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This paper considers information trading in fixed networks of economic

agents who can only observe and trade with other agents with whom they

are directly connected. We study the nature of price competition for in-

formation in this environment. The linear network, when the agents are

located at the integer points of the real line, is a specific example I com-

pletely characterize. For the linear network there always exists a stationary

equilibrium, where the strategies do not depend on time. I show that there

is an equilibrium where any agent has a nonzero probability of staying un-

informed forever. Under certain initial conditions this equilibrium is a limit

of equilibria of finite-horizon games. The role of a transversality condition

is emphasized, namely that the price in the transaction should not exceed

the expected utility of all the agents who get the information due to the

transaction. I show that the price offered does not converge to zero with

time.
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1. Introduction

In this paper, we consider a network of agents, with each agent only able to observe and

communicate with his direct neighbors. The social network is fixed. Initially, each agent

becomes informed with a probability p, independently of other agents. The informed

agents then offer to sell the information to their uninformed neighbors who decide to

accept the offer or wait. The uninformed agents who buy the information can in turn sell

it to their neighbors, if these neighbors are uninformed. We analyze the equilibria of this

game.

“Neighbors” and “networks” need not be interpreted spatially. One can think of firms

in similar markets as “neighbors” and the discovery of how to solve the problem of minia-

turizing electronics, as in the 1970s, as the “information”. Firms in similar industries

become aware that their neighbors have solved a problem and might want to buy the so-

lution. Similarly, prices need not be in terms of money but could be reciprocal exchange.

Eric von Hippel [11] discusses a network of steel mini-mills, whose managers exchanged

information on how to solve common problems, with the implicit contract being that each

member would tell the others of relevant information. Exchange of gossip also falls into

the category of such reciprocal exchange.

There have been many recent studies of learning through observing the actions or

strategies of the neighbors. Boyd and Richerson [5] consider this learning a fundamental

way of behavior pattern diffusion and call it cultural evolution. Empirical studies such as

those of Banerjee and Munshi [2] show that the structure of the social network is especially

important when the markets function imperfectly. These authors consider the effect of

the social network on lending. In particular, they demonstrate that migrants prefer to

be in places close to their community’s lending resources. This serves as evidence that

there are benefits to being in proximity to the social network. The authors show that

those who migrate to places with no access to the lending network are characterized by

higher production ability. The relative independence of these migrants emphasizes the

importance of the network for all the others who are less productive and therefore rely

more on the lending network’s benefits.
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Foster and Rosenzweig [9] show that the structure of the social network plays an im-

portant role in spreading information about new technologies. They demonstrate that for

farmers in India, imperfect knowledge about the management of high-yielding seed vari-

eties is a significant barrier to their adoption, and neighbors’ familiarity with these seed

varieties significantly increases profitability. This neighbor effect indicates that farmers

rely not only on official directions provided by the producers of the seed varieties but

also on the experience of the people they know, which reveals the importance of the so-

cial network structure in information diffusion. Conley and Udry [7] also argue that the

learning process about new technology in agriculture (they consider pineapple growing in

Ghana) is rather social, and depends on one’s neighbors’ experience. The social nature

of adopting new technology is explained by different conditions (soil, temperature, and

so on) for different regions. The people paying someone they know to do research on

financial markets (which stock to invest in) is one more example of information diffusion

in the social environment.

This “network effect” — the people learning from their direct neighbors in accordance

with the established connections — is an evidence of market failure because the agents do

not communicate with the rest of the group, and therefore information diffusion among

the population is not socially optimal. This failure can be corrected only through the

involvement of the government or related organizations; as Belli [3] observes, the agents

themselves can not achieve a good level of communication.

In this paper we combine three main theoretical strains in the literature: information

diffusion, exogenously given network structure, and rational agents who trade the informa-

tion. Muto [12] discusses the sale of information but does not model a network structure.

He addresses the question of diffusion of an information good from a monopolistic owner

to a finite number of demanders, and a seller being allowed to charge a price for the infor-

mation. Although this problem was considered within some community, the structure of

the connections was not taken into account. The assumption is that everyone is connected

to everyone. Muto stresses the role of information resale, and analyzes the monopolist

and resellers behavior. If the resales are prohibited, then the outcome is always Pareto

optimal (and therefore the society reaches maximum welfare), but if resales are allowed,
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then the outcome is not Pareto optimal. The author finds the number of final possessors

of the information good.

Irrational agents whose response to the neighbors’ actions is predetermined are studied

in numerous papers. Chatterjee and Xu [6] consider myopic agents and place them at

the integer points of the real line, i.e. everyone has exactly two neighbors. There are two

types of technology, R(ed) and B(lue). Technology R is better than B because it provides

a higher probability of success. Every period the agents decide on which technology to

use. If there was a success in the technology the agent used during the last period, then

he continues to use it. If there was a failure, then the agent chooses better technology

based on his own and his neighbors’ experience during the current period. The important

finding of the paper is that sooner or later all the agents switch to the best technology.

Bala and Goyal [1] advance by taking into account an arbitrary structure. There is a

finite connected social network of myopic agents who, without knowing actual payoffs,

try to figure it out from their own and their neighbors’ current and past experience. The

agents do not have any beliefs about their neighbors. The information about the right

technology is not traded: for every agent the result his action immediately becomes known

to the neighbors. The authors show that an agent beliefs converges to some limit with

probability one; consequently, the utilities of all the agents are the same at infinity. As

the network is finite, there is a chance that all the agents would not choose the right

action (what would not happen in an infinite network).

Polanski [13] considers information good pricing in a network for the bargaining process

at which only one pair of agents can trade at each period of time. The seller makes an

offer, and the buyer either accepts it or rejects. In the case of rejection, the pair may be

allowed to trade next period of time. There is no discounting. The author studies the

role of cycles in the trading process. The infirmation always diffuses completely, and the

price does not exceed the utility of those who can get the information good only due to

this transaction: the price is zero if the buyer and seller are connected in more than one

way. This result is explained by the absence of discounting which increases the patience

of the agents, and the special trading structure which decreases the competition in the

case of several connections between the seller and the buyer.



5

This paper investigates information trading and information diffusion in the social

network. The focus is on how the people trade, the equilibrium strategies and prices, and

the final information distribution across the agents.

By “information” we mean a good that has the following properties (see Muto [12]):

• It delivers some level of utility to a person who has it (commodity);

• It is possible to duplicate it without any loss in the utility (free replication);

• Once a person knows the information, it is impossible to prohibit him from knowing

it (irreversibility); and

• It is impossible to get utility from a fraction of the information (indivisibility).

For example, some financial information, technology, political news, or even gossip might

be considered as the information.

The important property of information is everyone’s ability to trade it. It can be paid

for by barter or money — we do not distinguish between the two. Again, one may argue

that it is difficult to trade gossip for money. In this case by price here we mean an

obligation to provide another gossip next time — we can hardly imagine a person with

whom other people want to share gossip and who never gives anything back.

“Social network” (“social environment”), in which the information diffusion is consid-

ered, is a set of agents with the following properties:

• Some agents are connected to each other (these agents are called “neighbors”);

• The agents are able to trade only with their neighbors.

This social network is conveniently represented by a graph, where the agents are located

at the nodes, and the connections of the agents are represented by the edges.

There is only one sort of information in the model. At the beginning, every agent

independently with the same probability learns this information. At every consequent

period (time is discrete) the informed agents make offers to their uninformed agents by

setting the prices in exchange for providing the information. If the buyer accepts an offer,

he becomes informed and can resell the information in the following periods of time.

We make the following assumptions:
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1. Everlasting offers. Once made, the offer stays forever and the seller can not change

it later. This assumption is made for the sake of simplicity of proofs to avoid dealing with

evolving prices.

2. Limited observability. Any agent knows if his neighbors have the information or

not, and all the offers made to him during previous periods of time. The agents, however,

have only general knowledge about the rest of the network and the game — who is whose

neighbor, and what are the strategies, probabilities, distributions, and so on. No agent

knows who, besides his neighbors, has the information, and the offers made to other

agents.

The linear network is considered in the paper. Our main results are the following: it is

shown that for any initial parameters there is a stationary equilibrium where the strategies

do not depend on time, although the fraction of informed agents increases every period.

