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ABSTRACT 

The Shewhart, Bonferroni-adjustment and analysis of means (ANOM) 

control chart are typically applied to monitor the mean of a quality 

characteristic. The Shewhart and Bonferroni procedure are utilized to 

recognize special causes in production process, where the control limits are 

constructed by assuming normal distribution for known parameters (mean 

and standard deviation), and approximately normal distribution regarding 

to unknown parameters. The ANOM method is an alternative to the 

analysis of variance method. It can be used to establish the mean control 

charts by applying equicorrelated multivariate non-central t distribution. In 

this paper, we establish new control charts, in phases I and II monitoring, 

based on normal and t distributions having as a cause a known (or 

unknown) parameter (standard deviation). Our proposed methods are at 

least as effective as the classical Shewhart methods and have some 

advantages.  
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1. Introduction 

The Shewhart, the Bonferroni-adjustment and the analysis of means control charts are 

common techniques for monitoring the process mean. Shewhart (1931) proposed a scheme 

for detecting out-of-control signals and shifts in the mean from its target value 0μ . Ott 

(1975), Rocke (1989), Ryan (1989), Chen (1997), Quesenberry (1997), Smith (1998), 

Maravelakis, et al., (2002), Woodall et al. (2004), Montgomery (2005), and several other 

authors modified and extended the Shewhart control charts. The Shewhart procedure 

usually is based on at least 20 to 25 sample group sizes ( k ) and at least 4 to 6 sample 

subgroup sizes (n ). This procedure with known mean and standard deviation parameters 

is based on a random variable that follows the normal distribution. When the mean and 

standard deviation are unknown the procedure is based on a statistic that follows 

approximately the normal distribution. The values of the subgroup averages 

(
1. /

n

i ijj
X X n

=
=∑ ) are plotted on the Shewhart control chart that includes the center line 

.( )
i

E X  and the control limits 2α±. / .( ) var( )
i i

E X Z X , where the quality characteristics ijX  

for 1 2, ,...,i k=  and 1,j = 2,...,n  ( th
j  observation in th

i  subgroup) are assumed to be 

independent identically normally distributed with mean μ  and variance 2σ .  

Ryan (1989) introduced the Bonferroni-adjustment control limits as an alternative to 

the Shewhart approach. The control limits are given by 2α±. / .( ) var( )
i k i

E X Z X . In other 

words, to construct the Bonferroni control limits the value α  of the Shewhart control 

limits is replaced by the value / kα . 

Ott (1967) introduced the ANOM control chart for comparing a group of means in 

order to see if any one of them differs significantly from the overall mean. Schilling (1973) 

extended this scheme to what he called the ANOM for treatment effects or ANOME. 
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Ott’s procedure is carried out by comparing the sample mean values to the overall grand 

mean, about which decision lines have been constructed. If a sample mean lies outside 

these decision lines, it is declared to be significantly different from the grand mean. The 

main difference between the Bonferroni and ANOM charts is that in the first the sample 

group and subgroup sizes ( , )k n  are usually as large as 20 or more ( 20k ≥ ), and 4 or more 

( 4n ≥ ), respectively to compute the control limits, whereas in the second 2k ≥  and 2n ≥  

is sufficient to compute the decision lines. 

Ott’s method is based on the multiple significance test proposed by Halperin et al. 

(1955). Later, Nelson (1982) obtained the exact critical points of 2( / , , )k v
h α , and used the 

decision lines 2 1α± −.. ( / , , ) ( ) / ( )
k v b

X h S k kn , where the critical point 2( / , , )k v
h α  depends on k , 

1( )v k n= −  (degrees of freedom in bS ), and the significance level α , with,   

=bS ( )1 2
2

1 1
1

= =
− −∑ ∑

/

.( ) / ( ( ))
k n

ij ii j
X X k n  ;  

1 1= =
=∑ ∑.. / ( )

k n

iji j
X X kn . 

Some other applications of the ANOM for testing the interaction effects were investigated 

by Ramig (1983), Nelson (1988), Wludyka and Nelson (1997), and Budsaba et al. (2000). 

A full review of the ANOM technique is given by Rao (2005).  

According to equicorrelated multivariate non-central t distribution for constructing 

the ANOM scheme, Tsai et al. (2005) introduced a control chart for a random variable 

iW = . ..( )iX X− , with the center line 0, and the control limits 2

1
0 / ,v

k
t V

kn
α

+
± , where 

V = 2

1 1
1( ) / ( ( ))

k n

ij ii j
X X k n

= =
− −∑ ∑  and 1( )v k n= − . 

