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Regressions with asymptotically collinear regressors have surprisingly many

applications, as the references in (Phillips, 2007) show. Using the theory of

slowly varying (SV) functions, Phillips has developed a method to deal with

such regressions. The impact of his findings will increase if one realizes that

all standardized SV regressors arising in his approach are Lp-approximable

in the sense of Mynbaev (2001). We prove this fact below in Theorem 1 and

apply it in Theorem 2 to generalize some central limit results established

by Phillips. The corresponding functional laws will be given elsewhere. We

follow the notation adopted by Phillips.

The idea will be clear from a discussion of the central limit theorem (CLT)

contained in (Phillips, 2007, Eq. (9)). Under Phillips’ Assumption LP, for

any f ∈ C1

1√
n

n
∑

s=1

f
( s

n

)

us →d N



0,

(

σε

∞
∑

j=0

cj

)2
∫ 1

0

f 2(r)dr



 . (1)

By looking at the right-hand side of this relation, one can tell that the widest

class for which such convergence takes place should be L2, the set of square-

integrable functions on (0, 1). The CLT from (Mynbaev, 2001) is true for

f ∈ L2 (for badly behaving functions, the numbers 1√
n
f
(

s
n

)

at the left of (1)

should be replaced by
√

n
∫ s/n

(s−1)/n
f(t)dt). Moreover, Assumption LP can be

relaxed as follows:

Assumption LP(M) ut =
∑j=∞

j=−∞ cjet−j,
∑j=∞

j=−∞ |cj| < ∞,
∑j=∞

j=−∞ cj 6=

0, with et = iid(0, σ2
e) and uniformly integrable e2

t . (Here and in the sequel

”M” stands for ”modified”).

Our proof of Lp-approximability derives from the proof of (Phillips, 2007,
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Lemma 7.4). The proof of that lemma depends on his equations (6) and (60).

The limit relation (60) holds uniformly in r ∈ (δ, 1), where δ ∈ (0, 1) is an

arbitrary but fixed number. Condition (6) takes care of a neighborhood of

0 of type (0, n−α), α > 0. Between (0, n−α) and (δ, 1) there is an increasing

gap of (n−α, δ), and it is not clear from the proof of Lemma 7.4 how this

gap is closed. To close a similar gap in our proof, we add to Phillips’ As-

sumption SSV the condition that ε(x) (the ε-function of L) satisfies certain

monotonicity requirements.

Assumption SSV(M) (a) L(x) is a smoothly slowly varying (SSV)

function with Karamata representation

L(x) = c exp

(∫ x

a

ε(t)

t
dt

)

for x ≥ a (2)

for some a > 0, and where c > 0 is a constant, ε(x) is continuous and

ε(x) → 0 as x → ∞.

(b) |ε(x)| is SSV.

(c) There exists a function φ(x) on [0,∞) with properties:

(c1) φ is positive increasing on [0,∞), φ(x) → ∞ as x → ∞, and

there exist positive numbers θ,X such that x−θφ(x) is nonincreasing on

[X,∞),

(c2) ε(x) is quasi-monotone in the neighborhood of ∞ in the sense

that with some positive constants c1, c2, c3

c1

φ(x)
≤ |ε(x)| ≤ c2

φ(x)
for x ≥ c3. (3)

We assume that ε and L have been redefined on [0, a] in such a way that

L is continuous on [0,∞). Part (c) of the above assumption allows us to take
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advantage of the theory of SV functions with remainder due to Aljančić et

al. (1955). Specifically, we utilize two facts given in the appendix of (Seneta,

1985). Theorem A.1.2 from that appendix, equation (2) and part (c) of

Assumption SSV(M) imply that L is SV with remainder φ. Lemma A.1.1.2)

from the same source states that for any β > 0 there exist numbers Mβ > 0

and Bβ ≥ a such that

∣

∣

∣

∣

L(rx)

L(x)
− 1

∣

∣

∣

∣

≤ Mβr−β/φ(x) for all x ≥ Bβ and Bβ/x ≤ r ≤ 1. (4)

For Theorem 1 we need the following definitions. Let p ∈ [1,∞], ‖g‖p,Ω =
(∫

Ω
|g(x)|p dx

)1/p
if p < ∞ and ‖g‖∞,Ω = ess supx∈Ω |g(x)|, where Ω is

an interval. Denote Lp the space of measurable functions on (0, 1) with

‖g‖p,(0,1) < ∞. A partition it = [(t − 1)/n, t/n), t = 1, ..., n, of the interval

[0, 1) generates an interpolation operator Dnp according to

Dnpw = n1/p

n
∑

t=1

wt1it , w ∈ R
n,

where 1A is the indicator of a set A. We say that a sequence of vectors {wn} ,

where wn ∈ R
n for each n, is Lp-close to g ∈ Lp if ‖Dnpw − g‖p,(0,1) → 0.