This equilibrium is possible because the agents’ beliefs about the distribution of the

uninformed agents prior to the next informed agent do not change with time. The price

in the stationary equilibria does not converge to zero as it does in the random network.

The research demonstrates that for a small probability of learning the information

at the beginning, the sellers’ strategy always includes a mass point above the value of

the information. The existence of this mass point above the personal valuation of the

information leads to the possibility of a “low probability trap,” when some agents never

get the information because both their neighbors make high enough offers at the same

time, and each of these offers requires reselling in order to get a non-negative payoff.

Moreover, the probability for the agent with two uninformed neighbors to stay uninformed

forever does not change over time. For some initial parameters, this equilibrium is a limit

of equilibria of finite-horizon games.

For a high probability of learning the information at the beginning, the strategy of the

stationary equilibrium has continuous distribution below the personal valuation of the

information, which means that every agent gets the information.

The rest of the paper is organized as follows: in Section 2 the model is described

and the equilibrium concept is defined. The importance of the transversality condition

in an equilibrium is emphasized: the price an agent pays for the information does not

exceed the expected discounted utility of all the agents who get the information due to
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the transaction. The linear model, where the agents are placed in the integer points of

the real line, is considered in Section 4. The random network is considered in Section 5,

where at every period the agents randomly meet each other.

2. The Model

In this section we define the game, describe the strategies, and establish the existence

of the symmetric equilibrium.

2.1. The Game

Consider a network of agents without cycles, where every agent has exactly M neigh-

bors. Because of the same number of neighbors for each agent, the network looks the

same way no matter which agent we place at the center. An example of such a network

for M = 4 is given in Figure 1.

✣✢
✤✜

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

Figure 1. An example of a network for M = 4.

There is one kind of information (for example, some particular technology) every agent

can use to extract a one-time utility u. Time is discrete, t ∈ N. At t = 0 the agents

obtain independent realizations of a {0, 1} random variable. If an agent gets a realiza-

tion of 1 (this happens with exogenous probability p), he becomes “informed,” otherwise

“uninformed.” Once an agent has the information, he remembers it forever. Every agent
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always knows who of his neighbors is informed; however, no one knows anything about

his neighbors’ neighbors.

At each period starting from t = 1, the informed agents (sellers) decide on making

offers to their uninformed neighbors (buyers). If made, the offer is a price at which the

seller agrees to share the information with a buyer. The sellers who decide to wait with an

offer can make it next period of time, if the neighbor is still uninformed. The sellers make

the decision about the offers and set the prices separately for each of their uninformed

neighbors. At the end of the period, the uninformed agents who have at least one offer

can accept one of them, or wait.

The discount factor equals δ ∈ (0, 1). All the agents are risk neutral. The agent’s utility

at t = 0 equals

U =







0, the agent is never informed;

δt(u − v) + W, the agent gets the information at period t,

where v is the price the agent pays for the information, and W is the total discounted

revenue from selling the information to the neighbors. The agents maximize their expected

utility.

2.2. The Strategies

At every period t agent α has history

Hα
t = ({sα

tn}M
n=1, {(sαB

tn , vαB
tn )}M

n=1, {(sαS
tn , vαS

tn , s̃αS
tn )}M

n=1, (s
α
t , mα

t )),

where

sα
tn — the time when neighbor n got informed;

sαB
tn , vαB

tn — the time when neighbor n made an offer, and the price offered;

sαS
tn , vαS

tn , s̃αS
tn — the time of the offer to neighbor n, the price and the time of acceptance,

if any;

sα
t , mα

t — the time when the agent got the information, and the neighbor from whom

he got it.
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All the histories are consistent across the agents and across time.3 Denote Ht — the

set of all possible histories at time t. The state of the world at time t is the set of all

histories for all agents {Hα
t }α.

The buyer pure strategy is the decision to buy the information from one of the neighbors,

or to wait (0 corresponds to waiting):

RαB
t : Ht → {0, 1, . . . ,M}.

The sellers pure strategy for each of the uninformed neighbors is the decision to wait

(represented by ∅, which is also played for the informed neighbors) or a price:

RαS
t : Ht → {R+, ∅}M .

Denote the sets of pure strategies by RB
t and RS

t respectively. We allow mixed strate-

gies, i.e. some probability measures µB
t (·) ∈ ∆(RB

t ) and µS
t (·) ∈ ∆(RS

t ).

2.3. Equilibrium Definition

To find the equilibrium strategies we use Perfect Bayesian Equilibrium concept. This

means that the agents play the best response to their histories in accordance with the

beliefs, even if the histories are not achievable under the given equilibrium strategies.

This equilibrium concept shares with the Perfect Bayesian Equilibrium the idea that

every agent maximizes the expected utility in every state, given the system of beliefs

consistent with all the other players’ strategies. Since there are infinitely many agents

in the game, we can not directly apply the PBE concept, but need to generalize it in

order to use it in our context. This generalization is similar in spirit to the local perfect

equilibrium in Fudenberg, Levine, and Maskin [10] and is possible because at every period

of time only a finite number of agents can influence the agent’s history.

Definition. A symmetric equilibrium of the game is a set of strategies

{µB
t (·), µS

t (·)}t≥0

such that no agent with any history (on or off the equilibrium path) can get extra payoff by

deviating from his strategy given that all the other agents play the equilibrium strategies.

3By “consistent” we mean that the agents can not have contradictory histories. For example, if agent

α got the information at some time t′, then at all the consequent periods of time sα

t
= t′.
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The seller strategy µS
t (·)}t≥0 is a product of identical distribution functions towards each

of the neighbors.

We consider symmetric equilibria, i.e. equilibria in which all the agents use the same

strategies, and the strategies are symmetric with respect to different neighbors. The

network does not contain cycles; therefore, the agent’s action towards one neighbor can

not influence the decision of another neighbor, and based on this we assume that the

agents act independently towards their different neighbors.

In the definition of an equilibrium the strategies depend on the history. The knowledge

of the whole history is excessive and the decision might depend on a smaller number of

parameters than the history contains. Also, we want to reduce the number of equilibria

in the game by introducing the concept of equivalence between the equilibria.

The equivalence of two equilibria is understood in the following way. For the sellers,

their expected revenue from selling the information to a particular uninformed neighbor

does not change. What we change is when the offer is made. However, the offer itself (or a

distribution of the offers) is the same and, although it is made at different period of time,

the time of the acceptance does not change. For the buyers, if an informed neighbor does

not make an offer, it means that the future offer is such that, made at the current period

of time, it would not change the buyer decision on buying the information: the earlier

offer does not change the buyer behavior. Consequently, the buyers in the equivalent

equilibrium face the same distribution of the offers and the sellers make the offers with

the same distribution as before. The expected utility of the agents is the same, although

in the original equilibrium we need to take expectation with respect to the offers of the

informed neighbors who wait with the decision to make their offers. The information

diffuses in the same manner, and the fraction of the informed agents as well as the spacial

structure of the informed/uninformed agents also stays the same.

The following proposition describes the necessary parameters and reduces the number

of equilibria by introducing an equivalent equilibrium in which the sellers make their offers

immediately after acquiring the information.

Proposition 1. For any equilibrium there exists an equivalent one, in which all the

informed agents make their offers immediately, the seller strategy at time t is a distribution
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function of offer prices Ft(v), and the buyer strategy is a function

Kt : {1, 2, . . . ,M} → R+,

which determines the reservation price for a given number of informed neighbors.4

We concentrate on the equilibria from proposition 1 at which the offers are made imme-

diately, and the offers to different neighbors are independently drawn from distribution

Ft(·). Denote

Vt = sup(supp Ft(v))

— the highest possible price offered at time period t. The buyers with l informed neighbors

accept the lowest offer if this offer does not exceed Kt(l).

The game has infinitely many agents and infinite horizon. Therefore, the equilibria

may have the property of the Ponzi game, where the prices are not consistent with the

utility the agents get from knowing the information. To exclude such equilibria from

consideration, we use a transversality condition. We require that for any period of time t

and for any l

Kt(l) ≤ u ∗ EAtl, (1)

where Atl stands for the random variable representing the discounted number of the

uninformed agents who will get the information due to the transaction between the agent

and the seller, if the buyer has exactly l informed neighbors. This condition requires that

the price does not exceed the expected discounted utility of all the agents who will get

the information due to the transaction.

