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Abstract

In this paper a differential game model of renewable resource ex-
ploitation is considered in which firms compete in exploiting a com-
mon resource in a Bertrand price-setting game. The model character-
izes a situation in which firms extract a common renewable resource
which after harvesting may be considered a differentiated product.
Firms then choose prices rather than harvest quantities. Quantities
extracted are determined by consumer demand. Optimal price and
harvest policies are determined in a linear state differential game for
whichr open-loop and feedback strategies are known to be equuiva-
lent. Furthermore, the case of search costs and capacity constraints
is analysed and the role they play in determining the dynamics of
the resource stock is considered. The results are compared to those
of Cournot competition which has been analysed extensively in the
literature. Previous studies of differential games applied to renewable
resource harvesting have concentrated on quantity competition (see
for example [12]) and the case of price competition has been largely
ignored. the exceptions to this have been in the more empirical litera-
ture where evidence for price competition versus quantity competition
for renewable resources such as fisheries is mounting [1]. Consequently
the results presented here are not only new, but possibly of greater
empirical relevance than existing results on quantity competition.
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1 Introduction

Traditional microeconomic models of oligopolistic competition may be di-
vided into two types: either firms compete by setting quantities that then
impact on price via consumer demand, or firms compete by directly setting
prices. The former is known as the Cournot oligopoly model, the latter as
the Bertrand oligopoly model. Both models may be represented as strate-
gic games in which the strategy space is either the space of possible firm
outputs or the space of possible output prices respectively. In models of re-
newable resource exploitation firms are often also assumed to compete with
each other for the exploitation of a common resource. This problem is fre-
quently analyzed using differential game theory in which competing firms
simultaneously choose the amount of the resource that they wish to har-
vest. Competition between firms is in terms of the quantities harvested. So
called Cournot competition. The Cournot model makes sense if firms are
competing with each other to produce a homogeneous good. The Cournot
assumption may not always be valid in renewable resource industries. The
catch of one fishermen often differs in quality to that of another fishermen in
terms of both the quality and the size of the fish caught. Consequently, for a
given tonnage of fish different fishing enterprises will often produce catches
of varying quality. Fish may therefore be considered a heterogeneous good.
Competition between firms producing heterogeneous goods is better under-
stood in terms of price competition rather than quantity competition. This is
because consumers will resist switching to a lower priced supplier if the lower
priced supplier is also offering an inferior product, so that price competition
becomes effective if the offered product is heterogeneous in nature.

In the model presented here a differentiated good duopoly in which two
firms exploit a common renewable resource is studied. Four cases are distin-
guished corresponding to four different types of fisheries with different types
of search costs. Firstly, a schooling fishery with no costs of harvesting is
considered in which two firms exploit a common fishery. For reasons of ana-
lytical tractability it is assumed that the stock of the resource grows linearly.
This corresponds to an assumption that the resource is being harvested at a
rate that would maintain the stock far from it’s natural equilibrium.

Renewable resource models employing differential game theory have con-
centrated on quantity competition between firms exploiting common renew-
able resources to the exclusion of price competition. Results on sustainable
exploitation and extinction of species for exploitation of a common renewable
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resource are therefore for the most part based on the assumption that firms
compete in terms of quantities. There has been little in the way of research
analysing what impact price competition may have on the sustainability of re-
source stocks from either a theoretical or applied perspective. This is despite
the fact that in static studies of particular fisheries there is some empirical
evidence that competition between firms may be characterised by price com-
petition. For example, Weninger [16] applies Bertrand pricing to vertically
integrated fisheries in a theoretical model. Adelaja et al. [1] apply Bertrand
pricing models to the study of the Atlantic clam quahog fisheries. The latter
study concludes that the Bertrand model provides a good fit for the Atlantic
surf clam fishery but not the ocean quahog fishery. In other work on the
Marseilles fish market price dispersion between firms has been observed with
prices also varying over time [8],[10]. It is possible that the model presented
here could explain at least some of this behavior. So for example the school-
ing fishery is characterized by both price dispersion and prices varying over
time at least along the adjustment path to steady-state.

Bertrand models have been employed elsewhere in the context of differen-
tial games to study price competition between firms engaged in research and
development. So for example Cellini and Lambertini [3] study a differential
game of R&D with both Cournot and Bertrand competition. In the field of
advertising Cellini, Lambertini and Mantovani [4] apply Bertrand competi-
tion to a differential game of advertising. Elsehwere in resource economics
Gaudet and Moreaux [7] have compared Bertrand and Cournot equilibria for
differential games of non-renewable resource exploitation. However, to the
best of my knowledge the Bertrand model has not been applied to differential
game models of renewable resources such as fisheries.

