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Abstract

This paper considers the speed of adjustment to long-run equilibria, in the context

of cointegrated Vector Autoregressive Processes (VAR). We discuss the de�nition of

multivariate �-lives for any indicator of predictive ability, concentrating on cumulated

interim multipliers which converge to impact factor for increasing forecasting hori-

zon. Interim multipliers are related to autoregressive Granger-causality coe¢cients,

structural or generalized cumulative impulse responses. We discuss the relation of the

present de�nition of multivariate �-lives with existing de�nitions for univariate time

series and for nonlinear multivariate stationary processes. For multivariate (possibly

cointegrated) VAR systems, �-lives are functions of the dynamics of the system only,

and do not depend on the history path on which the forecast is based. Hence one can

discuss inference on �-lives as (discrete) functions of parameters in the VAR model.

We discuss a likelihood-based approach, both for point estimation and for con�dence

regions. An illustrative application to adjustment to purchasing-power parity (PPP) is

presented.

Keywords: �-life, speed of adjustment, impact factors, vector equilibrium correc-

tion, shock absorption.

J.E.L. Classi�cation: C32, C52, F31.

�University of Bologna, Department of Statistical Sciences, via Belle Arti 41, I-40126 Bologna, Italy.

E-mail: luca.fanelli@unibo.it.
yCorresponding author. Department of Economics, Via Monte Generoso 71, I-21100 Varese, Italy. Email:

paolo.paruolo@uninsubria.it.



Contents

1 Introduction 1

2 De�nitions 3

2.1 The process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Predictions and impulse responses . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Interim multipliers and impact factors . . . . . . . . . . . . . . . . . . . . . 5

2.4 Long-run e¤ects and Granger causality . . . . . . . . . . . . . . . . . . . . . 6

2.5 The concept of �-life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Univariate processes and shock absorption . . . . . . . . . . . . . . . . . . . 9

3 Cointegrated systems 10

4 Inference 12

4.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Con�dence intervals and tests . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 An illustration 16

5.1 Cointegration analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Estimated impact factors and half-lives . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusions 21

Acknowledgements 21

References 22

Appendix A: Impulse responses 24

Appendix B: Long-run Granger causality 26

Appendix C: Proofs 27

Appendix D: Optimization 27



1 Introduction

Many economic relations and identi�cation restriction schemes used in econometric analy-

sis are formulated in terms of the long-run e¤ect that a given variable (shock) exerts on

another variable. A typical example is a neutrality restriction: under long-run monetary

superneutrality, a permanent increase in the growth rate of the money stock should have

no real e¤ects � apart from real balances � in the long-run. On the contrary, endogenous

growth models, such as Barro (1990), predict that government expenditure and taxation

will have permanent (long-run) e¤ects on economic growth.

Although economic theories are generally silent about the processes of adjustment to

equilibria, in many circumstances they provide indications about the speed at which a given

long-run e¤ect must be reached. For this reason, measuring the speed of adjustment has

attracted increasing attention among economists: purchasing power parity (PPP) is one

of the leading examples. Half-lives are typical measures of speed of adjustment; they are

usually de�ned in a univariate context, see e.g. Cheung and Lai (2000), Mark (2001), Kilian

and Zha (2002) and Rossi (2005), inter alia.

The concept of adjustment is however most naturally stated in multivariate terms; this

is the approach taken in Koop et al. (1996) who discuss impulse responses for nonlinear

multivariate systems, and by Pesaran and Shin (1996, 1998) who propose persistence pro�les

and generalized impulse responses as indicators of speed of adjustment in cointegrated

models. In these approaches the speed of convergence is inferred from impulse-response-

type indicators, and no de�nition of multivariate half-life is given.

Recently, vanDijk et al. (2007) analyzed nonlinear system as Koop et al. (1996), and

de�ned multivariate �-lives in this context. The present paper provides similar de�nitions

for the case of cointegrated systems. We de�ne a general indicator of cumulative e¤ect of

one variable on another, which contains also the cumulative impulse response (CIR) used

e.g. in Andrews and Chen (1994) as a special case, and de�ne multivariate �-lives for this

indicator.

The present paper, which is in line with vanDijk et al. (2007), di¤ers from it in several

respects. First of all, due to the nature of cointegrated systems, we focus on the long-run

response on the levels of variables (despite their nonstationarity), and we use the long-

run e¤ect as normalization for long-run �-lives. The explicit calculation of the long-run

e¤ect, which coincides with the de�nition of impact factor (IF) proposed in Omtzigt and

Paruolo (2005), is possible because of the linearity-in-the-variables of the systems; this is not

possible in general for nonlinear systems as the ones discussed in vanDijk et al. The present

approach is discussed with special emphasis on I(1) systems, but it is directly applicable

also to I(2) systems or to systems integrated of higher order.

Secondly, again due to linearity, here both the interim multipliers and the impact factor

do not depend on the history path on which predictions are based. We are hence in the

position to treat the �-lives as functions of the parameters only, and to address the problem
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of inference via likelihood methods as for any function of parameters. We �nd that the

problem of constructing con�dence intervals on the �-life is a nonstandard one, because

the �-life we de�ne is in general an integer. We address this problem by de�ning the set

of �-life values that correspond to asymptotic con�dence sets for the companion matrix,

which is well-de�ned. The calculation of this con�dence sets is non-trivial; we here propose

a new algorithm suitable for this situation.

Thirdly, by focusing on the distinction between long-run and short-run properties of the

system, we are able to distinguish di¤erent speeds of convergence, according to whether a

given variable has signi�cant long-run e¤ects or not on the target variable. It particular

when applying the de�nition of �-life to indicators of short-run speed, one �nds cases

discussed in vanDijk et al. (2007) when applied to linear systems. Moreover, the long-

run 1
2 -life introduced here is shown to specialize to the univariate

1
2 -life in current use for

univariate processes. Hence the present de�nition of �-life is a general one.

Our approach has direct connections to long-run Granger noncausality as de�ned in

Dufour and Renault (1998) and Dufour et al. (2006). We show that long-run Granger

noncausality implies a zero impact factor but not vice versa. We discuss the ensuing various

possible cases, and observe that each one would be best described by a di¤erent choice of

indicator, hence giving rise to di¤erent de�nitions of �-lives.

A special case of the indicator proposed here corresponds to cumulated structural or

generalized impulse responses, see Koop et al. (1996). Thus the present approach covers

all these impulse responses. Moreover, one may apply the present de�nition to persistence

pro�les or other measures based on the variance. However, also due to space constraints,

we restrict attention here to impulse responses.

Our approach to the measure speed of adjustment can be applied to several �elds of

economic research. A typical example is consumption dynamics. Since most theories of

aggregate consumption behavior suggest that consumption is smooth, and di¤er very little

in terms of the predicted amount of consumption adjustment to shocks, Morley (2007)

argues that a more powerful way to test e.g. the permanent income hypothesis (PIH)

against habit formation and precautionary savings, is to determine whether consumption

adjustment to equilibrium is fast (PIH holds) or slow (habit formation and precautionary

savings hold).

PPP adjustment is another example. In the analysis of PPP adjustment, which is the

area of investigation of the empirical illustration in Section 5, a relevant issue is whether

nominal exchange rates or prices reverts faster to equilibrium, see Engel and Morley (2001),

Cheung et al. (2004) and Crowder (2004). The PPP �puzzle� is usually reported as the

di¢culty to reconcile the estimated half-life of PPP deviations, measured by the half-life of

real exchange rates, with the observed price stickiness. If deviations from equilibrium have

a monetary source, then the implied half-life should be no longer than one or two years,

which is roughly the time it takes sticky goods prices and wages to adjust to monetary

shocks; however, Rogo¤�s (1996) survey documents half-lives between three to �ve years
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for developed countries and the post-Bretton Woods period.1 Sticky-price models, in the

Dornbusch (1976) and Mussa (1982) tradition, stress the role of slowly adjusting prices in

determining the reversion rate to equilibrium: given the di¤erential speeds of adjustment

characterizing asset markets and goods markets, the sluggishness of real exchange rates is

directly tied to the speed of adjustment of nominal prices. The expected implication in this

paradigm is that prices should adjust to PPP equilibrium not faster than nominal exchange

rates.

The opposite view, recently supported by Engel and Morley (2001) and Cheung et al.

(2004), maintains that the root of the PPP puzzle may lie in the possibly di¤erent speeds

of convergence for nominal exchange rates and prices, and in particular that it is nominal

exchange rates, not prices, that converge slowly toward PPP.

Another natural �eld of application is the one of policy e¤ectiveness. When the policy

maker may be able to set the value of some instrument variable (government expenditure,

tax rate) with the aim of a¤ecting a target variable, the impact factors de�ned in Omtzigt

and Paruolo (2005) captures, ceteris paribus, the long-run impact of the intervention. Pro-

vided that the policy is e¤ective, the speed at which the variable adjusts to its long-run

level provide valuable information to the policy maker. One may envisage situations where

the policy intervention that is accomplished more quickly is to be preferred over a similar

intervention that would take longer to impact the variable of interest.

All these examples stress the importance of measuring whether a supposed long-run

equilibrium e¤ect is supported by the data, and the speed at which the convergence to

equilibrium takes place. We argue that the concept of �-life provides a comprehensive tool

to address the issue.

The rest of the paper is organized as follows. Section 2 presents the de�nition of �-life

and the relations with the existing concepts of Granger-noncausality, impulse responses,

shock absorption, univariate 1
2 -life. The proofs of this section are reported in Appendix

A. Section 3 specializes these concepts to cointegrated systems of order 1 and de�ned IFs.

Appendix B discusses connections of IF with Granger long�run noncausality in I(1) systems.

Section 4 discusses likelihood-based inference on �-lives. Proofs of this section are reported

in Appendix C, while additional formulae needed in the calculation of con�dence sets are

reported in Appendix D. Section 5 reports the illustration to PPP and Section 6 concludes.