In equilibrium a buyer with all informed neighbors prefers to buy the information for

any price not exceeding u. At the same time, buying the information for a price above u

results in a negative payoff, therefore

Kt(M) = u. (2)

4We described here the strategies on the equilibrium path. The only deviation these strategies do not

take into account is the one when a neighbor gets the information and then does not make an offer. In

this case, we assume that the agent believes that the neighbor will make an offer next period of time,

and uses corresponding best response. This happens with probability zero, therefore we should not worry

about the effect of such a deviation except for that this kind of a deviation should not be profitable.
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A buyer immediately agrees on price v ≤ (1− δ)u because the loss in the expected utility

from waiting is u − δu = u(1 − δ). Therefore,

Kt(l) ≥ (1 − δ)u ∀l ∈ {1, 2, . . . ,M − 1}.

3. Linear Network

This section considers a special case of an infinite symmetric network without cycles —

the infinite linear network (see Figure 2), where every agent has exactly two neighbors.

Ai−1✣✢
✤✜

Ai✣✢
✤✜

✣✢
✤✜
Ai+1 ✣✢

✤✜
Ai+2

q qq qq q

Figure 2. Infinite linear network.

3.1. General Results

The linear network, along with its plain structure, has the advantage of simple beliefs

of the agents, which we can formulate using the following notation. Denote event “agent

i is informed at time t” by At
i, and event “agent i is uninformed at time t” by At

i.

The following proposition describes the agent belief about the distance till the next

informed agent. Although the fraction of the informed agents increases over time, this

belief does not change as long as the agent himself and his neighbor stay uninformed.

Proposition 2. Suppose that all the agents in the linear network act independently

and use the same (even non-equilibrium) strategies. Then for any uninformed agent with

an uninformed neighbor his belief that there are exactly k other uninformed agents beyond

the uninformed neighbor has a geometric distribution with parameter p:

P(At
i−1A

t
i . . . A

t
i+kA

t
i+k+1|At

i−1A
t
i) = p(1 − p)k. (3)

Consider uninformed Agent Ai−1, whose neighbor Ai is uninformed (Figure 3). We

do not need to assume that the agents use equilibrium strategies; the only assumption
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q q q
Agent

Ai−1

✣✢
✤✜t

Neighbor

Ai

✣✢
✤✜

✣✢
✤✜

Ai+1

q q q
Ai+k

✣✢
✤✜ ⑦

✣✢
✤✜

Ai+k+1

q q q
k uninformed agents

Figure 3. Illustration for Proposition 2.

necessary is that the strategies are the same (mixed or pure) for all the agents. Then Agent

Ai−1 believes that the probability of k agents Ai+1, Ai+2, . . . , Ai+k to be uninformed and

agents Ai+k+1 to be informed (this agent is marked with a black circle) equals p(1 − p)k.

Probability that the next k agents are uninformed

P(At
i−1A

t
i . . . A

t
i+k|At

i−1A
t
i) =

∞
∑

l=0

P(At
i−1A

t
i . . . A

t
i+kA

t
i+k+l|At

i−1A
t
i)

=
∞
∑

l=0

p(1 − p)k+l = (1 − p)k.

This result of Proposition 2 holds because of the following reasoning. First, the belief

is calculated conditionally on the fact that the agent himself and his neighbor are unin-

formed. In particular, Agent Ai−1 does not know anything about agents Al for l ≥ 1.

Second, the initial distribution of the number of uninformed agents preceding the first

informed one is geometric with parameter p because at the beginning everyone learns

the information independently. And finally, the geometric distribution has the property

similar to the constant hazard rate of the exponential distribution: the distribution of the

difference of a geometrically distributed random variable and a constant (which models

the diffusion of the information towards the agent) is the same as the distribution of the

random variable if the difference is non-negative.

Suppose that the strategies are such that an uninformed agent with one offer always

buys the information, i.e. Kt(1) ≥ Vt. Then the probability of acquiring the infor-

mation by an uninformed neighbor of an uninformed agent equals p. (The product of

P(At
i−1A

t
iA

t
i+1|At

i−1A
t
i) = p and the probability that the information will be transferred,

which equals one.) In other words,

P{At
i−1, A

t
i, A

t+1
i |At

i−1, A
t
i} = P{At

i−1, A
t
i, A

t
i+1|At

i−1, A
t
i} = p. (4)
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Consider a pure strategy equilibrium. In this equilibrium all the informed agents offer

the information for the same price Vt at time t. The following proposition characterizes

all such equilibria that satisfy the transversality condition.

Proposition 3. For any p ∈ (0, 1) there exists at most one pure strategy equilibrium

satisfying the transversality condition; for this equilibrium

Kt(1) = Vt =
u

1 − δ(1 − p)2
.

As the buyers and sellers use the same strategy every period of time in this pure strategy

equilibrium, the information always diffuses from an informed agent to his uninformed

neighbor if this neighbor has only one offer. The range for the initial parameter p when

pure equilibria exists will be found in the next subsection.

3.2. Stationary Equilibria

Proposition 3 showed that in all pure strategy equilibria the strategies do not depend

on time. Such equilibria, in which the strategies do not depend on time, Ft(·) = F (·),
Kt(1) = K, we will call stationary equilibria. Equation 4 shows that if an agent with

one only offer always buys the information, then the probability of an uninformed agent’s

uninformed neighbor becoming informed equals p. This argument allows us to guess that

there might be other stationary equilibria except for pure strategy equilibria. In this

subsection we characterize all such equilibria.

All the possible strategies of stationary equilibria can be characterized using the fol-

lowing proposition.

Proposition 4. In any stationary equilibrium K(1) = V . For any p ∈ (0, 1) there

exists exactly one stationary equilibrium. All stationary equilibria satisfy the transversality

condition. The type of the equilibrium depends on p:

1. For p ∈
(

0, 2δ+1−
√

4δ+1
2δ

]

F (v) ≡ F p(v) =







0, v < V p;

1, v ≥ V p,

and V p = u
1−δ(1−p)2

.
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2. For p ∈
(

2δ+1−
√

4δ+1
2δ

, p∗
)

F (v) ≡ Fm
1 (v) =



























0, v < (1 − p)V m
1 ;

1
p
− (1−p)V m

1

pv
, (1 − p)V m

1 ≤ v ≤ u;

1
p
− (1−p)V m

1

pu
, u < v < V m

1 ;

1, v ≥ V m
1 ,

and V m
1 > u is uniquely determined by equation

u

(1 − p)V m
1

+ δ(1− p)− 1

1 − p
=

δ

1 − δ(1 − p)

(

u

(1 − p)V m
1

− 1 − ln

(

u

(1 − p)V m
1

))

(5)

and decreases with p.

3. For p ∈ [p∗, 1)

F (v) ≡ Fm
1 (v) =



















0, v < (1 − p)V m
1 ;

1
p
− V m

1
(1−p)

pv
, (1 − p)V m

1 ≤ v ≤ V m
1 ;

1, v > V m
1 ,

and

V m
1 =

u(1 − δ)

(1 − δ(1 − p))(1 − δ(1 − p)2) + δ(1 − p) ln(1 − p)
∈ (0, 1) (6)

is a decreasing function of p for p ≥ p∗.

Constant p∗ is the unique solution of equation

p − (1 − δ(1 − p))(1 − p)2 + (1 − p) ln(1 − p) = 0 (7)

from interval
(

2δ+1−
√

4δ+1
2δ

, 1
)

.

Different strategies F (v) for all three types of stationary equilibria are depicted at

Figure 4.

For a small p strategy F (v) is a degenerate distribution with the mass point at V p > u,

for a medium p strategy F (v) has both continuous part on [(1− p)V m
1 , u] and mass point

at V m
1 > u, and for a high p strategy F (v) is an absolutely continuous distribution on

[(1 − p)V m
2 , V m

2 ], where V m
2 ≤ u.

