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1 Introduction

Over a decade, many markets ranging from entry-level labor markets (e.g.,
markets for medical fellows, gastroenterologists, clinical psychologists, law
clerks) to school choice system and kidney exchange, have been redesigned
drawing on the insights from the two-sided matching theory. One of the ma-
jor concerns in design is the manipulability of the outcomes by either side
that may arise in terms of preference or capacity manipulation. While prefer-
ence manipulation refers to an agent’s (from either side) effort to improve his
or her match by misrepresenting his or her preferences, the capacity manipu-
lation occurs in a many-to-one matching setting when a school/firm /hospital
underreports its true capacity with the same purpose.

The existing studies on capacity manipulation consider incentives to ma-
nipulate in single-shot matching markets (Sénmez, 1997; Kojima, 2006; Kon-
ishi and Unver, 2006). However, many markets, centralized or decentral-
ized, convene to clear the unfilled capacities in an aftermarket. For in-
stance, in college admissions, many colleges offer early and regular admis-
sions programs. A scramble market for those who are not matched in the
regular market has recently been designed for new Ph.D.s in Economics
(www.aeaweb.org/joe/scramble). Also, National Residency Matching Pro-
gram (NRMP) employs a similar scramble market in hospital-intern market
(www.nrmp.org). In Turkey, secondary school placement mechanism cen-
trally places students to unassigned seats in an aftermarket.

Theoretically, intertemporal capacity allocation, just like total capacity
announcement, is a strategic decision in two-sided matching markets. In
college admissions, many colleges have used in the last fifty years early ad-
missions programs to improve the quality of the student intake. However, in
some other cases, like in the NRMP, the direct! use of intertemporal capacity
allocation is prevented by disallowing hospitals to change their announced
quota after the matching procedure has started.?

"'We will discuss, in Conclusions, how quota reversions in the NRMP can be used as an
indirect strategic device of intertemporal capacity allocation in hospital-intern markets.

2In the NRMP, each program sets a quota when participating in the match. If any
change is made to the quota, the institutional official must approve the change before it



Capacity manipulation in single-shot and two-sided matching markets
has been well understood. Sonmez (1997) shows that in a single-period
hospital-intern market there is no stable matching rule that is nonmanip-
ulable by hospitals via underreporting capacities. Manipulation of capacities
in hospital-intern markets is further analysed by Konishi and Unver (2006),
using a one-period game between hospitals. Under two most widely used
matching rules, namely hospital-optimal and intern-optimal stable matching
rules, Konishi and Unver (2006) show that there may not be a pure-strategy
equilibrium in general, and whenever a pure-strategy equilibrium exists, ev-
ery hospital weakly prefers this equilibrium outcome to the outcome of any
larger capacity profile. Konishi and Unver (2006) consider two restrictions
on preferences, each of which guarantees the existence of a pure-strategy
equilibrium. The first restriction requires hospitals to always prefer a larger
set of acceptable interns to a smaller set. By that, reporting the number of
assigned interns is an equilibrium strategy if the matching rule is hospital-
optimal, whereas under the intern-optimal matching rule reporting the actual
capacity is a weakly dominant strategy. The second restriction requires com-
mon preferences of one group of agents (hospitals or interns) over the other
group and ensures that reporting the true capacity is always a weakly dom-
inant strategy for hospitals. Kojima (2006) further investigates the game
studied by Konishi and Unver (2006) and establishes that there always ex-
ists a mixed-strategy equilibrium and every hospital weakly prefers a Nash
equilibrium (pure or mixed) to any “larger” capacity profiles.

All of these previous studies point to the incentives for hospitals in un-
derreporting capacities in single-shot hospital-intern markets. An immediate
observation is the possibility of filling the unused capacities in the aftermar-

ket via a centralized clearinghouse.?

can be used in the final match process. All change approvals must be made by the rank
order list deadline. See the NRMP User Guide (2007).

3In some markets, the aftermarket is a decentralized market as the scramble market
in the NRMP and the job market for new Ph.D.s in Economics. However, there are also
cases where the aftermarket is operated via a centralized clearinghouse, like in secondary
school placement in Turkey. The quota reversions in the NRMP mechanism also mimick
a two-stage centralized market structure since the quota reversions are done within the
matching process, right after the first round of the match.
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In this paper, we study capacity allocation in a two-period many-to-one
matching market, involving a regular market and an aftermarket. There are
two finite and disjoint sets of agents, say hospitals and interns. Each hospital
has a finite overall capacity that limits the number of interns it can employ
in the two periods, and each intern can be employed by at most one hospital
during the whole matching process. Each hospital has a preference relation
over the power set of interns that is responsive to its preference over the set of
interns, and each intern has a preference relation over the set of hospitals and
being unmatched. The capacities of hospitals together with the preference
profiles of hospitals and interns constitute a matching environment.