2 De�nitions

This section presents de�nitions. We choose a VAR framework with linear predictors and

quadratic loss function. This choice allows us to concentrate attention on generalized CIR

based on (possibly restricted) cointegrated VAR. Impulse responses are the object of a vast

literature, see e.g. Lütkephol (1990), Sims and Zha (1999). The case of impulse responses in

1 If PPP deviations were driven by real shocks alone, then it is would be hard to explain the high volatility

of real exchange rates.
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stationary nonlinear autoregressive processes is treated in Potter (2000) for the univariate

case, and Van Dijk et al. (2007) for the multivariate one. In most of this section we present

the problem along the lines of Omtzigt and Paruolo (2005), OP henceforth.

The rest of this section is organized as follows. Subsection 2.1 de�nes the forecasting

problem and Subsection 2.2 de�nes a general multiplier for a given forecast horizon h;

many measures in current use are linear combinations of this multiplier. In particular

we characterize the relationships between this multiplier and the autoregressive causality-

coe¢cients of Dufour and Renault (1998), as well as with structural and generalized impulse

responses as de�ned in Koop et al. (1996). Subsection 2.3 de�nes (cumulative) interim

multipliers and impact factors as de�ned in OP, and relates them to the present setup.

These indicators are used in Subsection 2.5 to de�ne (multivariate) �-lives. Subsection

2.6 shows how the present de�nitions of �-life reduces to the usual de�nition for univariate

processes, and discusses relation to shock-absorption measures.

2.1 The process

We assume that the observable variables at date t are collected in a p� 1 vector Xt, which

is generated by a VAR(k) process

�(L)Xt = ��D�
t + �t (1)

where �(L) = I �
Pk
i=1�iL

i, �t is i.i.d. N(0;
), L is the lag operator, � := 1 � L is

the di¤erence operator, 
 is positive de�nite. The vector D�
t represents a d

� � 1 of vector

deterministic component, like the constant. Unless otherwise stated, we assume k � 2 and

we follow the notation used in Johansen (1996).

We assume that the roots of j�(z)j = 0 satisfy z = 1 or jzj > 1. In particular, the case

when there are no roots at z = 1 is called the I(0) case, see Johansen (1996). Recall also

that Xt is called integrated of order j, I(j), if �
jXt is I(0) for j = 1; 2, ... For the I(0), I(1)

and I(2) cases (as well as in the general I(j) case j 2 N), the system (1) can be represented

in terms of a state vector eXt with a stable VAR(1) representation

eXt = A eXt�1 + ut (2)

where ut := J (��D�
t + �t), J := (Ip : 0)

0. Here eXt is ep � 1 and A is ep � ep and stable, i.e.
that all the eigenvalues of A are within the unit disk. The de�nition of the state vector eXt
in the I(0) case is eXt := (X 0

t : ::: : X
0
t�k+1)

0. The I(1) case is described later in Section 3;

for the I(2) case we refer to OP.

In the rest of this section we discuss de�nitions relative to the stable state-space repre-

sentation (2); hence the given de�nitions apply generally to any systems (2).

In this section we use the stationary case with state vector eXt := (X 0
t : ::: : X

0
t�k+1)

0

for illustration purposes, and in order to connect the present concepts to the literature.

Section 3 discusses application of the present concepts to the I(1) case.
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2.2 Predictions and impulse responses

We consider the forecasting problem of eXt+h based on the information set Zt := eXt
�1 :=

( eXt�s; s � 0), and consider a predictor eXt+hjt = g�(h; Zt) = g(h; eXt), where g� and g

represent appropriate functions. We concentrate for simplicity on the case of minimum

mean-square error, linear predictor g, eXt+hjt = Ah eXt, which coincides with the conditional
expectation E

�
eXt+hj eXt

�
for linear processes. In order to stress dependence of eXt+hjt on

the value ex of the conditioning variables, we write eXt+hjt (ex) for Ahex, the point predictor
of eXt+h conditional on eXt = ex.

We next consider changes in ex, from value ex1 to ex2 := ex1 + ev. A measure of sensitivity
of eXt+hjt(ex) with respect to this change in ex is given by

e(h; ev) := eXt+hjt(ex2)� eXt+hjt(ex1) = Ahev;

which is seen not to depend on the level of ex1, but simply on the change ev in ex, due to the
linearity of the predictor eXt+hjt as a function of ex. This e¤ect can be summarized by the
ep� ep matrix coe¢cient

m (h) :=
@e(h; ev)
@ev0 = Ah:

This can be interpreted as a h-step ahead multiplier describing the e¤ect of ev onto eXt+hjt.
Several indicators of forecast sensitivity are linear functions of m(h). Speci�cally, Ap-

pendix A shows that linear functions of m(h) include (i) structural impulse responses, (ii)

generalized impulse response coe¢cients as de�ned in Koop et al. (1996), as well as (iii)

autoregressive causality-coe¢cients de�ned in Dufour and Renault (1998), Dufour et al.

(2006).

Take for instance structural IR. Let �t = B�t where structural shocks �t have expectation

0 and covariance Ip and B is square and nonsingular. Structural IR of J 0 eXt with respect to
�t are usually de�ned as the elements of J

0AhJB, which is seen to be a linear function of

m(h). As a further example, Appendix A shows that a subset of variables does not Granger-

cause another subset of variables at horizon h if mb;a(h) := b0m(h)a = 0 for appropriate

choice of b and a. For later reference, the condition mb;a(h) = 0 is called Granger non-

causality condition at horizon h; if this condition holds for all h, we say it holds at all

horizons. This concept is analyzed in more detail in Subsection 2.4 for the I(0) case; see

Section 3 for the application of these concepts to I(1) systems.

Here we note that m (h) is a generalization of the major sensitivity indicator of pre-

dictability. In the next Subsection we employ m (h) to discuss long-run properties of fore-

casts, which have a direct interpretation for (co-)integrated systems.

2.3 Interim multipliers and impact factors

The h-step ahead multiplier m(h) describes in�uence on forecasts h steps ahead. Given

the stability of (2), however, one can calculate cumulated interim and total multipliers. In
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particular, consider the cumulated e¤ect up to some horizon `:

CE(`; ev) :=
X̀

h=1

e(h; ev) =
X̀

h=1

Ahev =
�
(I �A`+1) (I �A)�1 � I

�
ev:

This e¤ect can be summarized by the ep � ep matrix coe¢cient F (`), called the interim
multiplier up to horizon `:

F (`) :=
@CE(`; ev)

@ev0 =
X̀

h=1

Ah = (I �A`+1) (I �A)�1 � I:

Because A is stable, as ` ! 1 the quantity CE(`; ev) converges to a �nite vector
(I �A)�1 ev, called the total e¤ect of ev, and the interim multiplier F (`) converges to the

limit

F (`) !
`!1

F :=

1X

h=1

Ah = (I �A)�1 � I;

called the total multiplier, or impact factor, see OP, who note that J 0 (F + I) J equals the

CIR of Xt+h with respect to �t evaluated at 1. The matrix coe¢cients F (`) and F hence

represent cumulated e¤ects up to horizon ` or cumulated over all horizons. When some of

the variables in eXt are for instance equal to �Xt � as will be the case for I(1) systems � the
corresponding rows in F (`) and F represent e¤ects on the forecast of the levels Xt+`�Xt,

see the discussion in OP and the following subsection.

Usually we are interested in the e¤ect of a subset of variables xt onto some other subset

of variables yt, where xt := �a0 eXt and yt := b0 eXt and a, b are known, user-de�ned, full-
column-rank matrices. Here �a := a(a0a)�1. It is simple to see that the cumulated e¤ect of

a change in xt on the forecast up to ` periods ahead of yt is given by b
0CE(`; av), where

the change ev in eXt is given by ev = av. The size of the perturbation is represented by the

Euclidean norm of v = �a0ev, jjvjj := (v0v)1=2. Note that the corresponding interim multiplier

is b0F (`) a. In the following we use jjvjj or s jjvjj where s is a given scalar multiple, as

possible denominator in order to normalize the interim multiplier b0F (`) a. In the rest of

the paper a, b simply indicate selection vectors.

2.4 Long-run e¤ects and Granger causality

In this subsection we discuss the relation between F (`) and Granger-noncausality as dis-

cussed in Dufour and Renault (1998). It is observed that Granger-noncausality at all

horizons implies an IF F equal to 0, but not vice versa. This suggests a classi�cation of

cases that is later used to discuss properties of di¤erent speeds of adjustment as measured

by �-lives.

Consider a set of linear combinations b of the forecast variables eXt+h and some linear
combination a of the conditioning variables eXt; we let Fb;a (`) := b0F (`) a and similarly

Fb;a := b0Fa the corresponding linear combinations of multipliers. We say that a0 eXt has
a (cumulated) long-run e¤ect on b0 eXt if Fb;a 6= 0. We label this situation as �Case 1�.
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case condition description

1 Fb;a 6= 0 a0 eXt has a long-run e¤ect on b0 eXt
2 Fb;a = 0 a0 eXt has no long-run e¤ect on b0 eXt
2.1 Fb;a = 0 and mb;a(h) = 0 a0 eXt does not Granger-cause b0 eXt at at all horizons

for all h = 1; :::;1 and hence it has no long run e¤ect on it

2.2 Fb;a = 0 and mb;a(h) 6= 0 a0 eXt Granger-causes b0 eXt at some horizon
for some h but it has no long run e¤ect on it

Table 1: Relations between presence of long-run e¤ects and Granger-causality.

Note that one may have a long-run e¤ect only when a0 eXt does Granger cause b0 eXt at some
horizon h � 0.

Consider now the case Fb;a = 0, where a and b identify di¤erent blocks of variables.

