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Introduction

The New York Stock Exchange (NYSE) completed its long anticipated change from

fractional pricing to decimal pricing on January 29, 2001. This process is known as

"decimalization." It is accompanied by a reduction in the minimum price variation called

the tick size which in this case is from a sixteenth of a dollar to one cent. A reduction

in tick size can have significant effects on other variables because it removes constraints

on pricing and makes the cost of obtaining price priority smaller. This in turn may

change the strategic behavior of the players in the market. The effect of decimalization

on the quoted bid-ask spread, trading volume, and alike are well documented. The

effects on more elaborate concepts are not as clear, however. Although volatility is

almost unanimously reported to decrease [see, e.g., Ronen and Weaver (2001)], most of

the empirical studies use unprecise estimation methods and sparsely sampled data that

weaken the results. And with only very few exceptions [He and Wu (2005)] do these

studies decompose volatility in any way.

In theory, price discreteness forces the observed price to deviate from the "true"

price [see, e.g., Gottlieb and Kalay (1985), Cho and Frees (1988), and Easley and

O’Hara (1992)]. As a consequence, the observed volatility is upward biased relatively

to the true volatility by amount that depends on the tick size [see Harris (1990a)] and

the sampling frequency [see, e.g., Gottlieb and Kalay (1985)]. Because decimalization

alleviates rounding errors, the difference between the true and the observed price should

narrow. This should damp the observed volatility but leave the true volatility intact.

Hansen and Lunde (2006) find some evidence in this direction.

In this paper, we let the observed volatility to consist of two additive components:

the true volatility and the market microstructure noise variance. This decomposition

allows us to estimate them separately. If noise would not be separated out, the estimated

volatility would depend on the sampling frequency through the noise term and cause

trouble in subsequent modeling. We now want to find out if decimalization affects the

true volatility and noise and their relative strength significantly. In order to accomplish
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this, we use elaborate econometric estimation methods that allow us to extract useful

information from ultra-high-frequency (UHF) data. We take advantage of the fact

that the NYSE decimalization was carried out in a manner that resembles a controlled

natural experiment. We also use mixed-effect panel regressions to ensure that the found

effects are not caused by confounding factors or randomness.

A key point is to first estimate the true volatility accurately. As noted for example

by Cho and Frees (1988), the sample standard deviation underestimates the true stan-

dard deviation even in the absence of noise. We use several non-parametric estimators

that have desirable statistical properties and are yet flexible and simple to calculate.

In particular, if the market microstructure noise is IID, then the two-scale realized

volatility (TSRV) estimator [Zhang, Mykland, and Aït-Sahalia (2005)] is consistent

and unbiased. Similarly, the re-scaled realized volatility estimator provides consistent

noise variance estimates. Both variance measures carry economically significant infor-

mation [Bandi and Russell (2006)]. Their ratio, "signal-to-noise," allows us to evaluate

changes in the composition of volatility.

We also let the market microstructure noise to be serially correlated. The generalized

TSRV [Aït-Sahalia, Mykland, and Zhang (2006)] and the multi-scale realized volatility

[Zhang (2005)] estimators are then still consistent and unbiased. The latter estimator,

in particular, is able to account for time varying noise properties. Such flexibility is

welcome because the properties of noise have been shown to vary over time and data

type [see Hansen and Lunde (2006)]. We demonstrate how the volatility estimators

cope with the change in tick size. This also enables us to study if decimalization affects

the trade price and midquote estimates differently.

Finally, because jumps can have a deteriorating effect on the estimates of volatility

and market microstructure noise variance [see Fan and Wang (2006)], we investigate

the presence of jumps by a simple and direct test recently proposed by Aït-Sahalia and

Jacod (2006). We find that jumps do exist, as expected, and that their impact may

be different in event and calendar time. We then remove the jumps using different

thresholds. Because true jumps (triggered by news, for example) are relatively rare
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random events, and because in our analysis we take averages over time and across

stocks, we do not expect to see qualitatively significant changes in our results.

The empirical results of this paper show how a tick size reduction affects volatility

and market microstructure noise. As argued by Harris (1990a), price discreteness can

produce significant biases especially when small variance components are being iden-

tified from UHF data. This is relevant for example to risk management and options

pricing [see Figlewski (1997)]. Our results should also be of interest to stock exchanges

and institutions that work on to improve the efficiency of the markets. International

volatility spillovers combined with the recent collusions between major stock exchanges

highlight the need for rules that help to weigh down excess volatility (consider the

NYSE—Euronext and Nasdaq—OMX mergers). In the future it may for example be

that a tick size different from one cent is found optimal or that more advanced trading

mechanisms are introduced in order to reduce market microstructure noise. After all,

stock prices should ideally reflect all known information and not noise [see Black (1986)

and Amihud and Mendelson (1987)].

The structure of this paper is as follows. In Section 1, we review the related deci-

malization literature. In Section 2, we describe the estimators we use in the empirical

study. The data are described in Section 3. In Section 4, we report the empirical re-

sults. We conclude in Section 5. Appendix includes additional tables with volatility

estimates and also illustrates the idea of subsampling and averaging that the estimators

are based on.

1 Review of decimalization effects

This section gives a brief review of the relevant decimalization literature. [A more

general survey can be found for example in Harris (1997, 1999) and NYSE (2001).]

Notice that different methods and data sets make comparisons of many decimalization

studies rather tricky. Market structure alone can have a significant effect on market

characteristics [see Huang and Stoll (2001)]. Furthermore, a tick size decrease from
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eights to sixteenths does not necessarily have the same effect as a tick size decrease

from sixteenths to cents.

The most direct evidence concerns the (bid-ask) spread. Both absolute and relative

spreads have been found to decrease. As predicted for example by the Harris (1994)

model, Ahn, Cao, and Choe (1996) and Ronen and Weaver (2001) find that the tick

size decrease from eights to sixteenths reduced the quoted and effective spreads on

the American Stock Exchange (AMEX). Similar evidence is reported for the change to

five cents on the Toronto Stock Exchange (TSE) [e.g., Bacidore (1997)], from eights

to sixteenths on the NYSE [Ricker (1998), Bollen and Whaley (1998), and Goldstein

and Kavajecz (2000)], and from sixteenths to cents on the NYSE and the Nasdaq

[Bessembinder (2003)]. Goldstein and Kavajecz (2000) and Bessembinder (2003) note

that the spread decrease is largest for the most active stocks.

The Harris (1994) model also predicts a decrease in quoted depth and an increase

in trading volume. Ahn, Cao, and Choe (1996) and Ronen and Weaver (2001) however

find no significant changes in quoted depth or trading activity on the AMEX. On the

other hand, Bacidore (1997) and Porter and Weaver (1997) find depth to decrease but

trading volume to remain constant on the TSE. Ricker (1998), Bollen and Whaley

(1998), Goldstein and Kavajecz (2000), and Bacidore, Battalio, and Jennings (2001)

report decreases in quoted depth on the NYSE. van Ness, van Ness, and Pruitt (1999)

report increases in the number of trades and volume. Chakravarty, van Ness, and van

Ness (2005) report an increase in the volume of small sized trades.

Ricker (1998), Bollen and Whaley (1998), and Bacidore, Battalio, and Jennings

(2001) find that decimalization improved liquidity on the NYSE. Bessembinder (2003)

does not find evidence of liquidity problems on the Nasdaq either. It is indisputable,

however, that displayed liquidity is decreased because of more order cancellations and

smaller limit order sizes. NYSE (2001), among others, concludes that market trans-

parency diminished. Jones and Lipson (2001) point out that the spread is no longer a

sufficient statistic of market quality for large investors. They report increased average

execution costs for a group of institutional investors on the NYSE due to the change
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from eights to sixteenths. Similar evidence is presented by Goldstein and Kavajecz

(2000). In contrast, Chakravarty, Panchapagesan, and Wood (2005) do not find evi-

dence of liquidity problems due to change to cents using NYSE Plexus data [in line

with Bacidore, Battalio, and Jennings (2003)]. They suggest that large investors may

have started using more cautious execution strategies.

Because liquidity does not appear to be adversely affected (at least not too much),

decimalization is unlikely to increase volatility. Notice, however, that the great recent

increase of algorithmic trading [see Economist (2007b)] — partly fueled by the diminished

market transparency and the higher market making costs due to decimalization itself —

may have actually made the markets more sensitive to bad news. Trading algorithms

can trigger sell-offs which in turn may cause losses of liquidity as happened for example

in October 1987 when the widely adopted "portfolio insurance" strategies fully kicked

in. More recent evidence is from February 2007 when automated trading led to severe

order-routing problems on the NYSE [see Economist (2007a)]. These instances are of

course expected to be rare by standard measures.1 In "normal periods" decimalization

is likely to decrease volatility due to the smaller impact of price discreteness.2 Indeed,

Ronen and Weaver (2001) and Bessembinder (2003) report volatility reductions on the

AMEX, the NYSE, and the Nasdaq. Both studies proxy volatility by standard deviation

or variance of midquote returns (the former also uses daily closing midquotes).3 They

do not find exogenous market trends to be responsible for the decrease. Chakravarty,

Wood, and van Ness (2004) report similar findings for portfolio volatility constructed

from one minute intraday returns that are volume weighted.

It remains to identify what factors actually reduced volatility. A volatility reduction

may be due to many different components such as the bid-ask bounce, price adjust-

1There is also evidence that algorithmic trading improves liquidity instead of decreasing it [see
Hendershott, Jones, and Menkveld (2008)], that is, at least during "troubless" normal times.

2Ikenberry and Weston (2003) and Chung, van Ness, and van Ness (2004) however find significant
clustering to five and ten cents after decimalization so that the impact may not be full. Clustering
is not that surprising, though, because it simplifies price negotiation, among other things [see, e.g.,
Harris (1991)].

3As noted for example by Cho and Frees (1988), Jensen’s inequality can be used to show that the
sample standard deviation is a downward biased estimator of the true standard deviation. Gottlieb
and Kalay (1985) find that the portfolio volatility estimates are nearly unbiased, however.
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ments to large trades, price discreteness, and so on. Market microstructure noise can

be driven by information asymmetries between the traders and the market maker. Not

surprisingly, identification of the factors is hard in practice. Conflicting evidence of

for example whether adverse selection was increased or decreased exists [see Zhao and

Chung (2006), Chakravarty, van Ness, and van Ness (2005), and Bacidore (1997)]. Per-

haps most relevantly to us, He and Wu (2005) decompose the variance of price changes

into public news, price discreteness, and bid-ask spreads using the method of Madhavan,

Richardson, and Roomans (1997). They find a significant variance decline due to price

discreteness and spreads. Gibson, Singh, and Yerramilli (2003) furthermore find that

the spread reduction on the NYSE is due to a decrease in the order-processing compo-

nent (and that inventory and adverse selection components remain significant). Engle

and Sun (2005) find that in the decimalized NYSE as much as 86% of the variance of

market microstructure noise in transactions can be due to variation in the informational

component (the rest due to the non-informational component). In this paper, however,

we treat market microstructure noise as a one unit and do not attempt to separate out

its components.

2 Estimators

The framework in which we operate is standard. It can be viewed as a reduced form of

structural market microstructure models such as the model of Madhavan, Richardson,

and Roomans (1997) [see the discussion in Hasbrouck (1996)]. We now shortly review

it.

Let the observed price, Y, consist of the latent true price X and noise � :

Yti = Xti + �ti . (1)

The noise term is commonly assumed to be IID with mean zero and finite variance.

It includes transient factors such as the bid-ask bounce, price discreteness, inventory
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effects, and so on. In the IID case the first-order autocovariance of the (observed)

returns can be shown to be −E�2 (and zero afterwards) [see, e.g., Aït-Sahalia, Mykland,

and Zhang (2006)]. Because trades and quotes tend to cluster over time, this framework

has been extended to include serially dependent noise. Hansen and Lunde (2006) argue

it to be particularly relevant with very frequent sampling in a decimalized market

like ours. We take dependent noise into account by using proper estimation methods

(described below).

In Eq. (1), the true (generally unobserved) (log)price X is standardly assumed to

follow an Itô process,

dXt = μtdt+ σtdBt,

with σt possibly stochastic and Bt the standard Brownian motion.
4 Changes in the true

price are believed to be information driven and they are permanent. This is in line with

the view that the true price process should be positively correlated [see, e.g., Amihud

and Mendelson (1987)]. Standardly, the true price is also assumed to be independent of

the noise process. Although Hansen and Lunde (2006) argue that in practice negative

dependence exists especially in the midquote data due to severe asymmetric information

effects [see, e.g., Glosten and Milgrom (1985) and Madhavan, Richardson, and Roomans

(1997)], in this paper we maintain the assumption of independence [for more discussion,

see Aït-Sahalia, Mykland, and Zhang (2005b)].

If volatility is stochastic, it is important in many financial applications (e.g., in

option pricing) to estimate the so-called integrated volatility (IV),

hX,XiT =

Z T

0

σ2tdt,

as accurately as possible. Without any noise arising from market microstructure, real-

4Itô processes include for example the Ornstein—Uhlenbeck process as a special case. The true price
process could also be a more general semimartingale and still have its quadratic variation well defined
[see, e.g., Protter (2005)]. A semimartingale with jumps however warrants special attention.
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ized volatility (RV), also known as quadratic variation (in the theoretical limit),

[Y, Y ]
(all)
T =

n−1X

i=0

¡
Yti+1 − Yti

¢2

over the observed prices at times 0 = t0 < t1 < · · · < tn = T, provides a precise estimate

of IV as ∆t→ 0 (sampling higher).5 In the presence of noise it does not, however. With

IID noise, RV provides a consistent estimate of the noise variance instead [see Zhang,

Mykland, Aït-Sahalia (2005) and Bandi and Russell (2003)]:

1

2n
[Y, Y ]

(all)
T =dE�2. (2)

We call this noise variance estimator the re-scaled realized volatility (RSRV). Because

of its upward biasedness [see Oomen (2005b) and Hansen and Lunde (2006)], we also

present a popular unbiased noise variance estimator later on (based on the aforemen-

tioned fact that the first-lag autocovariance term of returns equals −E�2).6

Several more precise estimators for IV have been proposed [see, e.g., Zhou (1996)].

