed (e.g. infinite and homogeneous populations, 

random encounters, infinitely repeated interactions…). The aim of this chapter is 

to assess the extent to which some of these assumptions are affecting the 

conclusions obtained in mainstream EGT.  

 

The assumptions made in EGT for the sake of mathematical tractability have had 

important implications both in terms of the classes of systems that have been 

investigated, and in terms of the kind of conclusions that have been drawn 

concerning such systems.  

 

In terms of classes of systems, in order to achieve mathematical tractability, EGT 

has traditionally analysed idealised systems, i.e. systems that cannot exist in the 

real world (e.g. a system where the population is assumed to be infinite). 

Typically, mainstream EGT has also imposed various other assumptions that 

simplify the analysis, but which do not necessarily make the system ideal in our 

terminology (i.e. unable to exist in the real world). Some examples of common 

                                                   

♣ Some parts of the material presented in this chapter have been published in Izquierdo, L. R., 

Izquierdo, S. S., & Polhill, J. G. (2006), “EVO-2x2: a modelling framework to study the evolution 

of strategies in 2x2 symmetric games under various competing assumptions”, in Proceedings of 

the First World Congress on Social Simulation, Kyoto, Japan, Vol. 2, pp. 273-280, and in 

Izquierdo, S.S. and Izquierdo, L.R. (2006). On the Structural Robustness of Evolutionary Models 

of Cooperation. Lecture Notes in Computer Science 4224, pp. 172-182. 
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assumptions in EGT are: populations are well-mixed (each individual is equally 

likely to interact with any other individual), interactions are infinitely repeated, 

strategies are deterministic and there is a finite set of them, individuals are 

selected with probabilities proportional to their fitness, and invasions are 

homogenous and arbitrarily small. Applying mainstream EGT to non-idealised 

systems can be very problematic because the validity for non-idealised systems of 

conclusions drawn from extremely similar idealised systems is not as 

straightforward as one may think. As an example, Beggs (2002) demonstrates that 

when analysing some types of evolutionary idealised systems, results can be 

widely different depending on the order in which certain limits are taken: if one 

takes the limit as population size becomes (infinitely) large and then considers the 

limit as the force of selection becomes strong, then one obtains different results 

from those attained if the order of the limits is inverted. Thus, Beggs (2002) warns 

that “care is therefore needed in the application of these approximations”. 

 

The need to achieve mathematical tractability has also influenced the kind of 

conclusions obtained in mainstream EGT. Thus, mainstream EGT has focused on 

analysing the stability of incumbent strategies to arbitrarily small mutant 

invasions, but has not paid much attention to the overall dynamics of the system 

in terms of e.g. the size of the basins of attraction of different evolutionary stable 

strategies, or the average fraction of time that the system spends in each of them. 

 

Nowadays it has just become possible to start addressing the limitations of 

mainstream EGT outlined above. The current availability of vast amounts of 

computing power through the use of computer grids is enabling us to conduct 

formal and rigorous analyses of the dynamics of non-idealised systems through an 

adequate exploration of their sensitivity both to basic parameters and to their 

structural assumptions. These analyses can complement previous studies by 

characterising dynamic aspects of (idealised and non-idealised) systems beyond 

the limits of mathematical tractability. It is this approach that we follow in this 

chapter. 

 

The structure of this chapter is as follows: section 6.2 outlines the general research 

question that EGT is mainly concerned with, and explains how our approach can 
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complement the work conducted in mainstream EGT. Section 6.3 describes EVO-

2x2, a computer simulation modelling framework designed to formally assess the 

impact of various assumptions commonly made in mainstream EGT. The 

subsequent two sections illustrate the use and the usefulness of EVO-2x2 with a 

particular example. The specific application selected here is a study of the 

structural robustness of evolutionary models of cooperation. To put our work into 

context, section 6.4 provides a brief and critical review of some of the most 

relevant work conducted on the evolutionary emergence of cooperation within the 

realms of game theory. Section 6.5 summarises some of the most interesting 

results we have obtained and the method we followed to analyse and summarise 

them. Finally, section 6.6 presents the conclusions of this investigation. 

6.2. Overall research question and approach 

In very broad terms, the question that EGT tries to answer is usually of the form: 

“In a population of individuals who repeatedly interact with each other, what sort 

of behavioural traits are likely to emerge and be sustained under evolutionary 

pressures?”. Naturally, the answer to such a question may depend on a number of 

assumptions regarding population size, population structure (i.e. how individuals 

meet to interact), the specific nature of each interaction, the mechanisms through 

which natural selection occurs, and how mutations take place. In this chapter we 

present a formal modelling framework (EVO-2x2) designed to address this 

general question from different angles, i.e. using various different assumptions. 

EVO-2x2 provides a single coherent framework within which results obtained 

from different models can be contrasted and compared with analytical approaches. 

Thus, EVO-2x2 can be used to investigate the impact of various assumptions 

which may all be valid when trying to answer the general question posed above.  

 

EVO-2x2 implements a wide range of competing plausible assumptions, all of 

which are fully consistent with the most basic principles of the theory of 

evolution. Logically, the assumptions embedded in EVO-2x2 limit its 

applicability. The most stringent assumption in EVO-2x2 is arguably the fact that 

interactions are modelled as 2-player 2-strategy (2x2) symmetric games. We will 

see in the next section, however, that individuals in EVO-2x2 are explicitly and 

individually represented, so any simulation conducted in EVO-2x2 is a non-

 121



idealised system (i.e. a system that could potentially exist in the real world). This 

move towards greater realism implies some loss of mathematical tractability, e.g. 

closed-form analytical solutions for the systems modelled in EVO-2x2 are not 

readily available. Nevertheless, EVO-2x2 is simple enough so many insights can 

be gained by using the theory of stochastic processes to analyse the results 

obtained by performing many simulation runs with it, as will be shown later. The 

following section explains all the assumptions embedded in EVO-2x2 in detail. 

Subsequently we illustrate the use of EVO-2x2 by studying the structural 

robustness of evolutionary models of cooperation. 

6.3. Description of EVO-2x2 

EVO-2x2 is a computer simulation modelling framework designed to formally 

investigate the evolution of strategies in 2x2 symmetric games under various 

competing assumptions. EVO-2x2 enables the user to set up and run many 

computer simulations (effectively many different models) aimed at investigating 

the same question using alternative assumptions. The specific question to be 

addressed is: “In a population of individuals who interact with each other by 

repeatedly playing a certain 2x2 symmetric game, what strategies are likely to 

emerge and be sustained under evolutionary pressures?”.  

6.3.1. The conceptual model 

In this section we explain the conceptual model that EVO-2x2 implements. The 

information provided here should suffice to re-implement the same conceptual 

model on any platform. Figure 6-1 provides a snapshot of EVO-2x2 interface, 

which is included here to clarify the explanation of the model. The reader may 

also want to consider following the explanation of the model using it at the same 

time; EVO-2x2 is included in the Supporting Material of this thesis. We use bold 

red italicised arial font to denote parameter names. 
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Figure 6-1. Snapshot of the interface in EVO-2x2. 

Overview of EVO-2x2 

In EVO-2x2, there is a population of num-players players. Events occur in discrete 

time-steps, which can be interpreted as successive generations. At the beginning 

of every generation every player’s payoff (which denotes the player’s fitness) is 

set to zero. Then, every player is paired with another player, according to some 

customisable procedure (pairing-settings), to play a 2-player match.  

 

Each match consists of a number of sequential rounds (rounds-per-match). In each 

round, the two members of the pair play a symmetric 2x2 game once, where each 

of them can undertake one of two possible actions. These two possible actions are 

called cooperate (C) and defect (D). The action selected by each of the players 

determines the magnitude of the payoff that each of them receives in that round 

(CC-payoff, CD-payoff, DC-payoff, DD-payoff). The total payoff that a player obtains in 

a match is the sum of the payoffs obtained in each of the rounds.  

 

Players differ in the way they play the match, i.e. they generally have different 

strategies. The strategy of a player is determined by three numbers in the interval  

[0 , 1]:  

• PC: Probability to cooperate in the first round.  
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• PC/C: Probability to cooperate in round n (n > 1) given that the other player 

has cooperated in round (n – 1).  

• PC/D: Probability to cooperate in round n (n > 1) given that the other player 

has defected in round (n – 1).  

 

Once every player has played one –and only one– match (except when the pairing 

mechanism is round robin, as explained below), two evolutionary processes (i.e. 

natural selection (selection-mechanism) and mutation (mutation-rate)) come into play 

to replace the old generation with a brand new one. Successful players (those with 

higher payoffs) tend to have more offspring than unsuccessful ones. This marks 

the end of a generation and the beginning of a new one, and thus the cycle is 

completed.  

Parameters 

The value of every parameter in EVO-2x2 can be modified at run-time, with 

immediate effect on the model. This enables the user to interact closely with the 

model by observing the impact of changing various assumptions during the course 

of one single run.  

Population parameters 

num-players: Number of players in the population. This number is necessarily even 

for pairing purposes. 

set-initial-players: This is a binary variable that is either on or off. If on, every 

player in the initial population will have the same strategy, which is determined 

using the following parameters: initial-PC, initial-PC/C, and initial-PC/D. If off, the 

initial population of strategies will be created at random using a uniform 

distribution. 

Rounds and Payoffs 

rounds-per-match: Number of rounds in a match. 

CC-payoff: Payoff obtained by a player who cooperates when the other player 

cooperates too.  

CD-payoff: Payoff obtained by a player who cooperates when the other player 

defects.  
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DC-payoff: Payoff obtained by a player who defects when the other player 

cooperates.  

DD-payoff: Payoff obtained by a player who defects when the other player also 

defects. 

Pairing settings 

This parameter (pairing-settings) determines the algorithm that should be used to 

form pairs of players. There are three options: 

• random pairings: Pairs are made at random, without any bias. Every 

player plays one and only one match in a generation.  

• round robin: Every player is paired with every other player once, so every 

player plays exactly (num-players – 1) matches per generation.  

• children together: Players are paired preferentially with their siblings (and 

at random among siblings). Once all the possible pairs between siblings 

have been made, the rest of the players are paired at random. Every player 

plays one and only one match in a generation. This procedure was 

implemented because it seems plausible in many biological contexts that 

individuals belonging to the same family tend to interact more often 

among them than with individuals from other families. The algorithm is 

formally equivalent to simple applications of tags (Holland, 1993) in 

evolutionary models (see Hales, 2000). 

Evolutionary forces 

selection-mechanism: This parameter determines the algorithm used to create the 

new generation. There are four options: 

• roulette wheel: This procedure involves conducting num-players 

replications, which form the new generation. In each replication, players 

from the old generation are given a probability of being chosen to be 

replicated that is proportional to their total payoff (which denotes their 

fitness).  

• Moran process: In each time-step (i.e. generation), one player is chosen 

for replication with a probability proportional to its fitness. The offspring 

replaces a randomly chosen player (possibly its parent). Payoff totals are 

set to zero at the beginning of every time-step.  
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• winners take all: This method selects the player(s) with the highest total 

payoff (i.e. the “winners”). Then, for num-players times, a random player 

within this “winners set” is chosen to be replicated. The num-players 

replications constitute the new generation. Note that this mechanism 

(which is sometimes called “cultural imitation”, e.g. see Traulsen et al., 

2006) violates the proportional fitness rule. 

• tournament: This method involves selecting two agents from the 

population at random and replicating the one with the higher payoff for the 

next generation. In case of tie, one of them is selected at random. This 

process is repeated num-players times. The num-players replications form the 

new generation.  

mutation-rate: This is the probability that any newly created player is a mutant. A 

mutant is a player whose strategy (the 3-tuple formed by PC, PC/C, and PC/D) 

has been determined at random.  

6.3.2. Displays 

EVO-2x2 provides various displays which are shown in Figure 6-1. Some of these 

displays are time-series plots showing the historical evolution of the value of a 

particular variable throughout generations (e.g. frequency of outcomes and 

population average values of fitness, PC, PC/C, and PC/D), whereas others refer 

only to the last generation (e.g. population distributions of fitness, PC, PC/C, and 

PC/D). 

 

The large square in the middle of the interface is the representation in the strategy 

space of every individual player in a generation. This representation is  

2-dimensional in EVO-2x2 due to constraints in the modelling platform (NetLogo 

3.0.2), but we also provide in the Supporting Material a 3D version of EVO-2x2, 

called EVO-2x2-3D (implemented in NetLogo 3-D Preview 1), where the three 

dimensions of the strategy space (PC, PC/C, and PC/D) are explicitly represented. 

