Fang, Fang and Oosterlee, Kees (2008): Pricing EarlyExercise and Discrete Barrier Options by FourierCosine Series Expansions.

PDF
MPRA_paper_9248.pdf Download (344kB)  Preview 
Abstract
We present a pricing method based on Fouriercosine expansions for earlyexercise and discretelymonitored barrier options. The method works well for exponential Levy asset price models. The error convergence is exponential for processes characterized by very smooth transitional probability density functions. The computational complexity is $O((M1) N \log{N})$ with $N$ a (small) number of terms from the series expansion, and $M$, the number of earlyexercise/monitoring dates.
Item Type:  MPRA Paper 

Original Title:  Pricing EarlyExercise and Discrete Barrier Options by FourierCosine Series Expansions 
Language:  English 
Subjects:  G  Financial Economics > G1  General Financial Markets > G13  Contingent Pricing; Futures Pricing 
Item ID:  9248 
Depositing User:  Fang Fang 
Date Deposited:  29. Jun 2008 02:42 
Last Modified:  11. Feb 2013 23:39 
References:  Almendral A. and Oosterlee C.W., Accurate evaluation of European and American options under the CGMY process. , SIAM J. Sci. Comput. 29: 93117, 2007. Almendral A. and Oosterlee C. W., On American options under the Variance Gamma process, Appl. Math. Finance, 14(2):131152, 2007. \bibitem{quad1} {\sc Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P.,} Universal option valuation using quadrature methods, {\it J. Fin. Economics,} 67: 447471, 2003. Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P., Extending quadrature methods to value multiasset and complex path dependent options,J. Fin. Economics, 2006. BarndorffNielsen O. E. Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24:113, 1997. Bender C.M. and Orszag S.A., Advanced mathematical methods for scientists and engineers. McGrawHill, New York, 1978. Boyarchenko, S.I. and Levendorskiu, S.Z., Non{G}aussian {M}erton{B}lack{S}choles theory}, Vol.~9 Advanced Series on Statist. Science & Appl. Probability., World Scient. Publ. Co. Inc., River Edge, NJ, 2002. Boyd J.P., Chebyshev & Fourier spectral methods. SpringerVerlag, Berlin, 1989. Broadie M. and Yamamoto Y., Application of the fast Gauss transform to option pricing, Management Science, 49(8): 10711088, 2003. Broadie M. and Yamamoto Y., A doubleexponential fast Gauss transform for pricing discrete pathdependent options, Operations Research, 53(5): 764779, 2005. Cariboni J. and Schoutens W., Pricing credit default swaps under Levy models. J. Comp. finance, 10(4) 7191, 2008. Carr P.P., Geman H., Madan D.B. and Yor M., The fine structure of asset returns: An empirical investigation. J. of Business, 75: 305332, 2002. Carr P.P. and Madan D.B., Option valuation using the Fast Fourier Transform. J. Comp. Finance, 2:6173, 1999. Chourdakis K., Option pricing using the Fractional FFT. J. Comp. Finance 8(2), 2004. Chang CC, Chung SL and Stapleton R.C., Richardson extrapolation technique for pricing Americanstyle options. J. Futures Markets, 27(8): 791817, 2007. Cont R. and Tankov P.,Financial modelling with jump processes, Chapman and Hall, Boca Raton, FL, 2004. Dempster M.A.H. and Hong S.S.G., Spread option valuation and the Fast Fourier transform. Techn. Rep. WP 26/2000, the Judge Inst. Manag. Studies, Univ. Cambridge, 2000. Duffie D., Pan J. and Singleton K.J., Transform analysis and asset pricing for affine jumpdiffusions. Econometrica, 68: 13431376, 2000. Duffie D., Filipovic D. and Schachermayer W., Affine processes and applications in finance. Ann. of Appl. Probab., 13(3): 9841053, 2003. Evans G.A. and Webster J.R., A comparison of some methods for the evaluation of highly oscillatory integrals. J. of Comp. Applied Math. 112: 5569, 1999. A fast algorithm for computing integrals in function spaces: financial applications. Computational Economics 7(4): 277285, 1994. Fang, F. and Oosterlee, C.W. A novel option pricing method based on Fouriercosine series expansions, submitted, 2008, see http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee/COS.pdf Feng L. and Linetsky V.,Pricing discretely monitored barrier options and defaultable bonds in Levy process models: a fast Hilbert transform approach, To appear in Mathematical Finance, 2008. Haug E.G., The complete guide to option pricing formulas. McGrawHill, 1998. Haug E.G., Barrier putcall transformations}, see http://www.smartquant.com/references/OptionPricing/option27.pdf Heston S., A closedform solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Studies, 6: 327343, 1993. Hirsa A. and Madan D.B., Pricing American options under Variance Gamma. J. Comp. Finance, 7, 2004. Hull J.C. Options, futures and other derivatives. Prentice Hall. 4th ed., 2000. Jackson K., Jaimungal S. and Surkov V., Option pricing with regime switching Levy processes using Fourier space timestepping. Proc. 4th IASTED Intern. Conf. Financial Engin. Applic., 9297, 2007. Kou S. G.,A jump diffusion model for option pricing. Management Science, 48(8): 10861101, 2002. Lewis A. A simple option formula for general jumpdiffusion and other exponential Levy processes. SSRN working paper, 2001. Available at: http//ssrn.com/abstract=282110 Lord R., Fang F., Bervoets F. and Oosterlee C.W., A fast and accurate FFTbased method for pricing earlyexercise options under Levy processes. SIAM J. Sci. Comput., 30: 16781705, 2008. Madan D. B., Carr P. R. and Chang E. C. The Variance Gamma process and option pricing. European Finance Review, 2: 79105, 1998. Merton R. Option pricing when underlying stock returns are discontinuous, J. Financial Economics, 3: 125144, 1976. O'Sullivan C., Path dependent option pricing under Levy processes} EFA 2005 Moscow Meetings Paper, Available at SSRN: http://ssrn.com/abstract=673424,2005 Piessens R. and Poleunis F.,A numerical method for the integration of oscillatory functions. BIT, 11: 317327, 1971. Raible S., Levy processes in finance: Theory, numerics and empirical facts. PhD Thesis, Inst. fuer Math. Stochastik, AlbertLudwigsUniv. Freiburg, 2000. Sato, KI.,Basic results on Levy processes, In: Levy processes, 337, Birkhaeuser Boston, Boston MA, 2001. Schoutens, W., Levy processes in finance: Pricing financial derivatives. Wiley, 2003. Singleton K.J. and Umantsev L., Pricing couponbond options and swaptions in affine term structure models. Math. Finance, 12(4): 427446, 2002. Surkov V., Parallel option pricing with Fourier space timestepping method on graphics processing units. Preprint Univ. of Toronto, 2007. See: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1020207 Taleb N.Dynamic Hedging. John Wiley & Sons, New York, 2002. Wang I., Wan J.W. and Forsyth P.,} Robust numerical valuation of European and American options under the CGMY process. J. Comp. Finance, 10(4): 3170, 2007. Wilmott P., Derivatives: The theory and practice of financial engineering. Wiley Frontiers in Finance Series, 1998. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/9248 