In this paper I present a linear-state differential game model of renew-
able resource exploitation based on a fishery model. The case of oligopolistic
price competition between two firms is analysed and solved for three dif-
ferent types of fisheries. The first case analyzes a two-player linear state
differential game of Bertand competition in harvesting a renewable resource.
The steady-state strategies are then analysed and the impact that increased
competition between the firms has on the stock of the resource is studied.
This case ignores harvesting costs so these are essentially symmetric. The
next part of the anlysis considers the case of a schooling fishery without
search costs in which harvesting costs differ between players. The results
show that the steady-state price strategies will also differ under these cir-
cumstances. In steadys-state the results of the schooling fishery with and
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without search costs are indentical however the path to steady-state differs
in these two cases. Finally, the case of a search fishery is considered. In this
case tractability requires the introduction of a a dynamic equation for fleet
cacpacity, essentially a capacity constraint. The results suggest that search
fisheries tend to be characterized by overexpansion of the fleet compared to
schooling fiheries. The reason for this that search costs are too low com-
pared with harvest costs. Conseuquntly, schooling fisheries are likely to be
more sustainable than search fisheries. this result differs considerably from
received wisdom (cf. Neher [11]). The explanation lies in the need for search
fisheries to be able to expand fleet capacity as stocks become small and there-
fore fish rare. If harvest costs are sufficiently low compared to search costs
then this will slow the expansion of the fleet, otherwise the fleet will expand
to maintain the search for fish. The result is due more to the search fishery
nature of the problem than to Bertrand competition.

The paper is structured as follows firstly in section 2, a basic model
is analysed with zero costs of harvesting, in section 3 a schooling fishery
with and without search costs is considered and finally a search fishery is
considered. In the case of the search fishery an analytical result is achieved
by introducing a second state variable to capture capacity constraints in the
industry. Finally the different types of fisheries are compared in section 4 in
terms of the solution of the game and conclusions are drawn.

2 The Model

The basic model is that of a duopoly in which two firms exploit a com-
mon resource and sell the harvested product on an imperfectly competitive
market. The particular good (for example fish) is considered to be of het-
erogeneous quality, so that quantity competition makes little sense. Instead
firms compete by setting prices.

Consider for example a common fishery with two firms who face the fol-
lowing demand curves for their product:

qi = a − bP1 + cP2 (1)

the form of this demand function is standard and is based largely on that
employed in the R&D literature where it is attributed to spence [13].

The dynamics of the resource is expreseed by the following differential
equation:
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ẋ = f(x) − q1 − q2 (2)

Each firm’s profit (ignoring fixed costs is given by:

Πi = piqi, i = 1, 2 (3)

The firm’s intertemporal profit maximization problem is therefore given
by

max
Pi

Ji =
∫

∞

0
Πie

−rtdt, i = 1, 2

subject to

ẋ = f(x) − q1 − q2 (4)

Consider a renewable resource far from equilibrium (steady-state) so that
the growth of the stock can be approximated by an exponential growth func-
tion (linear differential equation), consequently one may assume f(x) = nx.

3 The Basic Model

The current-value Hamiltonian is given by:

H̃ = Piqi + µi[nx − q1 − q2] (5)

Let us consider a two player game (n=2). On substituting in the demand
equations we get:

H̃1 = P1(a − bP1 + cP2) + µ1[f(x) − (a − bP1 + cP2) − (a − bP2 + cP1)] (6)

and

H̃2 = P2(a − bP2 + cP1) + µ2[f(x) − (a − bP1 + cP2) − (a − bP2 + cP1)] (7)

Note that the following conditions hold:

∂2Hi

∂x∂x
= 0 (8)
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and

∂H i

∂Pi

= 0 ⇒
∂2H i

∂Pi∂x
= 0 (9)

and therefore the game may be characterized as a linear-state differential
game [5, p. 188]. A necessary condition for this to be case is linearity of the
growth function for the resource.