In the regular decision period, each hospital announces out of its total
capacity a regular market quota which it aims to fill according to its pref-
erence ordering. The regular market quotas of hospitals together with the
preferences of hospitals and interns constitute a regular market.

The capacities of hospitals, the preferences of hospitals and interns, and
the matchings achieved in the regular decision period altogether define an
aftermarket.

An allocation in the regular decision period is a many-to-one regular
market matching where no hospital is assigned more interns than its regular
market quota and no intern is assigned more than one hospital. Given a
binding regular market matching, an allocation in the aftermarket is a many-
to-one aftermarket matching where all the assignments realized in the regular
market are preserved, no hospital is assigned more interns than its overall
capacity and no intern is assigned more than one hospital. We call any
assignment that did not exist in the regular decision period and realize in
the aftermarket as an aftermarket assignment. We assume that any intern
rejected from a hospital in the regular market can reapply to that hospital
in the aftermarket.

A matching in the regular market is stable if no intern prefers being
unemployed to his or her assignment, no hospital prefers having an intern
position vacant rather than filling it with one of its assignments, and there
exists no unmatched hospital-intern pair such that the hospital prefers the
intern to one of its assignments or keeping a vacant position and the intern
prefers the hospital to his or her assignment. Given a matching realized in
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the regular decision period, a matching in the aftermarket period is stable
if no intern having an aftermarket assignment prefers being unemployed to
his or her assignment, no hospital prefers aftermarket intern position vacant
rather than filling it with one of its aftermarket assignments, and there exists
no unmatched hospital-intern pair such that the hospital prefers the intern
to one of its aftermarket assignments or keeping a vacant position and the
intern prefers the hospital to his or her aftermarket assignment.

A regular market matching rule selects a matching for every regular mar-
ket, and is stable if it selects a stable matching for every regular market.
An aftermarket matching rule selects a matching for every aftermarket. An
aftermarket matching rule is stable at an aftermarket if it selects a stable
matching for the given aftermarket.

A regular market rule and an aftermarket rule as an ordered pair form a
matching system. A matching system is stable if it involves a stable regular
market rule and an aftermarket matching rule that is stable at the after-
market associated with the regular matching outcome of the regular market
rule.

After the description of the basic structures of our two-period matching
model, we define a game in which the total capacities of hospitals as well
as the preferences of hospitals and interns are common knowledge and each
hospital determines a quota for the regular decision period given its total ca-
pacity for the two periods. Under the intern-optimal stable matching system,
we show that there may not be a pure-strategy Nash equilibrium, extend-
ing the result by Konishi and Unver (2006), obtained in games of capacity
manipulation. However, the capacity lemma of Konishi and Unver (2006),
establishing that any hospital’s underreport of its capacity has a monotonic
non-negative (non-positive) effect on the welfare of other hospitals (interns)
does not hold in games of capacity allocation. The mixed-strategy equilib-
rium trivially exists in games of capacity allocation, while Kojima’s (2006)
generalization - that every hospital weakly prefers a non-degenerate mixed-
strategy Nash equilibrium to any larger capacity profiles in games of capacity
manipulation - fails to be true in games of capacity allocation. We also show
that common preferences for hospitals ensure the existence of equilibrium
in weakly dominant strategies. But, unlike in capacity manipulation games,



strong monotonicity of population is not a sufficient restriction on preferences
to avoid the nonexistence problem.

The organization of the rest of the paper is as follows: Section 2 introduces
the basic structures and a game of capacity allocation. Section 3 presents
our results. Finally, Section 4 concludes.

2 Model

2.1 Basic Structures
2.1.1 Matching Environment

A matching environment is denoted by the list (H, I, gy, R). The first two
components are non-empty, finite and disjoint sets of hospitals H = {hy, ha, ...,
hpn} and interns I = {iy,is,...,i,}. The third component is a list of posi-
tive natural numbers ¢y = (qn,, ..., qn,, ), Where g, is the total capacity of
hospital h. Define q_; such that gy = (q_p,qn) for any h € H. Also de-
fine Qn(qn) = {0,1,...,q,} for all h € H, Qulqy) = Xnew Qn(qn), and
Q-1(q-n) = X e\ Quw(qw) for any h € H. The last component of a match-
ing environment is a list of preference relations R = (Ry,,, ..., Rp,,, Riys ..y Ri,,)
where Rj, is the preference relation of hospital h and R; is the preference re-
lation of intern 1.

For any h € H, Ry, is a binary preference relation that is a linear order
on ¥y = 2!, Similarly, for any ¢ € I, R; is a binary relation that is a linear
order on Xy = HU{0}. Here, ) is interpreted by both hospitals and interns
as the prospect of being unmatched.

The preference relation R, of hospital h € H is said to be responsive
(Roth, 1985) whenever for all I’ C I it is true that

i) for all ¢ € I\I", I' U {i} P, I' if and only if {i} P, 0,
ii) for all 4,7 € INI', I’ U{i} P, I' U {i'} if and only if {i}P,{i'}.

