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I. Introduction: Oftentimes we require constructing composite indices by a linear 

combination of a number of indicator variables. If we denote the indicator variables by 

1 2[ , ,..., ]
m

X x x x=  where each 
jx  has n observations (cases) and weights assigned to 

those variables by 1 2[ , ,..., ]
m

w w w w ′=  then the composite index I Xw= obtains a single 

value for each case k , or 
1
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k kj jj
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=
= =� . The weights may be determined 

subjectively or objectively by certain considerations extraneous to the dataset ,X  or 

alternatively they may endogenously be determined by the statistical information 

obtained from dataset X itself. Endogenous weights are frequently obtained by a 

statistical technique called the Principal Components Analysis (PCA), which maximizes 

the sum of squared coefficients of (the product moment) correlation between the derived 

composite index I and the indicator variables, ,X or stated differently, I Xw= such that 
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=� is maximum.  

 In presence of sizeable outliers in the data variables, ,X we cannot expect the 

product moments correlation coefficients to remain unaffected. The outliers distort mean, 

standard deviation and the covariance structure of the indicator variables leading to 

distortion in the coefficient of correlation (Hampel, 2001). It may be desirable, therefore, 

to devise a technique that would minimize the influence of outliers on the composite 

index. Our objective in this paper is to propose a new technique to construct such a 

composite index. We also demonstrate the effectiveness of the proposed technique by a 

simulation experiment. 

II. The Coefficient of Correlation in the Median Family: It is well known that median 

as a measure of central tendency is (normally) unaffected by the presence of outliers in 

the data. The median is an analogue of the (arithmetic) mean; it minimizes the sum of 

probability-weighted absolute deviations of data points from itself  (

1/
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for L=1) while the arithmetic mean minimizes the probability-weighted sum of squared 

deviations of data points from itself    (that implies 
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1
min

L

Ln

i iic
x c p

=
−� for L=2).  

 Bradley (1985) showed that if ( , ); 1,i iu v i n=
 
are n pairs of values such that the 

variables u  and v  have the same median = 0 and the same mean deviation (from median) 

or 
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of variables when suitably transformed, then the absolute correlation may be defined as 

( , )u vρ = ( ) ( )
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.
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= =

+ − − +� �  

III. Construction of a Composite Index Using Bradley’s Correlation: Bradley’s 

coefficient of correlation (that belongs to the median family) is an analogue of the 

Pearson’s product moment correlation coefficient (in the family of arithmetic mean). It 

appears therefore that one may construct a composite index by maximization of the sum 

of absolute values of Bradley’s coefficient of correlation between the composite index, I

and the indicator variables (although any other measure of correlation e.g. Shevlyakov 

1997 may also be used). This is to say that we can obtain 1 1I Xw=  such that 
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=� is maximal. This composite index, 1,I will be analogous to the PCA-based 

index, 2 ,I  that maximizes the sum of squared sum of the Pearson’s coefficients of 

correlation between the composite index and the indicator variables or 
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IV. Issues Relating to Maximization: Obtaining the PCA-based composite index is 

simpler since it has a closed form formula. The (Pearson’s) correlation matrix, R  is 

constructed from X such that (1/ )R n X X′=  where jx X j∈ ∀  has zero mean and unit 

standard deviation. The largest eigenvalue ( λ ) and the associated eigenvector ( e ) of R  

is obtained. The eigenvector is normalized so that 1.e = The normalized eigenvector is 

used as the weight, 2 ,w  to obtain 2 2.I Xw=  It is possible, nevertheless, to directly obtain 

the composite index, 2 ,I  by maximizing 2

2 2 21
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form formula for obtaining 1 1I Xw=  such that 11
( , )
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is maximal. Hence, one has 

to directly obtain it by solving the intricate maximization problem.  

V. Nonlinear Optimization by Differential Evolution: The method of Differential 

Evolution (DE) is one of the most powerful self-organizing, evolutionary, population-

based and stochastic global optimization methods. It is an outgrowth of the Genetic 

Algorithms. The crucial idea behind DE is a scheme for generating trial parameter 

vectors. Initially, a population of points (p in d-dimensional space) is generated and 

evaluated (i.e. f(p) is obtained) for their fitness. Then for each point (pi) three different 

points (pa, pb and pc) are randomly chosen from the population. A new point (pz) is 

constructed from those three points by adding the weighted difference between two 

points (w(pb-pc)) to the third point (pa). Then this new point (pz) is subjected to a 

crossover with the current point (pi) with a probability of crossover (cr), yielding a 

candidate point, say pu. This point, pu, is evaluated and if found better than pi then it 

replaces pi else pi remains. Thus we obtain a new vector in which all points are either 

better than or as good as the current points. This new vector is used for the next iteration.  

This process makes the differential evaluation scheme completely self-organizing. This 

method has been successfully applied for optimizing extremely nonlinear and multimodal 

functions (Mishra, 2007a, 2007b and 2007c). 
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VI. A Simulation Experiment: We have conducted a simulation experiment to examine 

the effectiveness of our proposed method. We have generated a matrix, X, of six 

variables, each in 30 observations. The correlation matrix of these variables is given in 

Table-1. Using these variables, we have obtained two composite indices by direct 

optimization: the one ( 10I ) relating to the method proposed by us and the other ( 20I ) 

relating to the PCA. Both of these indices are standardized by using the relationship         

[ )(min k
k

k II − ]/ )](min)(max[ k
k

k
k

II − nk ,1; = so as to make the index values lie 

between zero and unity. These composite indices serve as reference since X does not 

contain outliers. 

It is interesting to note (see table-1) that I10 and I20 are highly correlated (r = 

0.99812), although Bradley weights (w1) and correlation coefficients (�) are uniformly 

smaller (in magnitude) than the Pearson weights (w2) and correlation coefficients (r). 

Next, we introduce outliers to X. Three outliers (ranging between -10 to 10) have 

been added to each indicator variable (xj; j=1, m) at random locations. Then, using these 

(contaminated) variables, the two composite indices (I11 and I21) have been obtained. The 

indices have been standardized as before to lie between zero and unity. The results are 

presented in Table-2. All derived composite indices are presented in Table-3. 

The root-mean-square (RMS) = 2

10 111
(1/ ) ( ) 0.062108

n

k kk
n I I
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for our proposed 

method vis-à-vis RMS = 2

20 211
(1/ ) ( ) 0.073062

n

k kk
n I I

=
− =�

 
obtained for the PCA-based 

index suggests us that in presence of outliers our proposed method will perform better. 

As shown in the graph (Fig.1), the fluctuations in I21 appear to be more than those in I11. 

 

Table.1 : Correlation Coefficients and Weights for the Reference Indicator Variables 

(Without Outliers) 
Variables X1 X2 X3 X4 X5 X6 I10 I20 

X1 
1.00000 0.91112 0.79774 -0.80408 0.90597 -0.88239 0.98313 0.97609 

X2 
0.91112 1.00000 0.61258 -0.70371 0.89051 -0.76986 0.91918 0.90174 

X3 
0.79774 0.61258 1.00000 -0.76991 0.66145 -0.77614 0.82477 0.84445 

X4 
-0.80408 -0.70371 -0.76991 1.00000 -0.82274 0.69284 -0.86607 -0.87924 

X5 
0.90597 0.89051 0.66145 -0.82274 1.00000 -0.78670 0.94423 0.93406 

X6 
-0.88239 -0.76986 -0.77614 0.69284 -0.78670 1.00000 -0.88785 -0.90249 

I10 
0.98313 0.91918 0.82477 -0.86607 0.94423 -0.88785 1.00000 0.99812 

I20 
0.97609 0.90174 0.84445 -0.87924 0.93406 -0.90249 0.99812 1.00000 

Bradley 

weights 

0.45546 0.31762 0.32684 -0.29143 0.35443 -0.16293 
I10 = Composite  Index by 

maximization of the sum 

of absolute Bradley‘s 

Correlation Coefficients 

Bradley 

Correlation 
0.89741 0.75791 0.70183 -0.68475 0.78322 -0.75640 

Pearson 

weights 
0.54837 0.56794 0.71076 -0.80485 0.56420 -0.58643 

I20 = Composite  Index by 

maximization of the sum 

of squared Pearson’s 

Correlation Coefficients 
Pearson 

correlation 
0.97609 0.90174 0.84445 -0.87924 0.93406 -0.90249 
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Table.2 : Correlation Coefficients and Weights for the Reference Indicator Variables 