Pontryagin’s maximum principle results in:

∂H̃1

∂P1

= (a − bP1 + cP2) − bP1 + µ1(b − c) = 0 (10)

∂H̃1

∂P1

= (a − bP2 + cP1) − bP2 + µ2(b − c) = 0 (11)

with co-state equations:

µ̇1 − rµ1 = −µ1f
′

(x) (12)

µ̇2 − rµ2 = −µ2f
′

(x) (13)

Rearranging one obtains

P ∗

1 =
a(c + 2b) + (b2 − cb)2µ1(t) + (cb − c2)µ2(t)

4b2 − c2
(14)

P ∗

2 =
a(c + 2b) + (b2 − cb)µ1(t) + (cb − c2)2µ2(t)

4b2 − c2
(15)

The canonical system is obtained by substituting these into ẋ, µ̇1, µ̇2 to
obtain:

ẋ = nx − (a − bP1 + cP2) − (a − bP2 + cP1) (16)

µ̇1 = µ1(r − n) (17)

µ̇2 = µ2(r − n) (18)

Because the co-state equations are independent of the state variable this
may be treated as a separate system and solved to yield:

µ1(t) = µ1(0)e(r−n)t (19)
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and
µ2(t) = µ2(0)e(r−n)t (20)

Substituting into the state equation yields:

ẋ = nx − (a − bP ∗

1 + cP ∗

2 ) − (a − bP ∗

2 + cP ∗

1 ) (21)

this is a linear non-homegeneous first order ordinary differential equation
that may be solved, using an integrating factor. Denoting

g(t) = (a − bP ∗

1 + cP ∗

2 ) + (a − bP ∗

2 + cP ∗

1 ) (22)

The state equation may be rewritten as:

ẋ − nx = g(t) (23)

using the integrating factor e−nt one obtains:

x(t) =
− e−nt

n
g(t) + C

e−nt
(24)

or

x(t) = Cent −
g(t)

n
(25)

usingx(0) = x0 yields the constant of integration C = x0 + g(0))
n

which on
substituting gives

x(t) = (x0 +
g(0)

n
)ent −

g(t)

n
(26)

Let us now consider what happens in the steady-state. First we assume
that r < n. This assumption is necessary for a steady-state to exist.

Proposition 1. If r < n then as t → ∞

P∞

1 =
a(c + 2b)

4b2 − c2

P∞

2 ∗ =
a(c + 2b)

4b2 − c2

Proof. Evaluating limt→n P ∗

1 = a(c+2b)
4b2−c2

and limt→n P ∗

2 = a(c+2b)
4b2−c2
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What is the steady-state stock of the resource? Solving for the steady-
state value of x

x∞ =
2a + (c − b)P∞

1 + (c − b)P∞

2

n
(27)

What impact does discounting the future have on prices? As r → n

prices charged by both enterprises increase as long as b > c. If the cross-
price effect on demand c is greater than the own-price effect on demand
b then discounting will reduce prices. Consequently depending on which
case one faces discounting could induce price wars between competitors. In
considering the impact on the stock of the resource it is clear that regardless
of which regime one is in the stock of the resource is reduced by discounting.

What impact does the extent of competition between firms have on the
stock of the resource. In other words as c increases what happens to the
steady-state stock of the resource. First consider what happens to the steady-
state equilibrium prices when c increases.

This results in the following impact on prices:

∂P∞

∂c
=

a(4b2 − c2) − 2ca(c + 2b)

(4b2 − c2)2
(28)

Proposition 2. As c increases x∞ also increases as long as b > c and

Proof. Differentiate and simplify to get

∂x∞

∂c
= 2

P∞

n
+ 2

(c − b)

n

∂P∞

∂c

this will be positive if 1
P∞

∂P∞

∂c
> 1

b−c
. It is possible to demonstrate that

∂P∞

∂c
is negative by a limit argument. Note that the condition 4b2 > c2 must

hold for positive retail prices. 4b2 − c2 is positive implies b > c
2

Taking the
limit of ∂P∞

∂c
as b approaches c

2
shows that the derivative is negative. This is

definitely true if b > c.

It would seem therefore that price competition may be good for the stock
of the resource if the own price effect on demand is large compared to the
cross-price effect. If this is not the case price competition will drive up
demand for the resource and consequently drive the stock of the resource
down.
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Fast growing species such as r-strategists (perhaps n-strategists here) tend
to be characterised by lower steady-state stock than slow growing species
(K-strategists). It is assumed here that harvest levels constrain the resource
stock well away from the steady-state level that would be achieved by a
natural population not subject to exploitation. Nevertheless the intuition
appears clear.