This is the only difference between EVO-2x2-3D and EVO-2x2: EVO-2x2-3D 

represents players in the PC–PC/C–PC/D 3-dimensional strategy space, while 

EVO-2x2 displays the projection of such a space on the PC/C–PC/D plane 

(Figure 6-2). In Figure 6-2, the sphere (in the left-hand image) and its circular 

projection (in the right-hand image) indicate population averages.  
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Figure 6-2. Representation of players in the strategy space using EVO-2x2-3D (left) and EVO-2x2 

(right). The image on the right shows the top-down projection of the representation on the left. 

 

The cells in the background of the 2-dimensional projections of the strategy space 

are coloured in shades of blue according to the number of players that have spent 

some time on them. Each player that has visited a certain part of the strategy space 

leaves a mark that is used to create the density plots shown in Figure 6-2. The 

more players who have stayed for longer in a certain area, the darker its shade of 

blue. 

6.3.3. Exploration of the parameter space 

The rationale behind EVO-2x2 was to conduct a systematic exploration of the 

impact of various competing assumptions. An exploration of the parameter space 

is something that can be easily conducted within NetLogo using a tool called 

BehaviorSpace. This tool allows the user to set up and run experiments. Running 

an experiment consists in running a model many times, systematically varying the 

model’s settings and recording the results of each model run.  

 

The problem when undertaking experiments that involve large parameter sweeps 

is to organise, analyse, and summarise the vast amount of information obtained 

from them so the results can be meaningfully interpreted. To do that, we have 

created a set of supporting scripts (written in Perl and Mathematica, and available 

in the supporting Material) that are able to read in the definition of the experiment 

setup and all its results in the format used by NetLogo. The output of these scripts 

is: 
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• an automatically generated directory structure that reflects all the 

combinations of parameter values explored in the experiment (e.g. 

/100/random-pairings/roulette-wheel/0.001/…/), and  

• a customisable summary of the results of each model run, which is placed 

in the appropriate folder. 

 

An example of a useful summary of the results produced in a simulation run is the 

accumulated frequency of different types of strategies throughout the course of a 

simulation run. This is something that can be plotted in a 3D contour plot, and in 

complementary 2D density plots, as shown in Figure 6-3. The relationship 

between the 3D contour plot and the accompanying 2D density plots is sketched 

in Figure 6-4. 

 

Figure 6-3. Example of a graphical summary of the results obtained with EVO-2x2. This figure is 

automatically created and placed in the appropriate folder by the supporting scripts. 
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6.3.4. Implementation details 

EVO-2x2 has been implemented in NetLogo 3.0.2 (Wilensky, 1999). We also 

provide a 3-D version of EVO-2x2, called EVO-2x2-3D, which has been 

implemented in NetLogo 3-D Preview 1 (Wilensky, 1999). The two programs are 

available in the Supporting Material together with a user guide under the GNU 

General Public Licence. 

 

 

Figure 6-4. Sketch showing the relationship between the 3D contour plot and the accompanying 

2D density plots created by the supporting scripts. 

 

6.4. Evolutionary emergence of cooperation 

The fundamental challenge of understanding the evolutionary emergence and 

stability of cooperation can be illuminated, at the most elementary level, by 

identifying the conditions under which a finite number of units that interact by 

playing the Prisoner’s Dilemma (PD) may cooperate. These units might be able to 

adapt their individual behaviour (i.e. learn), or the population of units as a whole 

 129



may adapt through an evolutionary process (or both). While formalizing the 

problem of cooperation in this way significantly decreases its complexity (and 

generality), the question still remains largely unspecified: how many units form 

the population? How do they interact? What strategies can they use? What is the 

value of each of the payoffs in the game? and, crucially, what are the processes 

governing the dynamics of the system? 

 

It has been well known since the early years of the study of the evolution of 

cooperation that, in general, the question of how –if at all– cooperation emerges in 

a particular system significantly depends on all of the above defining 

characteristics of the system (see e.g. Axelrod, 1984; Bendor and Swistak, 1995, 

1997, 1998; Gotts et al., 2003b). Here we report previous work that has shed light 

on the robustness of evolutionary models of cooperation. We find it useful to 

place these models in a fuzzy spectrum that goes from mathematically tractable 

models with strict assumptions that limit their applicability (e.g. work on idealised 

systems), to models with the opposite characteristics. The rationale behind the 

construction and use of such a spectrum is that when creating a formal model to 

investigate a certain question (e.g. the evolution of cooperation), there is often a 

trade-off between the applicability of the model (determined by how constraining 

the assumptions embedded in the model are) and the mathematical tractability of 

its analysis (i.e. how deeply the functioning of the model can be understood given 

a certain set of available tools of analysis).  

 

The former end is mostly populated by models designed to ensure mathematical 

tractability. Near this end we find papers that study the impact of some structural 

assumptions, whilst still keeping others which ensure the model remains tractable 

and which, unfortunately, also tend to make the model retain its idealised nature. 

Gotts et al. (2003b) review many such papers in sections 2 and 4. Some of these 

investigations have considered finite vs. infinite populations (Nowak et al., 2004; 

Taylor et al., 2004; Imhof et al., 2005), different pairing settings or population 

structures (see section 6 in Gotts et al. (2003b) for a review, and Santos et al. 

(2006) for the most recent advances in this field), deterministic vs. stochastic 

strategies (Nowak, 1990; Nowak and Sigmund, 1990; Nowak and Sigmund, 

1992), finite vs. infinitely repeated games (Nowak and Sigmund, 1995), and 
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arbitrary intensities of selection (Traulsen et al., 2006). While illuminating, the 

applicability of most of these studies is somewhat limited since, as mentioned 

before, the models investigated there tend to retain their idealised nature. 

 

Near the opposite end, we find models that tend to be slightly more applicable 

(e.g. they consider non-idealised systems), but they are often mathematically 

intractable. It is from this end that we start in our investigation. To our 

knowledge, the first relevant study with these characteristics was conducted by 

Axelrod (1987). As explained in section 3.1, Axelrod had previously organized 

two open tournaments in which the participant strategies played an iterated PD in 

a round robin fashion (Axelrod, 1984). Tit for Tat (TFT) was the winner in both 

tournaments, and also in an ecological analysis that Axelrod (1984) conducted 

after the tournaments. Encouraged by these results, Axelrod (1987) investigated 

the generality of TFT’s success by studying the evolution of a randomly generated 

population of strategies (as opposed to the arguably arbitrary set of strategies 

submitted to the tournament) using a particular genetic algorithm. The set of 

possible strategies in this study consisted of all deterministic strategies able to 

consider the 3 preceding actions by both players. From this study, Axelrod (1987) 

concluded that in the long-term, “reciprocators […] spread in the population, 

resulting in more and more cooperation and greater and greater effectiveness”. 

However, the generality of Axelrod’s study (1987) is doubtful for two reasons: (1) 

he used a very specific set of assumptions, the impact of which was not tested, 

and (2) even if we constrain the scope of his conclusions to his particular model, 

the results should not be trusted since Axelrod only conducted 10 runs of 50 

generations each. As a matter of fact, Binmore (1994, p. 202; 1998) cites 

unpublished work by Probst (1996) that contradicts Axelrod’s results.  

 

In a more comprehensive fashion, Linster (1992) studied the evolution of 

strategies that can be implemented by two-state Moore machines in the infinitely 

repeated PD. He found a strategy called GRIM remarkably successful. In 

particular, GRIM was significantly more successful than TFT. GRIM always 

cooperates until the opponent defects, in which case it switches to defection 

forever. Linster (1992) attributed the success of GRIM over TFT to the fact that 

GRIM is able to exploit poor strategies while TFT is not. Linster’s investigation 
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was truly remarkable at its time, but technology has advanced considerably since 

then, and we are now in a position to expand his work significantly by conducting 

parameter explorations beyond what was possible before. As an example, note 

that Linster (1992) could only consider deterministic strategies and one specific 

value for the mutation rate; furthermore, in the cases he studied where the 

dynamics were not deterministic, there is no guarantee that his simulations had 

reached their asymptotic behaviour. 

 

Another important part of the literature on the study of the evolutionary 

emergence of cooperation using computer simulation comes from the use of tags. 

Tags are socially recognisable marks or signals that, in principle, are not 

necessarily linked to any particular form of behaviour (Holland, 1993). Tags do, 

however, influence the way individuals interact: individuals with similar tags have 

a preference to interact with each other (see e.g. Riolo (1997), Hales (2000), Riolo 

et al. (2001), Edmonds and Hales (2003)). Tags, like strategies, are also assumed 

to be passed from parents to their kin. Thus, tags and strategies follow a very 

similar evolutionary process. The resulting correlation between tags and strategies 

leads to a tendency for individuals with similar strategies to interact with each 

other. In the context of social dilemmas this correlation clearly favours 

cooperative behaviours, as it effectively diminishes the chances of exploitation.   

 

Riolo (1997) developed the first tag model in the study of the evolutionary 

emergence of cooperation in the PD. He showed that real-valued tags can promote 

high levels of cooperation in the iterated PD. Hales (2000) developed Riolo’s 

work and studied discrete tags, with preferential pairings occurring only if tags 

matched exactly. With this exact tag matching constraint, cooperation can emerge 

even when players interact for only one round. Hales’ pairing mechanism is 

formally equivalent to “children-together” in EVO-2x2 (see section 6.3.1). Tags 

as a useful mechanism to promote cooperation were further explored by Riolo et 

al. (2001). This piece of work, however, turned out to be flawed, as it relied upon 

the fact that individuals were forced to donate to others with an identical tag (see 

Roberts and Sherratt (2002) and Edmonds and Hales (2003) for a much more in-

depth investigation). Since then research using tags has worked towards making 
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this cooperation mechanism more robust, so it can be usefully applied in real-

world contexts (see e.g.  Hales and Edmonds (2005), and Edmonds (2006)). 

 

In the following section we use EVO-2x2 to conduct a consistent and systematic 

exploration of the impact of competing assumptions in non-idealised evolutionary 

models of cooperation. 

6.5. Robustness of evolutionary models of cooperation 

In this section we illustrate the usefulness of EVO-2x2 by applying it to advance 

our formal understanding of the structural robustness of evolutionary models of 

cooperation. To do this, we analyse simple non-idealised models of cooperation 

and we study their sensitivity to small structural changes (e.g. slight modifications 

in the way players are paired to interact, or in how a generation is created from the 

preceding one). Specifically, we aim to determine what behavioural traits are 

likely to emerge and be sustained under evolutionary pressures in the Prisoner’s 

Dilemma (PD). To do this rigorously, we have run many computer simulations 

(effectively many different models) aimed at addressing the same question: “In a 

population of individuals who interact with each other by repeatedly playing the 

PD, what strategies are likely to emerge and be sustained under evolutionary 

pressures?”. Given the amount of computing power required to conduct this 

research, all the simulations have been run on computer grids. 

6.5.1. Method followed to analyse the simulation results 

Defining a state of the system as a certain particularisation of every player’s 

strategy, it can be shown that all simulations in EVO-2x2 with positive mutation 

rates can be formulated as irreducible positive recurrent and aperiodic discrete-

time finite Markov chains. Thus, ergodicity is guaranteed. This observation 

enables us to say that there is a unique long-run distribution over the possible 

states of the system, i.e. initial conditions are immaterial in the long-run (Theorem 

3.15 in Kulkarni (1995)). Although calculating such (dynamic) distributions 

analytically is infeasible, we can estimate them using the computer simulations. 

The problem is to make sure that a certain simulation has run for long enough, so 

the limiting distribution has been satisfactorily approximated. To make sure that 

this is the case, for each possible combination of parameters considered, we ran 8 
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different simulations starting from widely different initial conditions. These are 

the 8 possible initial populations where every individual has the same pure 

strategy (the 8 corners of the strategy space). Then, every simulation run is 

conducted for 1,000,000 generations. Thus, in those cases where the 8 

distributions are similar, we have great confidence that they are showing a 

distribution close to the limiting distribution
37

. As an example, consider Figure 

6-5, where distributions starting from the 8 different initial conditions are 

compared. 

 

 

Figure 6-5. Accumulated frequency of different types of strategies in 8 simulation runs starting 

from different initial conditions. Axes are as in Figure 6-3. 

6.5.2. Results and discussion 

In this section we report several cases where it can be clearly seen that some of 

the assumptions in EGT that are sometimes thought to have little significance (e.g. 

mutation-rate, number of players, or population structure) can have a major 

                                                   

37 The appropriateness of the inductive method used here (which is not formal proof) to infer the 

asymptotic distribution of the system can be qualitatively checked by thinking what would happen 

if this method were to be applied to study the system characterised in chapter 4. In that case, the 

method would consist in running 4 simulations starting from the corners of the strategy space. 