In this paper, we introduce new control charts, in phase I and II, to monitor the mean 

of a quality characteristic when the standard deviation (σ ) is known or unknown. The 

purpose in phase I is to perceive the stability and variation in a process over time. We are 
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concerned with ongoing monitoring to detect assignable causes in the process in phase II 

controlling. Useful recognitions of phase I and phase II applications have been studied 

already, for example, by Kang and Albin (2000), Woodall (2000), Hawkins et al. (2003), 

Woodall et al. (2004), Montgomery (2005), and Jensen et al. (2006). 

 The proposed control limits with known or unknown σ  are established for random 

variables that follow the normal distribution and t distribution, exactly. Another property 

of the proposed methods is that the values of both sample group and subgroup sizes ( k  

and n ) for computing the control limits, need to be grater than 1.  

The paper is organized as follows. In sections 2, 3, 4, we set out the Shewhart, 

Bonferroni, ANOM, and new control charts, respectively. The probability of a false alarm 

for the Shewhart and the strategy proposed here is compared in section 5. The in-control 

average run lengths are described in section 6 for the Shewhart and the proposed charts. 

In section 7, the results and some recommendations for constructing the control limits are 

presented.   

2. The Shewhart and Bonferroni Control Chart 

Assume that the random variables ijX , for 1 2, ,...,i k=  and 1 2, ,...,j n= , which measures the 

quality of process, are independent normally distributed with mean μ  and variance 2σ . 

The Shewhart control limits for this quality characteristic with known parameters and 

confidence 1 α−  are 2 /Z nαμ σ± , where the center line of control chart is μ . If the mean 

and standard deviation of the quality characteristic are unknown, they are estimated by 

the unbiased statistics ..X  and 4/S c  where,  

1

/
k

i

i

S S k
=

=∑  ; 2 1 2

1
1

=
= − −∑ /

.( ( ) / ( ))
n

i ij ij
S X X n  ; 1 2

4

2 2

1 1 2

( )
( )

(( ) / )

n
c

n n

Γ
=

− Γ −
.                     
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The random variable 1( ) /iS n σ−  is chi distributed with 1n −  degrees of freedom. The 

mean and the standard deviation of the statistic iS  are 4c σ  and 2
41 cσ − , respectively. 

(The constant value 4c  depends only on the sample subgroup size ( )n ). 

The Shewhart chart with unknown parameters is constructed on the statistic 

. ..( )iX X− 4/ ( / ( ))S c n  in phase I and −. ..( )f

iX X 4/ ( / ( ))S c n  in phase II, where .
f

iX  

indicates a subgroup average for future observations. These statistics follow 

approximately the normal distribution for large sample sizes. As a consequence, the center 

line and the control limits for the Shewhart chart with unknown parameters are, 

2 4.. /
ˆ / ( )UCL X Z S c nα= +  ; ..ĈL X=  ; 2 4.. /

ˆ / ( )LCL X Z S c nα= − .                            (1) 

The unknown standard deviation σ  can be also estimated by the unbiased statistic 2/R d , 

where the statistic R  is the average range and the constant value 2d  is the mean range of 

the standard normal variables. This statistic gives the Shewhart control limits as 

             2 2.. / / ( )X Z R d nα± .                                                                             (2) 

Equation (2) is also based approximately on the normal distribution with large sample 

sizes.  

The Bonferroni-adjustment control chart to improve the probability of one or more 

false alarms of the Shewhart chart was suggested by Ryan (1989). The Bonferroni-

adjustment control limits with known and unknown parameters for retrospective 

monitoring in phase I are, respectively,  

           2kZ nαμ σ± ,                                                                                     (3) 

           2 4.. / / ( )kX Z S c nα+ .                                                                              (4)  
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For constructing equations (3) and (4), the value α  of Shewhart control limits is replaced 

by the value / kα .  

3. The Analysis of Means Control Chart                                   

The analysis of means can be thought of as an alternative to the Bonferroni method, since 

it also considers a group of sample averages instead of one average at a time in order to 

determine whether any of the sample averages differ much from the overall mean. The 

construction of ours and the ANOM strategies are based on the t  distribution, hence a 

brief description of the ANOM technique is presented here.  