Strategy F (v) for stationary equilibria evolves in the following way as p increases (see

Figure 5). For small p strategy F (v) = F p(v) is a degenerate distribution with a mass

point at V p > u, and this mass point decreases with p. After p = 2δ+1−
√

4δ+1
2δ

, an absolutely

continuous segment on [(1− p)V m
1 , u] appears in F (v) = Fm

1 (v); this segment grows ((1−
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Figure 4. Stationary equilibra strategies in the infinite linear network.

Left graph: pure strategy F p(v); Center graph: strategy Fm
1 (v); Right

graph: strategy Fm
2 (v).

0 12δ+1−
√

4δ+1
2δ

p∗

F p(v) Fm
1 (v) Fm

2 (v)

Figure 5. Stationary Equilibria Regions.

p)V m
1 decreases) and the mass point V m

1 decreases to u with the mass at V m
1 decreasing to

zero. At p = p∗, the mass point disappears, and the absolutely continuous segment starts

moving towards zero. The lower bound decreases to 0, and the upper bound decreases to

u(1 − δ). Distribution F (v) weakly converges to the degenerate distribution with mass

point at 0.

For p ∈ (0, p∗) there exists a mass point at V > u. Because this mass point is above

the agent’s personal valuation of the information, there is a non-zero probability that the

agent will get two offers V at the same time, and therefore will stay uninformed forever.

Proposition 5. In the stationary equilibrium with p ∈ (0, p∗) probability that an

uninformed agent with two uninformed neighbors will stay uninformed forever equals

p(1−F (u))2

2−p
> 0 and does not depend on time.
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Probability that a randomly chosen agent will stay uninformed forever can be calculated

as the sum of two probabilities: (1) the probability that the agent and his neighbors were

initially uninformed multiplied by the probability that the agent will stay uninformed

forever, and (2) the probability that the agent has two informed neighbors each of which

offers price above u:

(1 − p)3p(1 − F (u))2

2 − p
+ (1 − p)p2(1 − F (u))2 = (1 − p)

p(1 − F (u))2

2 − p
.

For p ≥ p∗ every agent in the network will get informed. This threshold p∗ divides interval

(0,1) into the areas of efficient and non-efficient equilibria. In order to achieve efficiency,

the central planner does not need to give the information to everyone; it is enough to give

the information randomly to a sufficient fraction of the population.

The equilibria of the game, in particular the stationary equilibria, might not be robust

with respect to some modifications of the game. The question is what happens with

the strategies if we consider the same game with a finite horizon instead of the infinite

one. Take a sequence of equilibria in the games with the time limited by T . We want to

investigate how close are the equilibria in such finite horizon games to the infinite horizon

game equilibria, i.e. the limit of the equilibria of the games with finite horizons.

Proposition 6. For small enough p the equilibria for the finite horizon games converge

to the pure strategy stationary equilibrium for the infinite horizon game.

3.3. Equilibria with Unbounded Price

The transversality condition restricts the prices. In this subsection we construct an

example with a family of strategies in which this condition is not satisfied. The prices

offered exceed some level and increase to infinity with time. What the agents pay for the

information is not justified by the utility of the agents who get the information due to

the transaction; the current price is supported by the expectations of the higher prices in

the future.

Consider the linear network. For simplicity, we restrict our attention to the equilibria

with pure strategies only, in which a buyer with two offers will not buy the information

because these offers exceed his personal valuation of the information. By Vt we denote the

offer/acceptance price at period t. A buyer with one informed neighbor only should be

indifferent between buying the information and waiting, therefore the following equation
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holds for any t:

u − Vt + δ(1 − p)2Vt+1 = 0,

i.e. buying the information and offering it to the uninformed agent gives zero expected

utility. After rearranging the terms, one can get

Vt+1 −
u

1 − δ(1 − p)2
=

Vt − u
1−δ(1−p)2

δ(1 − p)2
.

Taking into account that in the stationary pure strategy equilibrium price always equals

V̄ = u
1−δ(1−p)2

, we get

Vt+1 − V̄ =
Vt − V̄

δ(1 − p)2
. (8)

As δ(1 − p)2 < 1, difference V − V̄ grows exponentially if initial V0 exceeds V̄ :

Vt = V̄ + (V0 − V̄ )

(

1

δ(1 − p)2

)t

.

The only additional requirement for V0 is that a seller does not deviate to offering u

at t = 0, i.e. V0(1 − p) > u (if the prices increase, it will also be true for arbitrary t).

Therefore, for any

V0 > max

(

u

1 − p
,

u

1 − δ(1 − p)2

)

the equilibrium we get is a pure strategy equilibrium for which the transversality condition

fails, and the prices increases to infinity with time.

4. Random Networks

The analysis of the fixed networks showed that some equilibria in such networks possess

some properties, like the price does not converge to zero. In this section we want to

consider random networks, and find the properties of equilibria in these random networks

to compare them with the properties of equilibria of the fixed networks.

Suppose that every period of time the agents are randomly matched with exactly M

other agents5, and the network formed does not contain cycles. It means that at every

5Random network is a controversial issue, although it is used in many models. In this paper we do not

discuss the question of existence of such networks (although we believe that it is possible to construct a

formal justification). We rather use some assumptions about such networks, namely that no two current
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period of time a new M -network or a set of them is formed, and no past history can

influences the agents’ current decisions. Therefore, the agents’ actions are independent

across the time and neighbors.

As before, all the informed agents can simultaneously make their offers to their unin-

formed neighbors, and the uninformed agents decide to accept one of the available offers

or to wait. As we deal with the random network, the informed agents make their offers

to uninformed neighbors every period of time, and the offers made expire at the end of

each period with the abortion of the connections.

At the beginning, every agent independently with probability p learns the information.

The seller strategy is a distribution function of offers Ft(v). The buyer strategy is a

threshold Kt — the maximal price at which he is ready to buy the information. As new

network is randomly formed each period of time, Kt does not depend on the number of

informed neighbors. We consider only symmetric equilibria, i.e. the agents use the same

strategies.

As before, denote Vt = sup supp Ft(·). Threshold Kt ≥ Vt because otherwise offer

Vt > Kt will never be accepted. Distribution function Ft(·) is absolutely continuous

because Kt ≥ Vt and the agents will try to avoid the competition from other agents at

the mass points. Also, Kt ≤ Vt because otherwise the agents selling the information for

price Vt < Kt will be able to increase their offer to Kt without decreasing the probability

of the deal. Therefore, Kt coincides with Vt, and later in this section Vt will represent

both constants.

From Kt = Vt follows that an agent becomes informed once he has at least one informed

neighbor. Denote the probability of being informed at the beginning of period t by pt,

with p1 = p. Then

pt+1 = pt + (1 − pt)(1 − (1 − pt)
M) = 1 − (1 − pt)

M+1;

1 − pt+1 = (1 − pt)
M+1,

and pt monotonically approaches 1.

neighbors can have any influence on each other in the future. In particular, the probability of being

matched with the same partner twice is assumed to be zero.
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Denote

gt = (1 − pt)
M−1(M + (1 − pt)). (9)

As pt monotonically approaches 1, gt monotonically approaches 0.

As before, by the transversality condition we understand that the price in the trans-

actions does not exceed the discounted expected utility of all the agents who get the

information due to this transaction. The following proposition completely characterizes

equilibria satisfying the transversality condition.

Proposition 7. For any initial probability p ∈ (0, 1) there is only one equilibrium that

satisfies the transversality condition. In this equilibrium the seller strategy

Ft(v) =
1

pt

− 1 − pt

pt

(

Vt

v

) 1

M−1

; (10)

supp Ft(·) = [Vt(1 − pt)
M−1, Vt]. (11)

The highest price possible at period t

Vt = V1

t
∏

i=2

1

δgi

− u(1 − δ)
t
∑

i=2

t
∏

j=i

1

δgj

; (12)

V1 = u(1 − δ)

(

1 +
∞
∑

i=3

i−1
∏

j=2

δgi

)

< ∞. (13)

The highest possible price Vt monotonically decreases to u(1 − δ), and the expected price

EFt
v converges to 0.

As we see, Vt is uniquely determined by constants M , p, u, and δ. Ft(·) weakly converges

to the degenerate distribution with the mass point at zero.