Clearly, simulations starting in an SRE would stay there forever. Thus, only in those cases where 

there is really a unique asymptotic distribution, would the 4 simulations eventually look similar, 

and only when very close to the limiting distribution. In other words, the method used here would 

work perfectly well for the system characterised in chapter 4: the 4 cumulative distributions would 

look similar if and only if they were close to the limiting distribution. 
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impact on the type of strategies that emerge and are sustained throughout 

generations. The following are parameter values that are common to all the 

simulations reported here
38

: 

CC-payoff = 3; CD-payoff = 0; DC-payoff = 5; DD-payoff = 1;  

selection-mechanism = roulette wheel; 

 

Consider first the two distributions in Figure 6-6, which only differ in the value of 

the mutation rate used (0.01 on the left, and 0.05 on the right). The distribution on 

the left shows the evolutionary emergence and (dynamic) permanence of 

strategies similar to TFT (PC ≈ 1, PC/C ≈ 1, and PC/D ≈ 0; average time ≈ 3.3%). 

Such strategies are observed one order of magnitude less frequently for slightly 

higher mutation rates (distribution on the right; average time ≈ 0.3%). The other 

parameter values used were num-players = 100; pairing-settings = random pairings; 

rounds-per-match = 50. 

 

 

Figure 6-6. Influence of the mutation rate on the dynamics of the system. TFT measures the 

average time that strategies with PC ≥ (13/15), PC/C ≥ (13/15) and PC/D ≤ (2/15) were observed. 

 

The two distributions in Figure 6-7 only differ in the number of players in the 

population (100 on the left, and 10 on the right). The distribution on the left shows 

                                                   

38 The payoffs used in this chapter are those employed by Axelrod (1984), and consequently those 

used in most simulation papers on the evolution of cooperation. They are used here too to facilitate 

comparisons with previous research. 
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the evolutionary emergence and (dynamic) permanence of strategies similar to 

TFT (average time ≈ 3.3%), whereas –again– such strategies are observed one 

order of magnitude less frequently in smaller populations (average time ≈ 0.4%). 

The other parameter values are: pairing-settings = random pairings; rounds-per-

match = 50; mutation-rate = 0.01. 

 

 

Figure 6-7. Influence of the number of players in the population. TFT measures the average time 

that strategies with PC ≥ (13/15), PC/C ≥ (13/15) and PC/D ≤ (2/15) were observed. 

 

The two distributions in Figure 6-8 only differ in the algorithm used to form the 

pairs of players (random pairings on the left, and children together on the right). 

On the left, strategies tend to be very similar to ALLD (PC ≈ 0, PC/C ≈ 0, and 

PC/D ≈ 0), i.e. strongly uncooperative (average time ALLD ≈ 72%). In stark 

contrast, the distribution on the right is concentrated around strategies similar to 

TFT (average time TFT ≈ 23%; average time ALLD ≈ 1%). The other parameter 

values used were: num-players = 100; rounds-per-match = 5; mutation-rate = 0.05. 

The underlying reason behind the dramatic increase in cooperation when using the 

pairing algorithm “children together” (which is formally equivalent to simple 

applications of tags, see e.g. Hales, 2000) is that this mechanism promotes 

mimicry. Children, who have inherited the same strategy from their parents, tend 

to be paired together. This confers a great evolutionary advantage to cooperation, 

since it effectively rules out the possibility of exploitation: cooperators (and 

defectors) play only with each other. 
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Figure 6-8. Influence of different pairing mechanisms. TFT measures the average time that 

strategies with PC ≥ (10/15), PC/C ≥ (10/15) and PC/D ≤ (5/15) were observed; ALLD measures 

the average time that strategies with PC ≤ (5/15), PC/C ≤ (5/15) and PC/D ≤ (5/15) were observed. 

 

Figure 6-9 shows a very interesting result. The two distributions in Figure 6-9 

only differ in the set of possible values that PC, PC/C or PC/D can take. For the 

distribution on the left the set of possible values is any (floating-point) number 

between 0 and 1, and the strategies are mainly uncooperative, similar to ALLD 

(average time ALLD ≈ 60%). For the distribution on the right, the set of possible 

values is only {0, 1}, and the distribution is concentrated in TFT (average time 

TFT ≈ 58%). The other parameter values used were: num-players = 100; mutation-

rate = 0.05; rounds-per-match = 10;  

pairing-settings = random pairings. 
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Figure 6-9. Stochastic (mixed) strategies vs. deterministic (pure) strategies: influence in the system 

dynamics. TFT measures the average time that strategies with PC ≥ (10/15), PC/C ≥ (10/15) and 

PC/D ≤ (5/15) were observed; ALLD measures the average time that strategies with  

PC ≤ (5/15), PC/C ≤ (5/15) and PC/D ≤ (5/15) were observed.  

 

Given the clarity and importance of the results presented in Figure 6-9 we 

investigated this issue further. In Figure 6-10 and Figure 6-11 we show the effect 

of gradually increasing the set of possible values for PC, PC/C and PC/D (i.e. 

num-strategies). Figure 6-10 shows the (average) number of each possible outcome 

of the game (CC, CD/DC or DD) in observed series of 10
6
 matches (this number 

of matches is selected so the effect of changing the initial state is negligible, i.e. 

results are close to the stationary limiting distribution).  
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Figure 6-10. Influence in the distribution of outcomes (CC, CD/DC or DD) of augmenting the set 

of possible values for PC, PC/C and PC/D.  

 

Figure 6-11 shows the average values of PC, PC/C and PC/D observed in the 

same series. Augmenting the set of possible values for PC, PC/C and PC/D 
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undermines cooperation and favors the emergence of ALLD-like strategies. The 

other parameter values used were: num-players = 100; mutation-rate = 0.01;  

rounds-per-match = 10; pairing-settings = random pairings. 
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Figure 6-11. Influence of augmenting the set of possible values for PC, PC/C and PC/D in the 

average values of these variables in the population.  

 

Thus, it is clear that the number of possible strategies has a tremendous effect on 

the evolutionary stability of cooperation. This is mainly due to the fact that the 

emergence of TFT-like behaviour crucially relies on perfect reciprocation. A 

single defection in a contest between two TFT-like strategies with high –but lower 

than 1– values of PC/C will result in a chain of uncoordinated outcomes CD-DC, 

thus losing much of their evolutionary advantage over ALLD. 

6.6. Conclusions of this chapter 

In this chapter we have shown by example that some of the assumptions made in 

mainstream evolutionary game theory for the sake of mathematical tractability can 

have a greater effect than what has been traditionally thought. In particular, the 

granularity of the strategy space and the assumption of well-mixed populations 

have proved to be critical in determining the type of strategies that are likely to 

emerge and be sustained in evolutionary contexts. 

 

More specifically, this chapter has studied the structural robustness of 

evolutionary models of cooperation, i.e. their sensitivity to small structural 

changes. To do this, we have focused on the Prisoner’s Dilemma game and on the 
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set of stochastic strategies that are conditioned on the last action of the player’s 

counterpart. Strategies such as Tit-For-Tat (TFT) and Always-Defect (ALLD) are 

particular and classical cases within this framework; here we have studied their 

potential appearance and their evolutionary robustness, as well as the impact of 

small changes in the model parameters on their evolutionary dynamics. Our 

results show that strategies similar to ALLD tend to be the most successful in 

most environments, whereas strategies similar to TFT tend to spread best in large 

populations, where individuals with similar strategies tend to interact more 

frequently, when only deterministic strategies are allowed, with low mutation 

rates, and when interactions consist of many rounds. 
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7.   Discussion 

In broad terms, most of the results presented in the previous 3 chapters can be 

seen as logical deductive inferences of the form:  

 

“Set of assumptions A”  IMPLIES  “Set of (deduced) statements B”   [7-1]

 

As a matter of fact, any computer simulation and any mathematical derivation can 

be seen as a logical inference that establishes the truth of a set of statements B 

(e.g. the output of a model, or a derived mathematical result) given the assumption 

that a set of statements A (expressed in e.g. computer code, or as a set of 

equations) are true.  

 

Deductive logical inferences are more useful the greater the generality of the set 

of assumptions A, and the greater the scope and level of detail of the set of 

deduced statements B. As an example, consider the results presented in chapter 4 

on the dynamics of the Bush-Mosteller reinforcement model. These results 

advance previous work by Cross (1973) and by Börgers and Sarin (1997) because 

the results derived in this thesis are valid not only for positive stimuli, but also for 

negative ones; thus, the generality of the set of assumptions investigated in this 

thesis is greater. Similarly, the results presented in that same chapter are an 

advancement of (parts of) the work conducted by Macy and Flache (2002) and 

Flache and Macy (2002) on the Bush-Mosteller model because the level of detail 

of the characterisation of this model’s dynamics is significantly greater in this 

thesis.  

 

The logical inferences derived in this thesis can be applied in a number of useful 

ways. This chapter outlines 5 ways in which the research conducted in the 

previous chapters can be usefully applied to contribute to the advancement of 

human knowledge. 
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7.1. Direct application of the derived inferences 

The simplest application of the logical statement “A implies B” relates to the case 

where A is thought, postulated, or demonstrated to be true. If a set of individuals 

are playing a certain game using one of the decision-making algorithms 

investigated in this thesis (e.g. the Bush-Mosteller reinforcement learning 

algorithm), then the results obtained in the previous chapters can be used to 

predict the (dynamic) outcome of the game, and also how this outcome may 

change when certain conditions (e.g. the magnitude of the payoffs or the speed at 

which players learn) are modified. Similarly, since “A implies B” is logically 

equivalent to “Not B implies Not A”, if the observed results are deemed 

significantly different from B, then logical statement [7-1] can be used to infer 

that A cannot be true.  

7.2. Assessment of the importance of assumptions in similar 

models 

Another way in which logical statement [7-1] can be meaningfully used concerns 

the identification of crucial assumptions in inferences of the type “Set of 

assumptions A2 implies set of statements B2”. Consider the case where sets A and 

A2 contain a large number of identical assumptions. An example of this would be 

two models of the same game: one of the models (A2) assumes common 

knowledge of rationality among the players, whereas the other model (A) assumes 

that players make decisions following the Bush-Mosteller reinforcement learning 

approach. Comparing the set of deduced results B and B2 will be illuminating: 

any difference between B and B2 can be attributed to the differences between A 

and A2. Thus, inference [7-1] can be used to assess the impact of various 

assumptions in models that are similar to the one defined by the set of 

assumptions A, but not the same. A clear illustration of this type of inference in 

the literature is given by Flache and Hegselmann (1999), who compare two 

models that differ only in the decision-making algorithm used by a set of players 

confronting the same spatial social dilemma setting: in one of the models, players 

use (partially) rational strategies that cooperate whenever reciprocal cooperation 

can be sustained as a rational equilibrium in the 2-player game they play (i.e. 

whenever the “shadow of the future” (Axelrod, 1984) is powerful enough); in the 

other model, players use a reinforcement learning rule based on Bush and 
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Mosteller’s (1955) principles. In particular, Flache and Hegselmann (1999) show 

that under a wide range of conditions, the reinforcement learners need more time 

than the (partially) rational players to form stable cooperative relationships. This 

line of work was further developed by Hegselmann and Flache (2000), who 

compared rational behaviour and the Bush-Mosteller reinforcement learning rule 

over all possible symmetric 2x2 prisoner’s dilemma games.   

7.3. Selection, parameterisation, and validation of models 

A third way in which the research conducted in this thesis contributes to the 

advancement of human knowledge concerns the interdependent processes of 

selecting, parameterising, and validating a model. A model is an abstraction of a 

real-world system that allows us to establish inferences about how the real-world 

system or certain aspects of it operate. Any model represents a compromise 

between realism and manageability (Intriligator et al., 1996, p. 13). Ideally, one 

would like to have a model that captures the essence of the target system (i.e. the 

model is realistic) and, at the same time, enables us to draw insights and 

conclusions that could not be derived from direct observation of the target system 

(i.e. the model is manageable). A perfectly manageable model that is not realistic 

is not useful; similarly, a realistic model that is not manageable (i.e. it does not 

yield new insights) is useless. This thesis has increased the manageability of 

several models that have received empirical support, thus improving their 

applicability. In this way, the work reported in this thesis enhances game 

theorists’ toolkit of models that can be usefully employed to study real-world 

systems.  