Notice that preferences of interns over the individual hospitals are trivially

responsive.



Let R and R; respectively denote the class of all responsive preference
relations for hospital h € H and for intern ¢ € I. Define also R = Xpcnur Ri.
Let P, denote the strict preference relation associated with the preference
relation Ry, for agent k € HUI. We say that for X,Y € {H,I} and X #Y,
an element = € Yy is acceptable to agent y € Y if x P, (). For each hospital
h define the set of acceptable interns as A(Ry) = {i € I|{i} P, 0}, and
similarly define for each intern i the set of acceptable hospitals as A(R;) =
{h € H|hP;0}.

Let £ denote the set of all matching environments where the preferences
are responsive.

2.1.2 Regular Market

Given the matching environment E = (H, I, qg, R), a regular market is a list
(E,qE). The second component is a vector of nonnegative natural numbers
ap = (git, ... qff ), where ¢ff € Q1,(q) is the quota of hospital h in the regular
market. Define ¢, such that ¢& = (¢ft, ¢%,) for any h € H.

Let Zf(F) denote the set of all possible regular markets associated with
the environment F.

2.1.3 Regular Market Matchings

Given the matching environment E and a regular market Z7* = (F, ¢%) €
ZR(E), a matching u® in the regular market is a function from the set HU I
into Y7 U X such that pf(i) € Xg, |pf(h)| < ¢ff and p?(i) = h if and only
if i € pf'(h) for any i € [ and h € H.

We denote the set of all matchings for a given regular market Z7 by
MR(ZR). Let ME = UzRegR(E)MR(ZR).

We say that agent k € H U I prefers matching ;£ to matching pf if and
only if it prefers pft(k) to p&(k) under the preference relation Ry.

Given a regular market Z% = (E, ¢%), the admissible choice of hospital h
from a group of interns J C I in the regular market is defined as

ChE(J,ZB)={J CJ:|J|<qf, JR,J forallJ CJ

such that |.J'| < ¢f}.
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Given a regular market Zf, a matching puf € MPE(ZE) is blocked by
hospital h if pfi(h) # ChE(uf(h), Z®). The matching p* is blocked by intern
i if ) P; pf(7). The matching pft is blocked by a hospital-intern pair (h,7) in
the regular market if {h} P; uf(i), and puf*(h) # ChE(pf(h) U {i}, Z%).

A matching u® is stable if it is not blocked by an intern, a hospital, or a
hospital-intern pair. We denote by S?(Z%) the set of stable matchings for
the regular market Z%.

We say, as similar in Roth and Sotomayor (1990), that hospital A and
intern i are achievable for one another in the regular market Z if there is
some stable matching in S¥(Z%) at which they are matched.

In the set S(Z%) there exists a matching, uf, called the intern-optimal
stable matching in the regular market such that

pi(h) Ry, ' (h)

for all h € H and for all pf* € SE(Z%). (Analogously, one can define the
hospital-optimal stable matching in the regular market.)

A regular market matching rule is a function o : Z%(E) — MP% such
that for all Z € ZR(F), we have o®(Z%) € MR (Z®). Let " denote the
set of all regular market matching rules.

A regular market matching rule ¥ € % is stable if p?(Z%) € SE(ZR)
for all Z% € ZR(E).

2.1.4 Aftermarket

Given a regular market Z% = (E,¢®) and a regular market matching pf
in Z%, an aftermarket is the list Z4 = (E, uf). Define 24 = Uzrezr(p)

Uuremn(zmy (B, p'h).

2.1.5 Aftermarket Matchings

Given the aftermarket Z4 = (E, uf?), we define an aftermarket matching 4
as a function from the set H U into X; UY g such that x%(i) C ut(i) € Xy,
\nA(h)| < qn, p®(h) C p(h) and p(i) = h if and only if i € p?(h) for any
t€land h e H.



We notice that the function p# preserves the matchings achieved under pf
in the regular market. We denote the set of all matchings in the aftermarket
ZA by MA(Z4). Define MA = UgaczaMA(Z4).

We say that agent k € H U I prefers matching u4! to matching ps' if and
only if it prefers ;f'(k) to us (k) under the preference relation Ry.

The acceptable choice of a hospital h from a group of interns J C I\u*(h)
in the aftermarket Z4 = (E, uf?) is defined as

Chi(1,2%) ={J" C T« |J'| < qu — " (B)],
J'UpB(h) Ry, J" U pf(h) for all J* C J such that

T < gn — (0]}

Given the aftermarket Z4 = (E,p%), a matching u* € MA(Z4) is
blocked by hospital h if A (h)\pf(h) # Chil(u?(h)\u*(h), Z*). The match-
ing p# is blocked by an intern i if @ P; u(i)\p®(i). The matching p* is
blocked by a hospital-intern pair (h,i) in the aftermarket if uf(i) = 0,
{h} P (i) and p (R)\u(h) # Cha({i} U p (W)\u(R), Z7).

