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1. Introduction 

 

Authors of some home pages on the Internet warn visitors that “the page is under 

construction”. We want to give an instant photo of a theory that is currently under 

development. The most part of the paper is about modeling (or approximating) nonstochastic 

regressors. One of our long-range objectives is to show that within our framework it is 

possible to study an autoregressive model with nonstochastic exogenous regressors. Since no 

such results are available at the moment, no mention will be made of models with stochastic 

regressors. 

 

Consider a linear model 

 

(1.1)  nnn uXy +β=  

 

where Xn is a nonstochastic n×K matrix, β is a K×1 parameter vector and un a stochastic error 

vector with mean zero. Let K

nn xx ,...,1  be the columns of Xn. The asymptotics of the OLS 

estimator 

 

(1.2)  ( ) nnnnn yXXX
'1'ˆ −

=β  

 

is expressed in terms of some characteristics of sequences { } { }K

nn xx ,...,1  (multiplied by some 

normalizing factor). Since it is hard to grasp the behavior of and manage these sequences, it is 

a good idea to represent them (or their normalized descendants) as images of some functions 

of a continuous argument. In statistical context this idea has been pursued in Moussatat 

(1976) and Millar (1982). Milbrodt (1992) applied it to AR(p) processes with a nonparametric 

trend. Precisely, L2-generated sequences are defined as follows. Let F be a square-integrable 

function on (0,1). For any natural n, let zn denote a vector with coordinates 

 

(1.3)  ∫
−

=
nt

nt

nt dxxFnz

/

/)1(

)(  , t = 1, ..., n, 

 

(see Mibrodt (1992)). The sequence {zn} is called L2-generated. With volatility of economic 

data, it is hard to accept such sequences as (normalized) regressors in econometrics. 

Therefore Mynbaev (1997) has suggested to work with sequences {zn} satisfying 
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(1.4)  ∑ ∫
= −

→−
n

t

nt

nt

nt dxxFnz
1

/

/)1(

2 .0))((  

 

We call such a sequence L2-approximable by F. A similar condition has been imposed by 

Vogelsang (1998): there exists a sequence {fn} of positive numbers and a function F such that 

 

(1.5)  ).1()/( ontFxf ntn +=  

 

As to the comparison of (1.4) and (1.5), see our comments in the end of Section 2. 

 

 All statements of asymptotic theory are based on central limit theorems (CLT’s),  laws 

of large numbers and sometimes functional central limit theorems (FCLT’s). There are no 

universally applicable stochastic limit theorems. Each researcher has to derive his or her own 

results, depending on the goal and the means used. With regularly behaved regressors, such 

results are easily obtained from the FCLT for partial sums of random walk 

 

(1.6)  
[ ]

10,
1

)(
1

≤≤= ∑
=

xe
n

xX
nx

t

tn , 

 

where [nx] is the integer part of nx and et can be martingale differences or their moving 

averages (see, e.g., Bai, Lumsdaine and Stock (1998), Canjels and Watson (1997), Vogelsang 

(1998)). The results are expressed in terms of functionals of standard Brownian motion. This 

is inconvenient when one needs to know the correlation between the functionals which must 

be calculated independently. 

 

In Section 2 we review the known properties of L2-generated sequences and show that 

L2-approximable ones inherit all of them. Our approach does not appeal to standard Brownian 

motion and allows for less smooth approximating functions. We deal with weighted sums of 

the form 

 

(1.7)  ∑
=

n

t

ntntuz
1

 

 

with so irregular zn that application of the FCLT for (1.6) is not possible. This is why it takes 

so long to arrive to stochastic limit results. The functional-theoretical part of the job has been 

done in Mynbaev (2000). Among other facts, we prove that normalized polynomial and 

logarithmic trends are L2-approximable. 

 

 In Section 3 we justify the choice of the normalizer. In order to do so, we derive the 

asymptotics of the OLS estimator from the CLT obtained in Section 2. Apart from the relaxed 

restrictions on the errors, that asymptotics is not new. We use it to show that normalization of 

Xn by the Euclidean norms of columns 

 

[ ]( ) 1
1

1

1

,...,diag,...,
−

=
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is in some sense unique. We call this normalization canonical. Even though it is common 

knowledge in the profession, some recent authoritative sources, such as Hamilton (1994), do 

not mention it (or, better to say, Hamilton does not try to find a general explanation for a 

variety of normalizers he uses). The only rational explanation that comes to our mind is that 

its uniqueness has been unknown. 