In this case there is no long-run e¤ect, and we say that the e¤ect is �not permanent� or

�transitory�; we label this as �Case 2�. The condition Fb;a = 0 is compatible with Granger

non-causality of a0 eXt on b0 eXt (i.e. with the situationmb;a(h) = 0 for all h = 1; :::;1), which

we label �Case 2.1�. It is also compatible with the situation where a0 eXt Granger-causes b0 eXt,
i.e. when mb;a(h) 6= 0 for some h, but in such a way as to o¤set each other in the sum

Fb;a = 0; we label this as �Case 2.2�. These two situations are not distinguished in Fb;a = 0.

The preceding discussion shows that, while some variables may Granger-cause the vari-

ables of interest, this does not exclude the possibility of zero long-run e¤ects. In this sense,

the condition of zero long-run e¤ect is less stringent than the one of absence of Granger-

causality at all forecasting horizons. For ease of reference, we summarize Cases 1, 2.1 and

2.2 in Table 1.

This paper concentrates on Case 1; in this case, in fact, there is a long-run e¤ect, and it

makes sense to measure speed of adjustment with respect to this long-run e¤ect. We de�ne

a version of �-life that is normalized on this long-run e¤ect, called N�(Fb;a(`); Fb;a) below.

Case 2 is also of (marginal) interest, as it characterizes all temporary e¤ects. Given

the absence of long-run e¤ects, however, speed needs to be measured di¤erently. In fact, it

cannot be normalized on the long-run e¤ect, given that this is equal to 0. To this purpose

we entertain di¤erent de�nitions of �-life, which are normalized with respect to the size

s jjvjj of the perturbation; this is indicated as N�(Fb;a(`); s jjvjj) below.

2.5 The concept of �-life

In this section we discuss the de�nition of �-life in a multivariate context, using the interim

and total multipliers F (`) and F , as de�ned previously. We stress here that the concept

of �-life as a measure of speed is relative to a given indicator. Hence we let c(`) indicate a

generic indicator, such as mb;a (`) or Fb;a (`); Cases 1, 2, 2.1 and 2.2, originally de�ned for

Fb;a (`), are understood to be in terms of the generic indicator c(`). When we need to refer

to the complete sequence c(`), ` = 1; 2; ::: we indicate it as fcg := fc(`)g`2N.

7



Consider �rst Case 1, where Fb;a 6= 0, i.e. c(1) 6= 0; one can normalize c (`) relative to

its long-run value c(1). In other words, consider the ratio

'` :=
c (`)

c(1)
� 1 (3)

where note that '` may also be negative. Because c (`) ! c (1) as ` ! 1, one has

'` ! '1 = 0; note that '` may oscillate wildly before converging to 0. Hence one can

�nd the smallest forecast horizon `� 1 after which '` stays permanently within an interval

�� := [��; �], with � 2 (0; 1). The integer ` is then de�ned as the �-life of the e¤ect c (`),

and it is indicated as N�(fcg; c (1)) in the following.

Because '` is a ratio, the fraction � in the approximation is relative to the �nal value

c (1). Hence the interpretation of the �-life is �the forecast horizon after which c (`) stays

within � a fraction � of its �nal value c (1)� and not the horizon at which a fraction �

of the e¤ect c (1) has been accomplished. The leading choice of � is 12 , and one speaks of

half-life, indicated as N0:5. Note that N0:5 � N0:25 or that N�1 � N�2 for �1 > �2, because

[��2; �2] � [��1; �1].

One can express the de�nition of �-life through the use of the indicators, as in VanDijk

et al. (2007). Consider in fact the indicator variable

I�(c(`); d) := 1 (jc(`)� c(1)j � � jdj) ; (4)

where 1(�) is the indicator function. For Case 1, we are in particular interested in I�(c(`); c(1)),

which takes value 1 if �� � '` � � and 0 otherwise. We note that the formulation (4) of

the event �� � '` � � avoids ratios; this is preferable, because it implies that I� is well

de�ned also in Case 2, i.e. when c (1) = 0. Next de�ne the composite indicator function

PI
�
m (fcg; d) :=

1Y

j=m

I�(c(j); d) (5)

which signals with value 1 the event that all I�(c(j); d) take on the value 1 from j = m

onwards. In other words, PI�m (fcg; d) equals one when �� � 'j � � for all j � m, i.e. i¤

'j has entered the [��; �] band de�nitively. The �-life N�(fcg; d) can then be de�ned as

the integer

N�(fcg; d) :=
1X

m=1

(1� PI�m(fcg; d)) : (6)

Note that 1 � PI�m(fcg; d) contributes a 1 to N�(fcg; d) if '` has not entered the [��; �]

band de�nitively, and a 0 otherwise. In the following we often use the notation N�(c(`); d)

in place of N�(fcg; d). In particular we are interested in N�(Fb;a(`); Fb;a), which we call the

�long-run �-life�. This is designed for Case 1, even though it can be calculated also in Case

2.

Consider next Case 2, where c (1) = 0. The de�nition of I� is also applicable in this

case; more speci�cally I�(c(`); c (1)) = 0 if c(`) 6= 0 and I�(c(`); c (1)) = 1 if c(`) = 0.

Next consider the Cases 2.1 and 2.2 in more detail. Take Case 2.1, where c (`) = 0 for all `,
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which implies c (1) = 0. One has, I�(c(`); c (1)) = 1 for all ` and hence PI
�
m(fcg; c (1)) =

1 for all m. This implies that N�(c(`); c (1)) = 0 for all �. In particular for c(`) = Fb;a(`),

d = c (1) = Fb;a, there is Granger non-causality of a
0 eXt on b0 eXt at all horizons in the

present situation. One hence �nds N�(Fb;a(`); Fb;a) = 0, i.e. a �-life equal to 0.

In particular, this applies to cointegrated VAR(1) processes, when a0 eXt = �0Xt�1 and

when the no-feedback condition b0� = 0 holds. Take, as an example, the cointegrated

VAR(1) process (
�X1t = �

1
2(X1t�1 �X2t�1) + �1t

�X2t = �2t

where Xt := (X1t : X2t)
0 is 2 � 1, � = (1 : �1)0. It can be easily recognized that for

a0 eXt = �0Xt�1 and b
0
2
eXt = �X2t, one has Fb2;a = 0, Fb2;a(`) = 0 all ` (Case 2.1), implying

that N�(Fb2;a(`); 0) = 0 for all �, including � =
1
2 . On the other hand, for a

0 eXt = �0Xt�1

and b01
eXt = �X1t one has Fb1;a = �1 (Case 1), and hence N0:5(Fb1;a(`); Fb1;a) = 2. Hence

N0:5(Fb1;a(`); Fb1;a) > N0:5(Fb2;a(`); Fb2;a), and one is lead to conclude that X2t adjusts

faster than X1t, see e.g. Morley (2007).
2

Consider now Case 2.2 with c (`) 6= 0 up to some horizon, `max say, while c (1) = 0.

In this case there is Granger-causality up to horizons `max, but no long-run e¤ect; one has

I�(c(`); c (1)) = 0, PI
�
m(fcg; d) = 0 up to `max � 1, so that N�(c(`); c (1)) = `max � 1. If

`max =1 thenN�(c(`); c (1)) =1. Again one can specialize these results to c(`) = Fb;a(`),

d = c (1) = Fb;a, and note that one may expect very large �-lives in this case.

The value of N� in Cases 2.1 and 2.2 is hence extreme: equal to 0 in Case 2.1 and

possibly very large or equal to 1 in Case 2.2. These extreme values are however not very

meaningful, because indeed there is no long-run e¤ect, c (1) = 0, and it makes little sense

to �normalize by 0�.

Hence for Case 2 one could consider the alternative solution of normalizing the cumu-

lated interim multiplier c (`) on the size of the perturbation s jjvjj, in the vein of VanDijk

et al. (2007). This corresponds to the �-life N�(c(`); s jjvjj) and to substituting the ratio '`

with '�` := c (`) = (s jjvjj).

We call the �-lives N�(Fb;a(`); s jjvjj) or N�(mb;a(`); s jjvjj) the �short-run �-life�. Ob-

viously N�(Fb;a(`); Fba) and N�(c(`); s jjvjj) are di¤erent measures, which are designed for

cases 1 and 2 respectively. Of course they imply di¤erent �-lives.

2.6 Univariate processes and shock absorption

In this subsection we show that the de�nition of �-life given above reduces to the usual

de�nition of half-life for univariate AR(1) processes and � = 1
2 . We next discuss di¤erences

and similarities of the present de�nition with shock absorption measures, as de�ned in

vanDijk el al. (2007).

2One could argue that there is no adjustment of X2t to �
0Xt�1, and that measuring speed of adjustment

is hence questionable here.
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We �rst consider the univariate AR(1) case, Xt scalar with A 6= 0, jAj < 1. Obviously

in this case only a = 1, b = 1 are the only possible choices, so we use F (`) and F with

no subscripts; we consider the half-life N0:5 (F (`) ; F ) as de�ned previously. Because F =

A=(1 � A) 6= 0, one can consider the ratio '` with no loss of generality; one �nds F (`) =

A
�
1�A`

�
=(1�A) = F

�
1�A`

�
and hence

'` =
F (`)

F
� 1 = 1�A` � 1 = �A`;

where jAj < 1 by the stationary requirement. Hence j'`j < � if and only if
���A`

�� < �, where���A`
�� = jAj`, and one �nds N� (F (`) ; F ) = dln�= ln jAje; here d�e indicates the smallest

greater integer function. We hence see that N0:5 (F (`) ; F ) delivers the usual notion of

half-life, see e.g. Kilian and Zha (2002), Rossi (2005) and reference therein.

We next discuss di¤erences of the present approach with �-lives as de�ned in vanDijk

et al. (2007) in the context of shock absorption. We argue that these di¤erences come

naturally from the di¤erent contexts: here we discuss linear nonstationary systems, while

vanDijk et al. (2007) are concerned with nonlinear stationary systems.

The �rst di¤erence is that in nonlinear systems, �-lives N� depend on the history path

Zt�1 as well as on the values of the perturbation, here represented by v = J 0ev. This is
re�ected e.g. in eq. (11) in vanDijk et al., where the �-life N� is de�ned also as a function

of the current shock to �t, which depends on v = J 0ev, and of the information variables Zt�1.
Because of the present linear system approach, we �nd that N� is independent of v and

Zt�1.