(With three Outliers between -10 and 10) 
Variables X1 X2 X3 X4 X5 X6 I11 I21 

X1 1.00000 0.68901 0.63464 -0.60439 0.86492 -0.74930 0.96985 0.96235 

X2 0.68901 1.00000 0.53335 -0.23724 0.63100 -0.45318 0.73477 0.74782 

X3 0.63464 0.53335 1.00000 -0.28127 0.48497 -0.45498 0.65326 0.70246 

X4 -0.60439 -0.23724 -0.28127 1.00000 -0.60731 0.45490 -0.57758 -0.65697 

X5 0.86492 0.63100 0.48497 -0.60731 1.00000 -0.60940 0.94002 0.89282 

X6 -0.74930 -0.45318 -0.45498 0.45490 -0.60940 1.00000 -0.76137 -0.78645 

I11 0.96985 0.73477 0.65326 -0.57758 0.94002 -0.76137 1.00000 0.98253 

I21 0.96235 0.74782 0.70246 -0.65697 0.89282 -0.78645 0.98253 1.00000 

Bradley 

weights 

0.35778 0.09415 0.13863 0.04825 0.51405 -0.15286 
I11 = Composite  Index by 

maximization of the sum 

of absolute Bradley‘s 

Correlation Coefficients 

Bradley 

Correlation 
0.87477 0.65153 0.56840 -0.50193 0.80043 -0.68208 

Pearson 

weights 
0.45695 0.42839 0.51517 -0.47088 0.52366 -0.45329 

I21 = Composite  Index by 

maximization of the sum 

of squared Pearson’s 

Correlation Coefficients 
Pearson 

correlation 
0.96235 0.74782 0.70247 -0.65696 0.89282 -0.78645 
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Table.3 : Composite Indices with (-10, 10 range) Outliers and Without Outliers 

 Without Outliers With Outliers  Without Outliers With Outliers 

Sl. 

No. 
I10 I20 I11 I21 

Sl. 

No. 
I10 I20 I11 I21 

1 0.00000 0.01232 0.10662 0.05730 16 0.01245 0.01822 0.00000 0.00000 

2 0.23418 0.24609 0.29661 0.27855 17 0.53109 0.55723 0.53143 0.57499 

3 0.88073 0.84975 0.92008 0.87824 18 0.63358 0.65675 0.64426 0.67611 

4 0.68067 0.67673 0.61788 0.57297 19 0.72741 0.70344 0.75561 0.73129 

5 0.76524 0.78795 0.88226 0.92680 20 0.65483 0.64351 0.66060 0.67180 

6 0.38436 0.37895 0.30520 0.34575 21 0.32729 0.33714 0.38292 0.48199 

7 0.00632 0.00000 0.07506 0.07551 22 0.62112 0.61313 0.73851 0.72311 

8 0.32555 0.34265 0.35433 0.36732 23 0.45723 0.46566 0.48820 0.49106 

9 0.12642 0.12559 0.14552 0.15541 24 0.32696 0.29988 0.39360 0.37343 

10 0.48163 0.47765 0.49373 0.50036 25 0.78514 0.79672 0.69088 0.56360 

11 0.68082 0.69665 0.66917 0.71403 26 0.42541 0.42897 0.45679 0.47503 

12 0.38275 0.36240 0.41909 0.37814 27 0.40770 0.37683 0.51886 0.42602 

13 0.56575 0.57329 0.57338 0.59125 28 0.91677 0.87900 0.97238 0.84678 

14 0.40016 0.40522 0.39010 0.42016 29 0.99074 1.00000 0.85489 0.88248 

15 1.00000 0.98508 1.00000 1.00000 30 0.67744 0.67370 0.69074 0.69831 
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Note: A Fortran Computer program to compute Composite Indices using Bradley’s absolute correlation 

and PCA by direct maximization is available on http://www.webng.com/economics 

 