4 Search costs and Capacity constraints

There is a considerable literature in resource economic on the role of search
costs in renewable resource exploitation particularly with respect to fisheries.
Most of this literature considers static models of fisheries and there has been
little research analysing the impact of search costs on sustainability fo fish-
eries from a dynamic perspective. Part of the problem is tractability.

Three different kinds of fisheries can be identified with respect to search
costs;

• schooling fishery without search costs,in this case costs are independent
of stock size, e.g. C(q, θ) = ci

qqi + ci
s, cs > 0

• a schooling fishery with search costs C(q, x, θ) = C(q, θ) + C(x) =
cqq + csx, cs < 0

• a search fishery C(q, x, θ), such that ∂2C
∂x∂q

6= 0

In case three we specify the following cost function C(q, x, θ) = cs
q

x
. Again

the linear-quadratic nature of the game is not affected by this specification
however we are able to capture the impact of fishing effort on search costs
and vice versa. Each of these will be compared.

4.1 Schooling fishery without search costs

In the first case we consider harvest costs and constant search costs. The
previous Bertrand pricing model now needs to be modified to incorporate
these costs. Instantaneous firm profit is now given by

Π(t) = piqi − cqqi − cs (29)

the state equation remains
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ẋ = nx − (a − bP1 + cP2) − (a − bP2 + cP1) (30)

From this one obtains the Hamiltonian pair:

H̃1 = p1(a−bP1+cP2)−c1
q(a−bP1+cP2)−cs+µ1[nx−(a−bP1+cP2)−(a−bP2+cP1)]

(31)
and

H̃2 = p2(a−bP2+cP1)−c2
q(a−bP2+cP1)−cs+µ2[nx−(a−bP1+cP2)−(a−bP2+cP1)]

(32)
Pontryagin’s maximum principle gives:

∂H̃1

∂P1

= (a − bP1 + cP2) − bP1 + c1
qb + µ1(b − c) = 0 (33)

∂H̃1

∂P1

= (a − bP2 + cP1) − bP2 + c2
qb + µ2(b − c) = 0 (34)

with co-state equations:

µ̇1 − rµ1 = −µ1n (35)

µ̇2 − rµ2 = −µ2n (36)

The canonical system is obtained by substituting these into ẋ, µ̇1, µ̇2 to
obtain:

ẋ = nx − (a − bP1 + cP2) − (a − bP2 + cP1) (37)

µ̇1 = µ1(r − n) (38)

µ̇2 = µ2(r − n) (39)

Because the co-state equations are independent of the state variable this
may be treated as a separate system and solved to yield:

µ1(t) = µ1(0)e(r−n)t (40)

and
µ2(t) = µ2(0)e(r−n)t (41)

11



Solving the first-order conditions yields:

P ∗

1 =
a(2b + c) + cc2

qb + µ2(bc − c2) + 2c1
qb

2 + 2(b2 − bc)µ1

4b2 − c2
(42)

P ∗

2 =
a(2b + c) + cc1

qb + µ1(bc − c2) + 2c2
qb

2 + 2(b2 − bc)µ2

4b2 − c2
(43)

Substituting into the state equation yields:

ẋ = nx − (a − bP ∗

1 + cP ∗

2 ) − (a − bP ∗

2 + cP ∗

1 ) (44)

This may be solved similarly to the previous sections to yield:

x(t) = (x0 +
g(0)

n
)ent −

g(t)

n
(45)

Now let us examine the steady-state equilibria:

Proposition 3. If r < n then as t → ∞

P∞

1 =
a(2b + c) + cc2

qb + 2c1
qb

2

4b2 − c2

P∞

2 ∗ =
a(2b + c) + cc1

qb + 2c2
qb

2

4b2 − c2

Proof. Evaluating limt→n P ∗

1 =
a(2b+c)+cc2qb+2c1qb2

4b2−c2
and

limt→n P ∗

2 =
a(2b+c)+cc1qb+2c2qb2

4b2−c2

Now consider the impact of the strength of competition between firms on
the steady-state stock of the resource. From the previous section one obtains
the steady-state stock of the resource:

x∞ =
2a + (c − b)P∞

1 + (c − b)P∞

2

n
(46)

This may be differentiated with respect to c to obtain the impact of
competition on the stock of the resource.