 

The task of selecting one particular model often includes considering various 

different alternatives. Naturally, the choice of criteria for the comparison of 

models depends on the purpose of the modelling exercise. Models in game theory 

are often compared with the aim of understanding what decision-making 

processes may be generating an observed pattern of play (see e.g. Feltovich 

(2000) and Camerer (2003)). For that purpose, one is often interested in studying 

the models’ ability to reproduce observed statistical signatures and to predict 

patterns of play to a satisfactory extent. To conduct this assessment, the models to 
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be compared need to be parameterised first. The following section outlines how to 

do this. 

7.3.1. Parameterisation of models 

As explained in section 3.2.2, the models investigated in this thesis can all be 

meaningfully formalised as Markov processes. The implicit assumption when 

parameterising a model with a set of observed data is that such data have been 

generated by the (appropriately parameterised) model. The challenge when 

parameterising the models studied in this thesis is that they represent systems 

where the state is not a variable that can be observed, i.e. the Markov chain is 

hidden. What is available to an observer is the pattern of play (i.e. the decisions 

made by the players), which is a stochastic process governed by the underlying 

Markov chain, but different from it. As an example, consider the Bush-Mosteller 

model of reinforcement learning. As explained in chapter 4, the model can be 

formalised as a Markov chain {Xk}k≥0 whose state is fully specified by a two-

dimensional vector [ p1,C , p2,C ], where pi,C is player i’s probability to cooperate. 

The sequence of actual decisions made by the players is another stochastic process 

{Yk}k≥0 which is linked to the hidden Markov chain {Xk}k≥0 in the sense that Xk 

governs the distribution of the corresponding Yk. Since only {Yk} is observed, any 

statistical inference about the unknown parameters of the Markov chain {Xk} must 

be done in terms of {Yk}. Fortunately, methods to parameterise hidden Markov 

chains have been developed remarkably in the last few years. An excellent 

introduction to conduct this type of parameterisation is given by Cappé et al. 

(2005). In addition to the analysis of the pattern of play, it could well be the case 

that the value of certain parameters can be inferred using various other methods, 

like purpose-designed experiments, questionnaires or interviews with the players. 

These methods may be more reliable, simpler and, in any case, constitute a source 

of potentially very useful information that does not decrease the validity of the 

quantitative methods described above; thus, it seems most advisable to conduct 

them, if at all feasible. 

7.3.2. Selection, validation, and applicability of models 

Once the models to be compared have been parameterised, the process of 

selecting one can proceed. This is an activity that is strongly linked with the 
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process of model validation. In broad terms, models are compared with the aim of 

selecting the best one of them according to some set of criteria, whereas validating 

the selected model is studying whether this (best) model is “good enough” for the 

intended purpose. Thus, it seems natural that the same techniques used to pick out 

the best model are appropriate to assess its validity too.  

 

A model is valid to the extent that it provides a satisfactory range of accuracy 

consistent with the intended application of the model (Kleijnen, 1995)
39

. As 

mentioned above, models in game theory are often constructed with the aim of 

understanding what decision-making processes may be generating an observed 

pattern of play. In that context, validation often refers to the process of assessing 

how well a model is capturing the essence of its empirical referent. As mentioned 

above, one should not forget that a simple approach to validate a model about how 

certain individuals played a game is actually asking that same question to the 

individuals themselves
40

. Unfortunately, this does not seem to be a common 

approach in the literature of experimental game theory, even though it seems clear 

that it has the potential to contribute significantly to the design of more realistic 

models. The long tradition of introspective theoretical work in classical game 

theory may be at the root of this apparent lack of interaction with experimental 

subjects.    

 

One common technique to quantify the extent to which a model is capturing the 

essence of a pattern of play consists in studying the models’ ability to reproduce 

observed statistical signatures and to predict patterns of play to a satisfactory 

extent. This is an issue extensively studied in the systems identification literature 

(Söderström and Stoica, 1989; Ljung, 1999). The general approach to validate a 

model is based on an in-depth analysis of its prediction error, which is a measure 

of the disparity between the observed data and the model’s predicted output. If 

possible, the preferred option is to evaluate the model performance using a set of 

                                                   

39 See a complete epistemic review of the validation problem in Kleindorfer et al. (1998).  

40 Work outside the literature in experimental game theory suggests that players’ responses may 

vary depending on when they are asked to describe their reasoning processes (Ericsson and Simon, 

1980). People tend to verbalise what they are doing more accurately when asked while they solve a 

problem rather than when asked some time after having tackled the problem. 
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data different from the data employed to parameterise the model (i.e. the 

estimation data). If, on the other hand, the prediction error has to be calculated 

using the estimation data, there are a number of model selection criteria (e.g. 

Akaike’s information criterion (Akaike, 1969) and minimum description length 

(Rissanen, 1978)) designed to avoid biases and pitfalls (e.g. overparameterisation 

and overfitting) by adding certain correcting terms to the computed prediction 

error (Ljung, 1999, p. 507). These correcting approaches are especially relevant 

when comparing models that have different number of parameters. An important 

part of the validation exercise is then the analysis of residuals (i.e. the part of the 

validation data that the model could not reproduce). This analysis minimally 

consists in plotting the residuals, computing basic statistics on them, analysing 

their structure, and conducting tests of independence. The precise purpose of the 

modelling exercise will dictate what other tests will be useful. 

 

At this point it is worth addressing a criticism that the Bush-Mosteller model 

investigated in chapter 4 of this thesis has recently received, and which relates to 

its applicability. Bendor et al. (2007) argue that the BM model (and many others) 

have “little empirical content” because “such models imply that virtually anything 

can happen” (see reply by Macy and Flache (2007)). They prove their point 

showing that any outcome of the game can be sustained as a stable outcome by 

some pure SRE. Their proof of this result consists in setting an aspiration 

threshold below the lowest payoff of the game. As shown in chapter 4, once a 

certain value for the aspiration threshold is chosen, it is not generally true that any 

outcome can be sustained by an SRE. In fact, it is straightforward to see that any 

value for the aspiration threshold above the minimum payoff will preclude at least 

one outcome from being sustained by an SRE. Thus, their criticism refers to a 

Bush-Mosteller model where players have aspiration thresholds below the 

minimum payoff they can receive. In our view, the aspiration threshold is a 

parameter whose value can be estimated using empirical methods by e.g. using the 

theory of inference in hidden Markov chains mentioned in the previous section. 

The fact that it is possible to find a specific value for the aspiration threshold such 

that any outcome can be supported by an SRE is not a drawback of the model, 

since the value of the aspiration threshold can be inferred from empirical 

observation, and most of the values this parameter can take induce a process 
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where not every outcome can be sustained by an SRE. An analogy that comes to 

mind is Newton’s theory of gravitation: this theory provides (in particular) a 

mapping between the height at which an object is released and the time that the 

object takes to hit the ground (time = f(height)). Similarly, this thesis has 

characterised the (non-trivial) mapping between the parameters of the Bush-

Mosteller model (in particular, the aspiration threshold) and the dynamics of the 

resulting process (in particular, the characterisation of the set of SREs): 

 

Set_of_SREs = function(Aspiration_Threshold). 

 

It is indeed true that for any given outcome, one can always find an aspiration 

threshold so the outcome is supported by an SRE. Similarly, in Newton’s theory 

of gravitation, for any time t0 one can always find a height h0 such that f(h0) = t0, 

but this does not seem to be a drawback of the theory. 

 

Bendor et al.’s (2007) criticism seems to be unjustified even in the case where 

aspiration thresholds are so low that any outcome can be sustained by an SRE. As 

explained in chapter 4, even in the case where there is a positive probability that 

any outcome will be played indefinitely, this probability is generally different for 

different outcomes and depends on a number of factors (e.g. initial conditions, 

aspiration thresholds, and learning rates). The exact probability of approaching 

each possible SRE can be estimated to any degree of accuracy using the methods 

explained in chapter 4. Thus, the Bush-Mosteller model yields predictions that can 

be falsified, even when aspiration thresholds are below the minimum payoff. 

7.4. Modelling frameworks 

As explained in chapter 2, there is nowadays a whole universe of models that 

abandon the demanding assumptions of classical game theory on players’ 

rationality and beliefs. These models make different assumptions regarding the 

meaning of payoffs, the amount of information that players can access, players’ 

computational capabilities, and the level at which the dynamics are described (i.e. 

population adaptation vs. individual learning), to mention a few. The formal 

analysis of these models is often quite challenging, and consequently most of the 

research conducted until now has focused on characterising the dynamics of each 
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of these non-trivial models in relative isolation. There is obviously a lot to be 

gained from comparing different models, but our lack of in-depth knowledge of 

their dynamics has meant that this comparison has had to be postponed. 

Fortunately, nowadays the number of models that have been thoroughly analysed 

seems to be sufficient to justify initiating the process of creating frameworks –i.e. 

meta-models– where alternative models would arise as particular cases.  

 

An example of a useful framework that has been proposed within the field of 

learning game theory is Flache and Macy’s (2002) general reinforcement learning 

(GRL) framework. Flache and Macy’s (2002) framework integrates a smoothed 

version of the Erev-Roth model (see section 4.1) and the Bush-Mosteller model as 

particular cases. The GRL framework has a parameter that measures the level of 

fixation in the decision-making algorithm. When this fixation parameter equals 0, 

the framework reduces to the Bush-Mosteller model, whereas if the parameter 

equals 1, the obtained model is Erev and Roth’s. The use of the GRL framework 

enabled Flache and Macy to conduct a transparent and fruitful comparison of the 

two models and also to uncover hidden assumptions in both models.  

 

An example of a framework within the field of evolutionary game theory is EVO-

2x2. As explained in chapter 6, EVO-2x2 is a computer simulation modelling 

framework designed to formally investigate the evolution of strategies in 2x2 

symmetric games under various competing assumptions. EVO-2x2 enables the 

user to set up and run many computer simulations (effectively many different 

models) aimed at investigating the same question using alternative assumptions. 

Thus, EVO-2x2 provides a single coherent framework within which results 

obtained from different stochastic finite models can be contrasted and compared, 

as illustrated in section 6.5.2. 

 

The development of frameworks is useful not only to assess the impact of various 

assumptions in theoretical terms, but also to inform experimental research. By 

making differences between models explicit, frameworks can facilitate the design 

of experiments targeted at identifying the type of models that may be most 

adequate in a certain situation. Frameworks can also help to identify the factors 

(i.e. types of assumption) that may have the greatest impact in the outcome of a 
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social interaction. Thus, the use of frameworks may facilitate the interaction 

between game theorists and empirically-driven social scientists, from which game 

theory would benefit so much. The ideal result of this interaction would be a 

framework encompassing various models as particular cases, where the 

differences between the models were made explicit, and where each model were 

annotated with indications about the type of context for which the model may be 

most adequate.  

 

A discussion about frameworks raises the question of whether evolutionary and 

learning game theory could be integrated into a single discipline. The derivation 

of a significant number of theoretical results relating various learning models with 

different versions of the replicator dynamics (e.g. Börgers and Sarin, 1997; Posch, 

1997; Hopkins, 2002; Hopkins and Posch, 2005) would seem to suggest that the 

integration of these two fields may be within reach (Weibull, 1998). However, the 

integrative theoretical results tend to establish analogies at a very high level of 

abstraction. A representative example is given by Börgers and Sarin (1997), who 

demonstrate that the continuous time limit approximation of the dynamics of the 

Bush-Mosteller learning model (which cannot be used to characterise its 

asymptotic behaviour, as demonstrated in chapter 4) converges to the replicator 

dynamics of evolutionary game theory. These types of result are certainly useful, 

as they provide non-biological interpretations of evolutionary models, and 

evolutionary interpretations of learning models. However, the number of 

assumptions that are needed to align models from the two disciplines tend to 

decrease the applicability of the obtained inferences significantly. Thus, it seems 

that there are many frameworks that can be usefully developed at lower level of 

abstractions before the integration of learning and evolutionary game theory can 

take place. 