Denote

G(t, n) =
L(t) − L(n)

L(n)ε(n)
, t = 1, ..., n.

Theorem 1. For p ∈ [1,∞) and natural j define a vector wn ∈ R
n by

wnt = n−1/pGj(t, n), t = 1, ..., n. If Assumption SSV(M) holds and pθk < 1,

then {wn} is Lp-close to fj(x) = logj x.

Of various implications of Lp-approximability we list only those directly
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related to (Phillips, 2007). In the next theorem references in brackets are to

that paper.

Theorem 2. Let Assumptions LP(M) and SSV(M) hold and let j be a nat-

ural number.

(I) If θk < 1, then limn→∞
1
n

∑n
t=1 Gj(t, n) = (−1)jj! [p.595, line 4 from

bottom].

(II) If θ < 1, then 1
n

∑n
t=1 Lj(t) = Lj(n)− jLj(n)ε(n)[1 + o(1)] [a weaker

version of (14)].

(III) If 2θ < 1, then 1
n

∑n
t=1(L(t) − L̄)2 = L2(n)ε2(n)[1 + o(1)] [p.564,

line 2 from bottom].

(IV) Let σ2 =
(

σe

∑∞
j=−∞ cj

)2

. The following central limit results are

true [Lemma 2.1]:

(i) If 2θ < 1, then 1√
nL(n)

∑n
t=1 L(t)ut →d N(0, σ2),

(ii) If 2θ < 1, then 1√
nL(n)ε(n)

∑n
t=1(L(t) − L̄)ut →d N(0, σ2),

(iii) If 2θk < 1, then 1√
n

∑n
t=1 Gj(t, n)ut →d N(0, σ2(2j)!).

(V) If in (Phillips, 2007, Lemma 6.1) the function f(r, θ) is just continu-

ous over (r, θ) ∈ [0, 1]×Θ and 2θ < 1, then uniformly over θ ∈ Nn [equation

(53)]

1√
nL(n)

n
∑

t=1

f

(

t

n

)

L(t)ut →d N

(

0, σ2

∫ 1

0

f 2(r, θ0)du

)

.

Remark. It can be shown that when
∑∞

j=−∞ cj = 0 (and all other

assumptions of Theorem 2 hold), convergence in distribution in (i)-(iii) and

(V) is still true (and is equivalent to convergence in probability to zero).
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Appendix

Proof of Theorem 1. Since u ∈ it is equivalent to t = [nu+1] (integer part),

the equation Dnpwn =
∑n

t=1 Gj(t, n)1it takes a compact form (Dnpwn) (u) =

Gj([nu + 1], n), 0 ≤ u < 1. Let 0 < δ ≤ 1/2. For n > n1 = Bβ/δ the interval

(Bβ/n, δ) is nonempty and

‖Dnpwn − fj‖p,(0,1) ≤ ‖Dnpwn − fj‖p,(δ,1) + ‖fj‖p,(0,δ)

+ ‖Dnpwn‖p,(0,Bβ/n) + ‖Dnpwn − fj‖p,(Bβ/n,δ) . (5)

Obviously, ‖fj‖p,(0,δ) → 0 as δ → 0. Now we consider three cases.

Case δ ≤ u < 1. In the proof of (Phillips, 2007, Eq. (60)) one can

consider not only r ≤ 1 but also r > 1. Then one gets

Gj(rn, n) = logj r[1 + o(1)] uniformly in r ∈
(

δ, 1 +
1

2Bβ

)

. (6)

Defining r = [nu + 1]/n, from the inequality nu < [nu + 1] ≤ nu + 1 we have

δ ≤ u <
[nu + 1]

n
= r ≤ u +

1

n
< 1 +

1

n1

≤ 1 +
1

2Bβ

(7)

so that

r = u + o(1) and r ∈
(

δ, 1 +
1

2Bβ

)

. (8)

(6) and (8) lead to

Gj([nu + 1], n) − logj u = o(1) uniformly in u ∈ (δ, 1) .

This proves that

‖Dnpwn − fj‖p,(δ,1) → 0, n → ∞. (9)
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Case Bβ/n ≤ u < δ. Let n > n2 = max{n1, 2}. Then (7) and the

conditions u ∈ [Bβ/n, δ), n > n2 imply

Bβ

n
≤ u < r ≤ u +

1

n
< δ +

1

n2

≤ 1.