5. Conclusion

In this paper we show that the structure of the social connections plays an important

role in information diffusion. It determines the price pattern the sellers charge for the in-

formation and the buyers strategy. In particular, the price asked does not always converge

to zero. The agents making an offer might believe that the probability of an uninformed

neighbor getting another acceptable offer is small enough, therefore they do not decrease
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the price. In the case of many uninformed agents at the beginning, this belief leads to

the price exceeding the personal valuation of the information.

Not all the agents might learn the information at the end if the price exceeds the

personal valuation; it happens if the information is a scarce resource. The information

diffuses to all the agents if the fraction of the initially informed agents is large enough.

Therefore, if the government wants everyone to have the information, it does not need to

give it to all the agents; it is enough to exceed some threshold, and after this the agents

will successfully trade the information with each other.

The linear network considered in many papers does not constitute a representative

example. It has the property which is particular only for such a network: the belief about

the number of uninformed agents till the first informed one, conditional on the fact that

the agent himself and his neighbor are uninformed, does not depend on time. Due to this

there exists the stationary equilibrium where the strategies the agents use do not depend

on time.

The equilibrium for the random network differs from the fixed network in the following

aspects. The uninformed agents buy the information as soon as they get at least one

offer. The average price offered at period t converges to 0; however, the upper bound of

the price converges to u(1 − δ). In the random network, every agent becomes informed

with probability 1.
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Appendix

Lemma 1. The differential equation

af ′(x)x = 1 − bf(x)

for b 6= 0, a 6= 0 has solution

f(x) =
1

b
− Cx−b/a. (14)

Proof of lemma 1.

The solution is verified by substituting formula (14) for f(x) into the original equation and

the fact that the first-order differential equation has only one undetermined constant.

�

Proof of proposition 1.

The neighbors are connected only through the agent, therefore the seller strategy can be

independent for each of his uninformed neighbors; if the offer is made, it follows some distribution

function Ft(v), which depends only on time.

Suppose that a buyer with exactly l informed neighbors accepts offer v. Then accepting offer

v′ < v increases the buyer’s expected payoff by v − v′ without changing his expectations of the

future resales. The expected utility of waiting with the lowest offer v′ < v increases by less than

v − v′ because the best difference is v − v′ and the discount factor decreases it. Therefore, the

strategy of a buyer with l informed neighbors is to accept an offer either from interval [0, Kt(l))

or [0, Kt(l)] for some Kt(l) ≥ 0. The buyer is indifferent to accept offer Kt(l) or to wait.

If for a buyer there is no mass of offers at Kt(l), then these two options (to buy immediately

and to wait) do not differ, and we can choose the closed interval. If there is a mass point,

then the sellers who create the mass point (Ft(·) has a mass point) would prefer to deviate to

Kt(l) − ǫ, which means that this is not an equilibrium and Kt(l) can not be a mass point of

offers. Therefore, we can always assume that a buyer with l neighbors accepts any offer not

exceeding Kt(l).

To prove the existence of an equivalent equilibrium in which all the sellers make their offers

immediately, consider one informed agent A and his uninformed neighbor B. By waiting agent

A can observe only the fact that B gets the information from his other neighbor (what makes

impossible selling the information to B). Agent A makes such offer v that maximizes his expected

payoff.

There are 2 options:
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Option 1. Agent B with non-zero probability may accept offer v earlier than agent A

normally makes it. Then agent A is strictly better off by making the offer earlier, and therefore

this is not an equilibrium to delay with making this offer.

Option 2. Agent B would not accept offer v earlier than agent A normally makes it. Then

by making offer v earlier Agent A does not change his own payoff and the rest of his strategy.

Suppose that Agent B has other lowest offer and making offer v earlier changes B’s behavior.

As B does not accept offer v (we excluded option 1) then the other offer he has is better, and

B knows it because A does not make an offer. Consequently, revealing v does not change B’s

decision to accept other offers. Therefore, making offer v earlier does not change anything and

making the offers as soon as possible is a new equivalent equilibrium.

�

Proof of proposition 2.

The proof has the following structure. First, we consider the following modification of the

game: agents Ai, Ai−1,. . . are always uninformed at the beginning (see Figure 3). Second, we

demonstrate that random variables ξ1 and ξ1 − ξt are independent for any t, where ξt is the

number of uninformed agents Ai+1, Ai+2,. . . , Ai+k till the first informed agent Ai+k+1 at time

t. Third, we show that ξt conditional on ξt ≥ 0 has the same geometric distribution as ξ1. And

last, we return to the original game, and prove formula 3 from the Proposition.

Step 1. Defining the game and random variables.

Suppose that Ai, Ai−1,. . . are always uninformed at the beginning. Define random variable

ξt ∈ Z in the following way:

ξt = min{k : Ai+k+1 is informed at the beginning of period t}.

Random variable ξt ∈ Z stands for the first informed agent in the network.

Step 2. Independence of ξ1 and ξ1 − ξt.

Consider agent l who acquires the information at period t. Let ηlt be the number of periods

it takes for agent l to transfer the information to his left neighbor, if this neighbor has only one

offer. The agents act independently, therefore all random variables {ηlt} are independent of each

other and ξ1. The agents use the same strategies, therefore {ηlt}l are identically distributed for

each t.

Let ηl stands for the number of agents the information diffused to the left by time t if initially

agent l is the first informed agent. Variables ηl are determined by {ηl′t′}l′t′ and therefore
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independent of ξ1 for any l (but not from each other). As {ηlt}l are identically distributed for

each t, ηl are identically distribute for every l. Denote this distribution by η.

Note that

P(ξ1 = m, ξ1 − ξt = l) = P(ξ1 = m, ηξ1 = l) = P(ξ1 = m, ηm = l)

= P(ξ1 = m)P(η = l);

P(ξ1 − ξt = l) =
∑

m

P(ξ1 = m, ξ1 − ξt = l) =
∑

m

P(ξ1 = m)P(η = l) = P(η = l),

i.e. random variables ξ1 and ξ1 − ξt are independent.

Step 3. Geometric distribution of ξt conditional on ξt ≥ 0.

We want to prove

P{ξt = k|ξt ≥ 0} = p(1 − p)k, ∀t, k ∈ N. (15)

Note that this formula holds for t = 1 because the agents independently with probability p

get the information at the beginning.

P{ξt = k|ξt ≥ 0} =

∑

l≥0
P(ξ1 = k + l, ξ1 − ξt = l)

∑

l≥0,k′≥0
P(ξ1 = k′ + l, ξ1 − ξt = l)

=

∑

l≥0

p(1 − p)k+l
P(ξ1 − ξt = l)

∑

l≥0,k′≥0

p(1 − p)k′+l P(ξ1 − ξt = l)

=

(1 − p)k
∑

l≥0

p(1 − p)l
P(ξ1 − ξt = l)

1
p

∑

l≥0

p(1 − p)l P(ξ1 − ξt = l)
= p(1 − p)k,

i.e. formula 15 holds for any t.

Step 4. Proof of formula 3 from the Proposition.

Consider the original game. In this game, agents Ai−1, Ai, can get the information by time

t either at the beginning, from Ai−2, or from Ai+1. We considered the process from the right.

We can make the same analysis from the left, and consider corresponding random variable ζt —

the distance from the right informed agent to Ai−1 in the hypothetical network where all the

agents Ai−1, Ai, . . . are uninformed at the beginning, Then ξt and ζt are independent, and for

any k ≥ 0

P(At
i−1A

t
i . . . At

i+kĀ
t
i+k+1|At

i−1A
t
i) = P(ζt ≥ 0, ξt = k|ζt ≥ 0, ξt ≥ 0) =

P(ζt ≥ 0, ξt = k)

P(ζt ≥ 0, ξt ≥ 0)

= =
P(ξt = k)

P(ξt ≥ 0)
= p(1 − p)k.

�

Proof of proposition 3.
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Consider first t such that Vt ≤ u. Consider an agent who makes an offer at time t to his

uninformed neighbor. There is a non-zero probability that the neighbor has the same offer

Vt from his another neighbor, and will be choosing the best one. Then the agent will benefit

by decreasing his offer to Vt − ǫ: the probability of selling the information increases, and the

payment stays almost the same. Therefore, Vt > u for all t.