7.5. Models as ‘tools to think with’ 

The formal models developed in this thesis have also been useful as ‘tools to think 

with’. The clearest example of this use of a model is illustrated in section 5.5, 

where the concept of iterative elimination of dominated outcomes was put 

forward. Iterative elimination of dominated outcomes is a logical process through 

which players can arrive at sensible (i.e. Pareto optimal) outcomes in games. 
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Dominated outcomes are outcomes which are not individually rational – i.e. there 

is at least one player who is obtaining a payoff below her Maximin. The idea 

behind the process of iterative elimination of dominated outcomes is that players 

cannot rationally accept outcomes where they are not obtaining at least their 

Maximin (rational players are not exploitable). When players who do not accept 

outcomes where they get a payoff lower than Maximin meet, they might learn by 

playing the game the fact that their opponent is not exploitable either. If this 

occurs, it will be mutual belief that dominated outcomes cannot be sustained 

because at least one of the players will not accept them. That inference (and the 

consequent disregard of dominated outcomes by every player) can make an 

outcome that was not previously dominated in effect be dominated. In other 

words, the concept of dominance can be applied to outcomes iteratively just as it 

is applied iteratively to strategies. 

 

In this section we expand the philosophical basis of this process of reasoning by 

outcomes a bit further. As mentioned several times in this thesis, the history of 

classical game theory has been marked by the assumption that agents are 

instrumentally rational. However, except in strictly competitive games, defining 

rational behaviour in games is by no means straightforward (Colman, 1995). The 

challenge in game theory is that, in general, the definition of rational behaviour 

for any one player depends on the behaviour of potentially every other player in 

the game. As an example, in an iterated Prisoner’s Dilemma game, the rational 

strategy against a player who always defects is to defect, but the rational strategy 

against a player who is known to play Tit for Tat may be to cooperate, if the 

number of rounds is sufficiently large. 

 

Thus, in order to identify the rational course of action in a game, one is bound to 

partition the infinite set of possible behaviours that the other players may take 

according to some criterion, and then try to compute the best reply to each type of 

behaviour identified. Classical game theory partitions this universe of possible 

behaviours according to strategies. In this way, classical game theory defines 

rationality in terms of beliefs about the strategy that the other players may use: 

rational players do not choose dominated strategies because there is no belief 

about the other players’ strategies such that selecting the dominated strategy is 
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optimal. The partition of the “behaviour space” according to strategies is quite 

natural since, after all, it is strategies that players can choose. 

 

On the other hand, players’ measure of success –i.e. the obtained payoff– is not 

determined solely by their strategy, but by every player’s strategy, i.e. by the 

resulting outcome of the interaction. Thus, it may also seem natural to assume that 

players do not think in terms of strategies, but in terms of outcomes. In other 

words, players may be willing to accept certain outcomes but not others. The 

models developed in chapter 5 triggered the idea of defining rationality 

partitioning the universe of possible behaviours according to outcomes, instead of 

strategies. This leads to the definition of the so-called outcome-based rationality. 

According to this definition, rational players do not accept dominated outcomes. 

Note that this definition is somewhat problematic, since the words “do not accept” 

already imply the existence of some dynamics. Remember, however, that the 

definition of rationality based on strategies also led to similarly worrying 

problems (e.g. the existence of many possible Nash equilibria).  

 

Once outcome-based rationality is defined, one can develop the same concepts 

that were explained in section 2.2.2 using the new definition of rationality. Thus, 

one can define the process of iterative elimination of dominated outcomes, and 

also the concept of rationalisable outcomes.  

 

The definition of outcome-based rationality has a certain intuitive appeal which 

becomes apparent when studying the Prisoner’s Dilemma. The process of iterative 

elimination of dominated outcomes leaves mutual cooperation as the unique 

surviving outcome. The reasoning behind this logical process goes as follows: 

players are rational and therefore they will not accept the outcome where they 

receive the sucker’s payoff. They also know that the other player is rational, so 

they acknowledge the fact that their counterpart is not going to be exploitable 

either. Once this is recognised by the two players, the rational course of action is 

to try to achieve mutual cooperation rather than mutual defection. 

 

It seems clear that even though there is a clear causal link between strategies and 

outcomes, defining rationality in terms of outcomes rather than in terms of 
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strategies leads to completely different results even in the simplest games. Section 

5.2 explained how rational strategies may lead to outcomes that are not rational, 

whereas rational outcomes may be generated by strategies that are not rational. A 

more thorough account of the implications of outcome-based rationality is left for 

future work.  
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8.   Conclusions 

This thesis was initiated with the overall aim of advancing game theory by 

formally studying the implications of dropping some of its most stringent 

assumptions, which have been made for the sake of tractability and are not 

generally supported by empirical evidence.  

 

Naturally, the first part of this research consisted in clearly identifying the most 

relevant and prevalent assumptions made in the different branches of game theory. 

This investigation led to the critical dissection of deductive game theory presented 

in chapter 2, which served as a guiding framework to structure the rest of the 

research conducted in this thesis. In particular, this critical review enabled a 

precise identification of those assumptions of game theory that are abandoned and 

those that are retained in the models developed in this thesis. Specifically, all the 

research conducted here abandons the strong assumptions made in classical game 

theory regarding player’s rationality, players’ beliefs about their counterparts’ 

behaviour, and the alignment of such beliefs across players. The research 

conducted in this thesis also abandons the assumption of one single infinite 

population, which is commonly made in evolutionary game theory, and which 

was shown in chapter 2 to have wider implications than may be initially 

suspected.  

 

The abandonment of several assumptions that are made in game theory to allow 

for mathematical tractability has meant that new methodologies were needed to 

formally analyse the models developed in this thesis. In particular, computer 

simulation has proven to be particularly useful to enhance and complement 

mathematical derivations. The combined use of analytical work and computer 

simulation has enabled me to draw some methodological conclusions that are also 

included in this chapter. 

 

The structure of this final chapter is particularly simple. Section 8.1 summarises 

the main contributions of this thesis to the advancement of game theory. These are 

presented at two different levels of abstraction for the sake of clarity: subsections 

8.1.1 and 8.1.2 present the specific contributions of this thesis to the advancement 
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of learning and evolutionary game theory respectively (and the implications of 

these for the study of social dilemmas), whereas subsection 8.1.3 discusses in 

more general terms the wider implications of the research conducted here for 

game theory as a whole. The methodological conclusions derived from the 

symbiotic use of computer simulation and mathematical analysis are then 

summarised in section 8.2. Finally, the last section of this chapter (8.3) identifies 

areas for future research.  

8.1. Contributions to the advancement of game theory 

8.1.1. Specific contributions to learning game theory 

Chapter 4 of this thesis provided an in-depth analysis of the transient and 

asymptotic dynamics of the Bush-Mosteller reinforcement learning algorithm, 

whereas chapter 5 explored cased-based reasoning as decision-making process in 

strategic contexts. The specific insights obtained for each of these learning 

algorithms were summarised in sections 4.10 and 5.8 respectively. The following 

presents the main conclusions that can be drawn from this investigation in more 

general terms: 

• The transient dynamics of models in learning game theory can be 

substantially different from their asymptotic behaviour. Moreover, some 

systems may take an extraordinarily long time to reach their asymptotic 

dynamics (see e.g. Figure 4-8 and Figure 5-8). This is especially important 

because most theoretical research focuses on the characterisation of 

asymptotic equilibria exclusively, whereas studies using computer 

simulation tend to explore only the short-term dynamics of models.  

• The transient dynamics of models in learning game theory tend to be very 

complex and highly path-dependent (see e.g. section 5.4). Players learn 

from each other’s actions in a very dynamic fashion, and their individual 

responses affect every player’s payoff (and –consequently– their 

subsequent behaviour). This means that one single decision made by one 

player may change the evolution of the whole system substantially and 

have a permanent effect on its overall dynamics (especially in models 

without “trembling hands noise”).  
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• It has been long known that the inclusion of “trembling hands noise” can 

affect the dynamics of models in learning game theory. This thesis has 

illustrated that this type of noise can completely change the dynamics of a 

model by showing that some outcomes that are observed with arbitrarily 

high probability in unperturbed models can effectively lose all their 

attractiveness if players make occasional mistakes in selecting their 

actions (see e.g. sections 4.8 and 5.7).  

• In general, occasional mistakes made by players can destabilise outcomes 

in two different ways: by giving the deviator a higher payoff, or by giving 

any of the non-deviators a lower payoff. Thus, outcomes where unilateral 

deviations hurt the deviator (strict Nash) but not the non-deviators 

(protected) tend to be the most stable (see sections 4.8 and 5.7.3). 

 

The application to social dilemmas of the models developed in this thesis (and the 

review of similar models in the literature) has enabled me to draw the following 

general conclusions in this regard: 

• Cooperation in social dilemmas is not only a common outcome in models 

where players learn from each other’s behaviour, but also the unique 

asymptotic outcome in many cases (see sections 4.1, 4.5 and 5.4).  

• Cooperative outcomes are most commonly observed in models where 

players satisfice to some extent: they have an aspiration threshold that 

divides the set of outcomes into two classes: satisfactory and 

unsatisfactory outcomes. Naturally, aspiration thresholds that make the 

cooperative outcome satisfactory and the non-cooperative outcome 

unsatisfactory tend to promote the highest rates of cooperation (see 

sections 4.7 and 5.4). 

• Cooperative outcomes tend to be particularly susceptible to be destabilised 

by small trembles. This is so because deviations have two undesirable 

effects: they favour the deviator and they hurt the non-deviators. Therefore 

trembles in cooperative outcomes encourage all cooperating players to 

change their behaviour. On the other hand, non-cooperative outcomes are 

particularly robust to trembles because deviations from them hurt the 
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deviator and benefit the non-deviators, thus encouraging everyone to keep 

defecting (see sections 4.8 and 5.7.3).  

8.1.2. Specific contributions to evolutionary game theory. 

Chapter 6 described EVO-2x2, the modelling framework developed in this thesis 

to assess the impact of various assumptions made in mainstream evolutionary 

game theory for the sake of mathematical tractability. The following summarises 

the main conclusions that can be drawn from this investigation in general terms 

(for more specific conclusions see section 6.6): 

• The study of the evolution of finite populations is significantly different 

from that of infinite populations (both in terms of the methods that are 

adequate for their analysis and on the results obtained with them). This 

fact has serious implications, since most of our intuitions about 

evolutionary dynamics come from analyses of models where populations 

are infinite. 

• Stochastic effects (e.g. the potential occurrence of two or more mutations 

at the same time) play an important role in the analysis of finite 

evolutionary systems (see sections 2.3.4 and 6.5). 

• The type of strategies that are likely to emerge and be sustained in finite 

evolutionary contexts is strongly dependent on assumptions that 

traditionally have been thought to be unimportant or secondary (e.g. 

number of players, continuity of the strategy space, mutation rate, and 

population structure). See results presented in section 6.5.2. 

• There seems to be great value in developing general frameworks that 

facilitate rigorous and transparent comparisons between different 

stochastic finite models and the results obtained with them. 

 

The use of EVO-2x2 was illustrated by conducting an investigation on the 

structural robustness of evolutionary models of cooperation. The results obtained 

in that research (and other papers in the literature – see e.g. Imhof et al., 2005) 

showed that stochastic evolution of finite populations need not select the strict 

Nash equilibrium (as is the case when making the assumptions of mainstream 

evolutionary game theory) and can therefore favour cooperation over defection. 

Stochastic finite systems exhibit dynamics over the strategy space with time 
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averages that –for some parameterisations– are concentrated around cooperative 

strategies (e.g. TFT; see section 6.5.2).  

8.1.3. General contributions to game theory 

The dissection of game theory made in chapter 2 of this thesis (and some of the 

issues discussed in section 7.5) showed that classical game theory is founded on 

rather problematic assumptions that may have deeper philosophical implications 

than commonly assumed. Fortunately, this has been increasingly acknowledged in 

the last few years, and several models that abandon the demanding assumptions of 

classical game theory on players’ rationality and beliefs have been put forward 

and analysed in depth. This reasonably new programme of research, to which the 

present thesis contributes, is starting to provide fruitful insights.  

 

This thesis in particular has thoroughly analysed the dynamics of two models of 

learning that have received notable empirical support (see chapters 4 and 5). In 

this way, the work reported here enhances game theorists’ toolkit of models that 

can be usefully employed to study real-world systems. One of the main challenges 

that game theory faces nowadays derives from the need of managing and 

synthesising the various insights obtained with a number of disparate models that 

abandon the stringent assumptions of game theory through different avenues. This 

diversity of new assumptions and results calls for the creation of frameworks 

aimed at facilitating a clear and transparent comparison between models and the 

results obtained with them. This thesis has tried to meet this challenge by placing 

its contributions in an overall framework that can encompass, in admittedly very 

broad terms, most of the research conducted in game theory until now (see chapter 

2). In the particular context of evolutionary game theory, the modelling 

framework developed in chapter 6, i.e. EVO-2x2, represents a step forward in this 

direction too. Using EVO-2x2, it has been demonstrated here that some of the 

assumptions made in mainstream evolutionary game theory for the sake of 

mathematical tractability can have a greater effect than has been traditionally 

thought. Specifically, the granularity of the strategy space and the assumption of 

well-mixed populations have proved to be critical in determining the type of 

strategies that are likely to emerge and be sustained in evolutionary contexts (see 

section 6.5). 
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Thus, in general terms, this thesis has contributed to game theory (a) by 

examining the formal implications of replacing some of the unsupported 

assumptions in mainstream game theory with assumptions that stem from 

empirical research, and (b) by creating frameworks aimed at making differences 

between models explicit and at facilitating the comparison of results obtained with 

different models. 