This means we can apply (3), (4) and (7) to get

∣

∣Gj([nu + 1], n)
∣

∣ ≤
[

Mβ

rβφ(n)|ε(n)|

]j

≤
[

Mβ

c1

]j

u−βj for u ∈ [Bβ/n, δ).

Taking β ∈
(

0, 1
pj

)

we have with new constants c3, c4

∫ δ

Bβ/n

|Dnpwn|pdu ≤ c3

∫ δ

0

u−pβjdu = c4δ
1−pβj. (10)

Case 0 < u < Bβ/n. In this case [nu + 1] ≤ nu + 1 < Bβ + 1 and

L([nu + 1]) ≤ c by the assumed continuity of L. Hence, |G([nu + 1], n)| ≤
c

|L(n)ε(n)| + 1
|ǫ(n)| and by the Minkowski inequality

‖Dnpwn‖1/j
p,(0,Bβ/n) ≤

(

c

|L(n)ε(n)| +
1

|ε(n)|

)(

Bβ

n

)1/(pj)

. (11)

Here the expression on the right tends to zero as n → ∞ because any real

powers and products of SV functions are SV and n−αf(n) → 0 for any α > 0

and SV function f.

From (9), (10) and (11) we see that we can choose first a small δ and

then a large n to make the left side of (5) as small as desired. �

Proof of Theorem 2. (I) With p = 1 Theorem 1 gives

∣

∣

∣

∣

∣

1

n

n
∑

t=1

Gj(t, n) − (−1)jj!

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

Dn1wndu −
∫ 1

0

logj udu

∣

∣

∣

∣

≤ ‖Dn1wn − fj‖1,(0,1) → 0.
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(II) Letting j = 1 in (I) we have

1

n

n
∑

t=1

L(t) = L(n) − L(n)ε(n)[1 + o(1)]. (12)

If L satisfies Assumption SSV(M), then Lj also satisfies that assumption, its

ε-function being jε(x). Application of (12) to Lj proves (II).

(III) Another application of (I) yields

1

n

n
∑

t=1

(

L(t) − L̄

L(n)ε(n)

)2

=
1

L2(n)ε2(n)







1

n

n
∑

t=1

L2(t) −
[

1

n

n
∑

t=1

L(t)

]2






=
1

n

n
∑

t=1

G2(t, n) −
[

1

n

n
∑

t=1

G(t, n)

]2

→ 2 − 1 = 1.

It remains to multiply both sides by L2(n)ε2(n).

(IV) By (Mynbaev, 2001, Theorem 4.1) it is enough to establish that the

sequence of weights {wn} is L2-close to g ∈ L2 to conclude that
∑n

t=1 wntut →d

N
(

0, σ2
∫ 1

0
g2(u)du

)

.

(i) Setting p = 2, j = 1 in Theorem 1 gives

∫ 1

0

|G([nu + 1], n) − log u|2 du → 0.

Multiply this relation by ε2(n) → 0 to obtain

∫ 1

0

|L([nu + 1])/L(n) − 1|2 du → 0.

This means that the sequence wn = 1√
nL(n)

(L(1), ..., L(n)) is L2-close to g ≡

1.

(ii) From (12) we conclude that the sequence of weights in statement (ii)
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is

wn =
1√

nL(n)ε(n)
(L(1) − L̄, ..., L(n) − L̄) =

=
1√
n

(G(1, n), ..., G(n, n)) +
1 + o(1)√

n
(1, ..., 1).

It is easy to see that the second sequence on the right is L2-close to g ≡ 1.

The first sequence is L2-close to f1 by Theorem 1. Hence, wn is L2-close to

g1(x) = 1 + log x. The statement follows from the fact that
∫ 1

0
g2
1(u)du = 1.

Statement (iii) follows directly from Theorem 1.

(V) Since f is uniformly continuous, the sequence (f
(

1
n
, θ
)

, ..., f
(

n
n
, θ
)

)

is L∞-close to f(r, θ0), which is a continuous function of r. By (Mynbaev,

2007, Theorem 3.3(d)) this sequence and 1√
nL(n)

(L(1), ..., L(n)) (which is L2-

close to g ≡ 1) can be multiplied element by element to obtain a sequence

1√
nL(n)

(f
(

1
n
, θ
)

L(1), ..., f
(

n
n
, θ
)

L(n)) which will be L2-close to f(r, θ0). �
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