Although most of them provide an unbiased estimate of IV, only few of them are

consistent. In this paper we use three estimators that are not only unbiased but also

consistent. These estimators all are based on the idea of subsampling and averaging,

and although they start to be well known by now, we next describe them in some detail.

The reader may find the details useful in the empirical section where we carry out some

qualitative robustness checks.

The TSRV estimator of Zhang, Mykland, and Aït-Sahalia (2005) is defined as

\hX,Xi
(tsrv)

T = [Y, Y ]
(K)
T − n

n
[Y, Y ]

(all)
T , (3)

5Typically, "realized volatility" and "realized variance" refer to the same quantity. Keep in mind,
however, that in finance literature volatility often refers to standard deviation (of returns) rather than
to variance. We nevertheless prefer to use the term realized volatility here.

6If negative dependence between the true price and noise truly exists, as suggested by Hansen and
Lunde (2006), it should reduce the upward biasedness of the RSRV estimator for active stocks.
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where

[Y, Y ]
(K)
T =

1

K

n−KX

i=0

¡
Yti+K − Yti

¢2
,

n = (n − K + 1)/K, and 1 < K ≤ n. If the noise is IID and K is suitably chosen

relatively to n, then the TSRV estimator is consistent, asymptotically unbiased, and

normal [see Zhang, Mykland, and Aït-Sahalia (2005)]. [For the reader new to the idea

of subsampling and averaging, we illustrate the calculation of the first sum in Eq. (3)

by two numerically equal ways in Appendix A.1.]

The generalized TSRV (GTSRV) estimator proposed by Aït-Sahalia, Mykland, and

Zhang (2006) allows for serially dependent noise. It is defined as

\hX,Xi
(gtsrv)

T = [Y, Y ]
(K)
T − nK

nJ
[Y, Y ]

(J)
T ,

nK = (n −K + 1)/K, similarly for nJ , and 1 ≤ J < K ≤ n. The GTSRV estimator

reduces the impact of dependent noise by slowing down the "fast time-scale." It is

consistent for suitable choices of J andK [see Aït-Sahalia, Mykland, and Zhang (2006)].

Setting J = 1 and K →∞ (as n→∞) recovers the TSRV estimator.

The multi-scale realized volatility (MSRV) estimator [Zhang (2005)] is defined as

\hX,Xi
(msrv)

T =
MX

i=1

ai [Y, Y ]
(Ki)
T + 2dE�2,

where M > 2. The weights ai are selected to make the estimator unbiased and to

achieve the optimal convergence rate of n−1/4 (the TSRV has slower convergence rate

of n−1/6). The optimal weights are

a∗i =
i

M2
h∗
µ

i

M

¶
− i

2M3
h∗0
µ

i

M

¶
,

where h∗(x) = 12(x−1/2) and h∗0 its first derivative. It can be shown that the MSRV is

quite robust to the nature of the noise as long as the noise is stationary and sufficiently

mixing [see Zhang (2005) and Aït-Sahalia, Mykland, and Zhang (2006)].
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We next define several signal-to-noise ratios (SNRs) that play a central role in our

empirical analysis. We first define SNR1 as

SNR1 :=
TSRV

RSRV
=
Eq. (3)

Eq. (2)
;

i.e., as the ratio of the estimates of true volatility and noise variance. Similarly, we

define SNR2 and SNR3 with GTSRV and MSRV in the numerator, respectively.

In theory, noise variance could be estimated unbiasedly by using the negative of the

first-lag autocovariance of returns [see, e.g., Roll (1984), Zhou (1996), and Hansen and

Lunde (2006)]. It would also be quite robust to jumps [see Oomen (2005b)]. Unfortu-

nately, in practice this "Roll-estimator" can easily produce negative variances due to

estimation error [see Harris (1990b)], illiquidity, or positive serial dependence. In order

to prevent negative variances, we define SNR1b, SNR2b, and SNR3b so that the noise

variance is estimated by the absolute value of the first-lag autocovariance. We denote

this alternative estimator by |Cov1| . Notice that it only makes sense to calculate it

using trade price data (as explained in the next section).

Because jumps have been shown to have a deteriorating effect not only on the RSRV

estimator but also on the TSRV and MSRV estimators [see Fan and Wang (2006)], we

consider the impact of jumps in more detail later (see Section 4.3).

3 Data description

We use Trades and Quotes (TAQ) data supplied by the NYSE. The decimalization

process to cents was completed on January 29, 2001 and we refer to this date as the

decimalization date. We analyze two periods of approximately equal length before and

after it: November 6, 2000 — January 19, 2001 (the before decimalization period) and

February 5, 2001 — April 12, 2001 (the after decimalization period). We exclude one

business week on both sides of the decimalization date in order to minimize confound-

ing effects that may arise from the adoption of the new rules. We also exclude one

12



abnormally short trading day (Nov/24/2000). This amounts to having 50 and 48 trad-

ing days in the before and after period, respectively. Although the data do not span a

long time period, there are thousands of observations per day for an active stock which

increases our confidence in the empirical results. Focusing on relatively short "before"

and "after" periods close to each other also helps to avoid trends.

As is standard in the literature, we consider only NYSE trades and quotes that are

time-stamped during the normal trading hours (9 : 30−16 : 00 EST). We now explicitly

want to exclude all other U.S. exchanges such as the Nasdaq in order to minimize

noise contamination due to different decimalization schedules and market structures.

We exclude trades reported out-of-sequence and quotes that do not correspond to a

normal trading environment.7 We choose to merge together all simultaneous trades

and quotes. The percentage of mergers in the trade data is typically small (0.5− 3%)

but larger in the quote data especially for the most active stocks (up to 30%). Merging

(compressing) the data is a quite common procedure and we do not find it changing

the autocorrelation structure significantly. Hansen and Lunde (2006) actually argue it

to improve the precision of the volatility estimators.

We form three groups of stocks based primarily on their date of decimalization. In

"Control Group 18" (CG18) we include the 18 most active stocks that were decimalized

in the first two pilot phases in August and September, 2000.8 The rest of the pilot

stocks are not active enough for our purposes as we do not want to include stocks

from the third pilot phase (December) because it would limit the number of time series

observations too much. (All pilot decimalized stocks and their times of decimalization

are reported in Appendix A.2). In "Test Group Dow Jones" (TGDJ) we include 30

Dow Jones Industrial Average index stocks that were decimalized on the decimalization

date, January 29, 2001 (see Table 1).9 They are typically much more active and have

7More precisely, in the quote data, we keep modes 1, 2, 3, 6, 10, and 12. In the trade data, we
exclude all other trades than the so-called regular trades. See the TAQ2 User Guide for details.

8We exclude AOL and TWX from the analysis because of their merger in January, 2001. On the
other hand, we keep DCX and UBS although they are American Depositary Receipts because Ahn,
Cao, and Choe (1998) find that order flows do not seem to migrate easily from market to market.

9Because MSFT and INTC are primarily Nasdaq stocks but part of the Dow Jones Industrial
Average index, they are replaced by LU and VZ. Moreover, because of a stock split, JPM is replaced
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larger market capitalization than the CG18 stocks. We thus decide to form another

test group called "Test Group 18" (TG18) in which we include 18 stocks of similar

activity to CG18. In order to improve the match between them, the TG18 stocks are

also pairwisely chosen from the same industry subsector or sector as the CG18 stocks

(see Table 2).10 Some descriptive statistics of all the stocks included in our analysis are

reported in Tables 3 (CG18 and TG18) and 4 (TGDJ).

Data errors are likely to be more frequent in UHF data than in sparsely sampled

data. With all the trades and quotes at our disposal, however, the errors are also easier

to detect. In the terminology of Aït-Sahalia, Mykland, and Zhang (2006), we say that

a midquote or trade price is a "bounceback" if a (logarithmic) return larger than a

prespecified threshold is followed by a return of similar magnitude but of opposite sign

(so that the returns approximately cancel out). We use the following threshold rule:

for stocks priced below $10, in between $10 and $50, in between $50 and $100, and

larger than $100 we set the threshold to 0.01, 0.0083, 0.0067, and 0.005, respectively.

In the before decimalization period, we further multiply the thresholds by 1.5 for stocks

trading in fractions (although this adjustment turns out to be insignificant). We find

that in general there are more bouncebacks in the trade price data than in the midquote

data. This suggests that trade price data are inherently more noisy (bouncy). We delete

all found bouncebacks.

Bouncebacks can also be "sticky" in the sense that a data error can repeat for a

while. Sticky bouncebacks are much more of a problem in the midquote data than in

the trade price data. We detect them by comparing the return and the corresponding

spread to the daily standard deviation and spread, respectively. If the spread increases

only temporarily from its daily average and is followed by a midquote returning to its

previous level, a sticky bounceback is detected and deleted unless it is easy to correct

by PFE.
10One could match also with respect to other factors such as price, volatility, and equity market

capitalization [see, e.g., Chakravarty, Wood, and van Ness (2004) and Chung, van Ness, and van Ness
(2004)] but we find our criteria to be adequate. The average prices, for example, are similar between
the stock groups (see Tables 3 and 4). In particular, the noise variance estimates of CG18 and TG18
are statistically the same but larger than of TGDJ (as seen in a later table).
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for.11 These procedures detect the errors well.

When the sampling frequency gets high, the choice of data type becomes more

relevant. It is often argued that a midquote (defined as the average of the bid and ask

quotes) provides a less noisy measure of the unobserved true price [see, e.g., Hasbrouck

(2007)]. On the NYSE, the variance of the market microstructure noise of midquote

returns actually partly reflects the bid-ask quote setting behavior of the specialists. For

example, if the price of a stock suddenly moves significantly (up or down), the spread

tends to widen momentarily (in the same direction) due to inventory positioning and

information asymmetry. In our analysis, we use both trade price and midquote data in

order to show how differently decimalization can affect them.12 We use the superscripts

"t" and "q" to denote their respective estimates.

The key statistical difference between midquotes and trade prices relevant to us is

that the first differences of midquotes do not typically have significant negative first-

lag autocorrelation commonly addressed to the bid-ask bounce [Roll (1984)], rounding

errors [Harris (1990a)], and inventory imbalances [e.g., Jegadeesh and Titman (1995)].

Instead, the midquote returns typically show significant positive autocorrelation for

a few lags (and zero afterwards). While this is generally true, the strength of the

dependence can vary over time and across stocks [see Hansen and Lunde (2006) and

Curci and Corsi (2006)]. We find, for example, that the Ljung—Box (LB) test statistic

is able to vary considerably between days and stocks. It tends to be stronger (weaker)

in midquote returns (trade price returns) after decimalization (see Tables 3 and 4). We

return to this issue in the next section where statistical tests are run. Furthermore, it

is not uncommon to observe other sort of autocorrelation patterns, especially for the

less active stocks such as the CG18 and TG18 stocks. The autocorrelation structure

also depends on the concept of time (the clock).

In our analysis, the clock is set in event time. Event time refers either to trade or

11We avoid deleting consecutive quotes because it leaves a gap in the durations between quotes.
Deleting consecutive quotes can be especially harmful for an inactive stock. Because it is sometimes
hard to diagnose data errors correctly, the remainder becomes part of market microstructure noise.
12Naturally other types of data could be used as well, for example weighting the bid and ask quotes

by the respective volumes. This would create a more bouncy price process than averaging.
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quote time depending on the data type used. It is defined by taking each consecutive

event (trade or quote) in consideration with equal weigth so that the distance between

two consecutive events is always one unit of time.13 This guarantees that no data

(information) is thrown away. This gives us an edge over the earlier decimalization

studies typically using the "old-school" way of sampling at equidistant calendar time

intervals (e.g., 1min). It is nowadays also widely believed that calendar time sampling

is not very well-suited for the analysis of the evolution of a true price in liquid markets

[see, e.g., Frijns and Lehnert (2004)]. The problems of calendar time sampling arise from

the use of mandatory artificial price construction rules (e.g., interpolation between two

prices) and from several well-known intraday patterns which tend to make the calendar

time sampled series non-stationary.

4 Empirical analysis

4.1 Preliminary analysis

We now descriptively evaluate the decimalization effects on volatility and market mi-

crostructure noise variance. We also demonstrate how well the non-parametric esti-

mators described above perform. This should facilitate the interpretation of the test

results in the next section.

We first find that the TSRV, GTSRV, MSRV, and RSRV estimators adapt quite

naturally to different data types and concepts of time. The parametric methods sug-

gested in the literature [see, e.g., Aït-Sahalia, Mykland, and Zhang (2005a)] would not

be nearly as flexible. The parametric methods would, in particular, require us to take

a stand on the structure and strength of the noise. This would complicate matters

considerably in an empirical study like ours where many stocks are analyzed. Although

the non-parametric volatility estimators we use are also quite robust to data errors, we

13This is different from "tick time" with only the instants having a non-zero price change recorded
[see, e.g., Oomen (2005a) and Griffin and Oomen (2006)]. Both clocks adapt to the activity of the
market but we find the trade and quote time to be more natural.
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encourage some attention to be paid to the choice of time-scales that are being averaged

over. We next describe a setup which we found reasonable (although our results are

not sensitive to this setup).