 

 Because of the uniqueness, it makes sense to use it in all asymptotic statements to 

normalize nonstochastic regressors. We show that replacement of the classical T -

normalizer by the canonical one is not as trivial as it might seem. Section 3 is concluded by a 

generalization of Mynbaev’s (1997) result on the asymptotics of the fitted value for model 

(1.1). Unlike the asymptotics of the OLS estimator, this result has no precedents and shows in 

full the strength of L2-approximability. 

 

2. L2-approximability and a Central Limit Theorem 

 

 Let  L2 denote the space of square-integrable functions F on (0,1) provided with the 

norm 

 

  

.)(

2/1
1

0

2











= ∫ dxxFF

 
 

Its discrete analogue l2 consists of sequences {zt: t ≥ 0} having a finite norm  

 

  

.

2/1

2








= ∑

t

tzz  

 

R
n
 is the Euclidean space. 

 

 For any natural n denote  

 

  

.,...,1,,
1

nt
n

t

n

t
it =







 −
=  

 

The discretization operator dn maps a function F ∈ L2  to a column-vector dnF with 

coordinates 

 

  

( ) .,...,1,)(∫ ==
ti

tn ntdxxFnFd

 
 

The sequence {dnF} was called L2-generated in the Introduction (see (1.3)). The interpolation 

operator Dn  takes a vector z ∈ R
n
 to a simple function 
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Where 1(A) denotes the indicator of a set A: 

 





=
A

A
A

 outside0

on 1
)(1  

 

L2-generated sequences possess some useful properties which allow one to obtain 

asymptotic results for linear regression models by requiring that normalized nonstochastic 

regressors be L2-generated. However, in econometrics this requirement would be too 

restrictive. The range of applicability of L2-generated sequences is extended by using the 

following definition. 

 

Definition.  Let {zn} be a sequence of vectors such that zn ∈ R
n
 for any natural n. We say that 

{zn} is L2-approximable if there exists a function F ∈ L2 such that  

 

(2.1)  0lim =−
∞→

Fdz nn
h

 

 

(this is a compact way of writing (1.4)). 

 

 Note that F, as a member of L2, is defined almost everywhere (a.e.), may be 

discontinuous and unbounded. Below we list some properties of L2-generated and L2-

approximable sequences. First note that 

 

(2.2)  ,,

2/1

n

t i

n

tn RzzdxnzzD

t

∈=













= ∑ ∫  

 

and by the Cauchy-Schwarz inequality 

 

(2.3)  .1,

2/1

12 ≥=













≤ ∫∑ −

nFdxnFnFd

ti
t

n  

 

Further, it is easy to check that the product Dn dn coincides with the Haar projector Pn where 

 

( ).1)(∑∫=
t i

tn

t

idxxFnFP  

 

Therefore (2.2) and (2.3) imply 

 

(2.4)  ., 2LFFFPn ∈≤  

 

It is well known that 



 5 

 

(2.5)  2,0lim LFFPF n
n

∈=−
∞→

 

 

(see, e.g., Millar (1982)). 

 

Property 1. {zn} is L2-approximable if and only if there exists F ∈ L2  such that 

 

(2.6)  .0lim =−
∞→

FzD nn
n

 

 

Proof. (2.1), (2.2), and (2.5) imply 

 

( ) .0→−+−=−+−≤− FFPFdzFFPFdzDFzD nnnnnnnnn  

 

Conversely, from (2.6), (2.2), and (2.5) we get 

 

.0→−+−≤−=− FPFFzDFPzDFdz nnnnnnnn  

 

Property 2. If {zn} is L2-approximable, then  

 

(2.7)  .0maxlim
1

=
≤≤∞→

nt
ntn

z  

 

Proof: By the Cauchy-Schwarz inequality and absolute continuity of the Lebesgue 

integral 

( ) .,0maxmax

2/1

2 ∞→→













≤ ∫ ndxFFd

ti
t

tn
t

 

 

This relation and (2.1) yield 

 

( ) .0maxmax →+−≤
tn

t
nnnt

t
FdFdzz  

 

Property 3. If i

nz  is L2-approximated by Fi, i = 1,2, then 

 

( ) .)()('lim

1

0

21

21

∫=
∞→

dxxFxFzz nn
n

 

 

Proof. By (2.2), (2.6), and the continuity of the norm  

 