The random variables 
ijX  are iid normal variables with mean μ  and variance 2σ . 

Therefore, in phase I, the correlated random variables . ..i
X X−  and . ..i

X X′ −  for 

1 2, ,...,i i k′≠ = , follow the normal distribution with mean 0 and variance 2 1σ −( ) / ( )k kn . Let 

. ..
. ..( ) /

i
i i X X

T X X S
−

= − . The ANOM control chart is based on the joint statistic 1 2( , ,..., )
k

T T T  

that is equicorrelated multivariate non-central t distributed with equicorrelations 

ρ = 1 1/ ( )k− − . The statistic 
i

T  follows the t distribution with 1( )k n −  degrees of freedom. 

Here, 

 1σ
− −

= = −
. .. . ..

ˆ ( ) / ( )
i i

bX X X X
S S k kn   ;  2 2σ= ˆ

b
S

2

1 1
1

= =
= − −∑ ∑ .( ) / ( ( ))

k n

ij ii j
X X k n . 

Nelson (1982) defined the joint probability of 
i

T  for 1,i = 2,...,k  as            

2
1

1( , , )| |
k

i k v
i

P T h α α
=

⎡ ⎤≤ = −⎢ ⎥⎣ ⎦
∩ . Thus, 2 1 1( , , )[| | ]i k vP T h α α α′≤ = − ≥ − , such that 'α  is unknown and 

α α′ ≤ . This probability results the ANOM chart with center line ..X  and approximately 

the following limits,  

           2 1α= + −.. ( , , ) ( ) / ( )k v bUCL X h S k kn   ;  2 1α= − −.. ( , , ) ( ) / ( )k v bLCL X h S k kn .               (5)            
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Here, the exact critical values 2( / , , )k vh α  depend on the desired level of significance (α ), the 

sample sizes k , and the degrees of freedom 1( )v k n= − .  

Nelson (1982) and (1993) calculated the critical values 2( , , )k vh α  to satisfy  

           1 2 2 2( / , , ) ( / , , )[| | ,| | ,...,k v k vP T h T hα α≤ ≤ 2 1( / , , )| | ]k k vT h α α≤ = − .                                         

The left side of this equation is,  

           [ ] 1 2 2

0 0
2( , , ) exp ( )

k v

y s
K g sh y s y vs d dρ

∞ ∞ − ⎡ ⎤− +⎣ ⎦∫ ∫ ,                                              (6) 

where, 

2 1
1

( , , ) Re
sh y

g sh y
ρ

ρ
ρ

⎡ ⎤⎧ ⎫−⎪ ⎪= Φ −⎢ ⎥⎨ ⎬
−⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

; 21
2

2
( ) exp ( )

x

x iy u iy du
π −∞

⎡ ⎤Φ + = − +⎣ ⎦∫ ; [ ]
2

2
2 2

2
/

v
v

K v
π
⎡ ⎤= Γ⎢ ⎥⎣ ⎦

. 

The function [ ]Re (.)Φ  is the real part of (.)Φ , and 1i = − . Nelson (1993) numerically 

evaluated the double integral (6). The values 2, ,k vhα  can be computed by replacing 

different values of the desired level α  and the constants k  and v . Tables of the critical 

values 2/ , ,k vhα  are given by Nelson (1993) for various values of k , v  and α .  

4. A New Control Chart 

As previously suggested, the new charts to monitor the mean quality characteristic with 

known or unknown parameter σ  are exactly based on the normal and the t distribution, 

respectively. The proposed charts are dependent only on the parameter σ .  

In phase I, we have 20 1σ− −. .. ~ ( , ( ) / ( ))iX X N k kn . Therefore, with known variance 2σ , 

the new control limits are 

           2 1α σ± −.. / ( ) / ( )X Z k kn ,                                                                          (7) 

since, 21 1ασ α− − ≤ = −. .. /(| | / [ ( ) / ( ) ] )iP X X k kn Z . In this case, the center line is ..X . For the 

construction of new control chart with unknown parameter 2σ , it is known that the 
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random variables 2 1σ− −. ..( ) / ( ) / ( )iX X k kn  and 2 21 σ−( ) /bk n S
2 2

.( ) /
k n

ij ii j
X X σ= −∑ ∑  follow 

the standard normal distribution and the chi-square distribution, respectively. According 

to Cochran’s Theorem, these random variables are independent. Therefore, the following 

statistic is t  distributed with 1( )k n −  degrees of freedom ( 1k >  and 1n > ), 

               ( )
2

2 2

1
1

11

1

σ

σ

− − −
= = −

−−
−

. .. . ..( ) / ( ) / ( )
~ ( )

( ) / ( )( ) /

( )

i i

i

bb

X X k kn X X
T t k n

S k knk n S

k n

.                                  