As a consequence Van Dijk et al. (2007) proceed by considering the distribution of

N� as a function of the random variables v and Zt�1 for �xed values of the autoregressive

coe¢cients, and de�ne appropriate summary measures of its distribution. In our context,

N� does not depend on v and Zt�1, and we here treat N� (Fb;a (`) ; Fb;a) as a function of A,

the companion matrix. In practice, A needs to be estimated (see Section 4 below) and we

address the inference problem of N� as a (discrete) function of the parameters in A.
3

A �nal third di¤erence lies with the scaling of the forecast indicator. Van Dijk et al.

(2007) use d = jjvjj � c (1) in de�nition (4) above, while we prefer to scale c (`)� c (1) by

the terminal value itself d = c (1). This choice is natural in the present context, because

the speed of convergence is measured relative to the impact factor c (1) = Fb;a.

We next specialize the present de�nitions to the case of cointegrated I(1) systems.

3 Cointegrated systems

In this section we consider cointegrated I(1) systems in more detail, and apply the above

de�nitions of �-life. It is well known, see Johansen (1996), that process (1) generates I(1)

variables with no linear trend if the following conditions hold:

3We also allow a, b to possibly depend on other parameters like 
, as it is the case for structural IR.
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� I(1)_a: every root z of the characteristic polynomial of Xt satis�es z = 1 or jzj > 1.

� I(1)_b: � := ��(1) = ��0, where � and � are p� r matrices of full rank r < p and

�1 = ��00 with �
0
0 a r � 1 vector.

� I(1)_c: �0?��? has full rank p� r, where � := I �
Pk�1
i=1 �i.

We call these conditions the �I(1) assumption�. Other speci�cations of the deterministic

components can be considered as in Johansen (1996). We concentrate attention to this

simple case, because it is the relevant one in the empirical illustration.

Under the I(1) assumption, the VAR can be written in (many equivalent) companion

forms. Following OP, we let eXt :=
�
�X 0

t : X
0
t�1� : U

0
t

�0
be the state vector, where Ut :=

(�X 0
t�1 : ... : �X

0
t�k+1)

0 is of dimension m� 1, and � is a basis of the cointegration space

in Assumption I(1)_b. Furthermore, de�ne ��1 := ��0+�1, �1 := �2, �2 := (�3: ...: �k�1).

The associated state space representation is

eXt = A eXt�1 + ut

with ut := J(��D�
t + �t), J := (Ip : 0p�m+r)

0, and

A :=

 
A11 A12

A21 A22

!
:=

p r p m� p0
BBBBB@

��1 �

�0 Ir

�1 �2

Ip

Im�p

1
CCCCCA

p

r

p

m� p

(7)

where we have reported dimensions alongside blocks of the state vector and of the companion

matrix. For brevity the A22 block in (7) is partitioned in blocks of p and m� p rows times

m � p and p columns, unlike the other blocks. Zero entries are not reported unless when

needed for clarity.4

We next recall that for the present choice of state vector, the �rst p rows of F (`) and

F can be associated with the level of Xt+` and X1 respectively. Let in fact ex2 = ex1 + ev
and xi := J 0exi, i = 1, 2, v := J 0ev; note that J 0 eXt+h = �Xt+h and

J 0CE (`; ev) =
X̀

h=1

J 0
�
eXt+hjt (ex2)� eXt+hjt (ex1)

�
=
X̀

h=1

�Xt+hjt (ex2)�
X̀

h=1

�Xt+hjt (ex1)

=
�
Xt+`jt (ex2)� x2

�
�
�
Xt+`jt (ex)� x1

�
=
�
Xt+`jt (ex1 + ev)�Xt+`jt (ex1)

�
� v

Hence one has

J 0F (`) = J 0
@CE (`; ev)

@ev0 =
@Xt+`jt (ex1 + ev)

@ev � J 0;

J 0F =
@X1jt (ex1 + ev)

@ev0 � J 0; (8)

4Note that the companion form (7) is formulated for k � 2. This assumption is not restrictive from

a representation point of view, because any VAR(1) can be written as VAR(2) with a zero second order

matrix coe¢cient. OP discuss how the inference procedures should be modi�ed to account for the case of a

VAR(1) also in estimation and testing.
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where by linearity we know that @Xt+`jt (ex1 + ev) =@ev0 does not depend on ex1 In words, the
�rst block of p rows of the interim multipliers F (`) and of the impact factors F represent

the variation induced onto the levels of the process by the changes ev in eXt. This observation
was �rst made by Bedini and Mosconi (2000).

The form of F for I(1) systems has been derived in OP; this representation is relevant

for hypothesis-testing on Fb;a. Under Assumption I(1)_a , the eigenvalues of A are less

than 1 in modulus, and hence the companion matrix A in (7) is stable. OP show that the

IF F is in this case given by

F + I =

0
BB@

B B

 
 

0

!

(ik�2 
 I : 0)B c1 + ik�2 
 C 

1
CCA

=

0
BB@

C (C�� I)�� C 

��0(�C � I) ��0(�C�� �)�� ��0(�C � I) 

ik�2 
 C ik�2 
 (C�� I)�� c1 + ik�2 
 C 

1
CCA ;

where

B :=

 
C (C�� I)��

��0(�C � I) ��0(�C�� �)��

!

c1 := c2 
 Ip, with c2 a lower triangular matrix with ones on and below the main diagonal,

C = �? (�
0
?��?)

�1 �0?,  := ( 2 : ::: :  k�1),  i =
Pk�1
j=i �j . This structure of F allows

to formulate hypothesis like Fb;a = 0 in terms of the parameters of the process for each

choice of a and b. The relation between impact factors and long-run Granger causality is

discussed in Appendix B.

4 Inference

In this section we describe how likelihood-based inference on �-lives can be obtained from

corresponding likelihood-based inference on A, with special reference to the I(1) case. This

is the relevant case in many applications, such as the one reported in Section 5.

The impact factors Fb;a play a relevant role in the de�nition and normalization in the

de�nition of N� (Fb;a (`) ; Fb;a). In particular the hypothesis

H0 : Fb;a = 0; (9)

can be tested before the estimation of N� (Fb;a (`) ; Fb;a). Tests of (9) can be performed

as proposed in OP Section 6. Some of the hypotheses of the form (9) concern only the

matrix C, and one can also use the testing approach described in Paruolo (1997), Section 7.

Finally, sometimes (9) concern only the column space of C, and one can employ, inter alia,

the LR tests proposed in Paruolo (2006). In the rest of this paper we assume that tests

of (9) have been performed. If such tests do not yield a rejection, we advise to consider a

short-run �-life of the form N� (Fb;a (`) ; jjvjj). If the test has yielded a rejection, one can
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consider the long-run �-life N� (Fb;a (`) ; Fb;a) assuming (9) is false. The latter has been

labelled Case 1 above, while the former Case 2. The rest of the paper focuses on long-run

�-life N� (Fb;a (`) ; Fb;a) under the assumption that Fb;a 6= 0.

4.1 Estimation

We consider the I(1) models de�ned in Johansen (1996) as the class of VAR processes (1)

where � = ��0, with � and � matrices of dimension p � r and all other parameters are

unrestricted, with 
 symmetric and positive de�nite. Among these models we concentrate

on those which exclude trend-stationary behavior. In particular in the application we

consider the model called H3 in Johansen (1996), with D
�
t = 1 and �1 unrestricted, as well

as model H2 which is the submodel of H3 where �1 = ��1, with �1 unrestricted.

Likelihood-based inference on the cointegration rank in these models is summarized in

Johansen (1996) to which we refer for details. Once inference on the cointegration rank

and on the speci�cation of deterministic components is performed, these can be �xed in

subsequent analysis.

Next one can test hypothesis on �, like � = (1 : �1)0. This is relevant for instance

in applications to PPP such as the one reported in Section 5. If this test does not reject,

one can impose � = (1 : �1)0. Otherwise the cointegrating vector � can be estimated

unrestrictedly.

As it is well known, this estimator of � is superconsistent, so that � can be considered

�xed in the de�nition of the companion matrix A; only b��1, b�, b�1, b�2 contribute to the
�rst order asymptotic variance of bA. In particular, let b� be the ML estimate of � described
e.g. in Johansen (1996). Here the companion matrix A = (G�0 : L0)0 in (7) is decomposed

in the block of the �rst p rows, called G�, and the block of the remaining r + m rows,

called L. The latter block L contains known values (zeros and ones) as well as �. It can

be estimated by plugging-in b� for �, obtaining the estimator bL. Next b� is substituted for
� in the state vector eXt�1 :=

�
�X 0

t�1 : X
0
t�2� : U

0
t�1

�0
, obtaining the regressors bX1t. G� is

estimated from the regression

�Xt = G� bX1t + constant+ error.

Finally bA := ( bG�0 : bL0)0. OP Theorem 5 �nd that as T !1

T 1=2H 0 vec( bA0 �A0) d
! N(0; V ); V := 

 ��1

where � := E

��
eXt � E( eXt)

��
eXt � E( eXt)

�0�
. Here V is a positive de�nite matrix, H :=

(J 
 Ip) = (Ig : 0)
0 a known selection matrix with g := p(p+ r+m) columns, vec indicates

the column stacking operator and
d
! indicates convergence in distribution. V can be consis-

tently estimated by the plug-in estimator bV := b

cM�1
11 where

b
 := cM�� := T�1
PT
t=1b�tb�0t,

cM11 := T�1
PT
t=1

bX1t bX 0
1t �

�
T�1

PT
t=1

bX1t
��

T�1
PT
t=1

bX1t
�
.
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We observe that N� (Fb;a (`) ; Fb;a) is a function of the companion matrix, for �xed a and

b, which we express as N� (Fb;a (`) ; Fb;a) = h�(A); a likelihood based estimator for the half-

life is obtained as bh� = h�( bA) i.e. by substituting A with bA as an argument of the function
h�(�). bh� is hence the likelihood-based, plug-in estimator of the �-life N� (Fb;a (`) ; Fb;a).
The likelihood-based, plug-in estimator of the short-term �-life N� (Fb;a (`) ; jjvjj) is de�ned

similarly; we do not re�ect the di¤erence in the function h� in the notation, but simply

note that h� represents a di¤erent discrete function for each �-life N� (Fb;a (`) ; Fb;a) or

N� (Fb;a (`) ; jjvjj).