The TSRV and MSRV estimates are calculated withK andM matching the number

of quotes (trades) in 10 or 15 minutes on average, respectively. These choices may at

first seem arbitrary and as such to produce considerable amount of estimation error

but as Aït-Sahalia, Mykland, and Zhang (2006) have shown, these two estimators are

quite robust in this sense. We have here merely tried to adjust the estimators to the

daily pace of the market without using any complicated optimality formulas. For very

active stocks, obviously, K andM can be much larger than for inactive stocks. Because

this may cause problems for the least active stocks on slow days, we fix the lower limit

to K = 10 if there are less than 10 observations in 10 minutes. We do not make any

such adjustment to the MSRV estimator. For the GTSRV, we select J according to

how strong the daily autocorrelation is: if the LB test statistic is greater than 25 (the

chi-square 5% critical value), then we use J = 2 and 5 for the trade price and midquote

data, respectively. These choices reflect the typical autocorrelation pattern for an active

stock. If the daily autocorrelation is weak (LB is less than 25), then we use J = 1

(corresponding to the TSRV). We advice against using a too large J if the strength of

the dependence does not call for it because this would cause underestimation.

Tables 5 and 6 report the average MSRVt (trade price data) estimates for each stock

before and after decimalization. The many downward pointing arrows suggest that

there is a general tendency for the volatility to be lower after decimalization. These

tables also show that although the MSRVt estimates are close to the MSRVq (midquote

data) estimates, the former are on average around 4% above the latter regardless of the

period and stock group (see columns %q). On the other hand, the RVt estimates are

clearly inflated before decimalization and tend to become closer to the MSRVt estimates

after decimalization (see columns %t
rv). For TGDJ, for which this effect is particularly

evident, the reduction is from −174% to −26% implying only moderate overestimation

compared to the MSRVt estimates after decimalization (see Table 6). In contrast, the
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RVq estimates are deflated compared to the MSRVt estimates before decimalization.

The noise reduction is also far less obvious than with the trade price data (see columns

%q
rv). Interestingly, for the inactive stocks the RV

q estimates are actually close to the

MSRVq estimates in both periods (see Table 5).

The TSRV estimates do not show any clear tendency for over or underestimation

for the less active stocks (CG18 and TG18). For TGDJ, the TSRVt estimates are again

around 4% above the TSRVq estimates in both periods. The GTSRV estimates seem

to be more sensitive to the activity of the stock. This is probably due to the generic

choice of J which works better with the active than the inactive stocks. For example,

for TGDJ, the trade price and midquote GTSRV estimates are on average very close to

each other (within 1% margin), but for CG18 and TG18 the GTSRVt estimates tend to

be significantly lower than the GTSRVq estimates. (The TSRV and GTSRV estimates

are reported in Appendix A.3.)

Figure 1 illustrates how the volatility estimators compare to each other in the case

of an active Dow Jones stock, Pfizer Inc. (PFE). The TSRV, GTSRV, and MSRV

estimates are close to each other regardless of the data type used. On the other hand,

as seen in subplot (a), the RVt estimates are clearly inflated before the decimalization

date but more in line with the others after it. In subplot (b) we see that the RVq

estimates are close to the other estimates in both periods and that the reduction due

to decimalization seems much less significant than the corresponding trade price data

reduction.

Tables 7 and 8 report the average RSRVt noise variance estimates. Again we see a

tendency for lower estimates after decimalization. The RSRVt estimates are above the

RSRVq estimates especially before decimalization (see columns %q). For TGDJ (Table

8), for example, the RSRVt estimates are on average 73% higher than the RSRVq esti-

mates before decimalization and 53% higher after decimalization. Decimalization thus

appears to have made the RSRV estimates closer to each other by decreasing the noise

more in the trade price data than in the midquote data. That the difference between

them stays large can be due to various forms of data dependencies, such as dependence
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Figure 1: Volatility of PFE using (a) trade prices; (b) midquotes. The last day of the
before decimalization period is marked at observation #50 by the vertical line.

between the noise and the true volatility [see Hansen and Lunde (2006)]. In these

two tables we also report the first-lag autocovariance estimates for the noise variance.

Except perhaps for TGDJ, however, they are dubious. Some of them actually imply

negative variances (the daily estimates even more often so). Thus in the subsequent

analysis we mainly rely on the RSRV estimates instead.

Figure 2 illustrates the associated changes in the noise variance and the SNR. The

decrease in the RSRVt estimates and the increase in the SNRt
3 are obvious in subplots (a)

and (b). The changes are less apparent using the midquotes as can be seen in subplots

(c) and (d). In subplots (a) and (b) we have also included the first-lag autocovariance

and the corresponding SNRt
3b estimates. The former are below the RSRV

t estimates.

In fact, they are close to the RSRVq estimates, suggesting that the midquotes could be

used to reduce the upward biasedness of the trade price data estimates (see Tables 7

and 8). As a consequence, the SNRt
3b are above the SNR

t
3 and vary wildly.
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Figure 2: Noise variance and SNR of PFE using trade prices (left panel) and midquotes
(right panel). The solid black horizontal lines denote the mean of RSRV (upper panel)
and SNR3 (lower panel). The vertical line at observation #50 denotes the last day of
the before decimalization period.

4.2 The test results

In this section, which contains the bulk of the results, we use the paired t-test for a

group of non-independent samples in order to test whether the means of various vari-

ables were different from each other before and after the final decimalization date. The

paired t-test is standardly applied in similar contexts including a few earlier decimal-

ization studies [see, e.g., Bessembinder (2003)]. The test assumes that the differences

between the paired values are randomly drawn from the source population and that the

source population can be reasonably supposed to be normally distributed. However,

because normality of the differences is sometimes a too restrictive assumption, we also

use another standard test, namely the Wilcoxon rank sign test, which requires only

symmetry and not normality. The Wilcoxon rank sign test ranks the median values of

absolute differences and for large enough samples it is normally distributed [for details,
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see, e.g., Hollander and Wolfe (1999)].14 Notice that serial dependence between obser-

vations (i.e., order) in the before and after decimalization periods is not relevant for

the calculation of these test statistics because only the differences between the uncondi-

tional means are used. And although the assumption of independence between the pairs

of stocks may be questioned (especially during big stock market downturns), we regard

it is as a reasonable assumption if the stocks are picked in random from different sectors

as they essentially now are (see Section 3). Also, the stocks within each group CG18,

TG18, and TGDJ are much alike in trading activity which makes taking averages over

them less of a problem than if they would not have anything in common.

We first report the paired t-test and the Wilcoxon rank sign test results for the ab-

solute and relative spread, number of quotes and trades, quoted depth, trading volume,

and serial dependence. This helps us to interpret the main results on volatility and

market microstructure noise variance (reported next). Our findings can be compared

to the earlier studies with some precautions in mind, mostly related to different market

mechanisms (see Section 1).

From Table 9 we see that, for CG18, none of the seven variables change significantly

except the number of quotes which increases over the two periods (not abruptly but

smoothly). In particular, we find no significant changes in the number of trades, trading

volume (in round-lots), or LB test statistics (for 15 lags). Thus the control group is

largely unaffected by the decimalization of the other stocks as it ideally should. In

contrast, most of the variables for TG18 and TGDJ change significantly. As expected,

we find a significant decrease in their quoted depth and a very significant decrease in

their spreads. TGDJ has no significant increase in the number of quotes but TG18 does.

This is probably due to the fact that the quotes for the most active stocks were already

updated frequently before the decimalization date. Interestingly, for both TG18 and

14The paired t-test is calculated as (X − Y )/S.E.[(X − Y )], where the denominator is the stan-
dard error of the difference of the two averages. Notice that the nominator is numerically equivalent
with calculating the average of the paired differences. The Wilcoxon rank sum test is calculated asPn

i=1Riψi, where Ri is the rank of the absolute value of the difference between the before and after
period observations and ψi is an indicator function taking the value 0 when the difference is negative
and 1 when the difference is positive.

21



TGDJ, the midquote return autocorrelation tends to increase. In contrast, the trade

return data autocorrelation decreases, although both groups have a significant increase

in the number of trades. The decrease is more significant for TGDJ, again probably due

to its higher activity. A decrease in the first-lag autocorrelation is in line with theory

that predicts less significant first-lag autocorrelation due to smaller rounding error [see

Harris (1990a)]. That the number of trades increases for both TG18 and TGDJ while

their trading volume stays constant is also in line with the earlier studies.

From Table 10, on the other hand, we see that the midquote absolute first-lag

covariances decrease or do not change at all. Because the corresponding LB test statistic

was just found to increase (see Table 9), decimalization seems to have weakened the

first-lag dependence but strenghtened the higher lag dependence. This would explain

the apparent controversy between the LB of midquote and trade data (although this is

stock dependent to some extent as noted above). The main reason why the dependence

should be increased in the midquote data is, we believe, that decimalization changed the

strategic behavior of the market participants. The participants outside the "floor" of the

NYSE may have for example become more cautious due to the fear of "front-running"

(a form insider trading from the part of the NYSE specialists). This is consistent with

the reported decrease in market transparency [see, e.g., NYSE (2001)]. In general,

the simple and significantly weakened serial dependence in the trade price data should

make them better suited for the analysis of decimalization effects than the midquote

data especially with the most active stocks.

We now turn to our main results that are reported in Table 10. According to the

paired t-test, true volatility appears to decrease only slightly (CG18 and TGDJ) or

not significantly (TG18). The Wilcoxon test provides much stronger evidence of a

decrease which is evidently due to the non-Gaussian character of volatility. The results

also reveal that there are in general only minor differences between the three volatility

estimators we use. The MSRV estimates indicate a slightly more significant decrease

for TGDJ (whether this may be due to jumps is discussed in the next section). Noise

variance estimates decrease significantly across the board. For TG18 and TGDJ, the

22



decrease in noise variance turns out to be more significant than the volatility decrease.

Not surprisingly, then, the increase in their SNR is highly significant for TGDJ. We

find no major differences between SNR1, SNR2, and SNR3 but SNR3 changes slightly

less significantly than the others.

Notice that the results using trade price data (left panel in Table 10) differ in some

respects from the midquote data results (right panel). The trade price data tend to

give slightly more significant results than the midquote data for the volatility of TGDJ.

The difference is more obvious for the noise variance. As a consequence, the increase

in SNRt for TGDJ turns out to be highly significant. The data type does not seem

to matter as much for TG18, however, suggesting that the less active stocks are less

affected by the data type.

It is of course possible that the tests applied here accidentally capture inherent

trends in the data and, in the case of volatility in particular, clustering to turbulent

and tranquil times that are not related to the decimalization process itself. As a first

attempt to control for confounding factors, we run linear regressions for each stock

with volatility, noise variance, and SNR as the dependent variables. The explanatory

variables we use are the number of quotes (for the midquote data) and trades (for the

trade price data), the LB test statistic, and a dummy variable defined to be 0 before

decimalization and 1 after it. The number of quotes and trades are included because

they appear prominently in the calculation of the estimates (see Section 2) and because

they have not, in general, remained constant over the sample period (see Table 9). The

LB test statistic, on the other hand, is included because it can be thought as reflecting

the daily information asymmetry and because it has not in general remained constant

either. Note that we do not include the spreads as explanatory variables because they

correlate highly with the dummy variable for the TGDJ stocks. Multicollinearity could

easily lead to invalid inference regarding the regression coefficients. Such approximate

multicollinearity actually only supports the view that the most active stocks had the

largest spread and noise variance reductions.

The stock specific regressions indicate that the dummy variable tends to be signif-
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icantly negative when the dependent variable is either volatility or noise variance. So

confounding factors do not appear to be responsible for the decrease. It is however

harder to tell what the effect on the SNR is because the corresponding dummy coeffi-

cient is often close to zero and its sign alternates stock dependently within and between

groups. In order to gain more insight, we run panel (longitudinal) linear regressions

with the same dependent and explanatory variables. Specifically, we use the restricted

maximum likelihood method to estimate linear mixed-effects models of the form [see

Pinheiro and Bates (2004, Ch. 2)]

yit = α+ β1LB(15)it + β2NrTrades(Quotes)it + β3Dummyit +

ai + b1iLB(15)it + b2iNrTrades(Quotes)it + b3iDummyit + �it,

where i denotes the ith stock in CG18/TG18 (i = 1, ..., 18) or TGDJ (i = 1, ..., 30)

and t denotes the day before and after decimalization (t = 1, ..., 98). Here α and βh

(on the top row) are the fixed-effect coefficients and ai and bhi (on the bottom row)

are the random-effect coefficients. The latter describe the shift in the intercept and the

explanatory variables for each stock, respectively, and they are assumed to be normally

distributed with mean zero. The random-effect coefficients are allowed to be correlated

(with a covariance matrix not depending on the stock) but the normally distributed

and zero-centered error terms �it are assumed to be independent. Thus, the random

effects can be regarded as additional errors terms that account for correlation among

observations (for each stock separately).

The trade price and midquote data panel regression results are reported in Tables 11

and 12. In them, volatility is estimated by the MSRV (the other estimators would do as

well). In order to facilitate interpretation of the regression coefficients and to mitigate

multicollinearity, we center the explanatory variables except the dummy. As seen above,

we include random effects for all the explanatory variables including the dummy. This

tends to give less significant fixed-effect regression coefficients for the dummy. Despite

the more conservative inference, the coefficients for the dummy are negative and clearly
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significant when volatility and noise variance are dependent variables. However, there

does not appear to be much support for a significant abrupt increase in the SNR: after

controlling for the number of quotes and trades, in particular, the coefficient for the

dummy turns out to be insignificant or of the wrong sign (midquote data) or to be only

mildly significant (trade price data). Specification tests done along the lines of Pinheiro

and Bates (2004, Ch. 4.3) do not reveal any clear evidence of misspecifation — especially

when random effects are included for every fixed-effect explanatory variable as they now

are. In particular, we then find that the standardized within-stock residuals are zero

centered and normally distributed.