A matching p4 is stable at Z4 if it is not blocked by an intern, a hospital,
or a hospital-intern pair. We denote by S4(Z4) the set of matchings that
are stable at Z4.

We say that hospital i and intern ¢ are achievable for one another in the
aftermarket Z4 if there is some stable matching in S4(Z4) at which they are
matched.

In the set S#(Z4), there exists a matching, p4', called the intern-optimal
stable matching in the aftermarket such that

pi (h) By 1 (R)

for all h € H and for all p* € S4(Z4).* (Analogously, one can define the
hospital-optimal stable matching in the aftermarket.)

4To find the intern-optimal stable matching in the regular market and aftermarket, we
respectively use the well-known intern-proposing deferred acceptance algorithm by Gale
and Shapley (1962).



An aftermarket matching rule is a function ¢4 : Z4 — M4 such that
for all Z4 € Z4, we have p*(Z4) € M*(Z*). Let »* denote the set of all
aftermarket matching rules.

An aftermarket matching rule p* € @? is stable at Z4 if p*(Z4) €
SA(ZHY).

2.1.6 Matching Systems

For any ¢ € ®f that is used in the regular market and for any ¢4 € @4
that is used in the aftermarket, the ordered pair (%, ©?) is called a matching
system. Let @ denote the matching system (¢%, ¢?).

A matching system @ is stable if (i) % is stable, and (ii) for any Z¥ €
ZE(E) and pft € ME(ZE), 4 is stable at (E, uf?).

Let @; be a matching system such that %(Z%) = uf for all Z* € ZE(F)
and p(Z4) = pé for all Z4 € Z4. We call @; as the intern-optimal stable
matching system. (Analogously, one can define the hospital-optimal stable
matching system.)

2.2 A Game of Capacity Allocation

We consider a game of capacity allocation played by hospitals in a given
hospital-intern matching environment £ = (H, I, qy, R).

Each hospital is asked to announce out of its total capacity a regular mar-
ket quota; formally, the strategy of hospital h is ¢f* € Qx(qn). We assume
that for each possible announcement of the vector ¢%, the regular market and
the aftermarket are common knowledge. Suppose that a matching system
¢ is used to determine the matchings in the regular market and the after-
market. Hospital h’s preferences over the reported regular market quotas
are represented by a binary relationship tf over Qg (qy) such that for all
¢, q" € Qu(qu) we have ¢ if ¢" if and only if

e (B, o"(E,q))(h) Ry oE,o"(E,q"))(h).

A game of capacity allocation under matching system @ is described by a

—

strategic form game (H, (Qn(qn), =5 hen)-
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Define hospital h’s best response correspondence under matching system
@ by B : Q n(q-n) — Qn(gn) such that for any ¢’ ,, € Q 4(gn),

BE(d ) = {a, € Qulan) = (dh,d0) =5 (Gn, ) for all G, € Qnlqn)}-

A pure-strategy (Nash) equilibrium of the game (H, (Qn(qn), tf)he ) is a
strategy profile ¢j; € Qpu(qu) such that ¢ € 85 (q*,) for all h € H.

3 Results

The following theorem shows that a pure-strategy equilibrium may not exist
under the intern-optimal stable matching system.?

Theorem 1. The capacity allocation game under the intern-optimal stable
matching system may not have a pure-strateqy equilibrium.

Proof. Consider the environment (H,I,qy, R) with H = {hy,ho}, I =

{i1,12,13,14,15}, qn, = 3, qny = 3,
Py, = {in}, {ao}, {is}, {is}, {ia}, 0, with {ia, i3} Py, {i1,44},
Pr, = {io}, {is}, {ir}, {ia}, {is}, 0, with {ig, i3} Py, {i1, 14},
and I'P,I" for any h € H and I', 1" C I such that |I'| > |I'|,
Py = {ha}, {h},0,
Py, = {hi}, {ha}, 0,
Py = {ha}, {ha},0,
Py = {hi}, {ha}, 0,
P, = {hao}, {h1},0.
We have Qy(qn) = {0,1,2,3} for any h € H.

®We restrict our attention to the intern-optimal stable matching rule (matching system
in our two-stage model) since it is currently used by the NRMP for regular hospital-intern
matchings in the USA.
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Under the intern-optimal stable matching system @;, Table 1 below gives
the outcome allocations in the regular market for each pure-strategy profile
q in Qp(qy). The first entry in each cell is the assignment of h; and the
second entry is the assignment of hy. Those interns who are not assigned to
either h; or hs remain unemployed in the regular market.