4.2 Con�dence intervals and tests

In this subsection we de�ne con�dence intervals for the �-lives N� (Fb;a (`) ; Fb;a) and

N� (Fb;a (`) ; jjvjj), where for the former we assume Fb;a 6= 0. We consider the ratio '`

de�ned in (3) as a function of A, '` = '` (A). Proofs of propositions in this section are

collected in Appendix B.

We �rst introduce some notation. Let A be a con�dence set (an ellipsoid) for the

companion matrix A, obtained using the asymptotic normality of bA; speci�cally,

A := fA : T vec( bA0 �A0)0H bV �1H 0 vec( bA0 �A0) � �21�� (g)g

=

�
A : T tr

�
cM11

�
bA�A

�0
J b
�1J 0

�
bA�A

��
� �21�� (g)

�
;

where �21�� (g) is the 1 � � quantile of a �2 distribution with g degrees of freedom. For

large samples, T ! 1, one has Pr (A 2 A) ! 1 � �. We assume that all values of A 2 A

are stable, a property that holds for large T if A is stable in the data generating process.5

De�ne also the setH� := fh�(A); A 2 Ag as the set of all values of the �-life h� obtained

for any choice of A 2 A. In order to emphasize that the following proposition does not

depend on convergence results, we state it for a con�dence set A for which Pr (A 2 A) =

1� �.

Proposition 1 Let A be a con�dence set for A, i.e. Pr(A 2 A) = 1 � �. Let the set

H� := fh�(A); A 2 Ag be the corresponding set of values h, where h is any measurable

function of A, possibly discrete. Then

Pr (N� 2 H�) � Pr (A 2 A) = 1� �;

i.e. H� is a con�dence set for h with coverage probability at least equal to 1� �.

The above proposition de�nesH� as a con�dence set for the �-livesN� (Fb;a (`) ; Fb;a) and

N� (Fb;a (`) ; jjvjj). The min and max values in H�, called h
�
min, h

�
max provide bounds for

5For �nite sample, this may not be the case, i.e. some of matrices A 2 A may have eigenvalues on or

outside the unit disk. In this case Fb;a (`) may be unde�ned (if some of the roots of A are equal to 1), and

if it is, Fb;a (`) will generally fail to converge, and hence Fb;a does not exist and/or it is �1. In this case,

in the empirical illustration we conventionally assign value 1 to N�(Fb;a (`) ; Fb;a).

14



the �-life N�, with assigned coverage probability � 1� �. Note that, unlike con�dence in-

tervals for impulse responses IR(`) calculated by the �-method, see e.g. Lütkepohl (1990),

which hold pointwise for �xed `, the con�dence set h�min � N� � h�max delivers a coverage

probability of 1� �.

In order to use H� in practice, one is left with the problem of how to calculate H�.

The problem is that A is uncountable, and a direct grid search may be unfeasible in many

dimensions. Note that h� (A) is a discrete function, and hence it is not di¤erentiable as a

function of A; hence one cannot apply Newton-like methods directly to it.

However, one can �nd extreme values of '` = '` (A) in (3) as a function of A 2 A.

Speci�cally, �x ` 2 N; the optimization problems

'`;min := min
A2A

'` (A) ; '`;max := max
A2A

'` (A) (10)

are well de�ned over the compact set A and have a global minimum and maximum. Let

A`;min := argminA2A '` (A), A`;max := argmaxA2A '` (A) denote the values of A that

optimize (10). Note that the subset of values which includes A`;min, A`;max, ` 2 N, is a

countable subset of A. We exploit this subset to deduce information on the location of h�min

and h�max in the following way.

Consider the pair '`;min, '`;max and the associated interval �` := ['`;min; '`;max], which

we compare with the interval �� := [��; �]. For large values of `, we know that both '`;min

and '`;max converge to 0, because of the assumed stability of all A 2 A. Hence �` becomes

a subset of �� for large `. We can picture the relation between �` and �� drawing a graph

of �` and �� against `. �� describes a horizontal band around the ` axis, plus or minus �.

�` instead describes a sequence of intervals, whose length and whose endpoints all converge

to 0 for `!1.

In order for the �` intervals to become subsets of �� for large `, they need to have

nonempty intersection with it. One can hence compute the �rst lead time `1 at which

�j \ �� 6= ; in the following way

`1 :=
1X

m=1

mY

j=1

1 (�j \ �� 6= ;) :

Similarly one can compute the smallest value of ` at which �`+j � �� for all j = 0, 1, 2, ...

as follows

`2 :=

1X

m=1

0
@1�

1Y

j=m

1 (�j � ��)

1
A :

The following proposition shows that `1 and `2 convey valuable information on h
�
min and

h�max.

Proposition 2 One has h�min � `1 and h
�
max = `2. Hence `1, `2 de�ne conservative bounds

on the �-life N�, i.e. as T !1

Pr (`1 � N� � `2)!  � 1� �:
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Figure 1: Levels of et and pt for JP and GE.

This proposition allows to �nd h�max and the approximate location of h
�
min using the

extreme values of the optimization problems (10). In order to show that h�min = `1 and not

> `1, it is enough to �nd a value of A 2 A for which h� (A) = `1; trial values for A are

provided by A`1;1, or the values of A visited by the Newton-like algorithm in the search

for A`1;1. One may decide to simply compute `1, `2 as con�dence bounds for N�, or to

investigate further if one can �nd an A 2 A for which h� (A) = `1, so that to establish if

h�min = `1.

Both solutions are based on the optimization problems (10). In practice it is su¢cient

to solve them for ` = 1; :::; `max, for a suitably large `max. In Appendix C we report relevant

derivatives of '` (A) that facilitate application of Newton-like methods to (10).

5 An illustration

In this section we illustrate empirically how the �-life de�ned in equation (6) and the

inference methods discussed in Section 2 can be applied to measure the speed of adjustment

of nominal exchange rates and prices to PPP, for suitable choices of b0 eXt and a0 eXt (and, if
required, for a given structuralization of VEC shocks, see Appendix A). We focus on the

two most heavily traded exchange rates pairs during the period 1973-1998, namely dollar-

deutschmark and dollar-yen. The monthly exchange rates and relative prices for the period

1973-1998 for these two country pairs are presented in Figure 1 and 2, along with their �rst
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Figure 2: �et, �pt for JP and GE.

di¤erences.6 Calculations were performed in Gauss and Ox.

We consider an I(1) bivariate VAR(2) system for Xt = (et : pt)
0, where et is the log

of the nominal exchange rate (domestic vs foreign currency), and pt := pdt � pUSt is the

log of relative prices (domestic vs foreign), with pdt the log of the CPI index, d =GE, JP,

US. When also the real exchange rate qt = et � pt is I(0), as predicted by PPP, one can

de�ne the state vector eXt = (�et : �pt : qt�1)0 . In this case, given e.g. b0 = (1 : 0 : 0) and
a0 = (0 : 0 : 1), the quantity Fb;a = b0

P1
h=0A

ha = b0(F+I)a captures the long-run response

of the nominal exchange rate et (and not the depreciation rate �et) to variations in the

real exchange rate qt. Accordingly, in this set-up the �-life of Fb;a represents a measure of

speed for the adjustment of the nominal exchange rate to PPP deviations.

For easy of reference throughout this section we shall use the notation Fb1;a := Fe;q and

Fb2;a := Fp;q, where b
0
1 = (1 : 0 : 0), b02 = (0 : 1 : 0) and a is de�ned as above. Other

IFs of interest in this application are Fa;b1 := Fq;�e and Fa;b2 := Fq;�p, which capture the

�permanent� (or �transitory�, if equal to zero) response of the real exchange rate to variations

in the depreciation rate and in the in�ation di¤erential, respectively. Finally, Fa;a := Fq;q

can be regarded as the long run response of the real exchange rate to composite variations

in nominal exchange rates and prices. Note that N0:5(Fq;q(`); Fq;q) is usually interpreted in

6Nominal exchange rates are expressed as national currency units per 1 U.S. dollar; prices, which are

measured in terms of CPI indices, are seasonally unadjusted and have base year 2000. Data are taken from

the International Monetary Fund�s IFS on-line database, and cover the period 1973.04�1998.12, prior to the

introduction of the Euro. See http://ifs.apdi.net/imf/logon.aspx.
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the literature on PPP as the half-life of real exchange rates.

Using the half-life as criterion, and provided that both Fe;q and Fp;q are di¤erent from

zero (Case 1), the comparison of the �-lives N0:5(Fe;q(`); Fe;q) and N0:5(Fp;q(`); Fp;q) al-

lows to establish whether nominal exchange rates or prices revert faster to equilibrium

in response to PPP deviations. Conversely, the comparison of N0:5(Fq;�e(`); Fq;�e) with

N0:5(Fq;�p(`); Fq;�p) reveals whether PPP deviations (real exchange rates) adjust faster in

response to exchange rate depreciations or in�ation di¤erentials, respectively.7

5.1 Cointegration analysis

As in Cheung et al. (2004), we use cointegrated VECs of the form Xt := (et : pt)
0.

Although in principle VAR shocks can be opportunely orthogonalized (see Appendix A),

in this case the analysis does not take any theoretical stand on the process of adjustment

driving exchange rates and prices. More precisely, we do not impose any speci�c structural

restrictions other than the long-run PPP condition, as in Cheung et al. (2004).