Suppose that there exists t such that Vt < Kt(1). The agent accepts offer Vt only if this is

the only offer, and another neighbor is uninformed. By increasing the offer to Kt(1) the seller

does not decrease the chance of the deal, but increases the payment. Therefore, Vt can not be

less than Kt(1).

At every period of time there is either no trade or all the agents with one informed neighbor

only buy the information.

Consider first t such that Vt = Kt(1), Vt+1 > Kt+1(1). Suppose that t > 1 (the proof with

slight modification works for t = 1, too.) The agents with one offer Vt+1 only at time period

t + 1 wait with the purchase until some period τ > t + 1 with Vt+1 ≤ Kτ (1), and there is no

trade in periods t + 1, t + 2, . . . , τ − 1.

Any agent who buys the information at period t has utility zero because the offer from other

neighbors will exceed u, and the seller has all the power. Therefore,

−Vt + u + δτ−t(1 − p)2Vt+1 = 0. (16)

Suppose that some agent with one the only offer Vt at period t does not buy the information

immediately, but waits till period t + 1. If his neighbor still stays uninformed, then he pays Vt

at period t + 1, and offers it to his uninformed neighbor at time t + 2 ≤ τ for Vt+1. Then, using

equation 16, his utility

δ(1 − p)(−Vt + u + δτ−t−1(1 − p)Vt+1) = δ(1 − p)(−Vt + u) + Vt − u

= (Vt − u)(1 − δ(1 − p)) > 0

because Vt > 0, which means that this is not an equilibrium. The intuition behind the fact

the the utility increases if the agent waits is the following: by waiting the agent decreases the

uncertainty about the possibility of reselling the information.

We have proved that for any period t holds Vt = Kt(1). Equation 16 for τ = t + 1 gives us

the the law of motion for Vt:

−Vt + u + δ(1 − p)2Vt+1 = 0.
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Fixed point

V =
u

1 − δ(1 − p)2
.

Therefore,

Vt − V = δ(1 − p)2(Vt+1 − V ),

which means that this fixed point is unstable: if V1 6= V then Vt converges either to −∞ or

to +∞. The first option contradicts Vt ≥ 0, and the second one contradicts the transversality

condition (the price is limited by some constant).

�

Proof of proposition 4.

First, we want to show that V = K(1). We already know that K(2) = u. Distribution

function F (v) is continuous for v ≤ u because Kt(2) = u and a seller offering the mass point

price would better off by decreasing his offer by small ǫ to avoid the tie.

Suppose that V 6= K(1). As V ≤ max(K(1), u), the following four options are possible:

V < K(1) ≤ u, K(1) < V ≤ u, V < u ≤ K(1), and u ≤ V < K(1).

Options V < K(1) ≤ u and V < u ≤ K(1) can not be an equilibrium because F (v) is

continuous below u, and a seller offering the information for price V is better off by asking K(1)

and u correspondingly.

Consider option K(1) < V ≤ u. There is a non-zero probability of offers v ∈ [0, K(1)] and

v ∈ (K(1), u] because otherwise an agent with offer K(1) will not get be able to get a better

offer in the future. An offer from [0, K(1)] is always accepted, and an offer from (K(1), u] is

accepted if and only if there are two offers; in the case of one offer the agent always waits for

the second one. Because of the waiting the agents change their belief about event “the first

informed agent behind the uninformed neighbor got an offer above K(1),” which is impossible

in stationary equilibrium. Therefore, K(1) < V ≤ u is not an equilibrium.

Consider option u ≤ V < K(1). Offers V and K(1) have the same chance to be accepted (the

neighbor’s neighbor is uninformed and stays uninformed till the next round), but K(1) delivers

a higher payoff. Therefore, this is also not an equilibrium.

We have proved that either V = K(1) < u or u < V = K(1). Later in the proof we will

always use V instead of K(1), The support of F (v) below u constitutes a connected set; if not,

an agent can increase his expected payoff by increasing the offer in the gap as the probability

of the deal does not change.
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There are 3 cases: F (u) = 0, F (u) ∈ (0, 1), and F (u) = 1. If F (u) < 1, then the distribution

of prices F (v) has mass 1−F (u) at V > u. If F (u) > 0, then the expected payoff maximization

problem for v ∈ [0,min(u, V ) gives

(1 − p)v + pv(1 − F (v)) → max; (17)

1 − pF (v) − pvf(v) = 0.

Applying Lemma 1,

F (v) =
1

p
− C

v
for v ∈ [pC,min(u, V )].

Offer pC is always accepted, and offer V is accepted only of there is the neighbor does not have

other offer. Both these prices are in the support of F (·) and deliver the same expected payoff,

therefore pC = (1 − p)V , and

F (v) =
1

p
− (1 − p)V

pv
for v ∈ [(1 − p)V,min(u, V )].

Now we want to find F (v) for each of the three cases.

Case 1. F (u) = 0, pure strategy with mass 1 at V > u.

Denote this distribution function of offers by F p(v). In accordance with Proposition 3, V =

u
1−δ(1−p)2

. This equilibrium exists if and only if the agents do not want to offer price u which is

always accepted, i.e.

V (1 − p) ≥ u;

p ≤ δ(1 − p)2; (18)

Case 2. F (u) ∈ (0, 1), some mass at V > u and a continuous part on [(1 − p)V, u].

Denote this distribution function of offers by Fm
1 (v).

An agent with offer V and one uninformed neighbor is indifferent between accepting the offer

and waiting for another one. The expected payoff from buying the information immediately

equals

−V + u + δ(1 − p)2V. (19)
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If the agent waits for another offer, he gets the information if and only if his another neighbor

offers the information for a price v ≤ u. The expected payoff from waiting is

E





∑

t≥1

δtp(1 − p)t−1(u − v)I{v≤u}



 =
pδ

1 − δ(1 − p)






F (u)u −

u
∫

(1−p)V

v dF (v)







=
(1 − p)V δ

1 − δ(1 − p)







u

(1 − p)V
− 1 −

u
∫

(1−p)V

d v

v







=
(1 − p)V δ

1 − δ(1 − p)

(

u

(1 − p)V
− 1 − ln

(

u

(1 − p)V

))

.

Equating the expected payoff of from buying the information immediately (formula 19) and

waiting, one gets equation 5:

u

(1 − p)V
+ δ(1 − p) − 1

1 − p
=

δ

1 − δ(1 − p)

(

u

(1 − p)V
− 1 − ln

(

u

(1 − p)V

))

. (20)

The condition for the existence of such equilibrium F (u) ∈ (0, 1) is equivalent to x ≡ u
(1−p)V ∈

(

1, 1
1−p

)

. Rewriting equation 20 using x gives

x − δ

1 − δ(1 − p)
(x − 1 − lnx) =

1

1 − p
− δ(1 − p). (21)

Denote the left-hand side of equation 21 by h(x, δ, p). For any x ∈
[

1, 1
1−p

]

the derivative

∂h(x, δ, p)

∂x
= 1 − δ(1 − 1/x)

1 − δ(1 − p)
≥ 1 − δ(1 − (1 − p))

1 − δ(1 − p)
=

1 − δ

1 − δ(1 − p)
> 0;

Therefore, there exists x ∈
(

1, 1
1−p

)

satisfying equation 21 if and only if

h(1, δ, p) <
1

1 − p
− δ(1 − p) < h

(

1

1 − p
, δ, p

)

; (22)

1 <
1

1 − p
− δ(1 − p) <

1

1 − p
− δ

1 − δ(1 − p)

(

p

1 − p
− ln

1

1 − p

)

.

