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Abstract

We analyze the problem that enterprises face when having to decide

on the most effective way to advertise several items belonging to their

inventories within the company’s webpages. We show that the ability

to arbitrarily partition a website among items leads to a comparative

advantage among webpages which can be exploited so as to maximize the

total utility of the enterprise. This result, which also applies to the case

of several competitive providers, is then extended to dynamical scenarios

where both the advertising allocation and the exposure levels vary with

time.



1 Introduction

A distinguishing feature of the information era is the saliency of people’s at-

tention as a scarce resource. Unlike an earlier time when information was not

ubiquitous and thus a valuable resource, its easy availability has shifted the

focus to the limited bandwidth that people can devote to ubiquitous media and

news. This explains the new predominance of intangibles like style and de-

sign, as opposed to the more physical content of products, when attempting to

capture the limited attention of consumers [14].

A glaring and old example of the competition for attention is advertise-

ment, which has always exploited the prevailing technology to reach audiences

effectively. As insights and methods from fields as disparate as psychology and

operations research became available, advertisers used them to both target more

effectively their audience and to decide how to optimally allocate financial re-

sources to given media [9, 19]. More recently, the advent of the web has made

possible to target advertising in an even more effective and dynamic way, to the

point that only those searching or using for a particular piece of information are

potentially exposed to adverts relevant to that piece.

While the subject of limited attention has been the focus of research in

psychology [12], neuroscience [22] and — to a lesser extent — behavioral eco-

nomics [8] for a number of years, it is only recently that it has been ana-

lyzed in terms of the new behavioral and communication modalities it creates

[7, 10, 11, 13, 14, 15, 23].

From the point of view of economic theory, Falkinger has recently produced

a model based on psychological evidence that describes the competition among

producers for the attention of users [5]. By focusing on the sender side of the

problem rather than the receiver, he showed how changes in either the method of

broadcast generation or the ability to reach large numbers of people on a global

scale affect both attention levels and the number of viable receivers of a given

message. Interestingly, he also demonstrates how a wider diffusion of signals

among a population can diminish the equilibrium number of broadcasters in

spite of the fact that each receiver has access to a larger variety of broadcaster

than before.

In this paper we also analyze the problem of allocating resources to given

messages from the sender point of view, with a focus on the problem of placing

adverts for many products in many vehicles or websites. A consideration of

this problem leads to another interesting effect that takes place in attention

economies. This is best seen when considering producers having to decide on

the most effective way to advertise several items belonging to their inventories

within a number of the company’s webpages.

Specifically, consider a producer having two products, 1 and 2, and two

webpages belonging to his own firm where they can be advertised. As is the case
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in many situations we can typically assume that each page tends to advertise a

different family of products. We say that webpage 1 has an absolute advantage

over webpage 2 in one product if the return to the producer on the cost of

advertising that product in website 1 is higher than the return of advertising

that product in website 2.

A more careful analysis of the utility incurred in such process however, shows

than in many cases website 2 should only advertise the product in which it has

a comparative advantage to website 1. We say that website 2 has comparative

advantage over website 1 in advertising a given product if the relative returns to

website 2 of advertising that product over the others is higher than the relative

returns from advertising that product in website 1.

This result can at times seem paradoxical, for it leads to situations whereby

although website 2 can advertise product 1 twice more effectively than product

2, it should only advertise product 2 in order to maximize the total utility to

the producer.

Thus comparative advantage, a well known principle in trade economics [2],

is also present in attention economies along with the same apparent paradoxes

that makes the principle so misunderstood in spite of its age and exposure.

Moreover, comparative advantage is not restricted to the case where the prod-

ucts belong to the same producer. As we also show, it shows up in the general

competitive case analyzed by Falkinger [5].

In what follows we consider the problem of resource allocation for adver-

tising many products in several websites (which in what follows will stand for

vehicles as well) taking into account exposure levels and utility functions. We

use methods that have been developed for optimally placing advertisements

for single products in a number of vehicles [3, 6, 24]. We then show how one

can determine the optimal allocation of resources into several websites and how

comparative advantage appears and is characterized, both in the case of single

providers and many competitive ones. Next we consider the dynamical case

where both the advertising allocation and the exposure levels vary with time.