Firatly, consider
This results in the following impact on prices:

∂P∞

1

∂c
=

(a + c2
qb)(4b

2 − c2) − 2c(a(2b + c) + cc2
qb + 2c1

qb
2)

(4b2 − c2)2
(47)
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and

∂P∞

1

∂c
=

(a + c1
qb)(4b

2 − c2) − 2c(a(2b + c) + cc1
qb + 2c2

qb
2)

(4b2 − c2)2
(48)

Proposition 4. As c increases x∞ also increases as long as b > c

Proof. Differentiate and simplify to get

∂x∞

∂c
=

P∞

1

n
+

c − b

n

∂P∞

1

∂c
+

P∞

2

n
+

c − b

n

∂P∞

2

∂c

The condition 4b2 > c2 must hold for positive retail prices. The proof follows
similarly to that employed in the previous section. Except that the asym-
metry in costs requires taking the limit of each partial derivative. Taking
the limit in the other direction demonstrates that as b becomes large the
derivative approaches zero.

In the next section we consider a schooling fishery with search costs.

4.2 Schooling fishery with search costs

Now consider a schooling fishery with search costs.

Π(t) = piqi − cqqi − csx (49)

H̃1 = P1(a−bP1+cP2)−c1
q(a−bP1+cP2)−csx+µ1[nx−(a−bP1+cP2)−(a−bP2+cP1)]

(50)
and

H̃2 = P2(a−bP2+cP1)−c2
q(a−bP2+cP1)−csx+µ2[nx−(a−bP1+cP2)−(a−bP2+cP1)]

(51)
Pontryagin’s maximum principle gives:

∂H̃1

∂P1

= (a − bP1 + cP2) − bP1 + c1
qb + µ1(b − c) = 0 (52)

∂H̃1

∂P1

= (a − bP2 + cP1) − bP2 + c2
qb + µ2(b − c) = 0 (53)
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with co-state equations:

µ̇1 − rµ1 = cs − µ1n (54)

µ̇2 − rµ2 = cs − µ2n (55)

The canonical system is obtained by substituting these into ẋ, µ̇1, µ̇2 to
obtain:

ẋ = nx − (a − bP1 + cP2) − (a − bP2 + cP1) (56)

µ̇1 = cs + µ1(r − n) (57)

µ̇2 = cs + µ2(r − n) (58)

Because the co-state equations are independent of the state variable this
may be treated as a separate system and solved to yield:

µ1(t) = cst + µ1(0)e(r−n)t (59)

and
µ2(t) = cst + µ2(0)e(r−n)t (60)

Solving the first-order conditions yields:

P ∗

1 =
a(2b + c) + cc2

qb + µ2(bc − c2) + 2c1
qb

2 + 2(b2 − bc)µ1

4b2 − c2
(61)

P ∗

2 =
a(2b + c) + cc1

qb + µ1(bc − c2) + 2c2
qb

2 + 2(b2 − bc)µ2

4b2 − c2
(62)

Substituting into the state equation yields:

ẋ = nx − (a − bP ∗

1 + cP ∗

2 ) − (a − bP ∗

2 + cP ∗

1 ) (63)

Solving as before one obtains:

x(t) = (x0 +
g(0)

n
)ent −

g(t)

n
(64)

Proposition 5. If r < n then as t → ∞

P∞

1 =
a(2b + c) + cc2

qb + 2c1
qb

2

4b2 − c2

P∞

2 ∗ =
a(2b + c) + cc1

qb + 2c2
qb

2

4b2 − c2
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Proof. Evaluating limt→n P ∗

1 =
a(2b+c)+cc2qb+2c1qb2

4b2−c2
and

limt→n P ∗

2 =
a(2b+c)+cc1qb+2c2qb2

4b2−c2

Now consider the impact of the strength of competition between firms on
the steady-state stock of the resource. From the previous section one obtains
the steady-state stock of the resource:

x∞ =
2a + (c − b)P∞

1 + (c − b)P∞

2

n
(65)

This may be differentiated with respect to c to obtain the impact of
competition on the stock of the resource. This results in the following impact
on prices:

∂P∞

1

∂c
=

(a + c2
qb)(4b

2 − c2) − 2c(a(2b + c) + cc2
qb + 2c1

qb
2)

(4b2 − c2)2
(66)

and

∂P∞

1

∂c
=

(a + c1
qb)(4b

2 − c2) − 2c(a(2b + c) + cc1
qb + 2c2

qb
2)

(4b2 − c2)2
(67)

Proposition 6. As c increases x∞ also increases as long as b > c

Proof. Differentiate and simplify to get

∂x∞

∂c
=

P∞

1

n
+

c − b

n

∂P∞

1

∂c
+

P∞

2

n
+

c − b

n

∂P∞

2

∂c

The condition 4b2 > c2 must hold for positive retail prices. The proof fol-
lows similarly to that employed in the previous section. Taking the limit
in the other direction demonstrates that as b becomes large the derivative
approaches zero.

4.3 Search Fishery

Now consider a search fishery. The profit function is given by:

Π(t) = piqi − cq

qi

x
(68)

The resultant game is no longer a linear state differential game. Con-
sequently, the open loop and closed loop solutions may differ. As it stands
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this problem is not tractable. Instead of solving the problem in this form we
introduce the idea of a catch per unit effort production function qi = kEix

where k is a catchability coefficient and Ei is fishing effort of player i. The
procedure we employ follows [15]. Recall the search costs are cq

q

x
, it is easy to

see that the search costs may now be rewritten as cqkEi. Now introduce an
equation for fishing effort Ėi = νi where ν is a new control variable indicating
the rate of entry or exit to the resource. this equation may be interpreted
as a dynamic capacity constraint, which constrains the evolution of the ef-
fort measured for example by number of fishing boats. We now assume this
results in quadratic adjustment costs β

2
ν2

i .
The instantaneous profit function may now be rewritten:

Π(t) = piqi − cqkEi −
β

2
ν2

i (69)

The resultant game is once again a linear state differential game. However
it now posseses two state variables and two control variables:

max
Pi,νi

Ji =
∫

∞

0
Πie

−rtdt

subject to

ẋ = nx − q1 − q2 (70)

Ėi = νi − δEi, i = 1, 2 (71)

The corresponding Hamiltonians are:

H̃1 = P1(a−bP1+cP2)−cqkE1−
β

2
ν2

1+µ1[nx−(a−bP1+cP2)−(a−bP2+cP1)]+µ3[ν1−δE1]

(72)
and

H̃2 = P2(a−bP2+cP1)−cqkE2−
β

2
ν2

2+µ2[nx−(a−bP1+cP2)−(a−bP2+cP1)]+µ4[ν4−δE2]

(73)
Pontryagin’s maximum principle gives the first-order consitions;

∂H̃1

∂P1

= (a − bP1 + cP2) − bP1 + µ1(b − c) = 0 (74)
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∂H̃1

∂P1

= (a − bP2 + cP1) − bP2 + µ2(b − c) = 0 (75)

∂H̃1

∂ν1

= −βν1 + µ3 = 0 (76)

∂H̃1

∂ν2

= −βν2 + µ4 = 0 (77)

with co-state equations:

µ̇1 − rµ1 = −µ1n (78)

µ̇2 − rµ2 = −µ2n (79)

µ̇3 − rµ3 = −
∂H̃

∂E1

= cqk + µ3δ (80)

µ̇4 − rµ4 = −
∂H̃

∂E2

= cqk + µ4δ (81)

Solving the first-order conditions:

P ∗

1 =
a(c + 2b) + (b2 − cb)2µ1(t) + (cb − c2)µ2(t)

4b2 − c2
(82)

P ∗

2 =
a(c + 2b) + (b2 − cb)µ1(t) + (cb − c2)2µ2(t)

4b2 − c2
(83)

ν∗

1 =
µ3

β
(84)

ν∗

2 =
µ3

β
(85)

This results in the system of linear equations:

ẋ = nx − (a − bP ∗

1 + cP ∗

2 ) − (a − bP ∗

2 + cP ∗

1 ) (86)

Ė1 = ν∗

1 − δE1 (87)

Ė2 = ν∗

2 − δE2 (88)

µ̇1 = (r − n)µ1 (89)

µ̇2 = (r − n)µ2 (90)
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µ̇3 = −
∂H̃

∂E1

= cqk + (r + δ)µ3 (91)

µ̇4 = −
∂H̃

∂E2

= cqk + (r + δ)µ4 (92)

Once again this system may be solved recursively to find the solution:

µ1(t) = µ1(0)e(r−n)t (93)

µ2(t) = µ2(0)e(r−n)t (94)

µ3(t) = cqkt + µ3(0)e(r+δ)t (95)

µ4(t) = cqkt + µ3(0)e(r+δ)t (96)

x(t) = (x0 +
g(0)

n
)ent −

g(t)

n
(97)

g(t) = (a − bP ∗

1 + cP ∗

2 ) + (a − bP ∗

2 + cP ∗

1 ) (98)

and

E1(t) =
cqkt2

2β
+

µ3(0)e(r+δ)t

(r + δ)β
− E1(0)eδt (99)

E2(t) =
cqkt2

2β
+

µ4(0)e(r+δ)t

(r + δ)β
− E2(0)eδt (100)

Let us now consider what happens in the steady-state. First we assume
that r < n. This assumption is necessary for a steady-state to exist.