Therefore, this equilibrium exists if and only if the following two inequalities hold:

p > δ(1 − p)2; (23)

−(1 − δ(1 − p))(1 − p)2 + p + (1 − p) ln(1 − p) < 0. (24)

Case 3. F (u) = 1, supp(F (v)) = [(1 − p)V, V ], V ≤ u.
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Denote this distribution function of offers by Fm
2 (v). A buyer is indifferent between buying

at the maximal price V (formula 19) and waiting:

−V + u + δ(1 − p)2V =
∑

t≥1

δtp(1 − p)t−1

∫

(u − v) dF (v) =
(1 − p)V δ

1 − δ(1 − p)

V
∫

(1−p)V

u − v

v2
dv

=
(1 − p)V δ

1 − δ(1 − p)

((

− u

V
+

u

(1 − p)V

)

+ ln(1 − p)

)

=
pδu

1 − δ(1 − p)
+

(1 − p)V δ ln(1 − p)

1 − δ(1 − p)
;

V =
u(1 − δ)

(1 − δ(1 − p))(1 − δ(1 − p)2) + δ(1 − p) ln(1 − p)
.

This equilibrium exists if and only if V ≤ u, or

−(1 − δ(1 − p))(1 − p)2 + p + (1 − p) ln(1 − p) ≥ 0. (25)

We want to show that for any δ ∈ (0, 1) interval (0, 1) is divided into three parts by p′ ∈ (0, 1)

and p′′ ∈ (p′, 1). On (0, p′] inequality 18 holds (Case 1), on (p′, p′′) inequalities 23 and 24 hold

(Case 2), and on [p′′, 1) inequality 25 holds (Case 3).

Inequality 18 holds on (0, p′] and inequality 23 holds on (p′, 1), where

p′ =
2δ + 1 −

√
4δ + 1

2δ
.

Denote left-hand side of inequalities 24 and 25 as g(p, δ). The second derivative

∂2

∂p2

(

g(p, δ)

1 − p

)

=
∂

∂p

(

(1 − δ(1 − p)) − δ(1 − p) +
1

1 − p
+

p

(1 − p)2
− 1

1 − p

)

= 2δ +
1

(1 − p)2
+ 2

p

(1 − p)3
> 0,

therefore g(p,δ)
1−p either increases or first decreases and then increases. As g(0, δ) < 0 and g(0, δ) >

0, equation g(p, δ) = 0 has exactly one solution p′′ ∈ (0, 1), and on (0, p′′) inequality 24 holds,

and on [p′′, 1) inequality 25 holds. The only fact we have to prove is that p′′ > p′. To do this, it

is enough to show that there exists p satisfying both inequalities in 22.

We know that h(1, δ, p′) < h
(

1
1−p′ , δ, p

′
)

, h(1, δ, p) = 1, h(1, δ, p′) = 1
1−p′ − δ(1 − p′), and

function h(x, δ, p̃) is continuous in all arguments. The middle part of 22 increases with p because

1

1 − p
− δ(1 − p) = (1 − δ) + p(1 + δ) + p2 + p3 + . . . .

Therefore, in some neighborhood of p′ for p > p′ both inequalities in 22 hold, and therefore

p′′ > p′.
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Value V m
2 decreases with p because p > δ(1 − p)2 and therefore

d

dp

(

u(1 − δ)

δV m
2

)

= 1 − δ(1 − p)2 + 2(1 − p)(1 − δ(1 − p)) − 1 − ln(1 − p)

≥ 1 − p − 1 − ln(1 − p) ≥ 0.

Value V m
1 decreases with p because p > δ(1 − p)2 and therefore

d

dp

(

u(1 − δ)

δV m
2

)

= 1 − δ(1 − p)2 + 2(1 − p)(1 − δ(1 − p)) − 1 − ln(1 − p)

≥ 1 − p − 1 − ln(1 − p) ≥ 0.

�

Proof of proposition 5.

The agent will get two offers simultaneously only if the informed agents on the opposite sides

are located on the same distance. Therefore, the probability of staying uninformed forever equals

∑

t≥0

((1 − p)tp)2(1 − F (u))2 = p2(1 − F (u))2
1

1 − (1 − p)2
=

p(1 − F (u))2

2 − p
.

�

Proof of proposition 6.

We will denote all the strategies in the game with horizon T by upper index T . We are looking

for the finite horizon equilibria at which the agents with one informed neighbor only always buy

the information, i.e. V T
t = KT

t (1).

At the last period K(1) = u and therefore F T
T (u) = 1,. The seller’s problem is the same as

problem 17, which means that the solution is also the same:

F T
T (v) =

1

p

(

1 − u(1 − p)

v

)

, v ∈ [(1 − p)u, u].

The expected payoff of the agent who gets only one offer is

π ≡
u
∫

(1−p)u

(u − v) dF T
T (v) ≤

u
∫

(1−p)u

(u − (1 − p)u) dF T
T (v) = pu.

Suppose that for any t < T distribution function F T
t (v) has mass 1 at V = KT

t (1) > u and does

not have the continuous part below u. Then to make the buyer indifferent between buying and

waiting till the last period the following equation should hold:

−V T
t + u + δ(1 − p)2V T

t+1 = δT−t(1 − p)T−t−1pπ (26)

Note that

V T
T−1 = −δpπ + u + δ(1 − p)(1 − p)u > u(1 + δ(1 − p)2 − p).
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Note that V T
T < u

1−δ(1−p)2
. By induction,

V T
t = −δT−t(1 − p)T−t−1pπ + u + δ(1 − p)2V T

t+1 < u +
δ(1 − p)2u

1 − δ(1 − p)2
=

u

1 − δ(1 − p)2
.

Note that V T
T−1 > V T

T . By induction, V T
t−1 > V T

t because

V T
t−1 = −δT−(t−1)(1 − p)T−(t−1)−1pπ + u + δ(1 − p)2V T

t

> −δT−t(1 − p)T−t−1pπ + u + δ(1 − p)2V T
t+1 = V T

t .

No seller will deviate from V T
t because the expected payoff from V T

t is greater than the expected

payoff from u:

(1 − p)V T
t ≥ (1 − p)V T

T−1 > (1 − p)(u(1 + δ(1 − p)2) − pu) > u,

where the last inequality holds for small enough p.

Finally, for any t values V T
t converge as T increases because V T

t are limited, increase, and

V T+1
t+1 = V T

t . Denote Vt = lim
T→∞

V T
t . Then

V − V T
t = δ(1 − p)2(V − V T

t+1) + δT−t(1 − p)T−t−1pπ;

V − Vt = δ(1 − p)2(V − Vt+1).

Vt are limited, and have the same law of motion as Vt for the pure strategy equilibrium,

therefore Vt = u
1−δ(1−p)2

for any t.

�

Proof of proposition 7.

The structure of the proof is the following. First, we show that Ft(·) does not have mass

points and has a connected support for any t. Second, we prove that

Ft(v) =
1

pt
− Ctv

− 1

M−1 . (27)

and find formula for the support (formulas 10 and 11). Third, we prove the law of motion for

Vt:
1

δ
(Vt−1 − u) = Vtgt − u. (28)

Forth, based on the law of motion for Vt we establish formulas 12 and 13 for Vt. And last, we

show monotonicity and convergence of Vt and convergence of EFt v.

Step 1. Properties of Ft(·).
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No offer above Vt will be accepted, therefore Ft(Vt) = 1. The distribution function Ft(·) does

not have mass points because otherwise a seller would prefer to decrease his offer from these

mass points by some small ǫ.

The support supp(Ft(·)) is connected because by increasing the offer in the gap, a seller will

increase his expected payoff as the acceptance probability of the offer stays the same, and the

price increases.

Step 2. The proof of formulas 10 and 11 for Ft(·) and for its support.

The expected payoff from one uninformed neighbor is equal to

πt(v) = v P{v ≤ other offers }

= v

M−1
∏

i=1

(P{v ≤ offer from neighbor i} + P{no offer from neighbor i})

= v
M−1
∏

i=1

((1 − Ft(v))pt + (1 − pt)) = (1 − ptFt(v))M−1 v.

All the points in the support of Ft(·) should deliver the same utility π, we have

π′
t(v) ≡ (1 − ptFt(v))M−1 − ptft(v)v(1 − ptFt(v))M−2(M − 1) = 0;

ptft(v)v(M − 1) = 1 − ptFt(v).

Applying Lemma 1,

Ft(v) =
1

pt
− Ctv

− 1

M−1

for some constant Ct > 0 (formula 27).