Using a dynamic programming approach we show how the continuous time opti-

mization problem can be mapped to a one period problem of the type studied by

Srinivasan[24]. Finally we study the stable limit, characterized by having both

the relative price ratios and allocations constant, and show how it coincides with

the static solution found in the earlier part of the paper.
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2 Resource allocation and advertising

2.1 The model

Consider an enterprise that advertises its m products on n different vehicles,

which may be websites or the many webpages under the company’s main one,

a selection of keywords in a keyword auction, or different TV channels. Each

of these websites can be used to advertise either one product exclusively, or be

divided into fractions to advertise more than one product at the same time. In

what follows we will refer to websites but the analysis carries over to any other

vehicle.

In order to maximize its total utility from advertising, the enterprise can

adjust its advertising allocation at any time, so as to achieve the optimal adver-

tising exposure level [17]. In what follows we will formally define how resource

allocation within a website affects the exposure levels of its various advertising

targets, and how these exposure levels in turn determine the company’s utility.

Let u be an n×m nonnegative matrix whose entry uij represents the fraction

of website i is allocated to advertise product j. This fraction can be either

in absolute value or a relative one. Let U be the feasible allocation set. For

example, a company might host n subsites under its main website. If it allocates

a proportion uij of its i’th subsite to advertise product j, the feasible set is then

U =







(uij)n×m : uij ≥ 0,
∑

j

uij ≤ 1







. (1)

Let x be a non-negative m-vector whose i’th component xi measures the

advertising exposure level of product i, which is in turn determined by the

advertising allocation u. This exposure level can be measured by the total

number of clicks on a given product over a given time interval. We assume a

simple linear relation between u and x (this assumption will be relaxed later in

Section 3):

xj = b1ju1j + · · · + bnjunj , j = 1, . . . ,m, (2)

where bij > 0 since advertising always increases exposure level. Thus bij mea-

sures the effectiveness of website i at advertising product j, which is again

measured by the number of clicks for that product.

The company’s utility is defined as the gain obtained by advertisement minus

its cost:

V = g(x) − c(u). (3)

In situations where the cost is a constant (as is the case with websites) one can

also write V = g(x), where g is a utility function which is nondecreasing in x.
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Thus the company seeks to solve

max g(x) s.t. u ∈ U. (4)

2.2 Comparative advantage

2.2.1 Two websites and two products

Let us start with the simplest case: there are only two websites and two products

(m = n = 2). The social objective is to maximize the company’s utility, or

equivalently

max g(x1, x2) = g(b11u11 + b21u21, b12u12 + b22u22)

s.t. u ≥ 0, u11 + u12 ≤ 1, u21 + u22 ≤ 1.
(5)

We say that vehicle 1 has comparative advantage for advertising product 1

if
b11

b21

>
b12

b22

. (6)

Clearly, under this definition vehicle 2 has a comparative advantage over website

1 for advertising product 2.

If Eq. (6) holds one can show that either u12 = 0 or u21 = 0 in the optimal

allocation. Suppose otherwise that both u12 > 0 and u21 > 0. Consider the

following small change in u:

∆u11 = −
b21

b11

∆u21 = −∆u12 =
b22

b12

∆u22 > 0. (7)

When the change is small we can keep u12 > 0 and u21 > 0. The value of g will

not be affected since x1 and x2 remain unchanged. It is easy to check that while

the first constraint in Eq. (5) is binding after the change, the second constraint

cannot be satisfied, i.e.:

∆u21 + ∆u22 = −
b22

b12

(

b11

b21

−
b12

b22

)

∆u12 < 0. (8)

Thus one can increase both x1 and x2 without violating the constraints, but

doing so will cause an increase in g and contradict optimality. Therefore, it

cannot be that both u12 > 0 and u21 > 0; one of them has to be zero.

When u12 = 0 website 1 advertises only product 1, so u11 > 0, thus product 2

has to be advertised by website 2, for otherwise the utility is zero. Thus u22 > 0.

When u21 = 0 a similar argument leads to the same conclusion, i.e. u11 > 0 and

u22 > 0. This means that if a website has comparative advantage in advertising

a product then it should always advertise that product (it may or may not

advertise the other product). We emphasize that this result does not depend

on the explicit form of g.
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Example 1. Consider a Cobb-Douglas utility with the two products equally im-

portant: g(x) = x
1/2

1 x
1/2

2 . This is equivalent to U(x) = x1x2 after a monotonic

transformation.

Solution. We list without proof the optimal solution for three possible cases,

neglecting degeneracy:

Case 1. b11
b21

> b12
b22

> 1.

u11 =
b11

b12

b12 + b22

2
, u12 =

b12 − b22

2
, u21 = 0, u22 = b22. (9)

Our result says that if vehicle 1 has absolute advantage over vehicle 2 in both

productss, then vehicle 2 should only process advertise the product in which it

has comparative advantage. This result can be perplexing in some cases. For

example, consider the case where b11 = 5, b12 = b21 = 2, and b22 = 1. Although

website 2 can advertise product 1 two times more effectively than product 2, it

should only advertise product 2.

Case 2. 1 > b11
b21

> b12
b22

.

u11 = b11, u12 = 0, u21 =
b21 − b11

2
, u22 =

b22

b21

b11 + b21

2
. (10)

Similar to Case 1.

Case 3. b11
b21

> 1 > b12
b22

.

u11 = b11, u12 = b21 = 0, u22 = b22. (11)

In words, both websites should specialize if and only if each website has absolute

advantage in advertising one product.

2.2.2 The comparative advantage characterization

The result of Section 2.2.1 can be generalized to the case of more than two

websites and more than two products. Assume that

bi1j1

bi2j1

>
bi1j2

bi2j2

(12)

for websites i1, i2 and products j1, j2. Then one of ui1j2 and ui2j1 must be zero.

2.2.3 Two websites and m products

Without loss of generality we can order the websites by comparative advan-

tage, so that website 1 has comparative advantage in advertising products with
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smaller labels:
b11

b21

> · · · >
b1m

b2m
. (13)

By the comparative advantage characterization, for any 1 ≤ j < k ≤ m it must

be that either u2j = 0 or u1k = 0. Therefore there must exist some J such that

u1j > 0, u2j = 0 for 1 ≤ j < J ;

u1j = 0, u2j > 0 for J < j ≤ m.
(14)

In words, website 1 should advertise products 1, . . . , J − 1 and possibly J , and

vehicle 2 should advertise products J + 1, . . . ,m and possibly J .

Example 2. (Leontief utility [18]) g(x) = min{x1, . . . , xm}. The social objective

is to maximize the least gain of all products.

Proof. By introducing an auxiliary variable z = g(x), the problem can be writ-

ten as a linear program:

max z

s.t.
∑

i bijuij ≥ z for j = 1, . . . ,m;
∑

j uij ≤ 1 for i = 1, 2.
(15)

Using a Lagrangian multiplier it is not hard to show that Eq. (15) is equivalent

to

max
∑

i,j

pjbijuij s.t.
∑

j

uij ≤ 1 for i = 1, 2, (16)

where {pj} is a set of shadow prices [1]. The Lagrangian of Eq. (16) is

L(yij ;wi) =
∑

i,j

pjbijuij −
∑

i

wi





∑

j

uij − 1





=
∑

i

wi +
∑

i,j

uij (pjbij − wi) , (17)

where {wi} is a set of shadow wages. We can now easily write out the dual

problem of Eq. (16) as:

min
w

∑

i

wi s.t. wi ≥ pjbij for i = 1, 2; j = 1, . . . ,m. (18)

The constraints in Eq. (18) hold for uij > 0. Thus we have

w1 = b1jpj , w2 < b2jpj for 1 ≤ j < J ;

w1 < b1jpj , w2 = b2jpj for J < j ≤ m.
(19)

In words, product j should be advertised by website 1 wholly if w1/w2 > b1j/b2j ,

and by website 2 if w1/w2 < b1j/b2j .
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Linear programming duality implies that

wi =
∑

j

pjbijuij , (20)

so a website’s wage is just the total price of its resource allocation. Observe

that Eq. (16) is separable. This implies that if each website i maximizes its own

wage subject to its capacity constraint:

max
∑

j

pjbijuij s.t.
∑

j

uij ≤ 1, (21)

then the solution will be exactly the same as Eq. (16). Thus if we interpret

shadow prices as real prices, the corresponding competitive market will lead to

an efficient allocation.

Due to the comparative advantage characterization (Eq. (14)) the optimal

allocation can be determined by solving one simple equation:

b−1

11 + · · · + b−1

1,J−1
+ θb−1

1J = (1 − θ)b−1

2J + b−1

2,J+1
+ · · · + b−1

2m, (22)

where it is required that θ ∈ [0, 1) and 1 ≤ J ≤ m.

2.2.4 n websites and two products

Once again we label the websites in decreasing order of their comparative ad-

vantage:
b11

b12

> · · · >
bn1

bn2

. (23)

Like before, the solution has a simple form

ui1 > 0, ui2 = 0 for 1 ≤ i < I;

ui1 = 0, ui2 > 0 for I < i ≤ n.
(24)

In words, websites 1, . . . , I − 1 should advertise product 1 and websites I +

1, . . . , n should advertise product 2. Website I may advertise both products.

Example 3. (Cobb-Douglas utility) g(x) = xα
1 x1−α

2 , where 0 < α < 1.

Proof. From the comparative advantage characterization, the optimal advertis-

ing levels have the simple form

x1 = b11 + · · · bI−1,1 + θbI1, (25)

x2 = (1 − θ)bI2 + bI+1,2 + · · · + bn2, (26)

where 0 ≤ θ < 1. Ignoring degeneracy for the moment (i.e. assuming that

0 < θ < 1), the optimal θ must satisfy the first order condition

∂ log g(x)

∂θ
=

α

x1

bI1 −
1 − α

x2

bI2 = 0, (27)
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or
α bI1

(1 − α)bI2

=
b11 + · · · + bI−1,1 + θbI1

(1 − θ)bI2 + bI+1,2 + · · · + bn2

. (28)

This equation has a solution since the left side decreases with I and the right

side increases with I.

If we define two shadow prices

p1 =
∂ log g(x)

∂x1

=
α

x1

, p2 =
∂ log g(x)

∂x2

=
1 − α

x2

, (29)

Eq. (27) can be also written as p1bI1 = p2bI2, so website I is indifferent to

advertising products 1 or 2.

Note that in the general case one can no longer sort the websites or products

by comparative advantage, and has to solve the full optimization problem. The

comparative advantage characterization still holds though.

3 Competing for attention

In the last two sections we demonstrated how several websites or other media

belonging to the same advertiser can maximize the total utility of the producer.

There are situations however, where several producers or advertisers might com-

pete for the same target audience, as is customary in the world of traditional

advertising or other types of attention seeking activities. In order to address it

we resort to Falkinger’s model of an attention economy in which each sender

seeks to maximize its own utility while attempting to capture a fraction of the

finite amount of attention available [5]. As we now show, in this case there is

also a comparative advantage among senders.

To see this, we follow Falkinger in assuming that the impact of a sender on

a receiver decreases as the receiver’s attention capacity decreases. Thus senders

have to compete for the finite total capacity of the receives. In our notation this

means that the impact, vij , that a given media or website i has on the target

of product j is no longer linear in its signal strength bijuij . Instead, we choose

vij to be proportional to the fraction of signal strength among all websites:

vij =
bijuij

∑

k bkjukj
. (30)

The total impact of website i on its target is just vi =
∑

j vij . The margin of

website i when advertising product j is then given by

∂vi

∂uij
=

bij
∑

k bkjukj
−

b2
ijuij

(
∑

k bkjukj)2
. (31)
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Since in the continuum limit the second term is negligible, we have

∂vi

∂uij
=

bij
∑

k bkjukj
≡ bijpj , (32)

where pj = (
∑

k bkjukj)
−1 is the shadow price. We thus see that in equilibrium

the comparative advantage characterization we described in earlier section again

holds in this more general scenario. For example, in situations where bi1/bi2 >

p2/p1 website i should not advertise product 2.

4 Dynamical resource allocation

We now generalize our model by allowing both the advertising allocation and

the exposure levels to change with time. Let u(t) be an n × m nonnegative

matrix whose entry uij(t) represents how much resource of website i is allocated

to advertise product j at time t.1 The feasible allocation set Ut may or may

not depend on time. Let x(t) be a nonnegative m-vector whose i’th component

xi(t) denotes the advertising exposure level of product i at time t. The exposure

levels at time 0 is assumed to be given. These levels will go down if the company

makes no effort in advertising (forgetting effect), but can also go up as some

websites are used to advertise. Based on such considerations we write down the

dynamical equation for xt:

ẋt = Atxt + Bt(ut), t ∈ [0, T ]. (33)

where At is an m × m decay matrix describing how the exposure levels de-

cay with time and how they mutually affect each other. For example, if At =

diag(−β1, . . . ,−βn) each xi(t) decays exponentially fast. Bt is a response func-

tion that maps an n×m matrix to an m-vector and it describes how an adver-

tising allocation affects the exposure levels. For simplicity we assume that Bt

is linear as before:

Bj(t) = b1j(t)u1j(t) + · · · + bnj(t)unj(t), j = 1, . . . ,m. (34)

Each bij(t) ≥ 0 since advertising increases exposure level.

The company’s utility is defined as the gain from advertisement minus the

cost. Because time is continuous, it is appropriate to define a gain flow with

density gt(xt), and a cost flow with density ct(ut). At the end time T the

company receives a lump-sum final gain of G(xT ) which can be regarded as the

total gain after T . The only assumption imposed on gt and G is that they are

both nondecreasing and concave. The company’s total utility is thus

V = G(xT ) +

∫ T

0

[gt(xt) − ct(ut)] dt. (35)

1Notations like u(t) and ut will be used interchangeably from now on for easier readability.
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Thus, the company seeks to

max V = G(xT ) +

∫ T

0

[gt(xt) − ct(ut)] dt

s.t. ẋt = Atxt + Bt(ut) for t ∈ [0, T ],

ut ∈ Ut for t ∈ [0, T ],

x0 given.

(36)

Our model closely follows Srinivasan [24], but with two important differences.

First, in our case time is continuous rather than discrete, which makes it easier

to analyze the system’s dynamical behavior. The second important difference

is that in our model we allow for the company to have the extra freedom to

fine-tune its resources so as to be able to advertise more than one product per

website. In other words, u(t) is an n×m matrix, and not an n-vector, something

which is not possible in Srinivasan’s model. As we show in the next section, it

is from these additional degrees of freedom that the comparative advantage in

advertising emerges.

4.1 Mapping dynamics to one period

We follow the standard Pontryagin approach to solve the dynamic programming

problem (36). We thus introduce the Hamiltonian

Ht(xt, ut, pt) = gt(xt) − ct(ut) + pt[Atxt + Bt(ut)], (37)

where pt is the adjoint function (row vector with m components) satisfying the

adjoint equation

ṗt = −∇xHt(x
∗

t , u
∗

t , pt) = −ptAt −∇gt(x
∗

t ) (38)

with the boundary condition

pT = ∇G(x∗

T ). (39)

The optimal control u∗

t satisfies

Ht(x
∗

t , u
∗

t , pt) = max
ut∈Ut

Ht(x
∗

t , ut, pt), (40)

or

ptBt(u
∗

t ) − ct(u
∗

t ) = max
ut∈Ut

[ptBt(ut) − ct(ut)]. (41)

We next verify that (u∗, x∗) is indeed an optimal solution. Let (u, x) be any
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other feasible solution, and V be the corresponding total utility. We then have

V ∗ − V = G(x∗

T ) − G(xT ) +

∫ T

0

[gt(x
∗

t ) − gt(xt) − ct(u
∗

t ) + ct(ut)] dt

≥ ∇G(x∗

T )(x∗

T − xT ) +

∫ T

0

[∇gt(x
∗

t )(x
∗

t − xt) − ct(u
∗

t ) + ct(ut)] dt

= pT (x∗

T − xT ) +

∫ T

0

[(−ṗt − ptAt)(x
∗

t − xt) − ct(u
∗

t ) + ct(ut)] dt

=

∫ T

0

[pt(ẋ
∗

t − ẋt) − ptAt(x
∗

t − xt) − ct(u
∗

t ) + ct(ut)] dt

=

∫ T

0

[pt(F (u∗

t ) − F (ut)) − ct(u
∗

t ) + ct(ut)] dt

≥ 0, (42)

where the first “≥” follows from the concavity of both G and g, the third “=”

is integration by parts, and the last “≥” is Eq. (41).

Eq. (41) shows that the optimal strategy u∗

t must solve

max [ptBt(ut) − ct(ut)] s.t. ut ∈ Ut. (43)

Thus, the continuous time optimization problem reduces to a one period prob-

lem.

Assuming that cost is constant and Ut is the same as before, Eq. (43) can

be written explicitly as

max
∑

i,j

pj(t)bij(t)uij(t) s.t.
∑

j

uij(t) ≤ 1 for i = 1, . . . , n. (44)

For fixed t this equation has the same functional form as Eq. (16), so we again

obtain the comparative advantage property, along with a shadow wage charac-

terization.

4.2 The stable solution

In the dynamic setting the adjoint price function, p(t), may change with time,

so the optimal advertising allocation u(t) may also change. We are interested

in finding the stable solution in which both the relative price ratio and the

allocation stay constant. We now consider a concrete example to keep the

calculations transparent.

Example 4. Suppose there are n websites and two prices (m = 2). The decay

matrix is assumed to be homogeneous and constant: A(t) = −βI. The utility

kernel is Cobb-Douglas: gt(x) = xα1

1 xα2

2 , and the final gain is zero: G = 0. Also

assume that bij(t) and ct(ut) are constants.
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Proof. If the price ratio eventually stabilizes, we have

d

dt

(

p1(t)

p2(t)

)

= 0, (45)

or equivalently

ṗ1(t)

ṗ2(t)
=

p1(t)

p2(t)
=

∂g(x)/∂x1

∂g(x)/∂x2

=
αx2

(1 − α)x1

= constant, (46)

where the second equality follows from Eq. (38). This equation is consistent with

Eq. (29). Therefore the optimal allocation in the stable limit is again given by

Eq. (28), which coincides with the optimal allocation of the static model.

5 Discussion

In this paper we analyzed the problem faced by enterprises when having to

decide on the most effective way to advertise several items belonging to their

inventories within the company’s website. This is an important problem given

the extraordinary role that advertising plays in the information society and

the need to design effective ways of reaching people with a limited amount of

attention. Thus, an efficient way of dynamically placing adverts within websites

can have an important effect both on the awareness that people have of given

issues and products and on the financial viability of producers and retailers.

A consideration of this problem leads to an interesting and at times seemingly

paradoxical effect. As we showed, the ability to arbitrarily partition a website

among items leads to a comparative advantage among webpages which can be

exploited so as to maximize the total utility of the enterprise. This result, which

also applies to the case of several competitive providers analyzed by Falkinger,

was then extended to dynamical scenarios where both the advertising allocation

and the exposure levels vary with time. The extension to continuous time

adjustments is extremely relevant to the problem of Internet keyword auctions,

as bidding for words takes place continuously.

While our analysis was performed within the context of the web, there is

nothing that prevents our results to be extended to other vehicles such as tele-

vision advertising or other media. Provided one can partition a vehicle among

several offerings, a comparative advantage can arise which can be suitably ex-

ploited to maximize returns to the advertisers. Moreover, the present popularity

of Internet advertising through keyword auctions suggests the use of this mech-

anism for deciding on the best stratetigies to advertise. While the simplest and

logical way to bid for given keywords is dictated by the perceived competitive

advantage and popularity of given search items, our work suggest a more nu-

anced investigation of the returns accrued by placing adverts under different

search queries.
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