Proposition 7. If r < n then as t → ∞

P∞

1 =
a(c + 2b)

4b2 − c2

P∞

2 ∗ =
a(c + 2b)

4b2 − c2

Proof. Evaluating limt→n P ∗

1 = a(c+2b)
4b2−c2

and limt→n P ∗

2 = a(c+2b)
4b2−c2
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The steady-state stock of the resource is once again given by:

x∞ =
2a + (c − b)P∞

1 + (c − b)P∞

2

n
(101)

The impact of competition between firms on the stock of the resource is
the same as that considered in section 1, in other words as c increases the
steady-state stock of the resource also increases. First consider what happens
to the steady-state equilibrium prices when c increases. This results in the
following impact on prices:

∂P∞

∂c
=

a(4b2 − c2) − 2ca(c + 2b)

(4b2 − c2)2
(102)

Proposition 8. As c increases x∞ also increases as long as b > c and

Proof. Differentiate and simplify to get

∂x∞

∂c
= 2

P∞

n
+ 2

(c − b)

n

∂P∞

∂c

this will be positive if 1
P∞

∂P∞

∂c
> 1

b−c
. It is possible to demonstrate that

∂P∞

∂c
is negative by a limit argument. Note that the condition 4b2 > c2 must

hold for positive retail prices. 4b2 − c2 is positive implies b > c
2

Taking the
limit of ∂P∞

∂c
as b approaches c

2
shows that the derivative is negative. This is

definitely true if b > c.

In the case of the search fishery we also need to consider the steady-state
level of effort of each fishery:

E1(t) =
cqkt + µ3(0)e(r+δ)t

δβ
(103)

E2(t) =
cqkt + µ3(0)e(r+δ)t

δβ
(104)

As t → ∞ these will approach infinity unless either the harvest costs
are zero cs = 0 and the search costs β very large. One possible conclusion
therefore is that search fisheries tend to encourage an overexpansion of effort
compared to school fisheries.

If however one confines oneself to steady-state analysis then because qi =
kEix, i = 1, 2 and ẋ = nx − q1 − q2 the stock dynamics may be rewritten as
ẋ = nx − kE1x − kE2x = nx − kx(E1 + E2) so that in steady state:
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n

k
= E1(t) + E2(t) (105)

or

n = k(E1(t) + E2(t) (106)

Consequently the accumulation of effort (capital) is bounded by the ratio
of the growth rate of the stock to the catchability of fish. One interpretation
of this is that this is a measure of escapement. Either way it placess an upper
bound on fishing effort in steady-state.

Substituting this back into x∞ enables the exptression of the steady-state
stock in terms of both demand effort characteristics.

x∞ =
2a + (c − b)P∞

1 + (c − b)P∞

2

k(E1(t) + E2(t))
(107)

Clearly as effort expands cetris-paribus the steady-state stock of fish de-
clines. An example would be increased harvesting costs which would reduce
the steady-state stock of fish, whereas an increase in search costs, e.g. fuel
costs, would increase the steady-state stock of fish.

5 Conclusion

In this paper a model of exploitation of a common fishery has been presented
in which two firms compete with each other via price competition rather than
via quantity competition. this set-up is more suited to the analysis of nat-
ural resources that are characterised by product heterogeneity. The model
was formulated as a linear-state differential game under a variety of different
cost assumptions and closed form solutions for each of these scenarios were
derived. Becaus of the linear-state nature of the problem closed loop and
open loop strategies coincide in all cases. In all cases it can be seen that
competitive pressures lead to prices being lowered and the steady-state stock
of fish increasing. In the case of the search fishery there is a tendency for
fishing effort to expand thereby driving the fishery to exctinction. For school-
ing fisheries with and without search costs the fishery remains sustainable
as long as b > c, i.e. the own price effect on demand is greater than the
cross-price effect. For the case where c

2
< b < c price competition could lead

to extinction if the cross-price effect on demand c becomes sufficiently large.
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