One can verify that

Vt ≡ sup suppFt(·) =

(

ptCt

1 − pt

)M−1

,

therefore Ct = 1−pt

pt
V

1

M−1

t and we have proved formula 10 for Ft(·) and formula 11 for the support

of Ft(·).
Step 3. Law of motion for Vt (formula 28).

Let U i
t be the expected payoff of an informed agent at the beginning of period t, and let Uu

t

be the expected payoff of an uninformed agent at the beginning of period t. Then

U i
t = M(1 − pt)πt + δU i

t+1 =

∞
∑

i=t

δi−tM(1 − pi)πi; (29)

Uu
t = (u − E vt + δU i

t+1)(1 − (1 − pt)
M ) + δUu

t+1(1 − pt)
M , (30)
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where E vt stands for the expected price an agent pays for acquiring the information at period t,

conditional on the fact that there is at least one offer.

In an equilibrium the buyer with the highest possible offer Vt is indifferent between accepting

the offer and waiting, therefore

u − Vt + δU i
t+1 = δUu

t+1. (31)

Substituting expressions for U i
t (formula 29) and Uu

t (formula 30) into 31 one can get

1

δ
(Vt−1 − u) = M(1 − pt)Ṽt + δU i

t+1

−(u − E vt + δU i
t+1)(1 − (1 − pt)

M ) − δUu
t+1(1 − pt)

M

= (Vt − u)(1 − pt)
M + M(1 − pt)

MVt + (E vt − u)(1 − (1 − pt)
M )

= (M + 1)Vt(1 − pt)
M + E vt(1 − (1 − pt)

M ) − u. (32)

In order to simplify expression 32, we need formula for E vt.

The average minimal price from l independent offers v, v2, . . . , vl is equal to

EFlt
v ≡

∫

v dP(min(v1, . . . , vl) ≤ v) =

∫

vd
(

1 − (1 − P(v1 ≤ v))l
)

=

∫

vd

(

1 −
(

ht(v) −
(

1

pt
− 1

))l
)

=

∫

ht(v)l

M − 1

(

ht(v) − 1

pt
+ 1

)l−1

dv, (33)

where ht(v) = 1−pt

pt

(

Vt

v

)
1

M−1 for simplicity of notation. Note that

M
∑

l=1

lxl−1C l
Mpl

t(1 − pt)
M−l = Mpt

M−1
∑

l=0

C l
M−1x

lpl
t(1 − pt)

(M−1)−l

= Mpt (px + 1 − pt)
M−1 (34)

Equation 34 for x = ht(v) − 1
pt

+ 1 gives

M
∑

l=1

l

(

ht(v) − 1

pt
+ 1

)l−1

C l
Mpl

t(1 − pt)
M−l = Mpt(ht(v)pt)

M−1. (35)
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Combining 33 and 35 and swapping the integral and the sum, one can get

M
∑

l=1

C l
Mpl

t(1 − pt)
M−l

EFlt
v =

Vt
∫

Vt(1−pt)M−1

M

M − 1
(ht(v)pt)

M dv

=

Vt
∫

Vt(1−pt)M−1

M

M − 1

(

(1 − pt)

(

Vt

v

) 1

M−1

)M

dv

= Vt

1
∫

(1−pt)M−1

M

M − 1
(1 − pt)

Mv−
1

M−1
−1 dv. (36)

Taking into account the fact that the probability of exactly l informed neighbors is equal to

C l
Mpl

t(1 − pt)
M−l and applying equation 36, we have

E vt(1 − (1 − pt)
M ) =

M
∑

l=1

C l
Mpl

t(1 − pt)
M−l

EFlt
v

= Vt

1
∫

(1−pt)M−1

M(1 − pt)
M

M − 1
v−

1

M−1
−1 dv

= −Vt M(1 − pt)
Mv−

1

M−1

∣

∣

∣

1

(1−pt)M−1

= VtMpt(1 − pt)
M−1. (37)

Substituting E vt(1 − (1 − pt)
M ) (formula 37) into formula 32 and taking definition for gt

(formula 9), we have the law of motion for Vt (formula 28).

Stage 4. Finding expression for Vt (formulas 12 and 13).

Rearranging terms in formula 28, one can get

Vt =
Vt−1

δgt
− u(1 − δ)

δgt
. (38)

Formula 38 for t = 2 corresponds to the expression for Vt (formula 12). Using formula 38 again,

Vt+1 =

V1

t
∏

i=2

1
δgi

− u(1 − δ)
t
∑

i=2

t
∏

j=i

1
δgj

δgt+1
− u(1 − δ)

δgt+1

= V1

t+1
∏

i=2

1

δgi
− u(1 − δ)

t
∑

i=2

t+1
∏

j=i

1

δgj
− u(1 − δ)

δgt+1

= V1

t+1
∏

i=2

1

δgi
− u(1 − δ)

t+1
∑

i=2

t+1
∏

j=i

1

δgj
,
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which by induction proves formula 12 for any t > 2. Now we want to prove formula 13 for V1.

Expressing V1 through Vt using formula 12 , we get

V1 =



Vt + u(1 − δ)
t
∑

i=2

t
∏

j=i

1

δgj





t
∏

i=2

δgi

=



Vt

t
∏

i=2

δgi + u(1 − δ)



1 +
t
∑

i=3

i−1
∏

j=2

δgj







 . (39)

Values Vt are limited by some constant because of the transversality condition, therefore

lim
t→∞

Vt

t
∏

i=2

δgi = 0

as limt→∞ gt ≡ limt→∞(1−pt)
M−1(M +1−pt) = 0. (Probabilities pt converge to 1.) Therefore,

taking limits both parts of 39 for t → ∞, one gets formula 13 for V1.

To prove V1 < ∞ notice that as values gt = (1− pt)
M−1(M + (1− pt)) converge to 0, for any

ǫ ∈ (0, 1) there exists t0 such that gt < ǫ for any t > t0. Therefore,
∣

∣

∣

∣

∣

∣

V1

u(1 − δ)
−



1 +

t0
∑

i=3

i−1
∏

j=2

δgj





∣

∣

∣

∣

∣

∣

=

∞
∑

i=t0+1

i−1
∏

j=2

δgj <

t0
∏

j=2

δgj

∞
∑

i=t0

ǫi−t0 < ∞.

Step 5. Properties of Vt and EFt v.

Find expression for Vt in terms of pt and gt:

Vt = V1

t
∏

i=2

1

δgi
− u(1 − δ)

t
∑

i=2

t
∏

j=i

1

δgj

= u(1 − δ)



1 +

∞
∑

i=3

i−1
∏

j=2

δgj





t
∏

i=2

1

δgi
− u(1 − δ)

t
∑

i=2

t
∏

j=i

1

δgi

= u(1 − δ)



1 +

∞
∑

i=t+2

i−1
∏

j=t+1

δgj



 .

Values gt decrease with time to zero. Therefore,

∞
∑

i=t+2

i−1
∏

j=t+1

δgj <

∞
∑

i=t+2

i−1
∏

j=t+1

δgj−1 =

∞
∑

i=(t−1)+2

i−1
∏

j=(t−1)+1

δgj ,

and Vt decreases with t. Also, if gj < g for any j > t, then

∞
∑

i=t+2

i−1
∏

j=t+1

δgj ≤
∞
∑

i=t+2

(δg)i−(t+1) =
δg

1 − δg
,

and Vt → u(1 − δ) as gt → 0.
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The average price at period t for M > 2

EFt v =

Vt
∫

Ṽt

v d

(

1

pt
− Ctv

− 1

M−1

)

=

Vt
∫

Ṽt

Ct

M − 1
v−

1

M−1 dv =
Ct

M − 2
v

M−2

M−1

∣

∣

∣

∣

Vt

Ṽt

=
V

1

M−1

t

M − 2

1 − pt

pt

(

1 − (1 − pt)
M−2

)

V
M−2

M−1

t
t→∞−→ 0,

and the average price for M = 2

EFt v =

Vt
∫

Ṽt

Ct

M − 1
v−

1

M−1 dv =
Ct

M − 1
ln v

∣

∣

∣

∣

Vt

Ṽt

=

=
V

1

M−1

t

M − 2

1 − pt

pt
(1 − (M − 1) ln(1 − pt)) lnVt

t→∞−→ 0.

�


