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Abstract

A strong correlated equilibrium is a correlated strategy profile that is immune to
joint deviations. Different notions of strong correlated equilibria have been defined
in the literature. One major difference among those definitions is the stage in which
coalitions can plan a joint deviation: before (ez-ante) or after (ex-post) the deviating
players receive their part of the correlated profile. In this paper we show that an
ex-ante strong correlated equilibrium (Moreno & Wooders, Games Econ. Behav. 17
(1996), 80-113) is immune to deviations at all stages. Thus the set of ex-ante strong
correlated equilibria is included in all other sets of strong correlated equilibria.

Key words: coalition-proofness, strong correlated equilibrium, common knowledge,
incomplete information, non-cooperative games. JEL classification: C72, D82.

I This work is in partial fulfillment of the requirements for the Ph.D. in mathematics
at Tel-Aviv University. I would like to thank Eilon Solan for his careful supervision,
for the continuous help he offered, and for many insightful discussions. I would also
like to express my deep gratitude to to Ehud Lehrer and Yaron Agzrieli for many
useful comments, discussions and ideas.

Preprint submitted to Elsevier June 12, 2008



1 Introduction

The ability of players to communicate prior to playing a non-cooperative game,
influences the set of self-enforcing outcomes of that game. The communica-
tion allows the players to correlate their play, and to implement a correlated
strategy profile as a feasible non-binding agreement. For such an agreement to
be self-enforcing, it has to be stable against “plausible” coalitional deviations.
Two notions in the literature describe such self-enforcing agreements: a strong
correlated equilibrium is a correlated profile that is stable against all coali-
tional deviations, while a coalition-proof correlated equilibrium is a correlated
profile that is stable against self-enforcing coalitional deviations (|6]). For a
coalition of a single player, any deviation is self-enforcing. For a coalition of
more than one player, a deviation is self-enforcing if there is no further self-
enforcing and improving deviation by one of its proper sub-coalitions. The
main focus of this paper is on the former notion.

A correlated strategy profile can be implemented by a mediator who pri-
vately recommends each player which action to play. It can also be imple-
mented by a pre-play signaling process, a revealing protocol, that includes
payoff-irrelevant private and public signals (“sunspots”). Each player deduces
his recommended action from the signals he has received. In the existing lit-
erature it is assumed that all the signals are received simultaneously by all
the players (|9,13,25,26,29,30]). However, the revealing protocol may be more
complex. Few examples are:

e The recommendations can be revealed consecutively by private signals in a
pre-specified order. An example for such a protocol is the polite cheap-talk
protocol in [18], which implements a large set of strong correlated equilibria
as strong Nash equilibria in an extended game with cheap-talk.?

e The players can receive private signals in a pre-specified order, where each
signal includes partial information about the player’s recommended action.

e The order in which the recommendations are revealed to the players may
depend on a private lottery.

So that a revealing protocol can implement a correlated equilbirum it should

2 Cheap-talk is pre-play, unmediated, non-binding, non-verifiable communication
among players (see [14] for a good nontechnical introduction). A cheap-talk protocol
is polite if at each stage at most one player sends a message.

3 For example, at each stage a player may be informed about a new unrecommended
action: if the possible actions of a player are {a,b,c} he may first be informed that
the recommended action is not b, and at a later stage be informed that it is not ¢
as well.



satisfy two properties. First, at the end of the protocol each player should
know the action recommended to him. Second, no player should obtain any
information about the actions recommended to the other players, except the
conditional probability, given his own recommended action.

When all the players receive their recommended actions simultaneously, a
coalition of players may communicate, share their information, and plan a joint
deviation before, or after, the recommendations are revealed. In [25,26,29] it
is assumed that players may only plan deviations at the ez-ante stage, before
receiving the recommendations. In [9,13,30] it is assumed that players may only
plan deviations at the ez-post stage, after receiving the recommendations.

When the players receive several signals, not necessarily simultaneously, they
may communicate, share information, and plan coalitional deviations at dif-
ferent stages of the revealing protocol. By sharing information, a coalition
of players may get information about the actions recommended to players
outside the coalition, and may use this information to implement profitable
deviations. Similar to the existing literature of simultaneous revealing pro-
tocols, we focus on protocols in which sharing information among deviating
players does not allow them to obtain any information about the actions rec-
ommended to the other players, except the conditional probability, given their
own recommended actions.

The use of a joint deviation requires the unanimous agreement of all the mem-
bers of the deviating coalition. A player agrees to be part of a joint deviation
if, given his own information the deviation is profitable to himself. Thus, if a
joint deviation is implemented, then it is common knowledge among its mem-
bers that each of them believes that the deviation is profitable: the agreement
of a player to participate in the joint deviation is a public signal to all the
other deviating players that he believes that the deviation is profitable (see
the example in Sec. 3 for more details). We model the information structure of
the deviating players by an incomplete information model (with the common
prior assumption) @ la Aumann ([4]). In the spirit of the concept of strong
correlated equilibrium, we assume that deviations are binding: A deviation
is implemented with the assistance of a new mediator. The deviating players
truthfully report their information to the new mediator, and they are bound
to follow his recommendations, even if new information at a later stage makes
the deviation unprofitable. If the deviating players are not bound to follow the
recommendations of the new mediator, the solution concept is close in spirit
to the coalition-proof notion.

A correlated strategy profile is an all-stage strong correlated equilibrium if,
for every revealing protocol that implements it, and for every stage of the



protocol, there is no coalition with a profitable deviation. A correlated strategy
profile is an ez-ante strong correlated equilibrium (|26]) if there is no coalition
with a profitable deviation at the ez-ante stage. Our main result shows that
the two notions coincide: an ez-ante strong correlated equilibrium is resistant
to deviations at all stages of any revealing protocol that implements it. An
immediate corollary is that the set of ez-ante strong correlated equilibria is
included in all other sets of strong correlated equilibria, as defined in the
literature mentioned above.

One could hope that similar results may be obtained for the coalition-proof
notions. However, in Section 5 we demonstrate that the ex-ante coalition-proof
notion is not appropriate to frameworks in which coalitions can plan devia-
tions at all stages. In Section 6 we discuss different approaches for coalitional
stability, present the different notions of strong and coalition-proof equilibria,
and discuss the implications of the main result.

The paper is organized as follows: Section 2 presents the model and the main
result. The result is demonstrated with an example in Section 3, and proven
in Section 4. We deal with the coalition-proof notion in Section 5, and discuss
the implications of the result in Section 6.

2 Model and Definitions
2.1 Preliminary Definitions

A game in strategic form G is defined as: G = (N, (ADien s (ui)ieN), where
N is the finite and non-empty set of players. For each ¢ € N, A" is player
i’s finite and non-empty set of actions, and u’ is player 4’s utility (payoff)
function, a real-valued function on A = ‘HNAZ'. The multi-linear extension of u’*
to A (A) is still denoted by u’. A memberG of A is called an action profile, and a
member of A (A) is called a (correlated) strategy profile. A coalition S is a non-
empty member of 2V. For simplicity of notation, the coalition {i} is denoted
i. Given a coalition S, let A% = ‘HsAi’ and let =5 = {i e N |i¢ S} denote
1€
the complementary coalition. A member of A(A®) is called a (correlated)
S-strategy profile. Given ¢ € A(A) and a® € A%, we define ¢ C A(A)

to be gis(a®) = X q(a®,a™¥), and for simplicity we omit the subscript:
a=SeAa—S
q(a®) = gs(a”). Given a® s.t. ¢(a) > 0, we define g(a™|a”) = %



2.2 All-stage Strong Correlated Equilibrium

A state space is a probability space, (€2, 8, 1) that describes all parameters
that may be the object of uncertainty on the part of the players. We interpret
) as the space of all possible states of the world, B as the o-algebra of all
measurable events, and p as the common prior.

Given a non-null event £ € B and a random variable x : Q@ — X (where
X is a finite set), let x(E) € A(X) denote the posterior distribution of x
conditioned on the event E. The implementation of an agreement (a correlated
strategy profile) by a mediator or by a signaling process is modeled by a
random variable a : 0 — A, which satisfies that the prior distribution a(2) is
equal to the agreement distribution.

Definition 1 Let G be a game, ¢ € A(A) an agreement, and (2,8, 1) a
state space. A recommendation profile that implements g is a random variable
a=(a'),.y: Q — A that satisfies: a(Q) = ¢.

A (joint) deviation of a coalition S is a random variable (in §2) that is condi-

tionally independent of a=° given a¥.

Definition 2 Let G be a game, ¢ € A(A) an agreement, S C N a coalition,
(Q, B, 1) a state space, and a : Q — A a recommendation profile that imple-
ments ¢. A deviation (of S from a) is a random variable d¥ = (d'),.q : @ — A®

that is conditionally independent of a=* given a®.

The interpretation is the following: If the players of S agree to use deviation d*,
they implement it with the assistance of a new mediator. The new mediator
receives the S-part of the recommendation profile, but he does not receive
any information about the actions recommended to the non-deviating players.
Thus, the new recommendations he sends to the deviating players may depend

only on a®, but not on a=*.

When the members of a coalition S consider the implementation of a joint
deviation, they are in a situation of incomplete information: each player may
know his recommended action, and may have additional private information
acquired when communicating with the other deviating players. We assume
that the deviating players have no information about the actions recommended
to the non-deviating players, except the conditional probability given the in-
formation they have about their recommended actions. We model this by the
following definition of a consistent information structure.

Definition 3 Let G be a game, ¢ € A(A) an agreement, S C N a coalition,

(Q, B, ) a state space, and a : 0 — A a recommendation profile that im-



plements q. An information structure (of S) is a |S|-tuple of partitions of

(F");eq» whose join ( A F*, the coarsest common refinement of (F7),_) consists
i€s

ies
of non-null events. We say that (F’),_q is a consistent information structure,

if Yw € Q, Vi € 8, Va € A, a(F'(w)) (a) = a® (Fi(w)) (a¥) - q(a% | a®).

We interpret F* as the information partition of player i; that is, if the true
state of the world is w € Q then player i is informed of that element F*(w) of
F' that contains w.

When each player considers whether the implementation of a deviation is
profitable to himself, he compares his conditional expected payoff when playing
the original agreement and when implementing the deviation. A player agrees
to deviate, only if the latter conditional expectation is larger. Formally, let
G be a game, ¢ € A(A) an agreement, S C N a coalition, ¢ € S a player,
(92, B, 1) a state space, a : ) — A a recommendation profile, d* : Q — A
a deviation, and (F"),.q a consistent information structure. The conditional
expected payoffs of player i in w € ) are:

e The conditional expected payoff when all the players follow the agreement:

e The conditional expected payoff when the members of S deviate, by imple-
menting d*, and the players in —S follow the agreement:

uh(w) = /Fi(w) u’ ((ds,afs) (w)) du

If the players in § unanimously decide to implement a deviation in some
state w € Q, then it is common knowledge (in w) that each player believes to
earn more if the deviation is implemented. In that case we say that the joint
deviation is profitable. Formally:

Definition 4 ([3]) Let G be a game, S C N a coalition, (2, B,x) a state
space, (F'),.g an information structure, and w € Q2 a state. An event E € B is
common knowledge at w if E includes that member of the meet Fmeet = A F°
ieS

that contains w.

Definition 5 Let G be a game. ¢ € A(A) an agreement, S C N a coali-
tion, (€2, B, 1) a state space, and a : 0 — A a recommendation profile that
implements ¢g. A deviation (of S) d¥ is profitable, if there exists a consistent
information structure (F'),_ and a state wy € € such that it is common



knowledge in wy that Vi € S, ujy(w) > u’(w). In that case, we say that d° is
a profitable deviation (from the reccomendation profile a) with respect to the

information structure (F7),_g.

We can now define an all-stage strong correlated equilibrium as a strategy
profile, from which no coalition has a profitable deviation.

Definition 6 Let G be a game. A strategy profile ¢ € A(A) is an all-stage
strong correlated equilibrium if for every reccomendation profile a : 2 — A
that implements ¢, no coalition S C N has a profitable deviation.

2.8 Main Result

A profile is an er-ante strong correlated equilibrium, if no coalition has a
profitable deviation at the ez-ante stage, when the players have no information
about the recommendations.

Definition 7 Let G be a game and (€2, 5, i) a state space. A strategy profile
q € A(A) is an ez-ante strong correlated equilibrium if for every reccomenda-
tion profile a : 2 — A that implements ¢, no coalition S C N has a profitable
deviation with respect to the ez-ante information structure (F*), o that sat-
isfies Vi, F* = Q.

One can verify that Def. 7 is equivalent to the definition of (|26]). The definition
immediately implies that an all-stage strong correlated equilibrium is also an
ex-ante strong correlated equilibrium. The main result shows that the converse
is also true, and thus the two notions coincide.

Theorem 8 A correlated strategy profile is an ex-ante strong correlated equi-
Librium if and only if it is an all-stage strong correlated equilibrium.

3 An Example of the Main Result

In the following example we present an ez-ante strong correlated equilibrium
in a 3-player game, and a specific deviation that is considered by the grand
coalition during a revealing protocol. At first glance, one may think that this
deviation is profitable to all the players conditioned on their posterior infor-
mation at that stage, but a more thorough analysis reveals that this is not
the case. The analysis in this example provides the intuition for the use of a
model of incomplete information & la Aumann ([4]), for the common knowledge
requirement in Def. 5 of a profitable deviation, and for the main result.



Table 1 presents the matrix representation of a 3-player game, where player 1
chooses the row, player 2 chooses the column, and player 3 chooses the matrix.

Table 1
A 3-Player Game With An Ex-Ante Strong Correlated Equilibrium

C1 C2 €3

b1 b2 bs b1 b2 b3 b1 ba b3

a1 | 10,10,10 | 5, 20,5 | 0,0,0 || 5,5,20 | 0,0,0 | 0,0,0 || 0,0,0 | 0,0,0 | 0,0,0

as | 2055 | 00,0 |00,0] 000 |0,00 00,0 000000 00,0

az | 0,00 | 000 |0,00]| 000 |000 /00,0 00,0000 | 711,12

Let ¢ be the profile: (i (ay,b1,¢1), %(ag,bl,cl), %(al,bg,cl), i(al,bl,@)),
with an expected payoff of 10 to each player. Observe that ¢ is an ez-ante
strong correlated equilibrium:

e The profile ¢ is a correlated equilibrium, and thus no player has a unilateral
profitable deviation.

e No coalition of two players has a profitable deviation, because their un-
certainty about the action recommended to the third player prevents them
from earning together more than 20 by a joint deviation.

e The grand coalition cannot earn more than a total payoff of 30.

Now, consider a stage of a revealing protocol in which player 1 has received a
recommendation to play aq, player 2 has received a recommendation to play
as, and player 3 has not received a recommendation yet. No player knows
whether the other players have received their recommended actions. At first
glance, the implementation of the deviation d(-) = (as, b3, ¢3), which gives a
payoff of (7,11,12), may look profitable to all the players:

e Conditioned on his recommended action (a;), player 1 has an expected
payoff of 6%, and thus d is profitable to him. The same is true for player 2.

e Player 3 does not know his recommended action. His ez-ante expected payoft
is 10, and he would earn a payoff of 12 by implementing d.

However, a more thorough analysis reveals that d is unprofitable for player 3.
Player 1 can only earn from d if he has received a recommendation to play a;.
Thus, if player 1 agrees to implement d, then it is common knowledge that he
has received a;. The expected payoff of players 2 and 3, conditioned on that
player 1 has received aq, is 11%. Thus, if player 2 agrees to implement d (with
a payoff of 11) it is common knowledge that he has more information: his
recommended action is as. Therefore player 3 knows that if the others agree
to implement d, then their recommended actions are (a1, as). Conditioned on
that, his expected payoff is 15, and thus d is unprofitable for himself.



4 The Proof of the Main Result

In this section we prove the main result. As discussed earlier, one direction
immediately follows from the definitions, and we only have to prove the other
direction:

Theorem 9 Fuvery ex-ante strong correlated equilibrium is an all-stage strong
correlated equilibrium.

In other words: If a profitable deviation from an agreement ¢ € A(A) exists,
then there also exists a profitable ex-ante deviation from g¢.

PROOF. Let g € A(A) be an agreement that is not an all-stage strong cor-
related equilibrium in a game G, (2,58, u) the state space, and a : Q@ — A
a recommendation profile that implements g. There exists a coalition S C N
with a profitable deviation d° : Q — A° with respect to a consistent infor-
mation structure (F’),_g. This implies that there is a state wy € Q , such
that it is common knowledge in wy that Vi, ujy(w) > u}(w), i.e., F**(wg) C
{w | uly(w) > ulf(w)} For each deviating player i € S, write Ft = Fme(wy) =
UF} where the Fj are disjoint members of F*, and let w} € F; be a state
J

in Fj. We now construct an ez-ante profitable deviation d? with respect
to the ez-ante information structure (F.),_q, which satisfies Vi, 7! = Q:

d%(w) w € Fmeet,

aS(w) w gé Fmeet.

d? (w) =

Observe that d and a~* are conditionally independent given a®, thus d? is
a well-defined deviation. Let uj_(w), u} (w) be the conditional utilities of the
players with respect to (F:),.g. We finish the proof by showing that d2 is
profitable, i.e: Vi € S,w € Q, uj) (w) > u} ().

uf (@) = uf, (@) = [



Equation (2) is due to the equality F(w) = , (3) holds since d5 = a=* outside
Fmeet(4) holds since d = d¥ in F™eet, (5) follows from F™* = JF!, and
j

the last inequality is implied by F™e¢* C {w | uly(w) > uf (w)} QED

5 Coalition-Proof Correlated Equilibria

In Sec. 4 we have shown that an ex-ante strong correlated equilibrium is
also appropriate to frameworks in which players can plan deviations at all
stages. A natural question is whether a similar result holds for the notion of
coalition-proof correlated equilibrium.* We show that the answer is negative,
by presenting an example, adapted from [9], in which there is an ez-ante
coalition-proof correlated equilibrium that is not a self-enforcing agreement in
a framework in which communication is possible at all stages. Table 2 presents
a two-player game and an ez-ante coalition-proof correlated equilibrium.

Xagiio?Player Game and an Fz-ante Coalition-Proof Correlated Equilibrium
by by bs by by | b3
a; | 6,6 |-2,01]0,7 ap | 1/2]1 0 |0
as | 2,21 2.2 10,0 as | 1/4|1/4| 0
as | 0,01 0,0 | 3,3 as | 0 0 |0

We first show that the profile presented in Table 2 is an ex-ante coalition-proof
equilibrium. Observe that the profile is a correlated equilibrium. [26] shows
that in a two-player game, every correlated equilibrium that is not Pareto-
dominated by another correlated equilibrium is a coalition-proof correlated
equilibrium. The profile gives each player a payoff of 4. Thus we prove that it
is an ex-ante coalition-proof correlated equilibrium, by showing that any corre-
lated equilibrium ¢ gives player 1 a payoff of at most 4. Let x = ¢ (a, by). Ob-
serve that ¢ (ag,b1) > x/2 because otherwise player 2 would have a profitable
deviation: playing b3 when recommended b;. This implies ¢ (ag, bs) > /2, be-
cause otherwise player 1 would have a profitable deviation: playing a; when
recommended as. Thus the payoff of ¢ conditioned on that the recommenda-
tion profile is in A = ((ay,b1), (az,b1), (az, b)) is at most 4, and the fact that

4 Recall ([26]) that an ez-ante coalition-proof correlated equilibrium is a correlated
strategy profile from which no coalition has a self-enforcing and improving ez-ante
deviation. For a coalition of a single player any ex-ante deviation is self-enforcing.
For a larger coalition, an ex-ante deviation is self-enforcing if there is no further
self-enforcing and improving ez-ante deviation by one of its proper sub-coalitions.

10



the payoff of player 1 outside A is at most 3 completes the proof.

We now explain why this profile is not a self-enforcing agreement in a frame-
work in which the players can also plan deviations at the ex-post stage. Assume
that the players have agreed to play the profile, and player 1 has received a
recommendation to play as. In that case, he can communicate with player 2
at the ezr-post stage, tell him that he has received as (and thus if the players
follow the recommendation profile they would get a payoff of 2), and suggest
a joint deviation: playing (as, b3). As player 1 has no incentive to lie, player 2
would believe him, and they would both play (as, b3). This ez-post deviation
is self-enforcing because (as, b3) is a Nash equilibrium.

Observe that the same deviation is not self-enforcing at the ez-ante stage. If
the players agree at the ex-ante stage to implement a deviation that changes
(ag,b1) into (ag, bs), then player 2 would have a profitable sub-deviation: play-
ing b3 when recommended b;. Similarly, if they agree to implement a deviation
that changes (as, by) into (as,bs), then player 1 would have a profitable sub-
deviation: playing a; when recommended as,.

6 Discussion

6.1 Approaches for Coalitional Stability

Self-enforcing agreements in environments where players can freely discuss
their strategies before the play starts, have to be stable against coalitional
deviations. A few notions in the literature present different approaches for
coalitional stability.

The first approach, is the Pareto dominance refinement, in which the set of
Nash equilibria is refined by restricting attention to its efficient frontier. This
approach is popular in applications due to its advantages: existence in all
games and the simplicity of its use. However, when there are more than 2
players, it ignores the ability of coalitions other than the grand coalition to

privately agree upon a joint deviation.®

Another approach is to explicitly model the procedure of communication as
an extended-form game that specifies how messages are interchanged (e.g.:
[5,15,28]). However, the results are sensitive to the exact procedure employed,
and usually strong restrictions have to be made to isolate the desired outcome.

® As discussed in [6,35]. [35] presents a set of conditions that if satisfied, the two
notions of Pareto dominance refinement and coalition-proof equilibrium coincide.

11



A different approach is the farsighted coalitional stability. Alternative varia-
tions are discussed in: [10,16,17,24,33,34].5 These notions focus on environ-
ments where deviations are public. At each stage coalitions propose deviations
from the current status-quo outcome, until nobody wishes to deviate further.
The set of possible final outcomes is defined using stable sets a la von-Neumann
& Morgenstern ([32]). This approach is less appropriate when coalitions can
privately plan deviations.”

6.2 Strong and Coalition-Proof Equilibria

A Nash equilibrium is strong (|2]) if no coalition, taking the actions of its
complement as given, has an uncorrelated deviation that benefits all of its
members. A drawback of this notion, is that it exists in only a relatively small
set of games.® [6] presents a wider refinement of Nash equilibrium, which
exists in more games: a coalition-proof Nash equilibrium. A Nash equilibrium
is coalition-proof if no coalition has a profitable self-enforcing uncorrelated
deviation. For a coalition of a single player any deviation is self-enforcing. For
a coalition of more than one player, a deviation is self-enforcing if there is
no further self-enforcing and improving uncorrelated deviation by one of its
proper sub-coalitions. ? The notion of coalition-proof equilibrium has been
useful in a variety of applied contexts, such as: menu auctions ([7]), oligopolies
(]8,11,12,31]), and common agency games (|22]).

These notions focus on environments where coalitions can privately commu-
nicate before the play starts, and plan a joint deviation. However, they ignore

6 Also called negotiation-proof equilibrium and full coalitional equilibrium.

7 [34, Section 1] presents an example for the difference between a negotiation-proof
equilibrium and a coalition-proof Nash equilibrium. Observe that the negotiation-
proof equilibrium in this example, the profile (U, L, A), is not a plausible outcome
if the coalition ({1,2}) can privately deviate.

8 Examples for games where strong Nash equilibria exist are congestion games
([19]); games where the preferences satisfying independence of irrelevant choices,
anonymity, and partial rivalry ([20]); and games where the core of the cooperative
game derived from the original normal form game, is non-empty (see [21], and the
references within). Conditions for the equivalence of strong and coalition-proof Nash
equilibria are presented in [21]| (games with population monotonicity property) and
in [22| (common agency games).

9 Observe that only members of the deviating coalition may contemplate deviations
from the deviation. This rules out the possibility that members of the deviating
coalition might form a pact to deviate further with someone not included in this
coalition. This limitation has been criticized, especially in the literature that deals
with the farsighted coalitional stability approach (described earlier).

12



the fact that the same private communication allows the players to correlate
their moves. This deficiency is overcome by the notions of strong and coalition-
proof correlated equilibria. A correlated equilibrium is strong if no coalition
has a (possibly correlated) joint deviation that benefits all of its members. The
close connection between strong correlated equilibrium and private pre-play
communication is demonstrated by:

e The result in [18], which shows that any “punishable” !9

ex-ante strong
correlated equilibrium is a strong Nash equilibrium in an extended game
with cheap-talk. *!

e The example in [27] of an ez-ante strong correlated equilibrium that is the
only plausible outcome of a game with pre-play communication, as experi-

mentally demonstrated in the referred paper.

6.3 Relations among Different Notions of Strong Correlated Equilibria

A deficiency of the notion of strong correlated equilibrium, is that there are
six different variants of it in the literature: three ez-ante notions and three ex-
post notions. In this subsection we present these notions, the relations among
them, and the implications of the main result.

Notions of ez-ante strong correlated equilibria have been presented in [26,29,25].
Our ez-ante definition is equivalent to the definition in [26]. In [29] deviating

coalitions are not allowed to construct new correlation devices, and are limited

to use only uncorrelated deviations.'? In [25] only some of the coalitions can

coordinate deviations. In both cases the sets of feasible deviations are included

in our set of deviations, and thus our set of ex-ante strong correlated equilibria

is included in the other sets of equilibria.

An ex-post strong correlated equilibrium can be defined in our framework,
as a profile which is resistant to deviations at the ez-post stage when each

10 Loosely speaking, a strategy profile is punishable if it Pareto-dominates another
strategy profile, even when the deviating players do a joint scheme.

"' The implementation presented in [18] is only as a |7/2]-strong Nash equilibrium:
an equilibrium that is resistant to deviations of coalitions with less than n/2 players. If
one assumes that the players are computationally restricted and “one-way” functions
exist, then the implementation can be as a strong Nash equilibrium (see [1,23]).
12Tn [29]’s setup, the mediator can send an indirect signal to each player, which
holds more information than the recommendation itself. In that case, the uncorre-
lated deviation is a function from the set of the S-part of the signals to the set of
uncorrelated S-strategy profiles. In our framework, in which coalitions can use new
correlation devices, any ex-ante strong correlated equilibrium that can be imple-
mented by indirect signals, can also be implemented by a direct correlation device.

13



player knows his recommendation (i.e., no coalition S C N has a profitable
deviation with respect to an ez-post information structure (F¢)

Vwe N, Vie s, Ja' € A's.t.a' (F'(w)) (a') = 1).

icg> In which:

Notions of ez-post strong correlated equilibria have been presented in [13,30,9].
In [13] a deviating coalition can only use deviations that improve the condi-
tional utilities of all deviating players for all possible recommendation pro-
files. 13 Tn [30] a coalition S can only use pure deviations (functions d° : A% —
AS). In [9], a coalition S can only use deviations that are implemented if the
S-part of the recommendation profile ¢® is included in some set E° C A9,
which satisfies:

(1) If a® € ES, each player earns from implementing the deviation;
(2) If a® ¢ ES, at least one player looses from implementing the deviation.

It can be shown that those conditions imply the existence of a profitable
deviation with respect to an ez-post information structure. '* Thus our set of
ex-post strong correlated equilibria is included in the other sets of equilibria.

The main result reveals inclusion relations among the different notions of
strong correlated equilibria, which described in Fig. 1. Thus, [26]’s ez-ante
notion is much more robust than originally presented: It is an appropriate no-
tion not only for frameworks where players can only communicate before re-
ceiving the the agreement’s recommendations of, but for any pre-play signaling
process that is used to implement the agreement, and for any communication
possibilities among the players.

Figure 1. Relations among Different Notions of Strong Correlated Equilibria (SCE)

; Any other ex-post SCE

Our ex-post SCE

forimie—a —E. - n mm o mm oy mm s mm o mm s omm oo o E-.
| Any other } Moreno-Wooders |
| ex-anie ex-ante SCE = ¥
. SCE || |Ourallssiage SCEY | : |

131t is equivalent to requiring that Vi € S,w € Q u(w) > u}(w)

4 The information structure is such that each deviator would know his recommen-
dation and whether a®(w) € ES.

15 See [26, Section 4] for an example of an ez-post strong correlated equilibrium that
is not an ez-ante equilibrium.
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6.4 Coalition-proof Correlated Equilibria

A correlated equilibrium is coalition-proof if no coalition has a (possibly cor-
related) profitable self-enforcing deviation. Again, a deficiency of this notion
is that there are six different variants of it in the literature (3 ez-ante and 3
ez-post). 1% Tt is possible to extend the model of incomplete information, and
define a notion of all-stage coalition-proof correlated equilibrium, by using an
appropriate notion of consistent refinements of information structures. How-
ever, the example in Section 5 shows that this notion does not coincide with
the ez-ante coalition-proof notion, nor that there is any inclusion relations
among the different coalition-proof notions.'” Thus, the notion of coalition-
proof correlated equilibrium is not robust: it is sensitive to the exact properties
of the revealing protocol.

6.5 FEaxtensions of the Main Result

(1) Bayesian games: |26] presents a notion of ez-ante strong communication
equilibrium in Bayesian games. The main result can be extended to this
setup as well, to show that an ez-ante strong communication equilibrium
is resistant to deviations at all stages.

(2) k-strong equilibria: In [18| an ez-ante notion of k-strong correlated equi-
librium is defined as a strategy profile that is resistant to all coalitional
deviations of up to k players. The main result can be directly extended to
this notion as well: An ez-ante k-strong correlated equilibrium is resistant
to deviations of up to k£ players at all stages.
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