(2.8)  .2,1,limlim ===
∞→∞→

iFzDz i

i

nn
n

i

n
n

 

 

In Mynbaev (2000) it has been proved that for L2-generated sequences 
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( ) .)()('lim

1

0

2121 ∫=
∞→

dxxFxFFdFd nn
n

 

 

Using these equations and (2.1), we get 

 

( ) ( ) ( ) ( )2

2

1

2

1

1

2

1

0

1

21
''' FdzFdzFdzdxFFzz nnnnnnnn −+−≤− ∫  

( ) 2

2

1

2

1

1

1

0

2121 ' FdzFdzFdzdxFFFdFd nnnnnnnn −+−≤−+ ∫  

( ) .0'

1

0

2121 →−+ ∫ dxFFFdFd nn  

 

 If the normalized regressors are L2-approximable, then, using Properties 2 and 3 and 

stochastic limit results from Davidson (1994), it is possible to replace independent errors by 

martingale differences (m.d.’s) in Anderson’s (1971) asymptotics of the OLS estimator. 

These days a more general error structure, such as mixing or moving averages of m.d.’s, is 

common in the econometrics literature (see the references in Davidson (1994) regarding 

mixing and in Vogelsang (1998) concerning moving averages and the so-called local-to-unity 

asymptotics). To extend the Anderson theorem to errors which are moving averages of m.d.’s 

we need the following property. 

 

 For a given sequence {ψj: j ≥ 0} of real numbers define operators nn

n RR →Ψ :  and 

2: lR
n

n →Φ  by  

 

.,

011

∞

==
+

==
− 










ψ=Φ










ψ=Ψ ∑∑

t

n

j

tjjn

n

t

n

tj

tjjn zzzz  

 

Let 

 

.,, ∑∑ ∑ ψ=γψ=βψ=α
j

j

j j

jj j  

 

It is easy to prove that if α < ∞, then  

 

(2.9)  ,1,,, ≥∈α≤Φα≤Ψ nRzzzzz
n

nn  

 

and that β < ∞  implies α < ∞ and convergence of γ. 

 

Property 4. If {zn} is L2-approximable and β < ∞, then 

 

( ) .0lim,0lim =Φ=γ−Ψ
∞→∞→

nn
n

nn
n

zz  
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Proof: Let {zn} be L2-approximated by F. In Mynbaev (2000) it has been proved that 

 

( ) .0limlim =Φ=γ−Ψ
∞→∞→

FdFd nn
n

nn
n

 

 

Hence, taking also into account (2.1) and (2.9)  

 

( ) ( )( ) ( ) FdFdzz nnnnnnn γ−Ψ+−γ−Ψ≤γ−Ψ
 

 

( ) ( ) 0→γ−Ψ+−γ+α≤ FdFdz nnnn  

 

and 

 

( ) .0→Φ+−Φ≤Φ FdFdzz nnnnnnn  

 

Denote FdDFM nnnn Ψ= . In Mynbaev (2000) it has been proved that 

 

.0→γ− FFM n  

 

This property is not applied in econometrics but it is interesting because the operator Mn is 

similar to the operator M in the Fourier analysis where for a function F on the unit circle 

decomposed as ∑= )exp(ikxcF k  one can put ∑= )exp(ikxcmMF kk  for a given sequence 

of numbers {mk}. 

 

Property 5. a) Suppose that for a given {zn} there exists F from the space ∞L  of 

essentially bounded on (0,1) functions such that 

 

( ) .0)()(supess
)1,0(

→−=−
∈

xFxzDFzD nn

x

nn  

 

Then {zn} is L2-approximable by F. 

  

b) Let F be continuous on [0,1] and suppose that for each n there are points 
nppp ,...,, 21
 such 

that tt ip ∈  for any t = 1,...,n. Put ntpFnz tnt ,...,1),(2/1 == − . Then {zn} is L2-approximable 

by F. 

 

Proof: Statement a) follows from the inequality  

 

.
∞

−≤− FzDFzD nnnn  

 

b) By uniform continuity of F on [0,1] for any ε > 0 there exists n0 such that 

 

.,,)()( 0nnixxFpF tt ≥∈ε≤−  
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Hence, 

 

.,)()(maxmax)(1)( 0

1

nnxFpFFipFFzD t
ixt

n

t

ttnn
t

≥ε≤−=−=−
∈

∞=
∞ ∑  

 

It remains to apply part a). 