We conclude that after taking confounding and random effects into account, at best

only weakly significant evidence of an abrupt level shift in the SNR exists and that

only the trade price data provide evidence in favor of an increase. The last point makes

sense because the trade price data are more sensitive to the change in the tick size.

In fact, if the midquotes correctly represent the true price, the corresponding dummy

should not be significant. Of course, we cannot totally exclude the possibility that the

above findings are not due to the relatively short sample period in question. However,

longer periods or periods farther apart from each other would potentially suffer even

more from trends and complicate the inference.

4.3 The effect of jumps

It is a well-known theoretical fact that if jumps exist, RV does not converge to IV

even in the absence of market microstructure noise but instead to IV+
P

0≤t≤T |∆Xt|
2,

where ∆X denotes a large return (a true jump triggered by an earnings announcement,

for example). It has also been reported that estimators such as the TSRV and MSRV

then lose part of their estimation accuracy [see Fan and Wang (2006)]. This has raised

some doubts about the validity of earlier research [see, e.g., Diebold (2005)]. We thus

next study if jumps exist in our data and if the jumps affect our results on decimaliza-

tion effects significantly. Because there is some ambiguity between jumps and noise in
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discrete data, we also pay some attention to how much noise there is in the trade price

data compared to the midquote data.

We first test for the presence of jumps. For this purpose we use the test proposed by

Aït-Sahalia and Jacod (2006) which we call the two-scale jump test (TSJT). This test

is valid only in the absence of market microstructure noise so we expect to see some

bias, but we nevertheless find it useful to calculate for qualitative purposes. The good

thing is that the TSJT is a particularly direct and easy way to test for the presence of

jumps (but not their strength or frequency) without making strong assumptions. We

now shortly review it.

The TSJT statistic is defined as

bS(p, k,∆n)t =
bB(p, k∆n)t
bB(p,∆n)t

,

where, for p > 0,

bB(p,∆n)t :=

[t/∆n]X

i=1

|∆n
iX|

p

is the estimator of variability, and ∆n
iX = Xi∆n −X(i−1)∆n denote the discrete incre-

ments of a semimartingale process X. As is easily observed, the TSJT statistic takes

advantage of two overlapping time-scales, ∆n and k∆n, from which we have derived its

name.

The usefulness of this test is based on a theorem in Aït-Sahalia and Jacod (2006)

saying that if t > 0, p > 2, and k ≥ 2, then the variables bS(p, k,∆n)t converge (in

probability) to the variable S(p, k)t = 1 on the set of discontinuous processes and to

kp/2−1 on the set of continuous processes as ∆n → 0 (n →∞). Aït-Sahalia and Jacod

(2006) show that if the market microstructure noise is IID and p = 4, then the TSJT

statistic converges to 1/k (instead of 1). They note, however, that when E�2 and E�4 are

small (as in practice they are; see for exampledE�2 in Tables 7 and 8) and ∆n = T/n is

"moderately small," then the TSJT statistic will again be close to 1 in the discontinuous

case.
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We use the values p = 4 and k = 2 and set [0, T ] to one trading day as suggested

by Aït-Sahalia and Jacod (2006). We let ∆n to vary from 1 to 10 events but report

here only the results with ∆n = 1 (the larger time-scales give less accurate results).

The non-normalized histograms of all the stocks together are presented in Figure 3.

There are 6 468 observations in total, each observation representing one day for one

stock. The subplots (a) and (b) indicate that market microstructure noise is prominent

because the histograms are not tightly peaked around any value. In particular, the

histograms are not centered around 1 or 2. The mean of the midquote data is higher

than the mean of the trade price data. This is in line with the view that the midquote

data are less bouncy than the trade price data (see Section 3).15

For comparison purposes, in subplots (c) and (d) we show the histograms in calendar

time with ∆n = 5 seconds. These histograms are more sharply centered around 1,

implying more jumpy price evolution or less noise contamination in calendar time.

Both explanations are in fact plausible.16 The price process may be more jumpy in

calendar time because the price does not adjust instantly to new surprising news. This

would be consistent for example with the idea of subordination and the directing process

evolving at different rates [see, e.g., Clark (1973)]. In event time the jumps also tend

to be smoothed out by market makers who monitor the market closely. The fact that

the histograms of trade price and midquote data look more like each other in calendar

than in event time supports the view that the data type plays a less significant role in

larger time-scales (and with less active stocks).

There are at least two straightforward ways to remove jumps [see Barndorff-Nielsen

and Shephard (2004) and Aït-Sahalia and Jacod (2006)]. Both of these methods (as

they currently stand), however, work well only in the absence of market microstructure

noise. Thus we decide to apply the following simple rule instead: if the return of

consecutive prices in event time is larger than a given threshold (we use 0.03), then the

15It would not make sense to call the trade price data truly more jumpy than the midquote data
because both data types reflect the same underlying value.
16Aït-Sahalia and Jacod (2006) find their histogram to be centered below 1. They however include

Nasdaq data in their analysis which increases the amount of noise and explains the shift in location.
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Figure 3: Histograms of the TSJT statistic in event time using (a) trade prices; (b)
midquotes. Subplots (c) and (d) show the corresponding data in calendar time.

return is removed, a new price table is constructed, and the statistical tests are re-run.

This reduces the daily number of quotes and trades but only slightly because so big

jumps are quite rare in event time. In fact, there are only a few such jumps in each

group per period and less in the midquote data than in the trade price data. Of course,

the number of jumps would be greatly increased if we would use a smaller threshold

but then we would also be more likely to capture not only the true jumps but also

noise. This would be especially true with the less active CG18 and TG18 stocks. For

completeness, we report the number of jumps with three different thresholds in Tables

13 and 14 which clearly show the increase in the number of jumps when the threshold

is decreased (0.03→ 0.01).
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Because most of the days do not have any significant jumps according to the above

threshold (0.03), the sums of power 4 stay largely unaffected when the jumps are re-

moved. We see no obvious differences between the before and after period either. The

paired t-test statistics are only moderately affected by the jumps (and the Wilcoxon

test less so). The change is most evident for volatility and noise variance; in the case of

a low priced stock, a big price swing can make jumps more likely in one of the periods

and thus produce many jumps (see, e.g., LU in Table 4). But even in this case the

effect on the SNR is diminishingly small because both the noise variance and the true

volatility decrease by approximately the same amount. So we conclude that jumps do

not seem to have any qualitatively important impact on our results. This seems like

a natural result as true jumps are basicly randomly scattered over time independently

of the decimalization process and the test statistics we use group many practically

independent (although similar in trading activity) stocks together.

5 Conclusions

In this paper we have empirically studied the effect of decimalization on volatility and

market microstructure noise using UHF data. A key point is to estimate the true

volatility accurately. To this end, we have used three non-parametric estimators that

all have desirable statistical properties and are yet flexible and simple to calculate. We

have estimated the market microstructure noise variance non-parametrically as well.

Statistical tests are run in order to evaluate the significance of the effects on volatility,

noise variance, and their ratio.

The main result of this empirical study is that decimalization decreased observed

volatility by reducing noise variance especially for the highly active stocks. The reduc-

tion can be attributed to smoother price evolution or, in other words, to diminished

price discreteness. Consequently, the significance of the true signal appears to have in-

creased. Mixed-effect panel regression results show, however, that most of this increase

is explainable by confounding and random effects. The trade data give more favorable
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results than the midquote data which is in line with the view that trade prices are more

sensitive to the changes in the tick size and that they provide a less accurate estimate

of the true (unobserved) price. For the inactive stocks the difference between the two

data types appears to be insignificant.

It should be noted, however, that the decrease in observed volatility due to decimal-

ization can be slightly deceptive. As the markets also became less transparent and the

market making costs increased, algorithmic trading gained more popularity in so much

that it nowadays makes up a big portion of the daily volume. In a crisis, algorithmic

trading can lead to sell-off pressures that may actually end up increasing volatility in

the decimal regime.

This study also demonstrates how the TSRV, GTRSV, and MSRV estimators per-

form in a changing environment. The MSRV estimator appears to give the most robust

estimates with respect to the data type and tick size used. This is noteworthy because

we find that decimalization decreased linear dependence in the trade data but increased

it in the midquote data. On the other hand, the MSRV trade price data estimates are

on average a few percents higher than the respective midquote data estimates in both

periods. This discrepancy may be due the fact that the MSRV estimator does not

adjusting to all complex dependencies. Nevertheless, we feel that the non-parametric

volatility estimators used here can be considered as more flexible than the parametric

estimators suggested in the literature.

Although the estimators we use are sensitive to jumps to certain extent (the volatility

estimators less than the RSRV), we do not find true jumps to be critical for our results.

Prefiltering the data for errors seems far more important because compared to jumps

triggered by news, the errors tend to be bigger, more frequent, more systematic, and

harder to correct for especially in the quote data.

Finally, we note that the estimators we have used are accurate only in ideal con-

ditions that may not exist in practice over time and across stocks. We feel that there

is room for improvement especially in the estimation of noise variance by taking more

complex data dependencies into account. It would also be useful to be able to decom-
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pose volatility into even smaller components. Separating small components from each

other would make the effect of decimalization even more transparent. Decomposition of

market microstucture noise would however require us to take a stand on questions such

as what constitutes a jump and how to separate it from other noise sources. This is a

topic of both theoretical and practical interest and likely to become more important as

infinitely active jump processes gain more popularity in stock price modeling. We leave

these issues for future research.
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Table 1: Test Group Dow Jones (TGDJ).

Ticker Stock
AA Alcoa Inc
AIG American International Group Inc
AXP American Express Co
BA Boeing Co
C Citigroup
CAT Caterpillar Inc
DD E. I. du Pont de Nemours and Co
DIS Walt Disney Co
EK Eastman Kodak Co
GE General Electric Corp
GM General Motors Corp
HD Home Depot Inc
HON Honeywell International Inc
HWP Hewlett-Packard Co
IBM International Business Machines Corp
IP International Paper Co
JNJ Johnson and Johnson
KO Coca-Cola Co
LU Lucent Techs Inc
MCD McDonald’s Corp
MMM Minnesota Mng Mfg Co
MO Altria Group Inc
MRK Merck & Co Inc
PFE Pfizer Inc
PG Procter & Gamble Co
SBC SBC Communications Inc
T AT&T Inc
VZ Verizon Communications
WMT Wal-Mart Stores Inc
XOM Exxon Mobil Co
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Table 2: Control Group 18 (left) and the matched Test Group 18 (right).

Ticker Stock Ticker Stock
APC Anadarko Petroleum Corp APA Apache Corp
BEN Franklin Resources BSC Bear Stearns Companies Inc
CI Cigna Corp WLP Wellpoint Hlth Netwks Hldg Co
CL Colgate-Palmolive Corp AVP Avon Products Inc
CPQ Compaq Computer Corp EMC EMC Corp
DCX DaimlerChrysler AG Ord HDI Harley Davidson Inc
FDX Fedex Corp UPS United Parcel Service Inc
GMH General Motors Corp New F Ford Motor Co New
GT Goodyear Tire Rubber Corp CTB Cooper Tire Rubber Co
GTW Gateway Inc LXK Lexmark Intl Inc
H Harcourt General Inc AM American Greetings Corp
IOM Iomega Corp DBD Diebold Inc
LE Lands/End Inc SKS Saks Inc
LMT Lockheed Martin Corp UTX United Technologies Corp
S Sears Roebuck Corp TGT Target Corporation
SGY Stone Energy Corp NFX Newfield Exploration Co
STT State Street Corp MEL Mellon Financial Corp
UBS UBS AG Ord SHS SNV Synovus Financial Corp
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Table 3: Descriptive statistics for CG18 (above) and TG18 (below).

Stock Before decimalization After decimalization
$ Quotes LBq Trades LBt $ Quotes LBq Trades LBt

APC 64 1 344 78 1 056 28 65 2 233 70 1 632 28
BEN 38 1 156 32 500 25 41 1 577 42 709 25
CI 124 1 524 38 827 25 108 2 252 45 1 012 24
CL 59 1 366 80 856 35 56 2 172 65 1 116 28
CPQ 21 1 953 148 2 089 129 20 2 091 138 1 825 59
DCX 43 795 26 456 45 48 905 30 347 29
FDX 44 1 106 44 704 24 42 1 661 35 835 26
GMH 25 1 051 45 780 25 22 1 457 32 810 32
GT 20 934 33 522 33 25 1 524 39 663 30
GTW 25 1 281 67 1 037 31 17 1 630 60 1 012 31
H 56 359 33 154 29 56 578 36 216 30
IOM 5 462 24 336 34 4 463 28 184 23
LE 25 464 32 184 28 27 560 32 168 24
LMT 33 1 006 26 592 26 37 1 403 32 798 28
S 33 1 350 42 698 32 37 1 598 37 846 29
SGY 57 506 41 202 29 54 612 40 237 26
STT 123 1 472 79 951 29 97 2 414 54 1 298 35
UBS 154 527 26 237 20 153 676 37 179 21
Avg 53 1 036 50 677 35 51 1 434 47 772 29
APA 62 1 238 34 847 31 61 1 556 51 1 120 31
BSC 52 1 463 29 815 34 51 2 210 32 1 114 23
WLP 106 1 111 49 716 22 96 1 389 58 680 26
AVP 44 1 011 31 613 33 40 1 427 42 828 30
EMC 76 2 738 135 2 696 41 41 2 623 119 2 675 36
HDI 42 1 034 37 717 36 41 1 499 42 1 038 29
UPS 59 961 28 550 55 57 1 256 39 582 34
F 25 1 473 34 1 100 137 28 1 738 42 1 380 48
CTB 10 505 31 178 41 13 851 29 271 23
LXK 45 1 082 58 662 24 50 1 791 59 940 34
AM 11 479 23 227 37 13 633 29 239 24
DBD 31 460 23 231 19 28 590 28 240 21
SKS 10 400 25 154 27 13 622 30 212 23
UTX 72 1 393 50 847 28 76 2 021 74 1 217 34
TGT 31 1 379 35 1 047 97 36 1 863 63 1 443 32
NFX 41 446 26 214 19 36 630 27 277 18
MEL 48 1 447 30 999 71 43 1 893 66 1 363 37
SNV 24 783 31 353 45 27 1 354 37 563 26
Avg 44 1 078 39 720 44 42 1 441 48 899 29
Note: All values are based on daily averages. The Ljung—Box (LB) test is for 15
lags. Superscripts q and t denote the midquote and trade price data, respectively.
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Table 4: Descriptive statistics for TGDJ.