The simple graphical inspection of Figure 1 suggests that nominal exchange rates peak

around 1985. Although there is not a general consensus among economists, a shift in the

policy regime towards a more active stance in managing external imbalances through policy

coordination might have occurred in the aftermath of the Plaza Agreement of September

1985, see e.g. Klein et al. (1991). For this reason, before investigating the speed of PPP

reversion of nominal exchange rates and prices, we apply Hansen�s (2003) test for structural

changes to establish whether the Plaza Agreement, other than representing a watershed in

the active management of exchange rates among industrialized countries, also changed the

structure of PPP adjustment.

lnLik model lnLik model

with break in ��0 no break LR df p-value

GE/US 1934.94 1928.75 12.38 4 0.015

JP/US 1717.92 1709.05 17.74 4 0.001

Table 2: Hansen�s (2003) test for structural changes in the cointegrated VECs. Full Sample:

1973.04-1998.12, location of break: 1985.09, model H2, VAR(2), r = 1.

Hansen�s (2003) LR tests, reported in Table 2, compare the likelihood of the cointe-

grated VEC (et and pt are cointegrated) where the matrices � and � do not change before

and after the break date (restricted model), with the likelihood of the VEC where the ma-

trices � and � (and the covariance matrix 
) take di¤erent values before and after 1985.09

(unrestricted model). Each estimated VEC includes k = 2 lags and a constant restricted

7Note that di¤erently from what recently claimed in the literature, where it is reported that VECs

imply the same speed of adjustment to equilibrium for the variables (Morley, 2007), there is no reason for

N0:5(Fe;q(`); Fe;q) and N0:5(Fp;q(`); Fp;q) (or N0:5(Fq;�e(`); Fq;�e) and N0:5(Fq;�p(`); Fq;�p)) being equal.
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Model r = 0 r � 1 �i( bA), r = 1 �2 lnLR (H2(1)jH3(1))

GE/US H2 22.66�� 6.96 0.939, 0.293, 0.003 2:52 [0:11]

JP/US H3 14.78� 5.40 0.928, 0.158, 0.02 3:92 [0:048]

Table 3: Cointegration tests, sample: 1985.09 - 1998.12. p-values in square brackets. �i( bA):
eigenvalues of the estimated companion matrix. **: signi�cant at the 0.05, *: signi�cant

at the 0.10 levels.

b� or b�� b� =
 
b�e
b�p

!
�2 lnLR ( = �1) restricted b�

GE/US

0
BB@

1

b
b�0

1
CCA =

0
BBBB@

1

1:71
(1:39)

�0:95
(0:41)

1
CCCCA

0
B@

�0:047
(0:014)

�0:0031
(0:0014)

1
CA 2:18 [0:14]

0
B@

�0:083
(0:023)

�0:0027
(0:0023)

1
CA

JP/US

 
1

b

!
=

0
@

1

�0:904
(0:61)

1
A

0
B@
�0:058
( 0:021)

0:0019
( 0:0017)

1
CA 0:01 [0:92]

0
B@
�0:058
(0:021)

0:0021
(0:0017)

1
CA

Table 4: Parameter estimates, sample: 1985.09 - 1998.12. Standard errors in parentheses,

p-values in square brackets.

to the cointegration space (henceforth model H2).
8 The results in Table 2 support the

existence of a structural break in 1985.09 a¤ecting � and �; for this reason throughout the

analysis of PPP adjustment will be based on the �post-Plaza� period, 1985.9-1998.12.

Tables 3-4 report empirical results on PPP obtained on the sub-sample 1985.9-1998.12.

Table 3 reports, for each country pair, Johansen�s (1991) likelihood ratio (LR) trace tests for

cointegration rank and the estimated eigenvalues of the VEC companion matrices obtained

after having �xed the cointegration rank at r = 1; they also report the LR test for the

speci�cation H2 against H3 (unrestricted constant).
9 Table 4 summarizes, for each country

pair, the estimated cointegrating vectors �� = (1:  : �0)
0 for model H2, and � = (1: )0

for model H3, the corresponding short run adjustment coe¢cients � = (�e : �p)
0, a LR test

for the over-identifying restriction of long-run proportionality ( = �1 in �, which implies

that �0Xt := qt = et�pt is mean-reverting), with the corresponding adjustment coe¢cients

8The number of lags k was �xed by combining standard information criteria with diagnostic tests on the

residuals. For both country pairs we obtain k = 2, with insigni�cant residual serial correlation and moderate

deviations from normality. The VEC relative to Japan and the United States includes a set of demeaned

seasonal dummies, and an unrestricted impulse dummy taking values one at 1997.04, and zero elsewhere,

to account for a relatively large variation in relative prices. Finally, the tests presented in Table 1 maintain

that the parameters in the matrix �1 of the two estimated VECs are not a¤ected by the structural break.
9We also considered tests for cointegration rank r jointly with the choice of deterministic parts (model

H2 versus H3), which consists in the joint selection procedure described in Johansen (1996), Chapter 12.

This procedure ha led to the choice of models listed in Table 3 for the subsample 1985.9-1998.12. Di¤erences

in the results between models H2 and H3 are, in this case, negligible.
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GE/US JP/US

A. Impact Factors

Fe;q Fp;q Fq;�e Fq;�p Fq;q Fe;q Fp;q Fq;�e Fq;�p Fq;q

-1:07
(0:05)

-0:07
(0:05)

12:25
(3:65)

-4:33
(13:37)

11:52
(4:18)

-0:96
(0:05)

-0:04
(0:05)

15:89
(5:43)

-25:82
(15:03)

14:57
(5:85)

B. Long-run half-lives N0:5 (months) with 95% con�dence sets `1-`2

8 - 8 - 8 10 - 10 - 10

7-10 - 6-10 - 6-10 9-11 - 9-11 - 9-11

Table 5: Impact factors F and half-lives N0:5, sample 1985.09-1998.12. Standard error in

parenthesis.

obtained under that restriction.

Overall the results in Tables 3-4 show that long-run PPP, interpreted as stationary real

exchange rates, seems to hold for both country pairs over the period 1985.09-1998.12. Even

if the persistence of each estimated VEC, measured by the highest estimated eigenvalue of

the companion matrix appears relatively high, in both cases the presence of I(2) stochastic

trends can be ruled out.10 Moreover, VEC estimates suggest that relative prices behave as

weakly exogenous variables, i.e. they do not respond to lagged PPP deviations, whereas

nominal exchange rates seem to accomplish all short-run adjustment. It can be argued,

therefore, that nominal exchange rates are the primary variable that change in order to

restore PPP equilibrium in the short-run. This does not necessarily mean that prices do

not adjust to PPP deviations in the long-run. Long-run e¤ects are investigated in Section

5.2.

5.2 Estimated impact factors and half-lives

Given the system eXt = (�et : �pt : qt�1)0, the IFs Fe;q and Fp;q quantify the �permanent�
(or �transitory�, if equal to zero) response of the nominal exchange rate et and the (relative)

price level pt respectively, to variations in the real exchange rate qt. In turn, Fq;�e and

Fq;�p allow to establish whether PPP deviations respond permanently (or temporarily, if

equal to zero) to exchange rate depreciations and in�ation di¤erentials, respectively.

Panel A of Table 5 reports the estimated IFs for both country pairs, with corresponding

standard errors. Estimates show that in both cases Fe;q is signi�cantly di¤erent from zero

(Case 1), whereas the hypothesis Fp;q = 0 is never rejected (Case 2), suggesting that real

exchange rates do not long-run Granger-cause prices, i.e. they have only transitory e¤ects

on them. Likewise, exchange rate depreciations have a permanent impact on PPP deviations

(Fq;�e 6= 0), whereas in�ation di¤erentials do not (Fq;�p = 0).
11

10We also carried out I(2) tests; the test did not imply existence of I(2) components for either country.

These results are not incompatible with Bacchiocchi and Fanelli (2005), who �nd an I(2) stochastic trend

for the GE/US pair over the longer period 1973.04-1998.02.
11This is further con�rmed by the fact that bFq;�e ' bFq;q for both country pairs.
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The results in Panel A of Table 5 remark the role of nominal exchange rates as the

long-run (other than short-run) bu¤er of PPP deviations on the one hand, and reinforce

the idea, already envisaged from the estimated adjustment coe¢cients �s of Table 4, that

relative prices seem to behave as the stochastic common trend driving the system in the

long-run, on the other hand.

The estimated IFs in Table 5 con�rm that for the two country-pairs the implied half-lives

N0:5(Fe;q(`); Fe;q) and N0:5(Fp;q(`); Fp;q) and N0:5(Fq;�e(`); Fq;�e) and N0:5(Fq;�p(`); Fq;�p)

are not directly comparable, as argued throughout the paper. In particular, as remarked

in Section 2.5, Case 2 entails �extreme� values of the �-life, precluding a meaningful com-

parison with �-lives based on signi�cant long-run e¤ects. Panel B of Table 5 summarizes

the point estimates of the �long-run� half-lives relative to Case 1, i.e. N0:5(Fe;q(`); Fe;q),

N0:5(Fq;�e(`); Fq;�e) and N0:5(Fq;q(`); Fq;q), along with 95% con�dence intervals which are

computed following the method outlined in Section 4.2 and Appendix D. It can be noticed

that the estimated N0:5s for the nominal and real exchange rates seem in line with the

prediction of sticky-price models, as the corresponding upper bound of con�dence intervals

do not exceed 12 months.

6 Conclusions

In this paper we address the issue of inferring the speed of adjustment of economic variables

to their long-run equilibria, in the context of cointegrated VAR processes. We de�ne the

multivariate �-life as a measure of speed at which a given variable adjusts to its long-run

(permanent) position, in response to variations (shocks) in another variable. The de�nition

of �-life can be appropriately specialized, depending on whether the long-run e¤ect is zero

or not, where the latter is measured by the concept of IF. For this reason, we argue that one

can hardly compare the speed of adjustment of e.g. two variables having zero and non-zero

IF respectively.