 

 Proposition 1. Consider a polynomial trend 

 

  pn = (1
k−1

, 2
k−1

, …, n
k−1

) 

 

where k is natural. Let nnn ppz /=  be
 
the normalized sequence. Then it is L2-approximable 

by 112)( −−= k
xkxF . 

 

Proof. In Hamilton (1994), p. 456, it is shown that 

 

( ) ,...2,1,
1

)1(1
1

1

=
+

+=
+

=

∑ l
l

n
ot

ln

t

l  

 

Therefore 

 

( )( ) 2/112 )12/()1(1 −+= −
knop

k

n  

 

and 
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( ) 2/112

)12/(
)1(1

−
+=

−
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p
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n
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k
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Hence, 

 

( ) ( )∑
=

−








−+=
n

t

t

k
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n

t
kozD

1

1

112)1(1 , 

 

wherefore 

 

( ) .)1(1maxmax12 1

1

1

−
−

∈≤≤∞
−+







−=− k

k

ixnt
nn xo

n

t
kFzD

t

 
 

Since the last expression tends to zero, the statement follows from Property 5. 
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Consider a geometric progression 

 

( ) .,,...,, 110
Raaaag

n

n ∈= −  

 

When a = 1, gn is a (constant) polynomial trend. All other cases are covered in the next 

proposition. 

 

Proposition 2. If a ≠ 1, then nnn ggz /=  is not L2-approximable. 

 

Proof. Consider 1<a . From  

 

2

2/1

2

22/1
1

0

2

1

)1(1

1

1

a

o

a

a
ag
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t

t

n

−

+
=









−

−
=
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−
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it follows that 

 

( ) ( ),,...,1)1(1 102 −−+= n

n aaaoz  

 

so that 

 

( ) ( ) ( ).11)1(1
1

12

t

n

t

t

nn iaanozD ∑
=

−−+=  

 

For a fixed ε ∈ (0,1) denote [ ] 1+ε=ε nt  where [nε] is the integer part of nε. Since 
ε

∈ε ti , we 

have 

 

(2.10)

             
∫ ∑∫
ε = ε

≤
1

22
n

tt i

nnnn

t

dxzDdxzD ( ) ( )
n

aano
n

tt

t 1
1)1(1 )1(22 ∑

ε=

−−+=

 

 

( )( ) .01)1(1 ][2

1][

)1(22 →≤−+≤ ε
∞

+ε=

−∑ n

nt

t
caaao  

 

Suppose, {zn} is L2-approximable. (2.6) and (2.10) give 

 

.0

2/1
1

2

2/1
1

0

2

2/1
1

2 →









+










−≤










∫∫∫
εε

dxzDdxzDFdxF nnnn  

 

Since ε > 0 can be arbitrarily small, this means that F = 0 a.e. On the other hand, (2.8) 

(applied to zn and F) and normalization of zn give 

 

(2.11)  1=F . 

The contradiction finishes the proof in the case 1<a . 
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The case 1>a is treated similarly. The difference is that 

 

,
1

))1(1(
2 −

+=
a

a
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))1(1( 0
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n

nn aa
a

a
oz

−
+=  

 

and F = 0 a.e. on intervals (0, 1 − ε). 

 

 Let a = – 1. Then 

 

ngn = ,  ))1(,...,)1(,)1(( 1102/1 −− −−−= n

n nz  

 

and  

 

(2.12)  .)(1)1(
1

1∑
=

−−=
n

t

t

t

nn izD  

 

Suppose that {zn} is L2-approximable by F and consider any interval (a, b) ⊂ (0,1). One has 

 
[ ] [ ] [ ] [ ]

.
1

,
1

n

nb
b

n
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n

na
a

n

na +
<≤

+
<≤  

 

Therefore, denoting 
[ ]

[ ]

∪
1

1

+

+=
=

nb

nat tn iS , we can write  

 

(2.13)  
[ ]

[ ]

.

/)1(

/
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+

++≤
nnb

b

a

nnaS

b

a

FdxFdxFdxFdx

n

 

 

The last two terms at the right tend to zero by absolute continuity of the Lebesgue integral. 