Stock Before decimalization After decimalization
$ Quotes LBq Trades LBt $ Quotes LBq Trades LBt

AA 31 1 466 28 1 110 126 36 1 981 44 1 562 70
AIG 95 2 038 60 1 699 102 81 2 421 54 2 191 60
AXP 54 2 269 52 1 848 145 42 2 706 95 2 503 60
BA 64 1 842 100 1 271 50 59 2 531 72 1 642 39
C 51 3 874 123 2 768 372 48 3 339 75 2 659 41
CAT 42 1 175 28 804 68 44 1 701 41 1 142 33
DD 44 2 292 30 1 376 152 43 2 743 83 1 847 73
DIS 30 1 651 34 1 345 201 29 2 132 68 1 570 58
EK 42 1 369 39 872 87 43 1 765 43 983 31
GE 50 3 083 54 2 803 401 44 2 497 161 2 680 65
GM 53 1 732 56 1 042 73 54 1 982 106 1 255 38
HD 43 2 411 62 2 297 316 43 2 520 135 2 490 105
HON 49 2 064 29 1 231 82 44 2 074 35 1 272 30
HWP 34 2 760 42 2 090 178 31 3 370 59 2 479 80
IBM 95 3 549 118 2 757 192 102 3 764 114 3 308 50
IP 37 1 578 30 1 117 100 37 2 110 43 1 396 47
JNJ 97 1 966 59 1 653 153 93 2 164 93 1 861 71
KO 59 1 691 38 1 322 143 50 1 679 79 1 454 36
LU 18 4 389 60 3 996 941 12 3 138 115 3 209 208
MCD 32 1 750 24 1 105 177 28 2 019 47 1 645 91
MMM 108 1 416 96 1 094 35 109 1 973 77 1 393 34
MO 40 3 066 84 1 450 196 47 2 437 144 1 717 42
MRK 89 2 593 90 2 149 183 76 1 842 65 1 644 34
PFE 44 3 195 46 2 804 534 42 2 956 53 2 877 166
PG 73 2 253 51 1 506 100 68 2 380 53 1 689 55
SBC 52 2 239 57 1 807 208 45 2 062 250 1 942 45
T 20 1 807 27 2 256 499 22 1 741 157 1 717 53
VZ 54 2 291 33 1 525 185 49 2 820 62 2 098 60
WMT 51 2 768 60 2 062 242 50 2 021 123 1 975 41
XOM 87 2 013 65 1 632 154 82 2 004 104 1 754 43
Avg 55 2 286 56 1 760 213 52 2 362 88 1 932 62
Note: All values are based on daily averages. The Ljung—Box (LB) test is for 15
lags. Superscripts q and t denote the midquote and trade price data, respectively.
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Table 5: MSRV volatility estimates for CG18 (above) and TG18 (below).

Stock Before decimalization After decimalization
MSRVt (%q) (%t

rv) (%q
rv) MSRVt (%q) (%t

rv) (%q
rv)

APC 8.23e− 04 3 25 44 ↓ 5.38e− 04 8 8 32

BEN 5.77e− 04 0 26 32 ↓ 5.15e− 04 2 27 14

CI 6.12e− 04 1 12 8 ↓ 4.22e− 04 7 −1 −23
CL 4.92e− 04 4 39 50 ↓ 3.46e− 04 4 4 24

CPQ 1.68e− 03 3 −50 54 ↓ 1.52e− 03 3 −16 48

DCX 3.20e− 04 6 −120 −10 ↓ 2.07e− 04 4 −46 −10
FDX 5.61e− 04 9 13 38 ↓ 5.01e− 04 5 −9 16

GMH 1.53e− 03 5 0 34 ↓ 9.95e− 04 3 −36 17

GT 6.71e− 04 4 −39 −29 ↓ 5.44e− 04 7 −56 −45
GTW 2.52e− 03 5 −5 33 2.55e− 03 5 23 45
H 2.20e− 05 5 −188 −120 ↓ 1.81e− 05 3 −57 −54
IOM 2.37e− 03 6 −103 −11 ↓ 1.11e− 03 10 −140 −87
LE 1.15e− 03 −3 38 29 ↓ 7.66e− 04 −6 27 24

LMT 8.23e− 04 3 −13 11 ↓ 6.11e− 04 5 −29 3

S 6.32e− 04 0 14 39 ↓ 4.43e− 04 2 −1 7

SGY 6.15e− 04 4 35 42 6.62e− 04 3 33 38

STT 7.50e− 04 3 19 52 ↓ 7.17e− 04 8 −10 25

UBS 1.04e− 04 8 6 17 1.40e− 04 5 14 −9
Avg 9.03e− 04 4 −16 17 ↓ 7.00e− 04 4 −15 4

APA 6.28e− 04 6 −1 30 ↓ 4.99e− 04 7 10 22

BSC 8.08e− 04 6 −46 10 8.61e− 04 5 −18 −13
WLP 8.84e− 04 4 21 39 ↓ 5.78e− 04 10 25 33
AVP 6.37e− 04 2 −19 26 ↓ 4.35e− 04 1 20 25

EMC 2.27e− 03 2 −20 31 3.29e− 03 1 −17 9

HDI 1.05e− 03 4 −7 43 ↓ 6.99e− 04 6 −19 25

UPS 2.29e− 04 1 −78 17 ↓ 1.44e− 04 7 −64 −18
F 6.75e− 04 6 −233 7 ↓ 4.21e− 04 7 −77 12
CTB 5.01e− 04 −1 −353 −86 7.49e− 04 0 −48 −68
LXK 1.85e− 03 4 18 42 ↓ 1.29e− 03 4 31 33

AM 1.33e− 03 −4 −211 −34 ↓ 8.23e− 04 0 11 9

DBD 9.88e− 04 −3 −1 13 ↓ 4.89e− 04 −8 22 −66
SKS 1.06e− 03 3 −183 −59 ↓ 7.69e− 04 15 −56 −12
UTX 5.03e− 04 5 1 40 ↓ 4.56e− 04 2 24 37

TGT 9.51e− 04 4 −89 19 ↓ 8.56e− 04 7 −5 33
NFX 7.00e− 04 4 −1 11 7.23e− 04 7 9 23
MEL 5.97e− 04 3 −73 25 ↓ 5.27e− 04 7 −8 31
SNV 2.84e− 04 5 −200 −43 3.15e− 04 11 −26 −19
Avg 8.86e− 04 3 −82 7 ↓ 7.74e− 04 5 −10 5

Note: Bolded percentages denote estimates that have become closer to MSRVt:

%q = MSRV t−MSRV q

MSRV t × 100;%t
rv =

MSRV t−RV t

MSRV t × 100;%q
rv =

MSRV t−RV q

MSRV t × 100.
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Table 6: MSRV volatility estimates for TGDJ.

Stock Before decimalization After decimalization
MSRVt (%q) (%t

rv) (%q
rv) MSRVt (%q) (%t

rv) (%q
rv)

AA 9.04e− 04 5 −126 16 ↓ 5.44e− 04 3 −37 30
AIG 3.96e− 04 1 −31 39 ↓ 2.92e− 04 7 −18 22

AXP 9.20e− 04 3 −67 26 ↓ 8.46e− 04 12 −3 32
BA 6.18e− 04 4 −4 49 ↓ 4.69e− 04 3 3 35

C 7.89e− 04 5 −137 31 ↓ 6.69e− 04 6 −46 −10
CAT 5.36e− 04 2 −66 22 ↓ 4.44e− 04 6 5 23
DD 6.15e− 04 4 −174 14 ↓ 4.45e− 04 6 −25 35
DIS 6.90e− 04 3 −269 3 ↓ 6.55e− 04 7 −46 28
EK 6.83e− 04 1 −43 32 ↓ 5.79e− 04 4 24 32
GE 4.91e− 04 2 −299 17 ↓ 4.79e− 04 1 −46 30
GM 5.95e− 04 6 −24 36 ↓ 3.88e− 04 5 13 48
HD 8.14e− 04 5 −206 29 ↓ 7.38e− 04 4 −27 44
HON 4.97e− 04 3 −82 0 5.52e− 04 4 −24 −2
HWP 1.71e− 03 4 −142 14 ↓ 1.28e− 03 1 −71 18
IBM 8.46e− 04 4 −64 31 ↓ 6.69e− 04 1 −22 28

IP 8.42e− 04 4 −69 22 ↓ 7.09e− 04 7 −27 24
JNJ 2.54e− 04 6 −99 31 ↓ 1.98e− 04 4 −29 37
KO 3.67e− 04 4 −111 28 4.64e− 04 2 15 39
LU 1.97e− 03 6 −991 3 2.31e− 03 −4 −113 10
MCD 4.21e− 04 5 −341 −1 ↓ 4.02e− 04 5 −99 18
MMM 4.30e− 04 5 17 47 4.77e− 04 5 20 37

MO 6.82e− 04 4 −111 37 ↓ 3.86e− 04 5 12 53
MRK 3.60e− 04 4 −70 32 ↓ 3.49e− 04 2 2 29

PFE 5.18e− 04 5 −467 −13 ↓ 3.76e− 04 3 −138 14
PG 4.62e− 04 9 −71 24 ↓ 3.85e− 04 7 −52 15

SBC 5.07e− 04 2 −110 34 6.53e− 04 3 23 61
T 7.45e− 04 6 −738 −9 ↓ 6.68e− 04 5 −29 49
VZ 4.83e− 04 4 −144 5 6.07e− 04 8 −30 13
WMT 7.20e− 04 4 −122 29 ↓ 6.40e− 04 3 3 41
XOM 2.48e− 04 5 −71 33 ↓ 2.05e− 04 10 −2 35
Avg 6.70e− 04 4 −174 22 ↓ 5.96e− 04 4 −26 29
Note: Bolded percentages denote estimates that have become closer to MSRVt:

%q = MSRV t−MSRV q

MSRV t × 100;%t
rv =

MSRV t−RV t

MSRV t × 100;%q
rv =

MSRV t−RV q

MSRV t × 100.
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Table 7: Noise variance estimates for CG18 (above) and TG18 (below).

Stock Before decimalization After decimalization
RSRVt (%q) Covt1 RSRVt (%q) Covt1