8.2. Methodological contributions 

Before the development of computational modelling, the formal analysis of game 

theoretical models could be conducted using mathematical analyses only, and this 

may have distorted our understanding of such models to some extent. This thesis 

has shown that computer modelling can greatly enhance and complement 

mathematical derivations. These two techniques to analyse formal systems are 

both extremely useful, and they are complementary in the sense that they can 

provide fundamentally different insights on the same issue. Chapter 4 is a clear 

illustration of the fact that the level of understanding gained by using these two 

techniques together could not have been obtained using either of them on their 

own. Thus, the use of only one of these techniques may lead to an incomplete 

picture of the dynamics of a model. Chapter 4 also illustrates how each technique 

can produce both problems and hints for solutions for the other.  

 

This thesis has also shown that most models in learning and evolutionary game 

theory can be usefully formalised as Markov processes. In the absence of noise, 

these tend to have many different recurrent classes (i.e. areas of the state space 

that cannot be escaped once entered). In such cases, one single (stochastic) 

decision made by one player may lead the system to one or another recurrent class 

(and completely change the properties of the resulting dynamics), making the 

formal analysis of these models very challenging (see e.g. section 5.4). The 

inclusion of some kind of noise (e.g. mutations or trembling hands) tends to 

simplify the analysis to a great extent, since it often means that all the states of the 

system communicate (and this most often implies that the stochastic process is 

ergodic). On a slightly more negative note, this fact also demonstrates that very 

small changes in the assumptions of a model may have quite an important effect 

on its dynamics. In any case, this thesis has illustrated that the theory of Markov 
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processes can be particularly useful to analyse formal models of social 

interactions, and it has also provided various indications on which specific 

mathematical results may be most valuable depending on the properties of the 

system to be analysed (see e.g. sections 3.2.2 and 4.1).  

8.3. Areas for future work 

8.3.1. Assessment of the philosophical foundations of game theory 

As noted by some authors (see e.g. Hargreaves Heap and Varoufakis, 1995, pp. 

14-18), game theory is rooted in philosophical foundations that are not free from 

controversy. One of the most contentious issues in this regard concerns the 

concept of instrumental rationality used in classical game theory (see section 

2.2.2). Critically studying the philosophical foundations of game theory seems to 

be a matter of great importance for at least two reasons: because most economists 

and many game theorists seem to be almost unaware that the foundations of game 

theory are at the very least debatable, and because a richer notion of rationality 

may provide game theory with the intuitive appeal and logical coherence that 

some of its analyses lack (Hargreaves Heap and Varoufakis, 1995, p. 14). This 

thesis in particular (see section 7.5) has outlined the basis of a potential line of 

future research based on a new form of reasoning, i.e. reasoning by outcomes. 

This proposed area of research could potentially lead to more plausible solution 

concepts that could capture more of the intuitional knowledge (i.e. heuristics) that 

people seem to implicitly use in their social interactions. 

8.3.2. Learning algorithms vs. Rationality  

As explained in section 2.4.1, a current limitation of learning game theory is that 

most models assume that every player in the game follows the same decision-

making algorithm. Thus, in many of these models the observed dynamics may be 

very dependent on the fact that the game is played among “cognitive clones”, and 

the extent of this effect is not often evaluated. Confronting the investigated 

learning algorithms with alternative decision-making algorithms seems to be a 

promising way forward in learning game theory. In particular, confronting 

learning algorithms with highly rational players seems to have the potential to be 

very illuminating. 
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8.3.3. Evolution of learning algorithms 

As explained in section 2.4, one of the main differences between evolutionary and 

learning game theory is the level at which adaptation takes place
41

. Adaptation 

processes in evolutionary models occur at the population level: populations are 

subject to evolutionary pressures (and therefore the population adapts), but the 

individual components of populations may not adapt at all (i.e. they may have a 

predefined fixed behaviour). On the other hand, adaptation processes in learning 

models take place at the individual level through learning, and it is this learning 

process that is formally described
42

. Most current efforts to integrate these two 

branches of game theory aim at drawing similarities between the (mean-field) 

dynamics of certain learning algorithms and an appropriate version of the 

replicator dynamics (see e.g. Börgers and Sarin (1997), Laslier et al. (2001), 

Hopkins (2002), Laslier and Walliser (2005), Hopkins and Posch (2005), Beggs 

(2005)). A complementary (and less pursued) way in which these two branches 

can be integrated to some extent consists in analysing models that incorporate 

adaptation processes both at the individual and at the population level, i.e. 

studying the evolution of different learning algorithms (Kirchkamp, 1999, 2000). 

Playing with the relative strength of these two levels at which adaptation may take 

place is likely to offer new insights on the conditions that may favour the 

evolutionary emergence of certain reasoning processes over others.  

8.3.4. Stochastic approximation theory 

This thesis and a significant number of papers in the literature (see the brief 

review presented in section 4.1) have benefited immensely from recent 

developments in the theory of stochastic approximation. This theory is devoted, in 

particular, to identifying the conditions under which the actual dynamics of a 

stochastic system can be approximated by an appropriately constructed 

deterministic model. Further developments in the theory of stochastic 

                                                   

41 Another important difference relates to the interpretation of payoffs in each of these branches of 

game theory (see section 2.1). 

42 Another difference between these two branches of game theory relates to the nature of the 

adaptation process that is modelled. Adaptation in evolutionary models takes place through 

processes of selection and mutation (see section 2.3), while this is not necessarily the case in 

learning models (see section 2.4).  
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approximation theory will undoubtedly enable game theorists to better understand 

their models, and also to analyse the dynamics of models that were previously 

intractable. Furthermore, developing our understanding of the relations between 

stochastic and deterministic models is likely to provide new insights on the 

relation between learning and evolutionary game theory (Weibull, 2002). 

8.3.5. Development of frameworks 

This thesis has extensively argued for the value of frameworks at several points 

(see e.g. sections 2.4.1, 6.1 and 7.4). The wide variety of models developed in the 

last few years in game theory calls for the creation of frameworks aimed at 

facilitating the process of model comparison, both in terms of their assumptions 

and in terms of the results obtained with them. As argued in section 7.4, the 

development of frameworks is useful not only to assess the impact of various 

assumptions in theoretical terms, but also to inform experimental research. Thus, 

the use of frameworks may facilitate the interaction between game theorists and 

other social scientists, an area for future work that is outlined below.  

8.3.6. Greater interaction with other social sciences 

There is clearly a lot to gain from the interaction of game theory and other social 

sciences. Traditionally, game theory has developed almost entirely from 

introspection and theoretical concerns. Whilst the work developed in game theory 

up until now has proven to be tremendously useful, it seems clear that game 

theory will not fulfil all its potential as a useful practical tool to analyse real-world 

social interactions unless a greater effort is made to interact with other social 

sciences. In particular, a closer interaction with more empirically-driven social 

scientists is likely to increase the applicability and relevance of game theory for 

the study of real-world social interactions. Ideally, this interaction should not be 

postponed until the stage in the research where a theoretical model is to be 

validated; on the contrary, empirical research (both experimental and field work) 

can suggest exciting and relevant avenues where theoretical research may be most 

needed. In this way, empirical and theoretical work can usefully drive, shape, and 

benefit from each other. As Weibull (2002) says, “perhaps this is the beginning of 

a new phase in economic research where economists get together with 

psychologists, sociologist, and social anthropologists”. Let us make it happen. 
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Appendix A. Proofs of propositions in chapter 4

Notation: Since most of the proofs follow Norman (1968) we adopt his notation. 

The state of the system in iteration n, characterized in the BM model by the 

mixed-strategy profile in iteration n, is denoted Sn. The set of possible states is 

called the state space and denoted S. The realization of both players’ decisions in 

iteration n is referred to as an event and denoted En. The set of possible events is 

called the event space and denoted E. Sn and En are to be considered random 

variables. In general, s and e denote elements of the state and event spaces, 

respectively. The function of S into S that maps Sn into Sn+1 after the occurrence of 

event e is denoted fe(·). Thus, if En = e and Sn = s, then Sn+1 = fe(s). Let Tn(s) be the 

set of values that Sn+1 takes on with positive probability when S1 = s. Let us say 

that a state s is associated with an event e if s is a pure state (where all 

probabilities are either 0 or 1) and the occurrence of e pushes the system towards s 

from any other state. In any system, only one state is associated with a certain 

event, but the same state may be associated with several events. Finally, use d(A, 

B) for the minimum Euclidean distance between two subsets A and B of S.  
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=  

 

Lemma 1. Assuming players’ aspiration levels are different from their respective 

payoffs, the 2-player 2-strategy BM model can be formulated as a strictly distance 

diminishing model (Norman, 1968, p.64). 

Proof. Proving that the BM model can be formulated as a strictly distance 

diminishing model involves checking that hypotheses H1 to H8 in Norman (1968) 

hold. Define the state of the system Sn in iteration n in the BM model as the 

mixed-strategy profile in iteration n. The state space is then the mixed-strategy 

space of the game, and the event space E is the space of pure-strategy profiles, or 

possible outcomes of the game; consider also the Euclidean distance d(s, s’)  in S. 

Having stated that, hypotheses H1 to H6 (which are included here for the sake of 

completeness) are immediate:  

H1. The occurrence of an event effects a change of state such that if En = e and  

Sn = s, then Sn+1 = fe(s). Thus, )( nEn SfS
n

=+1  for n ≥ 1. 

H2. E is a finite set. 
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H3. The learning situation is memory-less and temporally homogeneous, in the 

sense that the probabilities of the various possible events on trial n depend only on 

the state on trial n, and not on earlier states or events, or on the trial number. That 

is, there is a real valued function  on E × S such that .(·)φ

)()( seEP es 111 φ==  , 

and   ))((),|( ... sfnjeEeEP
nn eeejjnns 11

1  11 +
=≤≤== ++ φ  , for n ≥ 1, 

where   )))((...(()(... sfffsf eeeee nnn 111 −
=

H4. (S,d) is a metric space. 

H5. (S,d) is compact. 

H6. Let us use the following notations. If h and g are mappings of S into the real 

numbers and into S, respectively, their maximum “difference quotients” m(h) and 

u(g) are defined by 

 
)',(

)'()(
sup)(

' ssd

shsh
hm

ss

−
=

≠
 and  

)',(

))'(),((
sup)(

' ssd

sgsgd
gu

ss≠
=  

whether or not these are finite. H6 is the following regularity condition: 

Eem e ∈∞<  allfor    )(φ  

This is easily proven by defining ),()( 0sdse ≡φ  

 

H7. For strictly distance diminishing models H7 reads  

1<
≠ )',(
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' ssd

sfsfd ee

ss

 for all Ee∈  

Given that learning rates are strictly within 0 and 1 and stimuli are always non-

zero numbers between −1 and 1 (since players’ aspiration levels are different from 

their respective payoffs by assumption), it can easily be checked that H7 holds. 

The intuitive idea is that after any event e, the distance from any state s to the pure 

state se associated with event e is reduced by a fixed proportion in each of the 

components of s which is not already equal to the corresponding component in se. 

For the strict inequality in H7 to hold, it is instrumental that every state of the 

system (except at most one for each event) changes after any given event occurs 

(i.e. fe(s) ≠ s for all s ≠ se). The assumption that players’ aspiration levels are 

different from their respective payoffs guarantees such a requirement. Without 

that assumption, H7 does not necessarily hold in its strict form.  
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Finally, H8 reads: 

H8. For any  there is a positive integer k and there are k events eSs∈ 1 ,…, ek 

such that 
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H8 is immediate having proved H7 in its strict form, since at least one event is 

possible in any state.█ 

 

Lemma 2. Consider any 2-player 2-strategy BM system where players’ 

aspiration levels differ from all their respective payoffs. Let se be the state 

associated with event e. If e may occur when the system is in state s  

(Pr{En = e | Sn = s} > 0), then  

0=
∞→
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Proof. The BM model specifications guarantee that if event e may occur when 

the system is in state s, then it will also have a positive probability of happening in 

any subsequent state. Mathematically, 

Pr{En = e | Sn = s} > 0     →    Pr{En+t = e | Sn = s} > 0 for any t ≥ 0 

This means that any finite sequence of events {e, e…e} has positive probability of 

happening. Note now that if the system is in state s ≠ se and event e occurs, the 

distance from s to se is reduced by a fixed proportion in each of the components of 

s which is not already equal to the corresponding component in se. This proportion 

of reduction is, for each player, the product of the player’s absolute stimulus 

magnitude generated after e and the player’s learning rate. Both proportions are 

strictly between 0 and 1 since players’ aspiration levels are different from their 

respective payoffs by assumption. Let k be the minimum of those two proportions. 

Imagine then that event e keeps occurring, and note the following bound. 
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The proof is completed taking limits in the expression above. 
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Proof of Proposition 4-1. Statement (i) is an application of Theorem 1 in 

chapter 2 of Benveniste et al. (1990, p. 43). Statement (ii) follows from Theorem 

8.1.1 in Norman (1972, p. 118). The assumptions to apply this Theorem are listed 

in Norman (1972, p. 117). Here we show that with the hypotheses in Proposition 

4-1, all these assumptions hold. In this section, following Norman (1972), the 

state of the system in iteration n is denoted Xn, and the letter θ  denotes the 

learning rate. Since the state space II =θ  is independent of θ , (a.1) is satisfied. 

 does not depend on θθθ /nn XH Δ= θ , so (a.2) and (a.3) hold. All components of 

the functions )(E)( xXHxw nn == θθ  and )))(((E)( 2 xXxwHxs nn =−= θθ  are 

polynomials, so every assumption (b) is satisfied. Finally, since  does not 

depend on 

θ
nH

θ  the supremum over θ  can be omitted in (c), and also the module of 

each of the components of  is bounded by the maximum learning rate, so (c) is 

also satisfied. Thus Theorem 8.1.1 is applicable. Finally, Statement (iii) is an 

application of Theorem 4.1 in chapter 8 of Kushner and Yin (1997).█ 

θ
nH

 

Proof of Proposition 4-2. Proposition 4-2 follows from Theorem 2.3 in 

Norman (1968, p.67), which requires the model to be distance-diminishing and 

one extra assumption H10.  

H10. There are a finite number of absorbing states a1 ,…, aN , such that, for any 

, there is some aSs∈ j(s) for which 

0=
∞→
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Given the assumptions of Proposition 4-2, Lemma 1 can be used to assert that the 

BM model is distance diminishing, with associated stochastic processes Sn and En. 

Proving that H10 prevails will then complete the proof. The proof of H10 rests on 

the following three points: 

a) If in state s there is a positive probability of an event e occurring, then, 

applying Lemma 2: 

0=
∞→

)),((lim en
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ssTd  

 where se is the state associated with the event e. 

b) The state se associated with a Mutually Satisfactory (MS) event e is 

absorbing. Note also that there are at most four absorbing states. 
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c) From any state there is a positive probability of playing a MS event within 

three iterations.  

 

Points (a) and (b) are straightforward. To prove (c) we define strictly mixed 

strategies as those that assign positive probability to both actions, and mixed 

states as states where both players’ strategies are strictly mixed. Note that after an 

unsatisfactory event, every player modifies her strategy so the updated strategy is 

strictly mixed, and that strictly mixed strategies will always remain so.  

 

Since players’ aspiration levels are below their respective maximin by assumption, 

there is at least one MS event. Hence from any mixed state there is a positive 

probability for a MS event to happen. We focus then on non-mixed states where 

no MS event can occur in the first iteration. This implies that the event in the first 

iteration is unsatisfactory for at least one player, so at least one player will have a 

strictly mixed strategy in the second iteration. Without loss of generality let us say 

that player 1 has a strictly mixed strategy in the second iteration. If player 2’s 

strategy were also strictly mixed, then the state in the second iteration would be 

mixed, and a MS event could occur. Imagine then that the state in the second 

iteration is not mixed. Given that player 1’s aspiration is below its maximin, there 

is a positive probability that the event in iteration 2 will be satisfactory for player 

1. If such a possible event is also satisfactory for player 2, an MS event has 

occurred. If not, then both players will have a strictly mixed strategy in iteration 3, 

so a MS event could happen in iteration 3. This finishes the proof of point (c). 

 

The proof of the fact that every SRE can be asymptotically reached with positive 

probability if the initial state is completely mixed rests on two arguments: (a) 

there is a strictly positive probability that an infinite sequence of any given MS 

event e takes place (this can be proved using Theorem 52 in Hyslop (1965, p.94)), 

and (b) such an infinite run would imply convergence to the associated (SRE) 

state se. We also provide here a theoretical result to estimate with arbitrary 

precision the probability  that an infinite sequence of a MS event e =  

begins when the system is in mixed state p = ( ). 
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The following result can be used to estimate  with arbitrary precision:  ∞L
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We are indebted to Professor Jörgen W. Weibull for discovering and providing 

the lower bound in this result (personal communication).█ 

 

Proof of Proposition 4-3. Each statement of Proposition 4-3 will be proved 

separately. Statement (i) is an immediate application of Theorem 2.3 in Norman 

(1968, p.67), which requires the model to be distance-diminishing and the extra 

assumption H10 (see proof of Proposition 4-2). Having proved in Lemma 1 that 

the model is distance-diminishing, we prove here that H10 holds. The proof of 

H10 rests on the same three points (a-c) exposed in the proof of Proposition 4-2. 

The terminology defined there is also used here. Points (a) and (b) are 

straightforward. To prove (c), remember that after an unsatisfactory event, every 

player modifies her strategy so the updated strategy is strictly mixed, and that 

strictly mixed strategies always remain so. By assumption, there is at least one 

absorbing state, which means that there must be at least one MS event. This 

implies that from any mixed state there is a positive probability for a MS event to 

happen.  

 

Since players’ aspirations are above their respective maximin, given any action for 

player i, there is always an action for her opponent such that the resulting event 

would be unsatisfactory for player i. In other words, if one of the players has a 

strictly mixed strategy, then there is a positive chance that the system will be in a 

mixed state in the next iteration. We focus then on states where no player has 

strictly mixed strategies and a MS event cannot occur in the first iteration. This 

implies that the event in the first iteration is unsatisfactory for at least one player, 

who will have a strictly mixed strategy in the second iteration and, as just shown, 

this implies a positive probability that the system will be in a mixed state in the 

third iteration. The proof of statement (i) is then finished. 
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Statement (ii) follows from Theorem 2.2 in Norman (1968, p.66), which requires 

the model to be distance-diminishing and one extra assumption H9.  

H9.   for all 0=
∞→

))'(),((lim sTsTd nn
n

Sss ∈',  

Having proved in Lemma 1 that the model is distance-diminishing, we prove here 

that H9 holds. Since, by assumption, there are no absorbing states, there cannot be 

MS events. This implies that the event in the first iteration is unsatisfactory for at 

least one player, who will have a strictly mixed strategy in the second iteration. As 

argued in the proof of statement (i), this implies a positive probability that the 

system will be in a mixed state in the third iteration. Therefore at the third 

iteration any event has a positive probability of happening, so we can select any 

one of them, the state se associated with it, and then, by Lemma 2, we know that 

 for any state s, so H9 holds. █ 0=
∞→
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n
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Proof of Proposition 4-4. The reasoning behind this proof follows Sastry et al. 

(1994). Statement (i) can be proved considering one player i who benefits by 

deviating from the SRE by increasing her probability pi,q to conduct action q. The 

expected change in probability pi,q can then be shown to be strictly positive for all 

pi,q > 0 while keeping the other player’s strategy unchanged. Statement (ii) can be 

proved considering the Jacobian of the linearization of ODE [2]. Without loss of 

generality, assume that Yi = {A, B} and the certain outcome at the SRE is ySRE = 

(A, A). Choose p1,B and pB 2,B B as the two independent components of the system, so 

the SRE is [p1,B , pB 2,B B] = [0, 0]. The Jacobian J at the SRE is then as follows:   
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It is then straightforward that if ySRE = (A,A) is a mutually satisfactory (si(A,A) > 

0) strict Nash equilibrium (s1(A,A) > s1(B,A); s2(A,A) > s2(A,B)) and at least one 

unilateral deviation leads to a satisfactory outcome for the non-deviating player 

(s1(A,B) ≥ 0 or s2(B,A) ≥ 0), then the two eigenvalues of J are negative real, so the 

SRE is asymptotically stable.█ 
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Notes to extend the theoretical results to populations of players. All 

the lemmas and propositions in chapter 4 and this appendix can be easily extended 

to finite populations from which two players are randomly drawn to play a 2×2 

game taking into account the following points: (1) the state of the system Sn in 

iteration n is the mixed-strategy profile of the whole population. (2) An event En 

in iteration n comprises an identification of the two players who have played the 

game in iteration n and their decisions. (3) Pure states are now associated (in the 

sense given in the notation of the appendix) with chains of events, rather than 

with single events. A pure state s is associated with a finite chain of events c 

(where every player must play the game at least once) if the occurrence of c 

pushes the system towards s from any other state. 

 

Proof of Proposition 4-5. Let Θ be the mixed-strategy space of the finite 

normal-form game. The proof consists in applying Brouwer’s Fixed Point 

theorem to the function )()( 1 pPPp nn =≡ + |EW  that maps the mixed-strategy 

profile p ∈ Θ to the expected mixed-strategy profile W(p) after the game has been 

played once and each player has updated her strategy pi accordingly. Since the 

mixed-strategy space Θ is a non-empty, compact, and convex set, it only remains 

to show that  is a continuous function. Let wΘ→Θ:W i(p) be the ith component 

of W(p), which represents player i’s expected strategy for the following iteration. 

Therefore:   
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Since all  are continuous for every y and every i by hypothesis, W(p) is also 

continuous. Thus, applying Brouwer’s Fixed-Point theorem, we can state that 

there is at least one p* ∈ Θ such that W(p*) = p*. This means that the expected 

change in all (p

)( pr y

i

 i,j)* (probability of player i following her jth pure strategy) is zero. 

█
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Appendix B. Proofs of propositions in chapter 5  

Proof of Proposition 5-1. Proving the second part of proposition 5-1 –i.e. that 

the asymptotic behaviour of the N-CBR model is independent of the decision-

making algorithm employed by each player i when she has not yet explored every 

action available to her in a similar situation– is straightforward, since this is a 

transient situation. Given the definition of the set of different states of the world 

possibly perceived by any player, the trembling hands noise guarantees that 

sooner or later every possible state of the world perceived by any player will 

happen infinitely often. The trembling hands noise also guarantees that every 

player will choose every possible action available to her in any given situation. 

Thus, sooner or later, every player will have selected every action available to her 

in every possible state of the world she can perceive (i.e. every action available to 

player i will be represented in her set of cases Ci, for every state of the world 

possibly perceived by i). Therefore, sooner or later, no player will be using the 

decision-making algorithm that the second part of proposition 5-2 refers to, so the 

asymptotic behaviour of the model is independent of such algorithms. 

 

The following proves part 1 of proposition 5-1, i.e. that if every player has a 

common perception of the state of the world, then the asymptotic behaviour of the 

N-CBR process is independent of the specific structure of the perceived state of 

the world. The previous paragraph demonstrates that sooner or later the state of 

the system in the N-CBR model is fully characterised by every player’s set of 

most recent cases that occurred in every possible perceived state of the world for 

each one of the actions available to her. Thus, this second proof (which refers to 

the asymptotic behaviour of the system) assumes that every player has already 

selected every action available to her at least once in every possible state of the 

world she can perceive. Consider the following two points: 

• The assumption that players have a common perception of the state of the 

world implies that all players perceive that any particular state of the world 

has occurred in exactly the same time-steps. In other words, all players 

would unanimously agree or disagree with any statement of the form “The 

situations lived in time-steps {x, y,…,z} looked all similar to me (i.e. they 

correspond to the same perceived state of the world)”.  

 171



• Note also that the decision made by each player i in any particular 

situation is only affected by decisions (made by all players) that took place 

in a previous similar situation (i.e. having perceived the same state of the 

world).  

 

Thus, one can view the dynamics of the whole model (where players can perceive 

various different states of the world) as a collection of parallel dynamic processes, 

each of them corresponding to one specific state of the world (perceived by all 

players at once). The dynamics observed for each individual perceived state of the 

world are governed by the same decision-making processes and are independent 

of each other. Each of these individual threads, if observed on its own, induces the 

same dynamics that one would observe in a model where players cannot 

distinguish between different states of the world. The following table illustrates 

this interpretation with an example.  