We bound the first one as follows 

 

(2.14)  ∫∫∫ +−≤

nnn S

nn

S

nn

S

dxzDdxzDFFdx )(

 

 

0/1|||| →+−≤ nzDF nn

  

where we have used the Cauchy-Schwarz inequality and (2.12). Thus, 

 

(2.15)  0=∫
b

a

Fdx

 

for any (a,b) ⊂ (0,1) 

 

and F = 0 a.e. This conclusion contradicts (2.11). 
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 Note that exponential trends 

 

  ,),,...,( Rbee
nbb ∈  

 

are geometric progressions and are not L2-approximable, unless b = 0. Next we consider 

logarithmic trends (k is natural) 

 

  ).ln,...,1(ln n
kk

n =λ  

 

 Proposition 3. The sequence nnnz λλ= /   is L2-approximable by F(x) ≡ 1 (for any k). 

 

 Proof. Denote  

 

∫=
n

k

k xdxnI
1

,ln)(  .0≥k  

 

Obviously, 

 

∫ −
− −=−=

n

k

kknk

k kInnxdxkxxnI
1

1

1

1
,lnlnln)(    ,1≥k  

 

.1)(
1

0 −== ∫ ndxnI

n

 

 

By recurrent substitution we see that there exist numbers Ck, ..., C0 which do not depend on n 

and such that 

 

....lnln)( 01

1
CnCnnCnnnI

k

k

k

k ++++= −  

 

Hence, for any 1≥k  

 

(2.16)  .ln))1(1()( nnonI
k

k +=  

 

This implies 

 

(2.17)  )1(ln)1))(1(1()1( +++=+ nnonI
k

k

 
 

=






 ++
++=

k

k

n

nn

n
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ln

)/11ln(ln
)

1
1)(ln))(1(1(

 
 

.ln))1(1( nno
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Note that 

 

(2.18)  ).1(ln)( 2
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2
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nItnI kn

n

t

k

k  

 

(2.16) – (2.18) imply   
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n +=λ  

 

So  

 

                      )ln,...,1(ln
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o
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+
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n
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Since |lnt/lnn|
k
 ≤ 1, ,1 nt ≤≤  the difference between Dnzn and fn defined by 

     

∑
=

=
n

t

k

tkn ti
n

f
1

ln)(1
ln

1
 

 

tends to zero uniformly on [0, 1]. 

 

Fix ε ∈ (0,1). If ,1][ ntn ≤≤+ε  then ε ≤ t/n ≤ 1 and there exists 0)(1 >εc  such that  
 

                         ( ) for /ln 1ent ≤   [ ] ntn ≤≤+1ε . 

 

Hence, there exists n1(ε) such that for these t 
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)/ln(ln
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where 
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and (2.20) it follows that (mes denotes the Lebesgue 

measure) 
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(2.19)  implies 
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Thus,  

 

ε+ε≤+≤− 2/1

21 2SSFfn , ),(1 ε≥ nn  

 

which proves the statement. 

 

 Let {{ent, Gnt}: − ∞ < t ≤ n; n = 1,2,…} be an m.d. array (see Davidson (1994) for all 

probability notions and facts; as a first approximation, it is sufficient to think of enn, en,n-1, …, 

en,n-j,… as independent identically distributed). Denote un the moving averages of ent: 

 

(2.21)  ,...2,1,
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, =









ψ=

=

∞

=
−∑ neu

n
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where the ψj are the same as in Property 4. For a sequence {Zn: n > K} of n×K nonstochastic 

matrices with columns K

nn zz ,...,1  define random vectors 
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For a row-vector F = (F1,…,FK) with Fk ∈ L2, put 
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 Theorem 1. Suppose that 
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A) 2

1,

2 )|( σ=−tnnt GeE for some σ > 0 and all t, n, 

B) ent
2
 are uniformly integrable, 

C) the sequence { }k

nz
 
is L2-approximable by Fk ∈ L2, k = 1, ..., K, 

D) V is positive definite ( that is, F1, ..., FK are linearly independent), 

E) β < ∞  and γ ≠ 0. 

Then 

 

(2.22)  ),)(,0( 2VNuZ
d

nn σγ→′  

 

(2.23)  .lim ' VZZ nn
n

=
∞→

 

 

 For L2-generated {zn
k
} this result has been proved in Mynbaev (2000). To obtain the 

proof for the case under consideration, it suffices to use Properties 3 and 4 instead of Lemmas 

1 and 6, respectively, in the proof given in Mynbaev (2000). 

 

 Some comments are in order. CLT’s have many formats, depending on the intended 

application. Our CLT is about convergence in distribution of weighted sums (1.7) of random 

variables unt with deterministic weights znt. There are few papers devoted specifically to this 

type. The results in Srinivasan and Zhou (1995) and Yoshihara (1997a, 1997b) are aimed at 

censored regression models and hard to compare with Theorem 1. Many econometrics papers 

explicitly or implicitly contain CLT’s as intermediate steps. As we can judge by the most 

recent sources (Bai, Lumsdaine and Stock (1998), Canjels and Watson (1997), Vogelsang 

(1998)), conditions A), D), and E) are standard requirements. Instead of B) these authors 

assume a stronger condition  

    

                                        ∞<4

,

sup nt
nt

Ee
.
 

 

Regarding C), the only alternative we have met in the literature is Volgelsang’s (1998) 

condition (1.5). Since it involves point values of F, we think that F should be continuous even 

though Vogelsang does not mention continuity. For continuous F (1.5) is equivalent to 

 

  .0|||| →−
∞

FzDfnx nnnn  

 

This condition cannot be directly compared to the condition from Property 5a) sufficient for 

L2-approximability because of the unspecified sequence {fn}. But if fn = n
-1/2

/||xn||, then it 

implies L2-approximability. 

 

3. Normalization of Nonstochastic Regressors  

 

 Here we consider model (1.1) with un defined in (2.21). Denote  

 

(3.1)  [ ]K

nnn xxY ,...,diag 1= ,  1−= nnn YXZ  

From (1.1) and (1.2) it is easy to obtain  
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(3.2)  .)()ˆ( '1'

nnnnnn uZZZY −=β−β  

 

Application of Theorem 1 immediately leads to the following result. 

 

 Theorem 2. Let ent, zn
k
, and ψj satisfy  assumptions of Theorem 1. Then 

 

(3.3)  ).)(,0()ˆ( 12 −σγ∈ξ→β−β VNY
d

nn  

 

In principle, Theorem 2 is not new. The model considered is so simple that it is 

difficult to indicate an immediate predecessor. All comments about the conditions A) through 

E) apply here. In particular, we believe that conditions B) and C) are more general than those 

which allow one to derive a CLT from the FCLT for  (1.6). The statement, besides being 

conditional on the literature we have access to, also depends on the sequence { }
jψ . In the 

trivial case 

 

(3.4)  ,10 =ψ  ,0=ψ j   ,1≥j  

 

we are taken back to Anderson’s (1971) result. He has imposed conditions (2.7) and (2.23) 

with det 0≠V  (his assumption of independent errors is easily relaxed to m.d.’s). These 

conditions are weaker than the pair C) + D) by Properties 2 and 3. Theorem 2 covers 

polynomial and logarithmic trends as we show in Examples 1 and 2 below (it is well known 

that geometric progressions and exponential trends stand out: convergence takes place but the 

limiting distribution in general is not normal). 

 

 The main reason we state Theorem 2 is to discuss  one point that seems to have been 

missed in the econometrics  literature: the choice of the normalizer. We need a couple of 

definitions for the discussion. 

 

 Our derivation of (3.3) follows the conventional scheme that can be described as 

follows. 1) Using some diagonal matrix, such as Yn, the OLS estimator is transformed to 

(3.2). 2) Condition (2.23) along with det 0≠V  is imposed. 3) A CLT is applied to prove 

convergence of 
nnuZ

'  in distribution. Convergence of the product at the right of (3.2) then 

follows from Cramér’s theorem. 

 

 We call Yn defined in (3.2) a canonical normalizer. It was used, for example, in 

Grenander and Rosenblatt (1957) and Anderson (1971). Traditionally another normalizer, 

n , is widely used in econometrics. Polynomial trends give rise to other powers of n (see, 

e.g., Hamilton (1994)). Thus, there is uncertainty as to the choice or uniqueness of the 

normalizer. We shall show that, as for as a model with nonstochastic regressors is concerned, 

the normalizer Yn is in some sense unique. The fact that the normalizer must depend on the 

model is common knowledge, but interaction with our colleagues convinced us that its 

uniqueness for a given model is not. 
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 Consider a sequence of diagonal matrices ],...,[diag 1 nknn yyY =  with positive elements 

on the main diagonal and put 1−= nnn YXZ  . We say that { }
nY  is a conventional-scheme-

compliant (CSC) normalizer if  

 

(3.5)  there exists ,lim '
VZZ nn

n
=

∞→
  det ,0≠V  

 

and  

 

(3.6)   


 ψσγ→

1 Theorem of E) B), A), conditions satisfying

 and any for  ))(,0( 2'

jnt

d

nn eVNuZ
 

 

The columns of nZ  are not required to be L2-approximable in this definition. 

 

 Proposition 4. If }{ nY  is a CSC normalizer and { }
n∆  is a sequence of K×K diagonal 

matrices with positive elements such that 

 

(3.7)  there exists ,0det,lim ≠∆∆=∆
∞→

n
n

 

then nnY∆  is also a CSC normalizer.  

 

 Proof. From (3.5) and (3.7)  

       

   =∆∆=∆∆ −−−−−− 111111 )'lim()()')(lim( nnnnnnnnnnnn YXYXYXYX
 

 

0det,lim 11111'1 ≠∆∆∆∆=∆∆= −−−−−−
VVZZ nnnn  

 

By the Cramér theorem (3.6) and (3.7) imply 

 

))(,0()())(( 112'1'1 −−−− ∆∆σγ→∆=∆ VNuZuYX
d

nnnnnnn  

 

for any nte  and ψj  satisfying conditions A), B), E) of Theorem 1. Hence, nnY∆  is a CSC 

normalizer. 

 

 Proposition 4 means that it makes sense to talk about uniqueness of the canonical 

normalizer up to a factor satisfying (3.7). All such a factor does is change the variance of the 

limit distribution in (2.22) and (3.3). 

  

 Proposition 5. If 
nY  is some CSC normalizer, then the canonical normalizer is also, 

and there exists a sequence {∆n} of diagonal matrices satisfying (3.7) such that nnn YY ∆= . 

 

 Proof. Denote k

n

k

n xy = , 
k

ny , 
kkv  the diagonal elements of Yn, nY , and V , 

respectively. The main diagonal of the limit relation in (3.5) gives  
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,)/()( 22'

kk

k

n

k

n

k

n

k

n vyxzz →=  

 

that is 2/1)(/ kk

k

n

k

n vyy → . In matrix notation this means that ∆→
−1

nnYY  where  

 

0det],)(,...,)[(diag 2/12/1

11 ≠∆=∆ kkvv  

 

Denoting 
1−

=∆ nnn YY , we see that (3.7) is true, 
1−

∆= nnn YY , so by Proposition 4 {Yn} is a 

CSC normalizer. 

 

 Summarizing, the canonical normalizer is more flexible (it adjusts to the regressor) 

and is unique up to a factor (with a nondegenerate limit) which preserves convergence in 

distribution to a normal variable. If for a model with nonstochastic regressors there exists 

some CSC normalizer, then Yn can be used as well. It would be mathematically correct and 

didactically justified to rewrite all classical statements of the asymptotic theory using Yn. This 

is a formidable task we do not undertake. We consider just one statistic to show that not 

everything is as straightforward as it might seem at the first glance. 

 

 Consider the statistic 

 

  
RXXRs

rR

nn

n

n 12 )('

ˆ'

−′

−β
=ϕ  

 

used to test H0: R′β  = r against the alternative Ha: R′β  ≠ r. Here the vector R = (R1,…, RK)′ 

and the real number r are given and s
2
 is the estimator of σ2

, 

 

  
Kn

eXXXXIe
s nnnnnn

−

′′−′
=

− ))(( 1
2  

 

(for simplicity we assume (3.4) and maintain all other hypotheses of Theorem 2). Following 

the assumed normalization, Yn should be introduced everywhere. Denoting  

 

( ) nnnnnnnnnn hhfZZhRY ρρ===ρ
−− /,,

2/1'1  

 

and using the null hypothesis, we have 

 

( ) ( )
( ) ( )

=
β−β

=ϕ
−−−

−

RYZZRYs

YRY

nnnn

nnn
n

11''12

'1 ˆ
 

(3.8)    

( )
( )

( )
( )

.
1 ''

'2

''

1''2

'1'

nnnn

nnnn

nnnnn

nnnn

nnnnn eZhf
shhs

eZhh

ZZs

eZZZ
=

ρρ

ρ
=

ρρ

ρ
=

−

−

 

 

By Theorem 1 
nn eZ

'  converges in distribution. Assuming that  
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(3.9)  2/1lim −=Vhn  

and 

 

(3.10)  there exists ,lim ff n =  

 

we can pass to the limit in (3.8) (using also σ=splim  which is proved as usually). 

 

 Conditions (3.9) and (3.10) have been chosen as the most plausible, in view of (2.23) 

and the normalization 1=nf . Observe that (3.9) does not follow from (2.23). The reason is 

that the square root of a matrix is not a continuous function of its argument (see Kato (1966)). 

It would be wrong to require existence of a nondegenerate nρlim  instead of (3.10), because 

usually ∞=nYlim  (excluding such pathologies as geometric progressions). 

 

 The transformation in (3.8) and conditions (3.9) and (3.10) are the best we could think 

of (any suggestions are welcome). To compare, consider the case of a scalar identity Yn, 

 

knn IY τ=  

 

where ),0( ∞∈τn  (in particular, nτ  can be n ). In place of (3.8) we can write  

 

.
)('

)(
1'2

'1''

RZZRs

eZZZR

nn

nnnn
n −

−

=ϕ  

 

Using Theorem 2, we can pass to the limit without imposing conditions of type (3.9), (3.10). 

Thus, the fact that in general Yn is not a scalar identity matrix forces us to impose new 

conditions in order to be able to find the limit statistic. Analysis of some other statements of 

the classical asymptotic theory in the light of the canonical normalizer will appear in 

Mynbaev and Lemos (to be published). 

 

 Example 1. Let 
k

nn xx ,...,
1

 be polynomial trends of degrees 0,...,K–1, respectively. 

Instead of normalizing nX by the canonical normalizer 

 





















−






 − 2/1122/13
2/1

12
,...,

3
,diag

k

nn
n

k

 

 

(see the proof of Proposition 1), we can use a simpler matrix 

 

].,...,,[diag 2/)12(2/32/1 −= k

n nnnY  

 

This corresponds to L2-approximation of ( )12/ −kxx
k

n

k

n  by 1)( −= k

k xxF  in which case 
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.)1/(1

1

0

2

1

0

−+== ∫∫
−+ lkxdxFF lk

lk  

 

Hence, if ent and jψ
 
satisfy  A), B), E), then by Theorem 2 (3.3) is true with 

 



















++

+
=

)12/(1...)1/(1/1

............

)1/(1...3/12/1

/1...2/11

KKK

K

K

V  

 

V is known under the name of a Hilbert matrix. 

 

 This application is not new (see, e.g., parts (a) and (d) of Lemma 1 and references in 

Sims, Stock, and Watson (1990) or Section 16.1 in Hamilton (1994)). The main reason we 

state this and the next example is to show that Proposition 5 can be used both in a positive 

sense (if some CSC-compliant normalizer exists, then the canonical normalizer can be used 

as well, as in Example 1) and in a negative sense (if the canonical normalizer is not CSC-

compliant, then there is no CSC-compliant normalizer, as in Example 2). 

 

 Example 2.  If K > 1, and  

 

,,...,1),ln,...,1(ln Kknx
kkk

n ==  

 

then there is no CSC-compliant normalizer. If K = 1, then Theorem 2 is applicable. 

 

Indeed, if K > 1 and there were one, then we could use the canonical normalizer. The 

normalized columns would be L2-approximable by .,...,1,1 KkFk =≡  But these functions 

are linearly dependent (all of the elements of V are equal to 1). 

 

 L2-approximability allows one to obtain new, unprecedented asymptotic results. One 

example is the asymptotics of the fitted value 

 

nnnnnnnn yXXXXXy '1' )(ˆˆ −=β=  

 

obtained in Mynbaev (1997). Similar to (3.2), one has 

 

(3.11)  ].)[(ˆ '1'

nnnnnnn uZZZZXy
−=β−  

 

The term in the brackets at the right converges by Theorem 2 but the factor Zn in front of it 

does not, because of (2.7). However, requiring L2-approximability of the columns of Zn, we 

can premultiply  (3.11) by Dn to get 

 

])][([)ˆ( '1'

nnnnnnnnn uZZZZDXyD
−=β−  

where both factors at the right converge. 
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 Theorem 3. Under the conditions of Theorem 1 one has 

 

(3.12)  KK

d

nnn FFXyD ξ++ξ→β− ...)ˆ( 11   

 

where ))(,0(
2
VN σγ∈ξ  (see (3.3)). 

 

 The linear combination at the right of (3.12) is a random element of L2. It is the 

random vector of coefficients ξ  that is normally distributed, not the linear combination itself. 

When regressing on trends, results such as (3.12) can be used to perform interval estimation 

and hypothesis testing for quantities measured by the area under the fitted curve. 
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