APC 2.91e− 07 41 2 .34e − 08 ↓ 1.51e− 07 46 −5.55e− 09
BEN 4.24e− 07 60 1 .82e − 08 ↓ 2.65e− 07 47 1 .28e − 08
CI 3.24e− 07 43 −7.39e− 09 ↓ 2.11e− 07 46 −8.77e− 09
CL 1.76e− 07 49 1 .21e − 08 ↓ 1.49e− 07 59 −1.57e− 08
CPQ 6.06e− 07 67 −2.36e− 07 ↓ 4.83e− 07 61 ↓ −1.15e− 07
DCX 7.74e− 07 71 −3.15e− 07 ↓ 4.37e− 07 71 ↓ −1.18e− 07
FDX 3.47e− 07 55 −1.92e− 08 ↓ 3.28e− 07 61 −2.73e− 08
GMH 9.85e− 07 51 −9.52e− 08 ↓ 8.39e− 07 66 −1.78e− 07
GT 8.93e− 07 48 −1.69e− 07 ↓ 6.42e− 07 60 ↓ −1.18e− 07
GTW 1.28e− 06 48 −3.12e− 08 ↓ 9.69e− 07 55 −3.25e− 08
H 2.07e− 07 67 −9.29e− 08 ↓ 6.60e− 08 63 ↓ −2.06e− 08
IOM 7.15e− 06 60 −2.17e− 06 7.28e− 06 69 ↓ −2.14e− 06
LE 1.93e− 06 55 4 .16e − 07 ↓ 1.66e− 06 69 2 .86e − 07
LMT 7.83e− 07 53 −6.20e− 08 ↓ 4.94e− 07 57 ↓ −6.01e− 08
S 3.91e− 07 64 −3.99e− 08 ↓ 2.64e− 07 51 ↓ −3.95e− 08
SGY 9.89e− 07 65 2 .04e − 07 ↓ 9.37e− 07 64 2 .05e − 07
STT 3.21e− 07 62 −4.08e− 08 ↓ 3.03e− 07 63 −5.39e− 08
UBS 2.08e− 07 60 2 .37e − 08 3.35e− 07 66 1 .69e − 08
Avg 1.00e− 06 57 −1.43e− 07 ↓ 8.78e− 07 60 ↓ −1.34e− 07
APA 3.73e− 07 53 −6.11e− 08 ↓ 2.02e− 07 38 9 .84e − 09
BSC 7.26e− 07 66 −1.60e− 07 ↓ 4.58e− 07 52 −1.66e− 08
WLP 4.89e− 07 50 2 .54e − 08 ↓ 3.20e− 07 56 2 .81e − 08
AVP 6.19e− 07 62 −1.47e− 07 ↓ 2.10e− 07 46 ↓ −8.83e− 09
EMC 5.03e− 07 43 −2.56e− 08 7.21e− 07 21 9 .67e − 09
HDI 7.81e− 07 63 −1.96e− 07 ↓ 4.01e− 07 56 ↓ −4.54e− 08
UPS 3.70e− 07 73 −1.78e− 07 ↓ 2.04e− 07 67 ↓ −5.39e− 08
F 1.02e− 06 79 −6.57e− 07 ↓ 2.70e− 07 61 ↓ −6.38e− 08
CTB 6.36e− 06 85 −4.08e− 06 ↓ 2.04e− 06 64 ↓ −2.93e− 07
LXK 1.15e− 06 57 −1.94e− 08 ↓ 4.72e− 07 49 7 .17e − 08
AM 9.14e− 06 80 −5.34e− 06 ↓ 1.53e− 06 61 ↓ −1.80e− 07
DBD 2.16e− 06 57 −6.20e− 08 ↓ 7.98e− 07 14 1 .09e − 07
SKS 9.78e− 06 78 −4.07e− 06 ↓ 2.84e− 06 76 ↓ −3.24e− 07
UTX 2.93e− 07 63 −4.25e− 08 ↓ 1.43e− 07 50 1 .31e − 08
TGT 8.59e− 07 68 −4.58e− 07 ↓ 3.11e− 07 51 ↓ −3.12e− 08
NFX 1.66e− 06 58 6 .92e − 08 ↓ 1.18e− 06 63 3 .56e − 08
MEL 5.16e− 07 70 −2.28e− 07 ↓ 2.08e− 07 54 ↓ −2.71e− 08
SNV 1.21e− 06 78 −6.47e− 07 ↓ 3.52e− 07 61 ↓ −4.79e− 08
Avg 2.11e− 06 66 −9.04e− 07 ↓ 7.03e− 07 52 ↓ −4.53e− 08
Note: Bolded percentages denote estimates that have become closer to RSRVt:

%q = RSRV t−RSRV q

RSRV t × 100.
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Table 8: Noise variance estimates for TGDJ.
Stock Before decimalization After decimalization

RSRVt (%q) Covt1 RSRVt (%q) Covt1
AA 9.19e− 07 71 −5.61e− 07 ↓ 2.39e− 07 60 ↓ −7.18e− 08
AIG 1.53e− 07 61 −6.05e− 08 ↓ 7.86e− 08 40 ↓ −1.49e− 08
AXP 4.15e− 07 64 −2.03e− 07 ↓ 1.74e− 07 39 ↓ −2.70e− 08
BA 2.54e− 07 66 −7.14e− 08 ↓ 1.39e− 07 56 ↓ −1.27e− 08
C 3.38e− 07 79 −2.30e− 07 ↓ 1.84e− 07 40 ↓ −7.51e− 10
CAT 5.51e− 07 68 −2.57e− 07 ↓ 1.85e− 07 46 ↓ −2.34e− 08
DD 6.11e− 07 81 −3.72e− 07 ↓ 1.51e− 07 65 ↓ −4.37e− 08
DIS 9.46e− 07 79 −6.84e− 07 ↓ 3.04e− 07 63 ↓ −7.13e− 08
EK 5.59e− 07 70 −2.89e− 07 ↓ 2.23e− 07 50 ↓ −1.01e− 08
GE 3.50e− 07 81 −2.53e− 07 ↓ 1.31e− 07 49 ↓ −1.78e− 08
GM 3.55e− 07 69 −1.43e− 07 ↓ 1.34e− 07 62 ↓ −1.29e− 08
HD 5.41e− 07 78 −3.81e− 07 ↓ 1.89e− 07 56 ↓ −5.61e− 08
HON 3.67e− 07 67 −1.56e− 07 ↓ 2.68e− 07 50 ↓ −2.13e− 08
HWP 9.87e− 07 73 −5.16e− 07 ↓ 4.42e− 07 65 ↓ −9.35e− 08
IBM 2.52e− 07 67 −1.16e− 07 ↓ 1.24e− 07 49 ↓ −1.08e− 08
IP 6.36e− 07 67 −3.28e− 07 ↓ 3.23e− 07 61 ↓ −6.13e− 08
JNJ 1.53e− 07 71 −8.29e− 08 ↓ 6.85e− 08 58 ↓ −1.99e− 08
KO 2.93e− 07 73 −1.76e− 07 ↓ 1.36e− 07 38 ↓ −1.12e− 08
LU 2.69e− 06 92 −2.59e− 06 ↓ 7.68e− 07 57 ↓ −2.96e− 07
MCD 8.41e− 07 86 −6.31e− 07 ↓ 2.43e− 07 67 ↓ −9.29e− 08
MMM 1.64e− 07 51 −1.67e− 08 ↓ 1.38e− 07 45 1 .38e − 08
MO 4.96e− 07 86 −3.34e− 07 ↓ 9.92e− 08 63 ↓ −1.07e− 08
MRK 1.42e− 07 67 −7.11e− 08 ↓ 1.04e− 07 35 ↓ −3.60e− 09
PFE 5.24e− 07 83 −4.43e− 07 ↓ 1.55e− 07 65 ↓ −6.20e− 08
PG 2.62e− 07 70 −1.14e− 07 ↓ 1.73e− 07 60 ↓ −3.89e− 08
SBC 2.94e− 07 74 −1.87e− 07 ↓ 1.29e− 07 53 ↓ −2.93e− 09
T 1.38e− 06 84 −1.27e− 06 ↓ 2.52e− 07 61 ↓ −5.86e− 08
VZ 3.86e− 07 74 −2.44e− 07 ↓ 1.88e− 07 50 ↓ −4.14e− 08
WMT 3.88e− 07 76 −2.51e− 07 ↓ 1.57e− 07 41 ↓ −8.96e− 09
XOM 1.30e− 07 68 −7.25e− 08 ↓ 5.96e− 08 44 ↓ −6.68e− 09
Avg 5.46e− 07 73 −3.70e− 07 ↓ 1.99e− 07 53 ↓ −3.96e− 08
Note: Bolded percentages denote estimates that have become closer to RSRVt:

%q = RSRV t−RSRV q

RSRV t × 100.
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Table 9: General test statistics.
Mean before Mean after Mean (∆) Paired t Wilcoxon

Control Group 18
Abs spread 0.11 0.10 0.01 1.12

(0.2771)
121

(0.1297)

Rel spread 0.28 0.27 0.01 0.73
(0.478)

118
(0.1674)

Nr quotes 1 036 1 434 −397 −5.72∗
(2.52e−05)

0
∗

(7.63e−06)
Nr trades 677 772 −95 −2.05

(0.0556)
42

(0.0599)

Depth 70 252 78 945 −8 693 −1.28
(0.2166)

46
(0.0898)

Volume 1 697 999 1 554 826 143 173 0.97
(0.3436)

90
(0.865)

LB(15)t 35 29 5 1.34
(0.1983)

113
(0.2462)

LB(15)q 50 47 2 1.01
(0.3247)

105
(0.4171)

Test Group 18
Abs spread 0.13 0.08 0.05 12.85∗

(3.52e−10)
171

∗
(7.63e−06)

Rel spread 0.41 0.25 0.16 5.09∗
(9.16e−05)

171
∗

(7.63e−06)
Nr quotes 1 078 1 441 −363 −7.03∗

(2.03e−06)
1
∗

(1.53e−05)
Nr trades 720 899 −179 −5.04∗

(9.99e−05)
8
∗

(0.0002)

Depth 127 961 76 643 51 318 2.59
(0.0190)

159
∗

(0.0005)

Volume 1 914 090 2 251 013 −336 922 −1.02
(0.3214)

70
(0.5226)

LB(15)t 44 29 15 2.50
(0.0228)

144
∗

(0.0090)

LB(15)q 39 48 −9 −3.21∗
(0.0051)

17
∗

(0.0016)

Test Group Dow Jones
Abs spread 0.11 0.06 0.05 30.12∗

(<2.2e−16)
465

∗
(1.86e−09)

Rel spread 0.22 0.13 0.09 10.31∗
(3.27e−11)

465
∗

(1.86e−09)
Nr quotes 2 286 2 362 −76 −0.84

(0.4057)
184

(0.3285)

Nr trades 1 760 1 932 −172 −2.81∗
(0.0087)

93
∗

(0.0032)

Depth 632 513 191 075 441 438 3.02∗
(0.0052)

464
∗

(3.73e−09)
Volume 5 942 661 5 812 197 130 463 0.41

(0.6837)
252
(0.7)

LB(15)t 213 62 151 5.33∗
(1.01e−05)

465
∗

(1.86e−09)
LB(15)q 56 88 −32 −3.64∗

(0.0011)
65

∗
(0.0003)

Note: Absolute spread (Abs spread) denotes the absolute difference between the
ask and bid quotes, relative spread (Rel spread) denotes the absolute spread
standardized by the corresponding midquote, Depth denotes the sum of displayed
number of quotes at ask and bid, and Volume denotes the number of traded stocks
(×100). Bolded significant at 5% level, * denotes 1% (p-values in parentheses).
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Table 10: Test statistics for noise variance, volatility, and SNR.

Mean (∆) Paired t Wilcoxon Mean (∆) Paired t Wilcoxon
Control Group 18 (trade prices) Control Group 18 (midquotes)

|Cov1| 3.24e− 08 2.30
(0.0342)

136
(0.0269)

2.53e− 08 3.18∗
(0.0055)

154
∗

(0.0016)

RSRV 1.26e− 07 3.98∗
(0.0010)

156
∗

(0.0010)
1.18e− 07 3.24∗

(0.0048)
163

∗
(0.0002)

TSRV 1.80e− 04 2.65
(0.0170)

161
∗

(0.0003)
1.68e− 04 2.81

(0.0120)
155

∗
(0.0013)

GTSRV 1.67e− 04 2.76
(0.0134)

160
∗

(0.0004)
1.76e− 04 2.86

(0.0109)
158

∗
(0.0007)

MSRV 2.03e− 04 2.83
(0.0116)

159
∗

(0.0005)
2.02e− 04 2.89

(0.0101)
160

∗
(0.0004)

SNR1 −149 −1.94
(0.0686)

44
(0.0737)

−430 −3.18∗
(0.0054)

23
∗

(0.0047)

SNR2 −150 −1.97
(0.0658)

45
(0.0814)

−431 −3.19∗
(0.0053)

22
∗

(0.0041)

SNR3 −102 −1.31
(0.2078)

60
(0.2837)

−293 −2.14
(0.0467)

31
(0.0159)

SNR3b −193 624 −0.81
(0.4265)

88
(0.9323)

N/A N/A N/A

Test Group 18 (trade prices) Test Group 18 (midquotes)
|Cov1| 8.36e− 07 2.31

(0.0340)
169

∗
(2.29e−05)

3.91e− 08 2.59
(0.0192)

154
∗

(0.0016)

RSRV 1.41e− 06 2.54
(0.0211)

166
∗

(7.63e−05)
2.36e− 07 2.38

(0.0295)
155

∗
(0.0013)

TSRV 9.68e− 05 1.19
(0.2522)

134
(0.0342)

9.24e− 05 1.00
(0.3275)

133
(0.0385)

GTSRV 8.07e− 05 1.02
(0.3213)

128
(0.0665)

1.09e− 04 1.14
(0.2693)

135
(0.0304)

MSRV 1.13e− 04 1.34
(0.1986)

136
(0.0269)

1.23e− 04 1.44
(0.1675)

135
(0.0304)

SNR1 −694 −5.62∗
(3.05e−05)

0
∗

(7.63e−06)
−868 −5.37∗

(5.07e−05)
4
∗

(5.34e−05)
SNR2 −689 −5.63∗

(3.02e−05)
0
∗

(7.63e−06)
−869 −5.38∗

(4.96e−05)
3
∗

(3.82e−05)
SNR3 −696 −5.77∗

(2.27e−05)
0
∗

(7.63e−06)
−813 −5.11∗

(8.76e−05)
4
∗

(5.34e−05)
SNR3b −133 474 −1.09

(0.2924)
48

(0.1084)
N/A N/A N/A

Test Group DJ (trade prices) Test Group DJ (midquotes)
|Cov1| 3.26e− 07 4.06∗

(0.0003)
465

∗
(1.86e−09)

−2.72e− 09 −0.70
(0.4921)

250
(0.7303)

RSRV 3.47e− 07 4.97∗
(2.76e−05)

465
∗

(1.86e−09)
3.13e− 08 3.24∗

(0.0030)
389

∗
(0.0008)

TSRV 5.70e− 05 1.96
(0.0601)

347
(0.0175)

5.40e− 05 1.51
(0.1416)

360
∗

(0.0076)

GTSRV 5.40e− 05 1.92
(0.0651)

343
(0.0221)

5.64e− 05 1.55
(0.1309)

360
∗

(0.0076)

MSRV 7.45e− 05 2.73
(0.0105)

368
∗

(0.0043)
6.68e− 05 2.18

(0.0375)
378

∗
(0.0020)

SNR1 −1 657 −13.93∗
(2.25e−14)