 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SWt sw3 sw1 sw4 sw3 sw2 sw3 sw4 sw4 sw1 sw2 sw1 sw3 sw2 sw4 sw1

THREAD 

SW = sw1

 1       2  3    4 

THREAD 

SW = sw2

    1     2   3   

THREAD 

SW = sw3

1   2  3      4    

THREAD 

SW = sw4

  1    2 3      4  

 

where SWt is the random variable that denotes the state of the world perceived by 

every player at time-step t, swi are particular values of that variable, and the 

numbers on coloured backgrounds inside the table indicate the number of times 

that the corresponding state of the world has been visited. 

 

Let  be the state of the thread {SW = sw} (where the perceived state of the 

world is sw), defined by the payoffs each player obtained the last time that she 

selected each of the actions available to her having observed state of the world sw, 

when state of the world sw has been observed n times. It is clear then that the 

sequence of random variables  (for any fixed sw) corresponds to a model 

)(sw

nT

1≥n

sw

nT }{
)(
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where players cannot distinguish between different states of the world. Following 

the reasoning presented in the first paragraph of section 5.7, it is also 

straightforward to show that  can be formulated as a uni-reducible 

Markov chain, which has a unique limiting distribution (Janssen and Manca, 

2006, Corollary 5.2, pg. 117). Finally, it should also be apparent that all threads 

have the same limiting distribution: 

1≥n

sw

nT }{
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n
n
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n
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For clarity of notation, let {Tn}n≥1 denote the sequence of states corresponding to a 

model where players cannot distinguish different states of the world. Thus, 
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The fact that remains to be proven is that the overall dynamics of the model (i.e. 

the ensemble of threads) also show the same limiting distribution as the individual 

threads. To show that, let Xt denote the state of the thread corresponding to the 

state of the world observed at time t. Formally: 

{ }iSWTX t

i

tNt i
==   : )(

)(
 

where Ni(t) denotes the number of times that the event {SWt = i} has occurred up 

until time-step t. Formally: ( ) { }{ }iSW,...,tk#tN ki =∈=   :  1    

 

With this notation, the proof of the second part of proposition 5-2 will be 

concluded once it is demonstrated that: 
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The following, which is conditioned to a set of (arbitrary) initial conditions, 

concludes the proof. 
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It has been argued previously that states of the world are visited infinitely often, 

thus:  
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(Regardless of the set of (arbitrary) initial conditions) 

and it is also clear that  tiSW
i

t ∀==∑ 1)Pr(

 

Using the two results above the first part of proposition 5-1 is finally proved: 
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Proof of Proposition 5-2. As argued in the proof of proposition 5-1, sooner or 

later, every player will have selected every action available to her in every 

possible state of the world she can perceive (i.e. every action available to player i 

will be represented in her set of cases Ci, for every state of the world possibly 

perceived by i). Thus, sooner or later, the state of the system in the N-CBR model 

is fully characterised by every player’s set of most recent payoffs she obtained for 

each one of the actions available to her in every possible state of the world she can 

perceive. The model thus defined is a finite-state irreducible aperiodic discrete-

time Markov chain, which is denoted PP

ε
. Let P

0
P  be the Markov process PP

ε
 when  

ε = 0 and all players have explored all their available actions for every possible 

state of the world they can perceive. Note that P
0
P  is generally reducible. 

 

The proof rests on two arguments. The first argument, which is an immediate 

application of theorem 4 in Young (1993), is that every stochastically stable state 

is a recurrent state of PP

0
 (i.e. the model without noise). The second argument is 

that the outcome (i.e. the set of decisions made by players) that is induced by any 

recurrent state of P
0
P  is necessarily individually rational. The following proves an 

alternative (but equivalent) formulation of the second argument: if state x in PP

0
 

induces an outcome that is not individually rational, then x is a transient state of 

P
0
P . We will prove this second argument by showing that if state x induces an 

outcome that is not individually rational, then x will never be revisited.  

 

Let A be one of the players who has received a payoff below her maximin 

MaximinA in the outcome induced by state x, and let swA be the state of the world 

perceived by A in state x. Let a be the action that A chose in state x, and px(A, a) 

be the payoff that A had obtained the previous time she had perceived swA and 

 174 



selected action a; this payoff px(A, a) is part of the definition of x. Note that a 

necessary condition for x to be revisited is that player A perceives swA again, and 

also that the payoff that A has obtained the previous time she has perceived swA 

and selected action a is px(A, a). This can never be the case for the following 

argument: 

1. The fact that player A selected action a in state x implies that  

px(A, a) ≥ MaximinA. In more informal terms, the payoff player A believed 

she would obtain by selecting action a (having observed state of the world 

swA) was the maximum over all her possible actions, and therefore it was 

necessarily no less than MaximinA. 

2. Player A obtained a payoff strictly below her MaximinA when, after having 

perceived state of the world swA, she selected action a. Thus, from then 

onwards she will remember that the last time she selected action a having 

observed state of the world swA, she obtained a payoff strictly below 

MaximinA. 

3. There is at least one action that gives player A a payoff no less than 

MaximinA regardless of the actions of her counterparts. When perceiving 

state of the world swA again, player A will always select this (maximin) 

action over action a. Thus, player A will never update her belief that 

selecting action a when she perceives state of the world swA will give her a 

payoff below MaximinA.  

 

State x required player A to believe that selecting action a would give her a payoff 

no less than MaximinA. Thus, state x cannot be revisited, and this fact concludes 

the proof.   
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Supporting Material 

All the software, parameter files, and documentation required to easily replicate 

every experiment presented in this thesis are included in the accompanying CD. 

This section outlines the file structure of this CD. 

 

The root directory contains 3 folders, one for each of the chapters where results 

from computational experiments are presented: 

Folder “chapter4” 

This folder contains an HTML file named “index.html” that can be used to easily 

access every program that was used to create each of the figures in chapter 4. All 

these programs were coded using Mathematica©. There is no need to make any 

alterations to the source code to obtain each of the figures presented in chapter 4. 

Folder “chapter5” 

This folder contains the following files and directories: 

• “analyticalCalculation.nb” is the Mathematica© program used in section 

5.7.3 to identify features that make outcomes stochastically stable. As 

explained in section 5.7.3, this program also calculates the exact long-run 

fraction of time that any 2-player system spends in each possible outcome 

when the probability of trembles tends to zero. 

• “CBR-model” is a directory that contains an Objective-C implementation 

of the CBR-model, a detailed user guide that explains how to use the 

model (casd-0-userGuide.pdf), and several parameter files for 

demonstration. 

• “N-CBR-model” is a directory that contains the Objective-C 

implementation of the specific N-CBR model that was used to produce 

figure 5-8, and several parameter files for demonstration. 

• “dataForFigures” is a directory that contains all the parameter files and the 

data that were used to generate each of the figures in chapter 5. 
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Folder “chapter6” 

This folder contains the following files: 

• “index.html” is an HTML file that contains an applet of EVO-2x2 and 

detailed instructions on how to use it. 

• “EVO-2x2.nlogo” is the NetLogo 3.0.2 (Wilensky, 1999) implementation 

of EVO-2x2. It also contains all the parameter files required to replicate all 

the experiments presented in chapter 6. These can be accessed using the 

“BehaviorSpace” tool that forms part of NetLogo. 

• “EVO-2x2-3D.nlogo” is the NetLogo 3-D Preview 1 (Wilensky, 1999) 

implementation of EVO-2x2-3D. 

• “NetLogoLite.jar” is a file required to run the applet in the HTML file 

“index.html”. 

• “extraSoftware” is a directory that contains the Perl script (“trimmer.pl”) 

and the Mathematica© program (“graphGenerator-1.nb”) used to conduct 

the automatic analyses explained in section 6.3.3.  
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Glossary of game theory terms 

Action: a pure strategy. 

 

Deficient equilibrium: An equilibrium is deficient if there exists another outcome 

which is preferred by every player. 

 

Common interest game: a game where there is a unique payoff profile that 

strongly Pareto dominates all other payoff profiles (and this payoff profile may be 

achieved via several strategy profiles). See Aumann and Sorin (1989). 

 

Common knowledge: Common knowledge (CK) in game theory often comes 

with a certain order: zero-order CK of X is just the assumption that X prevails for 

every player (e.g. zero-order common knowledge of complete information 

(CKCI) means that every player has complete information); first-order CK is the 

assumption that every player knows that X prevails for every player (e.g. first-

order CKCI means that every player knows that every player has complete 

information); in general, (n)th-order CK is the assumption that (n-1)th-order CK is 

known by every player. If no order is specified, it is assumed that the order is 

infinite (this produces an infinite recursion of shared assumptions). 

 

Common knowledge of rationality (CKR): Following the definition of common 

knowledge (see above), first-order CKR is the assumption that every player 

knows that every player is rational; (n)th-order CKR is the assumption that (n-

1)th-order CKR is known by every player. If no order is specified, it is assumed 

that the order of CKR is infinite. See Aumann (1976) for a formal definition. 

 

Complete information: In a game of complete information it is assumed that 

players not only know the rules of the game and their own payoff function, but 

also their counterparts’ payoff functions (see section 2.2.1). 

 

Evolutionary stable strategy: Informally, an evolutionarily stable strategy is a 

strategy which, if adopted by a population of players, cannot be invaded by any 

alternative strategy (see section 2.3.1). 

 179



 

Finite game: a game with finitely many players, each of which has a finite set of 

pure strategies.  

 

Individually-rational outcome: An outcome giving each player at least their 

maximin payoff, i.e. the largest payoff that they can guarantee obtaining 

(regardless of the opponents’ moves) in a single-stage game using pure strategies. 

 

Instrumentally rational: An instrumentally rational player has unlimited 

computational capacity devoted to maximise her individual payoff function. There 

are various degrees of rationality in game theory; see section 2.2.2. 

 

Maximin payoff: the largest possible payoff a player can guarantee herself 

(regardless of the opponents’ moves) in a single-stage game using pure strategies. 

The maximin payoff for each player in the one-shot Prisoner’s Dilemma is the 

payoff obtained when both players defect. 

 

Mixed strategy: A probability distribution P over the set of pure strategies. It is 

understood that a player using a mixed strategy chooses one pure strategy 

randomly according to P. 

 

Mutual belief: A proposition X is mutual belief among a set of players if each 

player believes X. Mutual belief by itself implies nothing about what, if any, 

beliefs anyone attributes to anyone else (Vanderschraaf and Sillari, 2007). 

 

Mutual interest game: a game where there exists a unique pure strategy profile 

that gives the highest possible payoff to every player. All mutual interest games 

are, in particular, common interest games (Aumann and Sorin, 1989). 

 

NxM game: A normal form game for two players, where one player has N 

possible actions and the other one has M possible actions. The payoff function in 

NxM games can be neatly represented with a matrix. 
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Nash equilibrium (Nash, 1951): a set of strategies such that no player, knowing 

the strategy of the other(s), could improve her expected payoff by changing her 

own strategy. Every finite game has at least one Nash Equilibrium (possibly in 

mixed strategies). 

 

Outcome: a particular combination of pure strategies, one for each player, and 

their associated payoffs. 

 

Pareto inefficient: An outcome is Pareto inefficient if there is an alternative in 

which at least one player is better off and no player is worse off. 

 

Perfect information: Informally, in (sequential) games of perfect information, 

the actions taken by every player are instantaneously known by every other player 

(e.g. chess). Complete information does not imply perfect information. 

 

(Strictly) dominated strategy: For a player A, strategy SA is (strictly) dominated 

by strategy S*A if for each combination of the other players’ strategies, A’s payoff 

from playing SA is (strictly) less than A’s payoff from playing S*A (Gibbons, 

1992, p. 5). 

 

Subgame: Informally, a subgame is a subset or piece of a sequential game 

beginning at some node such that every previous action undertaken by every 

player at every point is common knowledge. 

 

Subgame perfect equilibrium (Selten, 1975): A strategy profile is a subgame 

perfect equilibrium if it represents a Nash equilibrium of every subgame of the 

original game (whether or not the subgame is reached along the equilibrium path 

induced). Subgame perfect equilibrium is a refinement of the concept of Nash 

equilibrium that eliminates non-credible threats in sequential games. 

 

Tit-for-Tat (TFT): This is the strategy consisting of starting by cooperating, and 

thereafter doing what the other player did on the previous move. 
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