As a result, the new control chart with unknown variance is given by: 

           2 1 1α −= + −.. / , ( ) ( ) / ( )
k n b

UCL X t S k kn                                                                                  

             ..CL X=                                                                                           (8) 

           2 1 1α −= − −.. / , ( ) ( ) / ( )
k n b

LCL X t S k kn , 

where, 2 11 1α α−− − ≤ = −. .. / , ( )(| | / [ ( ) / ( ) ] )
i b k n

P X X S k kn t .  

For controlling future subgroups, .
f

i
X , the variance of −. ..

f

i
X X  is evaluated to be 

2 1σ +( ) /k kn . In phase II, the random variables 1σ− +. ..( ) / ( ( ) / ( ) )f

iX X k kn  and 

1− +. ..( ) / ( ( ) / ( ) )f

i bX X S k kn  follow the standard normal distribution and the t  

distribution, respectively. As a result, the proposed control limits, in phase II, with known 

and unknown σ  are, 

  2 1α σ± +.. / ( ) / ( )X Z k kn ,                                                                          (9) 

           2 1 1α −± +.. / , ( ) ( ) / ( )
k n b

X t S k kn .            (10)  

Here, the sample group and subgroup sizes required to construct our proposed charts, 

with known and unknown parameter σ , are greater than 1, i.e. 1k >  and 1n > .  



M. KIANI, J. PANARETOS AND S. PSARAKIS 

 9

5. The Performance of Retrospective Charts  

Let the individual events 
iG  denote that the subgroup averages .iX  exceed the control 

limits of in control process. If these events are independent, then the sequence of trials 

comparing .i
X  with UCL  will be a sequence of Bernoulli trials and the overall occurrences 

of iG  will be a Binomial random variable with parameters k  and ( )iP G . However, in the 

case of unknown parameters, these events for the Bonferroni and ANOM charts are not 

independent. Hence a performance comparison between these charts for historical data in 

phase I is given based on a simulation study. We also use simulation to study the 

probability ( )iP G  for the estimated Shewhart chart, since the control limits are the 

approximations of true limits. For our proposed charts, in the case of the known and 

unknown parameter σ , the ( )iP G  can be easily evaluated theoretically. 

For the Shewhart chart with known parameters the probability of at least a false 

signal is 1 1( )kα− − , since the events iG  follow the Binomial distribution. Ryan (1989) 

showed that this probability is approximately equal to kα . Hence, Ryan suggested the 

Bonferroni-adjustment scheme for the mean control limits, where the probability of one or 

more false alarms is improved to the desired value 1 1α α− −~ ( / )k
k , which is less than 

1 1( )kα− −  for the Shewhart scheme. As already mentioned, the ANOM method is an 

alternative to the Bonferroni method, maintaining approximately the overall false alarm 

probability at the desired α . Nedumaran and Pignatiello (2005) compared this 

probability for the Bonferroni and ANOM procedures. The performance measure for these 

charts is the overall probability of a false signal. Based on their study, the actual 

probability of having at least one false alarm, using Monte Carlo simulation experiments 

(20,000 times), for the ANOM approach is slightly less than the one of the Bonferroni 

approach, and very close to the desired value α .  
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To compare the Shewhart scheme to our scheme, we use a performance measure the 

probability of a false alarm. In this case, the k  subgroups of size n  are generated (20,000 

times) from a stable in-control iid  normal process. The estimated control limits are 

obtained according to (1) for the Shewhart strategy with unknown parameters and 

according to (7) and (8) for our strategies with known and unknown parameter. Table 1 

shows the results of the estimated probability of a false alarm. 

Table 1 about here 

It can be concluded that the proposed new schemes, for small and large sizes k  and 

n , perform better than the Shewhart scheme, in the sense that, the estimated false alarm 

probability of the proposed schemes is very close to the intended α . Indeed, in theory the 

desired α  can be exactly attained applying the proposed schemes (7) and (8). However, 

because of the small errors in simulation experiments and the fact that the random 

sample sizes are not large enough this cannot be achieved.   