Table 1.
g, =0 g =1 qf, =2 @, =3
aft = 0,0 0, {i2} 0,{i2,45} 0, {i1,i2,15}
@ = {in}, 0 {in}, {i2} {ia}. {11,145} {io}, {in, 44,35}
q;]f”l =2 {i1,32},0 {i1,i2}, {is} {i2,i3}, {i1,15} {ia,i4}, {i1,43,15}
q;’i =3 {il,ig,is},w {il,’ig,ig},{i5} {ig,ig,i4},{i1,i5} {ig,i4},{i1,i3,i5}

In Table 2, we give the outcome allocations in the aftermarket for each
pure-strategy profile ¢% € Qy(qy) given the aftermarket matching rule 4.

Table 2.
7= 7 = 7=
q,}j'l 0 | {iz,ia},{i1,13,i5} | {43,494}, {é1,%2,95} | {i3,ta},{t1,%2,i5} | {i3,%a}, {¢1,%2,75}
aff, =1 | {iv 2,94}, {is,is} | {iv,ia}, {in, 5,95} | {iz,ia}, {ir, i3, 05} | {i2,43}, {i1, 14,05}
aft = {i1, 92,44}, {is,is} | {i1,42,4a}, {ds,ds} | {i2,d3,4a},{i1,45} | {i2,4a}, {i1,43,5}
aff, =3 | {iv,iz,45}, {is,ia} | {ir,iz,is}, {ia, 35} | {iz,i3,0a}, {ir,i5} | {i2,4a}, {i1, 03,05}

According to the preferences of hospitals, their best response correspon-
dences are:

B (0) = {3}, BL(1) = {3}, B7(2) = {2,3}, B (3) = {1},
Brr(0) = {1,2,3}, B (1) = {1}, 8L (2) = {3}, 8L (3) = {3}.

Therefore the game has no pure-strategy equilibrium. |

Konishi and Unver (2006) have a similar result showing the failure of the
general existence of pure-strategy equilibria of games of capacity manipula-
tion in single-period hospital-intern markets. They also argue that hospitals
can improve their position by restricting the available capacity under the
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hospital-optimal matching rule. The reason is that larger capacities of hospi-
tals make interns better off by giving them more alternatives to choose from.
However, when capacities are limited, an intern cannot play one offer against
the other and has to choose among rather limited set of offers which may
not include his/her favorite hospital. Konishi and Unver (2006) additionally
remark that hospitals, which are getting their least preferable acceptable in-
terns under the intern-optimal matching rule, can do better by swapping
interns through some reduction in their quotas. In our model, similar in-
centives are at work. However, given their fixed total capacities hospitals
are now able to improve their position not by limiting the total number of
incoming interns but by spreading the offering process across periods. This
essentially increases their “bargaining power” without necessarily reducing
the overall intake of the interns. If we use the analogy between the hospital-
intern market and the marriage market, as remarked by Roth (1985), by
viewing each vacant position in a hospital as an individual player who has
the same preferences as the hospital that it belongs to, spreading admission
across periods increases the bargaining power of a hospital by making the
supply side of the market “thinner”.

Another interesting finding (capacity lemma) of Konishi and Unver (2006)
is that a hospital’s capacity underreport makes all other hospitals weakly bet-
ter off and all interns weakly worse off under both hospital-optimal stable
matching and intern-optimal stable matching. But, this observation does not

carry over our framework that involves two stages of admission.’

Remark 1. In games of capacity allocation, a hospital’s reqular market
quota report in pure strategies does not have a monotonic effect on the wel-
fare of other hospitals and interns under the intern-optimal stable matching
system.

Proof. Consider the example in the proof of Theorem 1. From Table 2, if
hy decreases its regular market quota at ¢& = (3,1), hy is first worse off since

5Qur propositions in Theorem 1 and Remark 1 readily extend to matching environments
that employ the hospital-optimal stable matching system.
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{i4,15} P, {i3,15}, and then better off since {is, i3,i5} Py, {i3,5}. In terms of
the interns’ welfare, we observe that in Table 2, if hy reduces its regular mar-
ket quota at ¢ = (3,1), not all interns are weakly worse off. For example,
at g% = (0,1), 7, is better off whereas i, is worse off. ]

Given the nonexistence of equilibrium in pure strategies, a natural re-
action is to allow mixed strategies in games of capacity allocation. Along a
similar reflection on the nonexistence result in Konishi and Unver (2006), Ko-
jima (2006) shows that a mixed-strategy equilibrium always exists in games
of capacity manipulation in hospital-intern markets. Kojima (2006) further
shows that the aforementioned capacity lemma of Konishi and Unver (2006)
can be generalized in the presence of mixed strategies.