0
∗

(1.86e−09)
−1 033 −3.44∗

(0.0018)
79

∗
(0.0010)

SNR2 −1 637 −13.92∗
(2.29e−14)

0
∗

(1.86e−09)
−1 033 −3.44∗

(0.0018)
79

∗
(0.0010)

SNR3 −1 591 −13.31∗
(7.09e−14)

0
∗

(1.86e−09)
−980 −3.26∗

(0.0029)
81

∗
(0.0012)

SNR3b −45 476 −2.30
(0.0288)

52
∗

(7.06e−05)
N/A N/A N/A

Note: Bolded significant at 5% level, * denotes 1% (p-values in parentheses).
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Table 11: Mixed-effects panel regressions using trade price data.
Control Group 18 (18 × 98 = 1764 observations)

Volatility Noise variance SNR3
Fixed Random Fixed Random Fixed Random

Intercept −7.58∗
[−30.61]

1.04 −14.52∗
[−60.11]

1.02 6.89∗
[96.44]

0.30

Nr trades 1.47∗
[17.79]

0.25 0.14
[1.74]

0.30 1.28∗
[22.09]

0.20

LB(15) −0.12
[−1.44]

0.32 −0.02
[−0.75]

0.07 −0.09
[−1.17]

0.33

Dummy −0.39∗
[−4.26]

0.36 −0.26∗
[−3.58]

0.30 −0.10
[−1.91]

0.22

Test Group 18 (18 × 98 = 1764 observations)
Volatility Noise variance SNR3

Fixed Random Fixed Random Fixed Random
Intercept −7.06∗

[−25.29]
1.17 −13.80∗

[−51.18]
1.14 6.72∗

[78.16]
0.35

Nr trades 1.73∗
[12.22]

0.55 0.25∗
[4.03]

0.20 1.49∗
[17.04]

0.33

LB(15) −0.27∗
[−3.96]

0.26 −0.03
[−1.11]

0.09 −0.24∗
[−3.32]

0.30

Dummy −0.77∗
[−6.97]

0.44 −0.94∗
[−8.36]

0.47 0.16∗
[2.94]

0.21

Test Group Dow Jones (30 × 98 = 2940 observations)
Volatility Noise variance SNR3

Fixed Random Fixed Random Fixed Random
Intercept −7.12∗

[−60.12]
0.63 −14.69∗

[−129.44]
0.61 7.58∗

[130.05]
0.30

Nr trades 2.02∗
[22.96]

0.35 0.47∗
[5.84]

0.39 1.54∗
[20.33]

0.33

LB(15) −0.45∗
[−9.48]

0.23 −0.05
[−2.04]

0.11 −0.41∗
[−10.45]

0.20

Dummy −0.96∗
[−11.16]

0.43 −1.06∗
[−16.25]

0.34 0.08
[1.80]

0.21

Note: Bolded significant at 5% level, * denotes 1% (t-statistics in brackets). The
random part denotes the variable’s standard deviation (covariances not reported).
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Table 12: Mixed-effects panel regressions using midquote data.
Control Group 18 (18 × 98 = 1764 observations)

Volatility Noise variance SNR3
Fixed Random Fixed Random Fixed Random

Intercept −7.45∗
[−31.60]

0.99 −15.23∗
[−70.43]

0.91 7.76∗
[93.93]

0.34

Nr quotes 1.08∗
[8.45]

0.46 −0.06
[−0.53]

0.42 1.11∗
[23.06]

0.12

LB(15) 0.29∗
[5.56]

0.20 0.20∗
[8.22]

0.06 0.09
[1.48]

0.23

Dummy −0.53∗
[−7.33]

0.27 −0.34∗
[−4.29]

0.31 −0.19∗
[−3.57]

0.21

Test Group 18 ( 18 × 98 = 1764 observations)
Volatility Noise variance SNR3

Fixed Random Fixed Random Fixed Random
Intercept −7.01∗

[−29.43]
1.00 −14.74∗

[−58.50]
1.06 7.72∗

[114.84]
0.27

Nr quotes 1.50∗
[8.21]

0.71 0.26
[1.82]

0.57 1.18∗
[18.70]

0.22

LB(15) 0.24∗
[3.65]

0.25 0.13∗
[4.66]

0.09 0.10
[2.10]

0.19

Dummy −0.83∗
[−7.46]

0.44 −0.71∗
[−7.12]

0.40 −0.11
[−2.48]

0.16

Test Group Dow Jones (30 × 98 = 2940 observations)
Volatility Noise variance SNR3

Fixed Random Fixed Random Fixed Random
Intercept −7.43∗

[−70.30]
0.57 −16.02∗

[−149.35]
0.58 8.57∗

[310.72]
0.14

Nr quotes 0.66∗
[4.69]

0.69 −0.29∗
[−2.67]

0.54 0.89∗
[18.43]

0.18

LB(15) 0.48∗
[22.53]

0.08 0.23∗
[14.86]

0.06 0.27∗
[19.05]

0.06

Dummy −0.50∗
[−9.78]

0.24 −0.50∗
[−8.30]

0.32 0.01
[0.44]

0.11

Note: Bolded significant at 5% level, * denotes 1% (t-statistics in brackets). The
random part denotes the variable’s standard deviation (covariances not reported).
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Table 13: Number of jumps for CG18 (above) and TG18 (below).

Stock Before decimalization After decimalization
Thresholdq Thresholdt Thresholdq Thresholdt

.01 .02 .03 .01 .02 .03 .01 .02 .03 .01 .02 .03
APC 5 1 − 16 2 − 1 − − 5 1 −
BEN 1 − − 4 − − 10 − − − −
CI 14 − − 8 1 − 2 − − 4 − −
CL − − − 1 − − − − − 1 − −
CPQ 1 − − 28 1 − 1 − − 19 1 −
DCX 5 − − 3 1 − − − − 2 − −
FDX 6 1 − 13 1 1 6 1 − 8 1 1
GMH 13 1 − 38 2 − 3 − − 13 − −
GT 21 − − 37 1 − 2 − − 15 − −
GTW 51 2 1 152 21 2 7 − − 33 1 −
H − − − − − − 1 − − − − −
IOM 146 15 3 391 29 3 126 5 − 250 10 1
LE 35 6 2 40 7 2 14 1 − 14 3 −
LMT 2 − − 12 1 − 7 − − 8 − −
S 2 − − 7 − − 5 − − 1 − −
SGY 10 2 − 16 4 1 9 − − 8 − −
STT − − − 4 − − 1 − − 5 − −
UBS − − − 1 − − 9 − − 1 − −
Total 312 28 6 771 71 9 204 7 − 387 17 2
APA − − − 3 − − 3 1 − 6 1 1
BSC 1 − − 4 − − 11 1 − 13 − −
WLP 2 − − 3 − − 2 − − 5 − −
AVP 3 − − 2 − − 8 − − 2 1 −
EMC 12 1 1 46 4 1 55 4 1 190 24 3
HDI 4 − − 12 1 − 5 − − 5 − −
UPS − − − − − − − − 1 − −
F 2 − − 6 − − − − − 2 − −
CTB 17 − − 49 1 − 46 3 − 43 2 −
LXK 24 2 − 39 5 1 18 − − 31 4 −
AM 112 1 − 312 9 − 23 2 1 26 3 −
DBD 16 − − 30 − − 43 1 − 12 1 −
SKS 113 4 − 192 23 2 36 1 − 83 7 −
UTX − − − 1 − − − − − 2 − −
TGT 3 − − 10 − − 1 − − 13 − −
NFX 19 2 − 13 1 − 18 − − 25 4 1
MEL 1 − − 3 − − 6 1 − 4 1 −
SNV 1 − − 2 − − 10 2 − 7 1 −
Total 330 10 1 727 44 4 285 16 2 470 49 5
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Table 14: Number of jumps for TGDJ.

Stock Before decimalization After decimalization
Thresholdq Thresholdt Thresholdq Thresholdt

.01 .02 .03 .01 .02 .03 .01 .02 .03 .01 .02 .03
AA − − − 2 − − − − − 5 − −
AIG − − − 1 − − − − − − − −
AXP 8 1 − 13 2 1 8 1 1 14 2 −
BA − − − 1 − − − − − 1 − −
C 2 − − 7 − − 7 − − 5 − −
CAT − − − 2 − − 1 − − 1 − −
DD − − − − − − 2 − − 1 − −
DIS 8 1 − 10 − − 2 − − 5 − −
EK − − − 3 − − 4 − − 4 1 −
GE − − − 4 − − 2 − − − − −
GM 4 − − 3 − − 3 − − 3 1 −
HD 2 − − 8 1 1 − − − 6 − −
HON 1 − − − − − 1 − − 2 − −
HWP 7 1 − 32 3 − 5 − − 10 − −
IBM 3 2 − 5 1 1 − − − 1 − −
IP 2 − − 5 − − 4 1 − 10 − −
JNJ − − − − − − − − − − − −
KO − − − − − − 6 − − 3 − −
LU 4 − − 8 1 − 34 11 6 54 17 14
MCD − − − − − − 1 − − 4 − −
MMM − − − − − − 1 − − 4 − −
MO 2 − − 8 1 − − − − 2 − −
MRK − − − 3 − − − − − 3 − −
PFE − − − 5 − − − − − 1 − −
PG − − − − − − 1 − − 4 1 −
SBC 1 − − 3 − − − − − − − −
T 3 − − 9 − − − − − 2 − −
VZ 1 − − 2 − − 1 − − 7 − −
WMT 1 − − 2 1 − 1 − − 4 − −
XOM − − − − − − − − − − − −
Total 49 5 0 136 10 3 84 13 7 156 22 14
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A Appendix

A.1 Subsampling and averaging

The TSRV estimator of Zhang, Mykland, and Aït-Sahalia (2005) is defined as

\hX,Xi
(tsrv)

T = [Y, Y ]
(K)
T − n

n
[Y, Y ]

(all)
T ,

where

[Y, Y ]
(K)
T =

1

K

n−KX

i=0

¡
Yti+K − Yti

¢2
,

n = (n−K + 1)/K, and 1 < K ≤ n (see Section 2).

Figure below illustrates two numerically equal ways to calculate the first sum in the

TSRV with K = 5. The axis shows the time of trade (or quote update); there are now

11 of them. In the lower panel, price is (sub)sampled 5 events apart. 5 different sums

of squared returns are then formed and finally averaged to get [Y, Y ]
(5)
T . This process is

called subsampling and averaging. The upper panel illustrates a more straightforward

way to calculate the same quantity by just smoothly sliding a "window" of length 5

through the trading day. There are then 6 terms to be squared, summed, and to be

finally divided by 5 (to get the "average").

0 1 2 3 4 5 6 7 8 9 10

First summand (in 1st sum) Second summand

First summand (in 1st sum)

First summand (in 5th sum)

Sixth summand

Two numerically equal ways to calculate the first sum in the TSRV (K = 5).
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A.2 A list of the pilot decimalized stocks

All pilot decimalized stocks and their times of decimalization.

Aug/28/00 Sep/25/00 Dec/04/00
APC ACR LE ABX DUC MUE VTS
FCEA ADO LMT AHP EF MWY WLK
FCEB AOL LSS ASH ESA MYS WLV
FDX ASF MHI ASP EXC N WPC
GTW AXM MLM ATW EXEA NPRE WS
HUG BEN MMR AWG FUN NSH WXS
MNS BGS MTB BBC FVH NVB ZTR

CBU NHL BBCPRA GDI OMS
CI NSS BLC GLT PEPRX
CL PTZ BLU GRO POM
CPQ RCL BN GVT POMPRT
CXH S BVF HAT PVD
DA SGY BVFPR HCA RBK
DAJ SH BVFWS HED REV
DCX SRF BXM IT SE
DON SRH BYH ITB SFD
DTF STOPRE CAGPRA KMB SIE
EN STT CAGPRB LHP SJM
FDS TAI CAGPRC LSI SLR
GMH TM CGI LUV SVR
GT TRC CLM MAD SWM
H TWX CMM MAT SYK
HAR TWXPRT CMMPRB MCK TBC
HBC TXA CMMPRF MDC TDR
HPRA UBS CMMPRG MI TMO
HYP VAL CYH MIC TVX
IOM VIG DLX MPR VFC
KF WSO DOM MQY VGM
KSM DRF MTR VLT

Note: Only the bolded stocks in August and September are active enough.
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A.3 Two-scale volatility estimates
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TSRV volatility estimates for CG18 (above) and TG18 (below).