6. Average Run Length  

The average run length ( ARL ) is the average number of subgroups that are plotted 

before a subgroup average indicates an out-of-control condition. The ARL  can be 

calculated as 1= /ARL p , under the condition that the process observations are 

uncorrelated. Here, p  is the probability that a point exceeds the control limits.  

The average run length is considered for future subgroups, when the process is in 

control i.e. 0μ μ= , by plotting each subgroup on the control chart immediately after each 

sample is collected. Let the individual events f

iG  denote that the subgroup averages .
f

iX  

exceeds the control limits of the in control process.  
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In the case where the events f

iG  are independent, the sequence of trials, to compare 

.
f

i
X  with UCL , will be a sequence of Bernoulli trials and the run length between 

occurrences of f

iG  will be a Geometric random variable with probability ( )f

iP G . The in-

control average run length will be 1 1α =/ / ( )f

iP G ,  

0μ μ= ≤ ≥ =. .( ) ( )f f f

i i iP G P X LCL or X UCL .   

Quesenberry (1993) suggested that the ( )f

iP G  for a classical Shewhart 3σ  control chart in 

case of the known parameters is equal to 0 0027α = . , and with unknown parameters is 

approximately, 

2
1 24

2
4

9 11
2 1 3 1 1 −−

= −Φ + + /( )
( ) [ ( { [ ]} )]f

i

c
P G

k c
,           (11) 

where Φ(.)  indicates the standard normal distribution function. Using equation (11), the 

( )f

i
P G  for the often recommended values 20=k  and 4=n  is 0 0048. , which is greater than 

the intended 0 0027α = . . Quesenberry (1993) recommended sample sizes of about 

400 1−/ ( )n  to construct the classical Shewhart chart. Following this recommendation, for 

133=m  and 4=n , the intended probability of a false alarm, i.e. 0 0027. , will be obtained. 

As a result, the usual recommendations on the sample sizes are not sufficient to ensure 

that the Shewhart estimated control limits are close enough to the true limits. The ( )f

i
P G  

for the proposed methods (9) and (10) with known and unknown σ  is equal to the 

desired value α  for both small and large sample sizes.     

The events f

i
G  and ′

f

i
G , ′≠i i , for the Shewhart chart with known parameters are 

uncorrelated, since the control limits are the constant values and the subgroup averages 

.
f

i
X  and ′.

f

i
X  are independent. Thus, the run length between occurrences of f

i
G  is a 

Geometric random variable with probability α=( )f

i
P G  and the ARL  equals to 1 α/ . But, 
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these events for the Shewhart chart with unknown parameters and the proposed chart 

with known and unknown parameter are not independent, since the random variables 

−.
ˆf

iX UCL  and ′ −.
ˆf

iX UCL  are not independent. The correlation between these random 

variables for the Shewhart method is, 

2 2
2 4 1 1

2
4

1
1 1

α − −
′

−
− − = + + /

. .

( )ˆ ˆ( , ) [ { } ]f f

i i

z c
corr X UCL X UCL k

c
, 

while, for the proposed method with known parameter is 1 1+/ ( )k , and for unknown 

parameter is 2 2 1 1
2 11 1 1 1α ψ − −

−+ + + −/ , ( )[ { ( ) ( )} ]
k n

k k t . In this case, ψ  is an unbiasing factor to 

estimate σ , where ψ σ=( / )bE S , 2 2 21ψ σ ψ ψ= −var( / ) ( ) /
b

S . The statistic 
bS  is chi 

distributed with 1−( )k n  degrees of freedom. Based on the raw moment function of chi 

distribution, ψ  is,  

  
2 1 1 1

1 2 2

( ) ( )
/

( )

k n k n

k n
ψ − + −⎛ ⎞ ⎛ ⎞= Γ Γ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

. 

The correlations evaluated for the Shewhart and the proposed methods rely on k  and 

n , where these are always positive. These correlations decrease when we use larger 

sample sizes k  and n . As a consequence, for the Shewhart method with unknown 

parameters (1) and the proposed method with known and unknown parameter (9) and 

(10), the distribution of run length between occurrences of the events f

i
G  is not a 

Geometric distribution. Hence, when the parameters are unknown, the ARL  cannot be 

evaluated based on the mean of a Geometric distribution. To overcome this problem, the 

1 α= /ARL  is estimated by the simulation experiments. The existence of correlation 

between the events f

i
G  increases the ARL , making it greater than the intended ARL . 