The paper shows that the concept of multivariate �-life nests several special cases. For

instance, when applied to interim multipliers, it delivers the �-lives of shock absorption dis-

cussed in vanDijk et al. (2007) for nonlinear systems; moreover it reduces to the traditional

notion of half-life typically used by economists in the univariate framework for � = 1
2 .

We discuss likelihood-based inference on multivariate �-lives, showing that the problem

of constructing con�dence intervals is nonstandard. A new method is provided and its

asymptotic properties discusses. It is shown how conservative con�dence bounds can be

obtained.

An empirical illustration focused on PPP adjustment of deutschmark-dollar and yen-

dollar exchange rates reveals that the 1
2 -life of nominal exchange rates and prices are not

directly comparable, so that one can hardly conclude that prices revert to PPP more quickly

than nominal exchange rates.
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Appendix A: Impulse responses

In this Appendix we relate the h-step ahead multiplier m(h) to impulse responses for the

I(0) case. The three di¤erent measures of forecast sensitivity are (i) �structural� impulse

responses, (ii) generalized impulse responses, as de�ned by Koop et al. (1996) and (iii)

the generalized causality-coe¢cients considered in Dufour and Renault (1998), Dufour et

al. (2006). The relations of m(h) with (i) and (ii) have already been documented in OP,

section 3.5 and 6.3; here we give a few more details on these relations and add the ones

with (iii). The extension of case (iii) to the I(1) case is discussed in Appendix B.

(i) Structural impulse responses

In structural impulse responses, the reduced form p� 1 shocks �t are related to structural

p� 1 shocks �t with a relation of the form �t = B�t, where B is nonsingular and typically

var(�t) = Ip, 
 = BB0. The impulse response (IR) of Yt+h := J 0 eXt+h with respect to
�t = v is given by IR(h; v) = J 0AhJBv, which is seen to be a linear function of m(h):

IR(h; v) = J 0m(h)JBv:

(ii) Generalized impulse responses

Let Zt be the information set available at time t, here equal to eXt
�1 := ( eXt; eXt�1; :::),

and let the variables to forecast be (a subset of) Yt+h := J 0 eXt+h. The generalized impulse
response (GIR) is de�ned as

GIR(h; v; Zt�1) := E(Yt+hj�t = v; Zt�1)� E(Yt+hjZt�1) = J 0AhJv (11)

see Koop et al. (1996) page 133 and Pesaran and Shin (1998). Eq. (11) shows that the

GIR is a linear function of the multiplier m(h). For the case Gaussian errors, �t � N(0;
),

Koop et al. (1996) also consider single shocks, obtained by linear combination of �t. Let c

be a p� 1 selection vector and c0 a known value; then they de�ne the GIR with respect to

c0�t as follows

GIR(h; c0�t = c0; Zt�1) := E(Yt+hjc
0�t = c0; Zt�1)� E(Yt+hjZt�1) = J 0AhJ
c(c0
c)�1c0:

(12)

The GIR(h; c0�t = c0; Zt�1) in (12) is seen to be a special case of (11) for v = 
c(c
0
c)�1c0,

and hence a linear function of the multiplier m(h).
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As a �nal special case, consider c = ei, where ei is the i-th column of Ip, and the choice

c0 = (c
0
c)1=2. Let also GIR� be the horizontal concatenation of GIR(h; e0i�t = 


1=2
ii ; Zt�1)

for i = 1; :::; p,

GIR� := (GIR(h; e01�t = 

1=2
11 ; Zt�1) : ::: : GIR(h; e

0
p�t = 


1=2
pp ; Zt�1)):

One �nds that

GIR� = J 0AhJ
(dg
)�1=2 (13)

where dg(
) indicates a diagonal matrix of the same dimensions of 
 with the same entries

of 
 on the main diagonal. (This is the expression reported for instance in OP, page 38.)

This shows that also GIR� is a linear function of the multiplier m(h). We note that in

(12) and (13) the linear combination involves 
, which must be estimated. The standard

errors of GIR and GIR� hence require to take the estimation of 
 into account; this can be

accomplished along the lines of section 6.3 in OP.

(iii) Granger causality coe¢cients

Dufour and Renault (1998) consider a VAR(1), which is then simpli�ed to a VAR(k) in

Dufour et al. (2006). We take the latter formulation for compatibility with the rest of the

paper, given by Xt =
Pk
j=1�jXt�j + �t + �t, where �t := ��D�

t .

They address the forecast problem of Xt+h using L2 linear projections on the closed

subspaces generated by Zt := fXt�s, s � 0g. The linear projection of a random variable Y

on Zt is indicated by P (Y jZt), which coincides with the conditional expectation E(Y jZt)

for linear Gaussian processes. Replacing t with t+h and using recursive substitutions, one

can derive the so-called �(k; h)-autoregression� representation

Xt+h = P (Xt+hjZt) + �
(h)
t (14)

with �
(h)
t :=

Ph�1
j=0 �

(j)
1 �t+h�j and the associated best linear predictor

P (Xt+hjZt) =
kX

j=1

�
(h)
j Xt+h�j + �

(h)
t (15)

=
�
�
(h)
1 : ::: : �

(h)
k

�
0
BB@

Xt+h�1
...

Xt+h�k

1
CCA+ �

(h)
t =: �(h) eXt+h�1 + �(h)t

where �(h) :=
�
�
(h)
1 : ::: : �

(h)
k

�
, eXt := (X 0

t�1 : ::: : X
0
t�k+1)

0 and

�
(s+1)
j = �

(s)
j+1 +�

(s)
1 �j ; �

(0)
1 := Ip; �

(1)
1 := �1; �

(h)
t :=

h�1X

j=0

�
(j)
1 �t+h�j :

Next Xt is decomposed in 3 components, (X
0
1t : X

0
2t : X

0
3t)

0 := (c1 : c2 : c3)
0Xt where

(c1 : c2 : c3) is square and non singular. Dufour and Renault de�ne

GCc1;c2(h; j) := c01�
(h)
j c2; j = 1; 2; ::; k; h = 1; 2; :::
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as the �generalized impulse response coe¢cients� ofX1t+h with respect to changes inX2t+h�j .

These coe¢cients �provide a complete picture of the linear causality properties at di¤erent

horizons�, see Dufour and Renault (1998), page 1113. For a given forecast horizon h, one

can group all the GCc1;c2(h; j) into matrix as follows:

GCc1;c2(h) := (GCc1;c2(h; 1) : ::: : GCc1;c2(h; k)) = c01�
(h) (Ik 
 c2) :

They prove that the restrictions GCc1;c2(h) = 0 is a necessary and su¢cient condition

for X2t not to Granger-cause X1t at forecast horizon h when the variance covariance matrix

of �
(h)
t is nonsingular, and that without the last proviso the condition GCc1;c2(h) = 0 is

su¢cient. Note that this is a linear restriction on �(h).

Here we show that �(h) is a linear function of m(h), and hence a fortiori, that also

GCc1;c2(h) is a linear function of m(h). To this end one can for instance employ the

state space dynamics (2) to derive P ( eXt+hjZt) = Ah eXt+h+1 +
Ph�1
i=0 A

iJ�t+h�i. Because

Xt = J 0 eXt, one �nds P (Xt+hjZt) = J 0P ( eXt+hjZt) = J 0Ah eXt+h+1 +
Ph�1
i=0 J

0AiJ�t+h�i.

Equating coe¢cients one �nds �(h) = J 0Ah = J 0m(h), i.e. that �(h) and hence GCc1;c2(h)

are linear functions of m(h).

Appendix B: Long-run Granger causality

In this Appendix we describe how the conditions for long-run noncausality for I(1) systems

as de�ned in Bruneau and Jondeau (1999) and Yamamoto and Kurozumi (2006) can be

expressed as hypothesis on the IF F . Hence tests of long-run noncausality or neutrality can

be considered as special cases of tests on the impact factors F .

Long-run Granger noncausality is de�ned by the above authors in terms of X1jt, see

(8), as follows. Consider some target variables b01Xt and some candidate causal variables

a01Xt, where a1, b1 are of dimension p � n and p �m respectively and (a1 : b1) is of full

column rank. Then a01Xt is said not to Granger cause b
0
1Xt in the long run if b

0
1X1jt does

not depend on (X 0
ta1 : X

0
t�1a1 : ::: : X

0
t�k+1a1)

0, which contains a01Xt and its lags. Bruneau

and Jondeau (1999) show that this corresponds to the conditions

b01Ca1 = 0; (16)

b01C�ia1 = 0; i = 1; :::; k � 1: (17)

Condition (16) is also called �long-run neutrality� by Yamamoto and Kurozumi (2006),

see their de�nition 2. The conditions (16) and (17) can be phrased as restrictions on the

�rst block of p rows in the impact factors F in Section 3 above.

Note that tests of condition (16) are discussed in Paruolo (1997) when n = m = 1, see

also Paruolo (2006). Tests of (16), (17) are also considered in Bruneau and Jondeau (1999)

and Yamamoto and Kurozumi (2006). These tests are relevant in the setup of this paper

in order to empirically distinguish between Case 1 and Case 2.
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Appendix C: Proofs

In this appendix we report proofs of propositions in Section 4.2.

Proof. of Proposition 1. Let h�1(H�) be the inverse image of H�. It is simple to see

that A � h�1(H�), so that Pr (h 2 H�) � Pr (A 2 A) = 1� �.

In order to prove Proposition 2, we introduce the following notation. Let (A`;1; A`;2)

equal (A`;min; A`;max) if
��'`;min

�� �
��'`;max

�� and equal (A`;max; A`;min) otherwise. De�ne also
for j = 1; 2

Aj := fA`;j ; ` 2 Ng;

where Aj � A. We note that `2 = min ` : j'` (A`;2)j � � and `1 = min ` : j'` (A`;1)j � �.