Here, we define a mixed strategy of a hospital with total capacity g
as a probability distribution on the set of possible regular market quotas.
Closely following the definitions in Kojima (2006), a mixed strategy of h is
pr = (00 Phs -5 01") € A = {(PhDhs -, DY) € R™5pj, > 0,55}, = 1},
where pj is the probability that h reports that its regular market quota is j.
We assume that the preferences of each hospital and intern satisfy the von-
Neumann Morgenstern expected utility hypothesis. Given a matching envi-
ronment £ = (H,I,qy, R) and the intern-optimal stable matching system
@, we denote by 2 (E, o (E,py)) a distribution on aftermarket matchings
induced by the mixed-strategy profile py. We also assume that preferences
over matchings directly extend to preferences over distributions on matchings
for both hospitals and interns. Finally, we say that of the two distinct quota
profiles py and py, the latter is a larger quota profile if

> pp <Y p;, forany he H and j € Qu(qn).

s2j 52j

It is immediate from Nash (1951) that there always exists a Nash equilib-
rium in mixed strategies in games of capacity allocation. However, we do not
expect like in the generalization result of Kojima (2006) that every hospital
will always weakly prefer a non-degenerate mixed- strategy Nash equilibrium
to any larger capacity profiles, owing to an insight from Remark 1 that over
the supports of some mixed-strategy equilibria a hospital’s underreporting
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its regular market quota may not increase the welfare of the other hospitals
in the market.

Remark 2. For games of capacity allocation, it is not true that every hos-
pital weakly prefers a Nash equilibrium (pure or mized) to any larger reqular
market quota profiles like in games of capacity manipulation.

Proof. Given that Remark 1 deals with pure strategies, we only need to
consider non-degenerate mixed strategies. We use the example in the proof of
Theorem 1, which was verified to have no Nash equilibrium in pure strategies.
Below table assigns utility payoffs for each outcome in Table 2 in such a way
that the ordinal preferences of the hospitals are preserved.

Table 3.
gt =0 | gt =1 | gt =2 | qf =3
gt =0 (8,20) | (4,32) | (4,32) | (4,32)
afft =1 (26,8) | (12,28) | (8,20) | (24,24)
qff =2 | (26,8) | (26,8) | (25,16) | (8,20)
aff =3 (32,4) | (28,12) | (25,16) | (8,20)

One can check that the profile py, where p,, = (0,2/3,0,1/3) and py, =
(0,1/2,0,1/2), is a mixed-strategy equilibrium. The expected payoffs of
hy and hy at the quota profile py are calculated as 18 and 68/3, respec-
tively. Now consider a larger quota profile py such that p,, = pp, and
Pr, = (0,0,0,1). The expected payoffs of h; and hy at the quota profile py
are calculated as 56/3 and 68/3, respectively. Hence, the claim in Remark 2
follows. 1

To cure the failure of general existence of equilibrium in pure strategies,
we will now consider preference restrictions. Dealing with a similar problem
in single-stage hospital-intern markets, Konishi and Unver (2006) consider
two types of restrictions. In one of them, hospitals’ preferences are said
to satisfy strong monotonicity in population if any hospital strictly prefers
among any two groups of acceptable interns of distinct sizes the one that
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is more populated. With this domain restriction, Konishi and Unver (2006)
show that in the capacity-reporting game, under the hospital-optimal match-
ing rule reporting the number of interns that the matching rule assigns is an
equilibrium strategy whereas under the intern-optimal matching rule report-
ing the actual capacity is a weakly dominant strategy.

In our model, we say that hospitals’ preferences R € R satisfy strong
monotonicity in population, if for any h € H and for any I’,I" C I such that
any i € I' U 1" is acceptable to h, we have |I'| > |I"| only if I'P,I".

We should immediately note that the preferences of hospitals in the
matching environment considered in the proof of Theorem 1 already sat-

isfy strong monotonicity in population.” Therefore, we conclude that:

Remark 3. Strong monotonicity in population is not a sufficient restric-
tion on hospitals’ preferences to ensure the existence of equilibrium in pure
strategies in games of capacity allocation.

The second type of restriction that Konishi and Unver (2006) consider is
the common preferences for one group over the agents of the opposite group.
With such preferences, they are able to show that reporting the true capacity
is always a weakly dominant strategy. Below, we will show that this kind of
domain restriction will also allow us to achieve an existence result.

A preference profile R € R satisfies common preferences for hospitals
over individual interns if and only if for any h,h’ € H and for any i, € I
we have {i} P, {i'} & {i} By {i'}.®

Let RY C R be the domain of such profiles of common preference rela-
tions.

Now, pick R € RY, and consider the environment E = (H, I, qy, R). Re-
name and reorder acceptable interns by the preference ordering P, of hospital

"Remark 3 is also obtained for matching environments that employ the hospital-optimal
stable matching system.

8This definition of common preferences for hospitals weakens a respective definition in
Konishi and Unver (2006) that also requires a common set of acceptable interns under the
common preferences for hospitals.
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h as iy, 1y, ..., 5n). That is, hospital ¢ has the preference ordering

Py = {ix}, {ia}, -, {umy 1, 0.
Let | = max{I(h) : h € H}. Define Ch;(R;, H') be the most preferable
acceptable hospital in H' C H for intern 7 with respect to the preference re-
lation R;, i.e., Ch;y(R;,H') = {h € H/ﬂA( )i {h} R;{I'} for any b/ € H'}.
If I > 0, con81der a matching i in the regular market generated by the
following serial-dictatorship:®

Step 1: Let H®' = {h € H : ¢f* # 0 and i; € A(Ry)} and ¢;"' = ¢ for all
h € H. Set i"*(iy) = ChE(R;,, H®Y).

Step t: Forall h € H, let ¢, = ;""" —1if p"(i,_1) = {h}, and ¢;"" = ¢/
otherwise. Let H®' = {h € H : ¢;"* # 0 and i, € A(Ry)}. Set pfi(iy) =
Chff(th, HR’t).

The above algorithm stops after [ steps, and i"¥ becomes the matching of
the regular market. Notice that for all i € I\{iy,is, ...,4;}, we have (i) = 0),
trivially. If [ = 0, set fi(i) = @ for all 7 € I.

Now, we consider a similar matching in the aftermarket. Given the match-
ing /i"*, consider a matching /1! in the aftermarket, generated by the following
serial-dictatorship if [>0:

Step 1: Let ¢i' (i) = g — |[p®(h)| for all h € H, and HA (i) = {h €
H : "' (3" # 0 and iy € A(Rp)}. Set (i) = Chy (R, HY (i) if
i%(iy) = 0, and i (iy) = ji"(i1) otherwise.

Step t: Forall h € H, let ;" (™) = g; " (i) =13 @ (i1 )\i™ (ie-1) = {B},

9The serial dictatorship rules that we use extend respective rules in Konishi and Unver

(2006) to our two-stage framework. For the other uses of serial dictatorship in one-sided
matching markets, see Svensson (1994), Abdulkadiroglu and Sénmez (1998), and Papai
(2000).
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and ¢ (i) = " (af) otherwise. Let HA(Af) = {h € H : ¢"' (i) #
0 and i, G A(Rp)}. Set pit(iy) = Chy,(Rs,, HM (7)) if 5%(i,) = 0, and
i (i) = i"'(iy) otherwise.

The above algorithm stops after l steps, and ,[LA becomes the match-
ing of the aftermarket. Notice that for all i € I\{iy,is,...,%;}, we have
) = pf) = 0, trivially. If [ = 0, set (i) = p%(i) =0 for all i € 1.

Lemma 1. Consider any hospital-intern market with common preferences
for hospitals. Then (i, ,[LA) 1s the unique pair of stable matchings applied in
the reqular market and aftermarket, respectively.

Proof. Here, we extend the proof of Lemma 2 in Konishi and Unver (2006).
Consider any matching environment F = (H, I, qy, R), where R € RC. Let
q% € Qulqy). We will show that (7%, i) is the unique pair of stable
matchings in the early and regular decision periods.

Consider any stable matching p® in the regular market. If [ = 0, then
pf(i) = 0 for all i € I. If [ > 0, we have ufi(iy) = ChI(R;, H®'), for
otherwise the pair (i1, Ch{*(R;,, H™')) would block p* if Chf*(R;,, H™') # 0;
and i; would be better off by staying unmatched if Chf*(R;,, H®') = 0. If
[ > 1, first note that H® O HR*! for any ¢ < [—1, since H' monotonically
shrinks (weakly) by construction. Then, given uf(i;), we have pf(iy) =
Chi(R;,, H"?), for otherwise the pair (i2, Chi(R;,, H™?)) would block 't
if Ch(R;,, H®?) # 0; and i would be better off by staying unmatched if
Chl(Ri,, H™?) = 0. Similarly, for any t <, u®(is) = ChE(R;,, H™"). Thus,
we must have pft = i

Now given fiff, consider any stable matching p? in the aftermarket. If
[ =0, then (i) = (i) = 0 for all i € I. Now consider the case in which
[ > 0. Clearly, p(i) = (i) for all i € {z’l,ig, . zl} such that (i) # 0.
Moreover, we have p(i;) = C’hAl(Ril, HAY )) if 1%(i1) = 0, for otherwise
the pair (i1, Ch{ (R;,, HA (")) would block p# if Ch (Ry,, HA (™)) # 0;
and 4; would be better off by staying unmatched if Ch# (R;,, HA () =
§. If [ > 1, first note that HA(p%) D HAM(R) for any t < [ —1,
since H4(j1™) monotonically shrinks (weakly) by construction. Then, given
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p(i1), we have p?(iy) = C’hA(RZQ,HA2( Y)Y if jf (i) = 0, for otherwise
the pair (iy, Ch{l (Ry,, HA2(i"))) would block p# if Chi (Ry,, HM2 (™)) # 0;
and i would be better off by staying unmatched if ChA(RZZ, HA2 (7)) = 0.
Similarly, for any ¢ < I, u?(is) = Ch{ (Ri,, HM(i™)) if i (3;) = 0. Thus, we
must have p? = . |

Below, we show that reporting the total capacity in the regular market is

a weakly dominant strategy for each hospital.!’