Under these circumstances, the control limits (10) are not suitable for accomplishing the 
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desired ARL . Hence, we propose the following approximate control limits as an 

alternative for (10),  

2 1α ψ−±.. / , ( ) /
k n b

X t S n .                      (12)  

Table 2 shows the results of simulation experiments for equations (1), (9), (10) and 

(12). For each entry in Table 2, the mean control limits are computed corresponding to k  

samples of size n , and future samples are generated from an in control process until a 

subgroup average is found outside the control limits. The number of samples is one 

observation from the run length distribution. This procedure is replicated 20,000 times. 

Each table entry is the average of observations from the run length distribution.  

Table 2 about here 

As already mentioned, the probability ( )f

i
P G , corresponding to (1), is approximated 

to be greater than the intended α . This indicates a reason to decrease the in control 

ARL  for the Shewhart scheme. On the other hand, the correlation between the events f

i
G  

causes an increase of the ARL . Based on Table 2, it can be concluded that the ARL  for 

the classical Shewhart scheme is less than the desired ARL . For the proposed limits (10) 

the ARL  is greater than 1 α/ , although the ( )
i

P G  is exactly equal α . This is due to the 

correlation between the events f

i
G . According to simulation experiments, the performance 

of the proposed schemes (9) and (12), to achieve the intended in control ARL  is more 

satisfactory than the one of the schemes (1) and (10). The probability of a false alarm for 

the scheme (9) is equal to α , and for the scheme (12) is relatively greater than α .   
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7. Conclusion 

It has been shown that the procedures suggested in this paper, in both phases I and II, 

have three advantages over the classical Shewhart method: first the proposed scheme is 

established using small sample sizes; second the in-control ARL  of the new procedure is 

very close to the desired ARL ; third the false alarm probability corresponding to the 

proposed methods equals the intended α .    

It has been suggested in the literature to use the ANOM and the Bonferroni 

procedures to monitor historical data in phase I controlling. These methods maintain the 

overall false alarm probability approximately at a desired level α . The ANOM scheme 

performs better than the Bonferroni technique in achieving an overall probability of a 

false signal at the desired α .  

We recommend using the proposed strategies if the individual occurrence of events 

i
G  and f

i
G  is required, and the ANOM strategy if the overall occurrence of events 

i
G  is 

considered. The ANOM and the proposed methods are constructed on the statistic 

−. ..i
X X  that includes more information than .i

X  used for the Shewhart and Bonferroni 

methods. Moreover, the distribution function of −. ..i
X X  relies only on the parameter σ , 

whereas,  that of .i
X  depends on both parameters μ  and σ .       
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Table 1 Estimated probability of a false alarm, for 
intended 0 1.α =  
k  Approach/n 5 10 20 

 (1) 0.0721 0.0783 0.0823 

5 (7) 0.1101 0.0996 0.0947 

 (8) 0.1091 0.0989 0.0982 

 (1) 0.0801 0.0831 0.0868 

15 (7) 0.0994 0.1023 0.0987 

 (8) 0.0978 0.1039 0.0980 

 (1) 0.0861 0.0918 0.0901 

25 (7) 0.1026 0.0997 0.1031 

 (8) 0.1062 0.0941 0.1063 

 (1) 0.0939 0.0924 0.0966 

35 (7) 0.1006 0.0989 0.1011 

 (8) 0.1018 0.0972 0.1028 
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Table 2 Estimated in-control ARL, for intended 0 1.α =

k Approach/n 5 10 20 

(1) 7.27 7.81 8.84 

(9) 11.54 11.41 11.02 

(10) 16.8 16.21 15.41 
5 

(12) 9.09 9.21 9.12 

(1) 7.43 8.25 8.92 

(9) 10.31 11.02 10.06 

(10) 15.4 14.96 13.83 
15 

(12) 9.46 9.49 10.01 

(1) 8.31 9.19 8.83 

(9) 10.12 9.98 10.04 

(10) 13.76 14.03 13.89 
25 

(12) 9.72 10.08 9.17 

(1) 9.39 9.42 9.31 

(9) 10.64 10.14 10.11 

(10) 12.62 13.72 12.31 
35 

(12) 10.19 9.90 9.94 

 