Proof. of Proposition 2. Let A� 2 A correspond to `� := h�max = h� (A
�). By

de�nition � <
��'`��1 (A�)

�� and j's (A�)j � � for s � `�. Take now A`��1;2 which by

de�nition satis�es � <
��'`��1 (A�)

�� �
��'`��1 (A`��1;2)

��. Now consider j's (A`��1;2)j for

s � `�. If � < j's (A`��1;2)j for some s � `�, this would imply a contradiction to the

assumption `� := h�max = h� (A
�). Hence it must hold that j's (A`��1;2)j � � for all s � `�,

i.e. h� (A`��1;2) = h� (A
�) = `� := h�max. Because A2 � A, one has maxA2A h� (A) �

maxA2A2 h� (A). Hence we have shown that maxA2A h� (A) = h� (A`��1;2) = `2.

Consider next h�min. By de�nition � < j's (As;1)j for s < `1. Because of the extreme

properties of As;1, see problems in (10), one has � < j's (As;1)j � j's (A)j for all A 2 A,

s < `1, and hence h
�
min � `1.

Appendix D: Optimization

We here discuss optimization of

'` =
Fb;a (`)

Fb;a
� 1 = �

b0A`+1 (I �A)�1 a

b0
�
(I �A)�1 � I

�
a
=:

c1
c2
:

In the following Proposition 3 we state �rst and second derivatives of '` as a function of

x := vec (A0). We observe that the parameters that vary in A are � := vec (A0J) = H 0x,

with H 0 := (J 0 
 Ip) = (Ig : 0). Let X be the set of values of � that correspond to A 2 A.

One can hence use the chain rule of derivatives to compute

_'` (�) :=
@'` (�)

@�0
=
@'` (x)

@x0
H; �'` (�) :=

@2'` (�)

@�@�0
= H 0@

2'` (x)

@x@x0
H:

As in Newton-like methods, we consider a second order approximation f of '` around

a given value �0 of �

f (�) := '0 + _'0 (� � �0) +
1

2
(� � �0)

0 �'0 (� � �0) :

where '0 := ' (�0), _'0 := _' (�0) and �'0 := �' (�0). Unlike standard least-square problems,

f (�) is bound to be non-concave (non-convex) as a function of � also in the proximity
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of argmax�2X f (�) (or argmin�2X f (�)); this may cause convergence problems to stan-

dard quasi-Newton methods. We hence introduce a Newton-like algorithm suitable for the

current situation.

Consider the eigenvalues of �'0, partitioned into the negative and positive ones, �1 �

::: � �g1 < 0 < �g1+1 � ::: � �g. De�ne �1 := �D1 :=diag(�1 : ::: : �g1) and �2 :=

D2 :=diag(�g1+1 : ::: : �g), where Di are positive de�nite (p.d.) by construction for i = 1; 2.

Partition the eigenvectors W conformably with D1 and D2, so that one has the spectral

decomposition

�'0 =W�W 0 = (W1 :W2) diag(�1;�2) (W1 :W2)
0 = �W1D1W

0
1 +W2D2W

0
2:

(If some eigenvalues of �'0 are 0, then they are simply omitted in the spectral decomposition

above, which is still valid). We here show that when one selects

�i := �0 �Wi�
�1
i W 0

i _'0; i = 1; 2;

one obtains f (�1) > f (�0) and f (�2) < f (�0) respectively; this ensures a step in the right

direction for the optimization problems max f (�) and min f (�). In fact substituting into

f (�) one �nds

f (�i)� f (�0) = � _'0Wi�
�1
i W 0

i _'0 +
1

2
_'0Wi�

�1
i W 0

i _'0 = �
1

2
_'0Wi�

�1
i W 0

i _'0

which imply

f (�1)� f (�0) =
1

2
_'0W1D

�1
1 W 0

1 _'0 > 0

f (�2)� f (�0) = �
1

2
_'0W2D

�1
2 W 0

2 _'0 < 0

due to the fact that Di are p.d. Hence this de�nes a Newton-like algorithm that selects �1

as direction vector for max f (�) and �2 as direction vector for min f (�). We modify this

Newton-type algorithm including a line search in direction �i.

We �nally report �rst and second derivatives of '` (x) in the following proposition.

Denote by K := F + I, and let also K be the commutation matrix that satis�es vec (A) =

K vec (A0), see e.g. Magnus and Neudecker (1999).

Proposition 3 '` (x) is continuously di¤erentiable with gradient

@'` (x)

@x0
= �

1

c2

�
b0 
 a0K 0

� �
Q` +

�
A`+1K 
 I

�
+ '` (K 
 I)

�

and Hessian

@'`
@x@x0

=
1

c2

�
G + 2

c1
c22
K
��
K 
K 0ba0K 0

�
+
�
Kab0K 
K 0

���
�
1

c22

�
R+R0

�

where R := (Kbb0 
Kaa0K)
�
Q` +

�
A`+1K 
 I

��
, Q` :=

P`
i=0A

i 

�
A`�i

�0
and

G = �
`�1X

i=0

`�i�1X

j=0

K

�
Aj 


�
Ai
�0
ba0K 0

�
A`�i�1�j

�0�
�
X̀

i=1

i�1X

j=0

K
�
A`�iKab0Aj 


�
Ai�1�j

�0�

�K
�
Kab0A`+1K 
K 0

�
�
X̀

j=0

K

�
Kab0Aj 
K 0

�
A`�j

�0�
:
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When `!1 one has

@'` (x)

@x0
! �

'`
c2

�
b0K 
 a0K 0

�

@'`
@x@x0

! 2
c1
c32
K
��
K 
K 0ba0K 0

�
+
�
K 0ba0K 0 
K

��

Proof. Di¤erentiating '` one �nds d'` = dc1c
�1
2 � c1c

�2
2 dc2, where

dc1 = �a
0K 0

 X̀

i=0

�
A`�i

�0
(dA)0

�
Ai
�0
+ (dA)0K 0

�
A`+1

�0
!
b;

dc2 = b0K (dA)Ka = a0K 0 (dA)0K 0b:

Hence one has

@c1
@x0

= �
�
b0 
 a0K 0

� �
Q` +A

`+1K 
 I
�
;

@c2
@x0

= b0K 
 a0K 0

@'` (x)

@x0
=
1

c2

�
@c1
@x0

� '`
@c2
@x0

�
= �

1

c2

�
b0 
 a0K 0

� �
Q` +A

`+1K 
 I + '` (K 
 I)
�

The term Q`+1 satis�es the recursion Q`+1 = (A
 I)Q`+
�
I 


�
A`+1

�0�
in ` starting from

Q0 = I . This can be proved by observing that

Q`+1 =
`+1X

i=0

Ai 

�
A`+1�i

�0
= (A
 I)

`+1X

i=1

Ai�1 

�
A`�(i�1)

�0
+ I 


�
A`+1

�0

= (A
 I)Q` + I 

�
A`+1

�0
.

This recursions in ` also shows that Q` tends to 0 as `!1, because A is stable. For the

same reason also A`+1K 
 I and the whole @c1=@x
0 tends to 0 as `!1. This implies the

limit behavior of the �rst derivative for `!1. We next consider the second di¤erential of

'` in direction x and ex; we useeto indicate increments in the second direction

d2'` (dx;dex) = d2c1c�12 � c�22 dc1dec2 � dec1c�22 dc2 + 2c1c�32 d2c2
= c�12

�
d2c1 + 2c1c

�2
2 d

2c2
�
� c�22 (dc1dec2 + dec1dc2) ;

d2c1 (dx;dex) = �a0K 0

 
`�1X

i=0

ed
�
A`�i

�0
(dA)0

�
Ai
�0
+
X̀

i=1

�
A`�i

�0
(dA)0 ed

�
Ai
�0
!
b

� a0K 0

�
(dA)0 edK 0

�
A`+1

�0
+ (dA)0K 0ed

�
A`+1

�0�
b =: c3 + c4 + c5 + c6

d2c2 (dx;dex) = tr
�
K 0ba0K 0d eA0K 0dA0 +K 0d eA0K 0ba0K 0dA0

�
=

= dx0K
��
K 
K 0ba0K 0

�
+
�
Kab0K 
K 0

��
dex
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where

c3 = �a
0K 0

0
@
`�1X

i=0

0
@
`�i�1X

j=0

Ajd eAA`�i�1�j
1
A
0

dA0
�
Ai
�0
1
A b

= �
`�1X

i=0

`�i�1X

j=0

tr

��
Ai
�0
ba0K 0

�
A`�i�1�j

�0
d eA0

�
Aj
�0
dA0
�

= �
`�1X

i=0

`�i�1X

j=0

dx0K

�
Aj 


�
Ai
�0
ba0K 0

�
A`�i�1�j

�0�
dex =: dx0C3dex

c4 = �
X̀

i=1

i�1X

j=0

tr

��
Ai�1�j

�0
d eA0

�
Aj
�0
ba0K 0

�
A`�i

�0
dA0
�

= �
X̀

i=1

i�1X

j=0

dx0K
�
A`�iKab0Aj 


�
Ai�1�j

�0�
dex =: dx0C4dex

c5 = �a
0K 0 (dA)0K 0

�
d eA
�0
K 0
�
A`+1

�0
b = � tr

�
K 0
�
d eA
�0
K 0
�
A`+1

�0
ba0K 0 (dA)0

�

= �dx0K
�
Kab0A`+1K 
K 0

�
dex =: dx0C5dex

c6 = �a
0K 0

�
(dA)0K 0ed

�
A`+1

�0�
b = �a0K 0 (dA)0K 0

0
@X̀

j=0

Ajd eAA`�j
1
A
0

b

= �
X̀

j=0

tr

�
K 0
�
A`�j

�0
d eA0

�
Aj
�0
ba0K 0dA0

�
= �

X̀

j=0

dx0K

�
Kab0Aj 
K 0

�
A`�j

�0�
dex

=: dx0C6dex

Collecting terms and setting G :=
P6
i=3Ci, one �nds the expression of the Hessian given

above.
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