Stock Before decimalization After decimalization
TSRVt (%q) (%t

rv) (%q
rv) TSRVt (%q) (%t

rv) (%q
rv)

APC 7.92e− 04 5 23 42 ↓ 5.42e− 04 7 9 32

BEN 5.06e− 04 −3 16 22 ↓ 4.81e− 04 −2 22 8

CI 5.67e− 04 −3 6 1 ↓ 4.20e− 04 1 −2 −23
CL 4.52e− 04 1 33 46 ↓ 3.35e− 04 1 1 22

CPQ 1.61e− 03 3 −57 52 ↓ 1.48e− 03 4 −19 47

DCX 3.08e− 04 4 −129 −14 ↓ 1.84e− 04 −1 −65 −23
FDX 5.31e− 04 8 8 35 ↓ 4.88e− 04 2 −12 13

GMH 1.43e− 03 4 −7 30 ↓ 9.65e− 04 3 −41 14

GT 6.32e− 04 −2 −47 −37 ↓ 5.32e− 04 0 −60 −49
GTW 2.49e− 03 5 −7 32 ↓ 2.45e− 03 3 20 42
H 1.70e− 05 −25 −273 −185 ↓ 1.51e− 05 −15 −89 −85
IOM 2.17e− 03 2 −122 −22 ↓ 9.56e− 04 −13 −179 −118
LE 1.07e− 03 −1 33 24 ↓ 7.37e− 04 3 25 21

LMT 7.82e− 04 1 −18 6 ↓ 6.06e− 04 3 −30 2

S 5.74e− 04 −2 5 33 ↓ 4.21e− 04 −1 −6 2

SGY 5.74e− 04 10 30 38 5.93e− 04 3 25 31

STT 6.97e− 04 1 12 49 7.21e− 04 7 −9 26

UBS 9.27e− 05 7 −6 7 1.25e− 04 −2 3 −23
Avg 8.50e− 04 1 −28 9 ↓ 6.70e− 04 0 −23 −3
APA 5.87e− 04 4 −8 26 ↓ 4.93e− 04 6 8 21

BSC 8.03e− 04 6 −47 9 8.65e− 04 4 −18 −12
WLP 8.43e− 04 1 17 36 ↓ 5.51e− 04 5 21 29

AVP 6.02e− 04 0 −26 21 ↓ 4.06e− 04 −3 14 20

EMC 2.30e− 03 1 −18 32 3.31e− 03 −5 −16 10

HDI 9.65e− 04 3 −16 37 ↓ 6.90e− 04 5 −21 24

UPS 2.14e− 04 0 −90 11 ↓ 1.43e− 04 7 −66 −20
F 6.92e− 04 4 −224 9 ↓ 4.49e− 04 7 −66 18
CTB 4.45e− 04 −16 −410 −110 6.90e− 04 −13 −60 −83
LXK 1.75e− 03 1 13 39 ↓ 1.21e− 03 2 27 29

AM 1.22e− 03 −9 −239 −46 ↓ 7.00e− 04 −7 −4 −7
DBD 8.86e− 04 −4 −13 3 ↓ 4.40e− 04 −18 13 −84
SKS 9.46e− 04 −5 −218 −78 ↓ 6.95e− 04 3 −73 −24
UTX 4.78e− 04 2 −4 37 ↓ 4.52e− 04 −1 23 36

TGT 9.35e− 04 3 −92 18 ↓ 8.59e− 04 7 −5 34
NFX 6.70e− 04 6 −6 7 ↓ 6.50e− 04 3 −1 15
MEL 5.76e− 04 2 −79 23 ↓ 5.28e− 04 5 −8 31
SNV 2.67e− 04 0 −219 −53 3.04e− 04 2 −30 −23
Avg 8.44e− 04 0 −93 1 ↓ 7.47e− 04 0 −15 1
Note: Bolded percentages denote estimates that have become closer to TSRVt:

%q = TSRV t−TSRV q

TSRV t ×100;%t
rv =

TSRV t−RV t

TSRV t ×100;%q
rv =

TSRV t−RV q

TSRV t ×100.
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TSRV volatility estimates for TGDJ.

Stock Before decimalization After decimalization
TSRVt (%q) (%t

rv) (%q
rv) TSRVt (%q) (%t

rv) (%q
rv)

AA 8.62e− 04 2 −137 12 ↓ 5.43e− 04 3 −37 30
AIG 3.97e− 04 2 −31 39 ↓ 3.03e− 04 5 −14 24

AXP 9.17e− 04 2 −68 26 ↓ 8.79e− 04 9 1 34
BA 6.12e− 04 3 −5 49 ↓ 4.83e− 04 2 6 37

C 8.38e− 04 4 −123 35 ↓ 7.67e− 04 7 −28 4

CAT 4.97e− 04 −1 −79 16 ↓ 4.33e− 04 3 2 21
DD 6.16e− 04 3 −173 14 ↓ 4.46e− 04 5 −25 36
DIS 6.85e− 04 3 −272 2 ↓ 6.65e− 04 7 −44 29
EK 6.26e− 04 −2 −56 26 ↓ 5.34e− 04 2 18 27
GE 5.07e− 04 2 −287 20 5.11e− 04 3 −37 35
GM 5.75e− 04 3 −29 34 ↓ 3.69e− 04 2 9 45
HD 8.22e− 04 5 −203 30 ↓ 7.55e− 04 2 −25 45
HON 5.06e− 04 2 −78 2 ↓ 5.73e− 04 4 −19 2
HWP 1.76e− 03 2 −135 16 ↓ 1.33e− 03 2 −65 21
IBM 8.74e− 04 3 −59 33 ↓ 6.99e− 04 2 −17 32

IP 7.89e− 04 1 −80 17 ↓ 6.98e− 04 5 −29 23
JNJ 2.58e− 04 4 −95 32 ↓ 2.02e− 04 5 −26 39
KO 3.63e− 04 3 −114 27 4.55e− 04 2 13 38
LU 2.07e− 03 5 −941 7 2.52e− 03 −8 −95 18
MCD 4.26e− 04 3 −336 0 4.26e− 04 6 −88 23
MMM 4.12e− 04 3 13 45 4.90e− 04 5 22 39

MO 6.57e− 04 2 −119 35 ↓ 3.75e− 04 4 9 52
MRK 3.64e− 04 2 −68 33 ↓ 3.55e− 04 3 4 30

PFE 5.29e− 04 5 −456 −11 ↓ 3.95e− 04 5 −126 18
PG 4.67e− 04 6 −69 25 ↓ 4.03e− 04 6 −45 19

SBC 5.02e− 04 2 −112 33 6.55e− 04 3 23 62
T 7.73e− 04 3 −707 −5 ↓ 6.72e− 04 4 −29 49
VZ 4.81e− 04 2 −145 5 6.24e− 04 5 −26 16
WMT 7.17e− 04 3 −123 28 ↓ 6.61e− 04 3 6 43
XOM 2.48e− 04 3 −70 33 ↓ 2.15e− 04 7 3 38
Avg 6.71e− 04 3 −172 22 ↓ 6.14e− 04 4 −22 31
Note: Bolded percentages denote estimates that have become closer to TSRVt:

%q = TSRV t−TSRV q

TSRV t ×100;%t
rv =

TSRV t−RV t

TSRV t ×100;%q
rv =

TSRV t−RV q

TSRV t ×100.
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GTSRV volatility estimates for CG18 (above) and TG18 (below).

Stock Before decimalization After decimalization
GTSRVt (%q) (%t

rv) (%q
rv) GTSRVt (%q) (%t

rv) (%q
rv)

APC 7.80e− 04 1 21 41 ↓ 5.37e− 04 5 8 32

BEN 4.92e− 04 −9 14 20 ↓ 4.71e− 04 −7 20 6

CI 5.57e− 04 −7 4 −1 ↓ 4.13e− 04 −3 −4 −25
CL 4.43e− 04 −2 32 45 ↓ 3.30e− 04 −2 −1 20

CPQ 1.59e− 03 0 −59 51 ↓ 1.46e− 03 1 −21 46

DCX 2.85e− 04 −10 −148 −23 ↓ 1.74e− 04 −12 −75 −31
FDX 5.23e− 04 5 7 34 ↓ 4.78e− 04 −3 −15 12

GMH 1.40e− 03 −1 −10 28 ↓ 9.37e− 04 −3 −45 11

GT 6.05e− 04 −12 −54 −44 ↓ 5.09e− 04 −8 −67 −55
GTW 2.44e− 03 1 −9 31 ↓ 2.41e− 03 0 18 41
H 1.54e− 05 −66 −312 −215 ↓ 1.43e− 05 −33 −100 −96
IOM 1.99e− 03 −17 −142 −32 ↓ 9.19e− 04 −36 −191 −127
LE 1.02e− 03 −13 30 20 ↓ 7.24e− 04 −4 23 19

LMT 7.62e− 04 −5 −22 3 ↓ 5.92e− 04 −2 −33 0

S 5.60e− 04 −6 3 31 ↓ 4.12e− 04 −6 −8 0

SGY 5.56e− 04 2 28 36 5.68e− 04 −6 22 28

STT 6.85e− 04 −2 11 48 7.08e− 04 4 −11 24

UBS 9.00e− 05 −2 −9 4 1.21e− 04 −12 1 −26
Avg 8.21e− 04 −8 −34 4 ↓ 6.54e− 04 −7 −27 −7
APA 5.70e− 04 −1 −11 23 ↓ 4.85e− 04 2 7 20

BSC 7.68e− 04 −1 −54 5 8.54e− 04 0 −19 −14
WLP 8.31e− 04 −3 16 35 ↓ 5.41e− 04 1 20 28

AVP 5.80e− 04 −7 −31 18 ↓ 3.96e− 04 −7 12 18
EMC 2.28e− 03 0 −19 32 3.28e− 03 −7 −18 9

HDI 9.34e− 04 −2 −20 35 ↓ 6.76e− 04 1 −23 22

UPS 2.00e− 04 −11 −103 6 ↓ 1.36e− 04 −2 −75 −26
F 6.65e− 04 −2 −238 5 ↓ 4.37e− 04 2 −71 16
CTB 3.95e− 04 −49 −475 −136 6.57e− 04 −27 −68 −92
LXK 1.72e− 03 −3 12 38 ↓ 1.19e− 03 −2 25 27

AM 1.10e− 03 −33 −277 −62 ↓ 6.73e− 04 −18 −9 −11
DBD 8.58e− 04 −15 −16 0 ↓ 4.31e− 04 −32 11 −88
SKS 8.84e− 04 −30 −240 −91 ↓ 6.59e− 04 −11 −82 −31
UTX 4.69e− 04 −2 −6 35 ↓ 4.44e− 04 −4 22 35
TGT 9.06e− 04 −3 −99 15 ↓ 8.45e− 04 4 −6 33
NFX 6.51e− 04 −4 −9 5 ↓ 6.42e− 04 −3 −2 13
MEL 5.54e− 04 −4 −86 20 ↓ 5.18e− 04 2 −9 30
SNV 2.38e− 04 −21 −258 −71 2.97e− 04 −4 −34 −26
Avg 8.12e− 04 −11 −106 −5 ↓ 7.31e− 04 −6 −18 −2
Note: Bolded percentages denote estimates that have become closer to GTSRVt:

%q = GTSRV t−GTSRV q

GTSRV t ×100;%t
rv =

GTSRV t−RV t

GTSRV t ×100;%q
rv =

GTSRV t−RV q

GTSRV t ×100.
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GTSRV volatility estimates for TGDJ.

Stock Before decimalization After decimalization
GTSRVt (%q) (%t

rv) (%q
rv) GTSRVt (%q) (%t

rv) (%q
rv)

AA 8.35e− 04 −4 −144 9 ↓ 5.31e− 04 0 −40 29
AIG 3.90e− 04 −1 −33 38 ↓ 2.99e− 04 3 −15 24

AXP 9.00e− 04 −1 −71 24 ↓ 8.69e− 04 7 0 33
BA 6.01e− 04 0 −7 48 ↓ 4.75e− 04 −1 4 36

C 8.30e− 04 3 −125 35 ↓ 7.55e− 04 5 −30 2

CAT 4.76e− 04 −8 −86 12 ↓ 4.26e− 04 0 0 19
DD 5.98e− 04 −2 −181 11 ↓ 4.38e− 04 3 −27 35
DIS 6.65e− 04 −2 −283 −1 ↓ 6.48e− 04 3 −47 27
EK 6.06e− 04 −7 −61 24 ↓ 5.24e− 04 −2 17 25
GE 4.99e− 04 −1 −292 18 5.04e− 04 1 −39 34
GM 5.59e− 04 −1 −32 32 ↓ 3.63e− 04 0 7 44
HD 8.10e− 04 2 −207 29 ↓ 7.45e− 04 0 −26 44
HON 4.90e− 04 −3 −84 −1 5.62e− 04 0 −21 0

HWP 1.72e− 03 −1 −140 14 ↓ 1.30e− 03 −1 −69 20
IBM 8.64e− 04 1 −61 32 ↓ 6.92e− 04 0 −18 31

IP 7.66e− 04 −4 −85 15 ↓ 6.82e− 04 1 −32 21
JNJ 2.53e− 04 1 −100 31 ↓ 1.99e− 04 2 −28 38
KO 3.54e− 04 −2 −119 25 4.49e− 04 0 12 37
LU 2.06e− 03 4 −945 7 2.49e− 03 −11 −98 16
MCD 4.10e− 04 −3 −353 −4 4.15e− 04 2 −93 21
MMM 4.04e− 04 0 11 44 4.82e− 04 3 20 38
MO 6.45e− 04 −1 −123 34 ↓ 3.70e− 04 2 8 51
MRK 3.59e− 04 −1 −70 32 ↓ 3.49e− 04 0 2 29

PFE 5.22e− 04 2 −462 −12 ↓ 3.88e− 04 2 −130 17
PG 4.56e− 04 2 −73 23 ↓ 3.94e− 04 3 −48 17

SBC 4.94e− 04 −1 −115 32 ↓ 6.47e− 04 1 23 61
T 7.64e− 04 0 −717 −6 ↓ 6.59e− 04 1 −31 48
VZ 4.70e− 04 −2 −151 3 6.14e− 04 3 −28 14
WMT 7.06e− 04 1 −127 27 ↓ 6.51e− 04 1 5 42
XOM 2.44e− 04 0 −74 32 ↓ 2.12e− 04 5 1 37
Avg 6.58e− 04 −1 −177 20 ↓ 6.04e− 04 1 −24 30
Note: Bolded percentages denote estimates that have become closer to GTSRVt:

%q = GTSRV t−GTSRV q

GTSRV t ×100;%t
rv =

GTSRV t−RV t

GTSRV t ×100;%q
rv =

GTSRV t−RV q

GTSRV t ×100.
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