Theorem 2. Consider a matching environment with common preferences
for hospitals. Then, in the capacity allocation game under the stable matching
system, reporting the total capacity as the reqular market quota is a weakly
dominant strategy for each hospital.

Proof. Consider any matching environment £ = (H,I,qy, R), where
R € RY. Let ¢&% € Qu(qy). Pick a hospital h € H, and consider a strat-
egy ¢y € Qpnlqu). Let % be the unique stable matching system associated
with the regular market (E, (qn,q",)). Let ©*(E,o%(E, (qn, 4)))(h) =
O’(E, (qn,q"1,)) = {ir, i1, .y ir}, where k < 1 < ... <r <n. Forany p <,
iy & QNE, o"(E, ¢y))(h) if i, & {ix, i1, ..., i, }, following by the construction
of ™ and p*. Moreover, p*(E, ¢};)) = T* C {ix, iy, ..., i,} where |T%| < ¢,
and ¢ (E, @R(E,ﬂq’H))(h) =T C {ip, iy, ..., i} where |T4| < [{i, i1, ..., i }|.

Thus, (qn,q" ;) tf ¢y by the responsiveness of hospitals’ preferences. 1

The intuition underlying the above result is that any hospital that sets
its regular market quota to its total capacity admits all of the interns achiev-
able under the unique stable matching system right in the regular market.
Moreover, since the matchings are determined by the serial dictatorship of
interns, by reducing its regular market quota no hospital can ever hire any
‘desirable yet unachievable’ intern, who would not choose this hospital (un-
der the report of the total capacity) while it was available in his or her choice

10T heorem 2 readily extends to a matching environment where interns have common
preferences and consequently the unique stable matchings are obtained by the serial dic-
tatorship of hospitals.
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set. In fact, any hospital reducing its regular market quota may lose some
of the interns that it could otherwise employ (under the report of the total
capacity) to some of the other hospitals.

4 Conclusions

In this paper, we studied a capacity allocation game played by hospitals
in a hospital-intern market with an aftermarket. We showed that a pure-
strategy equilibrium may not exist under the intern-optimal stable matching
system. We also established that common preferences for hospitals ensure the
existence of equilibrium, where setting the regular market quota to the total
capacity becomes a weakly dominant strategy for each hospital. But, strong
monotonicity of population is not a sufficient restriction on preferences to
avoid the nonexistence problem, like in games of capacity manipulation. In
games of capacity allocation, it is not true either that every hospital weakly
prefers a mixed-strategy Nash equilibrium to any larger regular market quota
profiles.

Hospital-intern markets, as the motivating example of many-to-one match-
ing in our model, have disallowed the direct use of intertemporal capacity
allocation in the USA. Nevertheless, quota reversions used in the NRMP,
in effect, create an indirect possibility of strategic allocation of capacity by
hospitals. In the NRMP mechanism, each hospital program announces its
ranking of the interns and its quota along with its reversion status. Quota
reversions allow programs to donate unfilled positions to other programs dur-
ing the matching process. Although it has been argued in the NRMP User
Guide (2007) that institutions can use reversions to provide some degree of
protection against the possibility that positions will go unfilled,!! reversions
may easily facilitate strategic manipulation of capacity allocation. For in-
stance, a program may announce a low quota for a popular program and a
high quota for an unpopular one with a reversion option to the popular one.

1UThe NRMP User Guide (2007) indicates that reversion is primarily used between
categorical and preliminary programs, between internal medicine and internal medicine
primary care, or between tracks.
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By restricting the quota of the popular program a priori, the hospital may
ensure a match with a better set of interns.

In the design of the existing NRMP algorithm, computational experi-
ments aiming to test the algorithm’s vulnerability to the capacity manipu-
lation a la Sonmez (1999) and its sensitivity to the sequence in which quota
reversions are processed were conducted and later reported in Roth and Per-
anson (1999). In these sensitivity tests, the input program quotas were set
to be the final postmatch quotas produced by preexisting NRMP algorithm
(one in use before 1997) and newly proposed intern-optimal stable match-
ing algorithm. The results of the experiments showed that only negligible
number of applicants and programs were affected by altering the time when
reversions enter the match process. However, these experimental tests take
the number of positions (of programs) to be reverted to be fixed by data,
and therefore they do not target to check for the scope of manipulation of
outcomes through quota reversions, i.e. the problem of capacity allocation
in hospital-intern markets.

A better-known example of capacity allocation games is the early ad-
mission game played by many colleges in the USA for the last fifty years.!?
Our findings in this paper uncovered the instrumental role played by early
admission programs in increasing the bargaining power of colleges (vis a vis
students) by making the supply side of the market ‘thinner’.’* We believe
that further research may profitably study intertemporal capacity allocation
in college admission where preferences of colleges and students also enter as
strategic variables into the play.
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