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1 Introduction

This paper addresses the issue of ‘history versus expectations’ in the context
of ‘new economic geography’ (Krugman (1991a)). This literature, typically
using a two-region general equilibrium framework with monopolistic com-
petition, demonstrates how the interplay of pecuniary externalities, market
competition, and trade costs determines the spatial distribution of mobile
production factor. In particular, when trade costs are low enough, agglom-
eration forces arising from scale economies dominate dispersion forces due
to market competition effects, giving rise to multiple equilibria, two ‘core-
periphery’ equilibria with full agglomeration of mobile factor in each region
as well as an interior equilibrium. In studying locational adjustment dynam-
ics, most models in the literature abstract from the possibility of forward-
looking behavior of migrants: instead, migrants are assumed to be myopic
and base their migration decisions on current utility differences, so that
core-periphery equilibria are all locally stable under the myopic dynamics.1

In the present paper, we consider a class of adjustment dynamics with
forward-looking migrants in a new economic geography model with two re-
gions based on Ottaviano (2001) but incorporating exogenous asymmetries
in trade costs and market size. Specifically, we employ the equilibrium
dynamics due to Krugman (1991b) and Fukao and Benabou (1993) (KFB
dynamics, in short), where migration requires moving costs which depend
on the size of the current flow of migrants, so that migrants care about
the future migration behavior of the economy. An equilibrium path of this
dynamics is characterized by a no-arbitrage condition, that migrants are in-
different between staying in the current region and paying the cost to move
to the other. The dynamics has stationary states, which correspond to the
equilibria of the underlying static model.

Our main goal is to identify a state that is absorbing (i.e., if the ini-
tial condition is in a neighborhood of this state, then any equilibrium path
converges to it) and globally accessible (i.e., for any initial condition, there
exists an equilibrium path that converges to this state) for small frictions
(i.e., when the migration cost is small and/or the rate of time discounting is
small). We show that such a state generically exists (which is unique by def-
inition) and is characterized as a unique maximizer of a potential function
(Monderer and Shapley (1996) and Sandholm (2001)) of the static model.
Even if all the agents are initially located in one region, there exists a set of
self-fulfilling expectations that leads the economy toward full agglomeration
in the other region, provided that the latter configuration is the potential
maximizer, whenever the degree of friction is small, and once a large fraction
of agents have been located there, no self-fulfilling expectation can reverse
this outcome. This may be seen as an equilibrium selection result which dis-

1See Fujita et al. (1999) and Baldwin et al. (2003), among others.
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criminates a unique equilibrium from others based on its distinctive stability
properties under the KFB dynamics.

This result is to be contrasted with that by Ottaviano (2001), who, as
many others in the literature, considers the case with completely symmetric
regions. He shows that, when agglomeration economies are strong, both
core-periphery equilibria are absorbing under the KFB dynamics for any
(positive) degree of friction (indeed they both are maximizers of the potential
function by symmetry).2 It should be noted that one of the aims of early
studies in the literature has been to explore when the symmetric spatial
configuration over exogenously identical regions becomes unstable while an
asymmetric one endogenously emerges as a (locally) stable long run outcome
(see, e.g., Fujita et al. (1999)), and that under myopic dynamics, the local
stability properties are in fact not altered by introduction of small exogenous
asymmetries. By contrast, our equilibrium selection result demonstrates
that when one incorporates forward-looking expectations, the case of perfect
symmetry should be considered as a knife-edge case, and insights obtained
may not be robust to exogenous asymmetries between regions.

The proof strategy for our result follows that of Hofbauer and Sorger
(1999), who study stability under a different class of perfect foresight dy-
namics due to Matsuyama (1991) and Matsui and Matsuyama (1995) (MM
dynamics, in short)3 in potential games. First, we show that optimal solu-
tions to an associated optimal control problem, whose objective functional
is, roughly, a ‘dynamical extension’ of the potential function of the static
model, are equilibrium paths of our dynamics and that those solutions, re-
gardless of the initial condition, must visit small neighborhoods of the unique
maximizer of the potential function for sufficiently small degrees of friction.
Together with the absorption property below, this proves the global acces-
sibility of the potential maximizer. Second, we show that the maximized
Hamiltonian of the above optimal control problem serves as a Lyapunov
function for equilibrium trajectories, from which the absorption of the po-
tential maximizer follows.

In comparison with the MM dynamics, the KFB dynamics involves extra
technical complications due to the assumption that agents are assumed to
be able to migrate at any point in time (with the migration costs). This
assumption implies that feasible paths of the aggregate spatial configuration
may hit the boundary of the state space (the one-dimensional simplex) in
finite time, which can make binding the constraint that the state variable
must be contained in the simplex. This fact considerably complicates the

2Baldwin (2001) considers a related dynamics in the original core-periphery model of
Krugman (1991a) with symmetric regions and obtains the same conclusion by numerical
simulation analyses.

3See also, among others, Matsuyama (1992), Kaneda (2003), and Oyama (2006) for
applications in economic contexts and Hofbauer and Sorger (2002), Oyama (2002), and
Oyama et al. (2008) for studies in random-matching game frameworks.
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formal definition of equilibrium paths of the dynamics: we have to carefully
incorporate transition between the phases, one in which the constraint does
not bind and the other in which it does.4 When considering the associated
optimal control problem in our proofs, moreover, we need to rely on non-
standard techniques for problems with state-variable inequality constraints
(Hartl et al. (1995)). Accordingly, the KFB dynamics requires a mathemat-
ically subtle treatment compared to the MM dynamics, while, as the results
by Hofbauer and Sorger (1999) and the present paper show, these classes
of dynamics share the same stability property when the underlying model
admits a potential.

The rest of the paper is organized as follows. Section 2 presents our
static model. Section 3 formally defines our equilibrium dynamics. Section 4
states our main theorems, while their proofs are given in Section 5. Section 6
concludes.

2 Static Model

In this section, we present our static model which will be embedded in
the dynamic context in Section 3. Subsection 2.1 introduces a non-atomic
game with binary actions as a canonical framework and defines its potential
function, while Subsection 2.2 outlines how a two-region general equilibrium
model à la Krugman (1991a) reduces to such a non-atomic game.

2.1 Canonical Framework

The economy consists of two regions, 0 and 1. There are a continuum of
entrepreneurs with mass one, who are mobile between the regions. We de-
note by x ∈ [0, 1] the fraction of entrepreneurs who are located (to establish
manufacturing firms) in region 1. State i ∈ {0, 1} ⊂ [0, 1] thus corresponds
to the core-periphery state where all entrepreneurs are located in region i.
For i ∈ {0, 1}, we will write −i ∈ {0, 1} \ {i}. The (indirect) utility for an
entrepreneur located in region i which depends on a given state x ∈ [0, 1] is
denoted by fi(x). We assume that the function fi : [0, 1] → R is Lipschitz
continuous. Let f : [0, 1] → R be defined by

f(x) = f1(x) − f0(x).

Location choice exhibits strategic complementarity (substitutability, resp.)
if the function f is increasing (decreasing, resp.).

The pair of functions (f0, f1) in fact defines a non-atomic game in which
a continuum of players choose between two actions, 0 and 1, and the payoffs
are determined solely by the fraction x of players choosing action 1 as well

4This is the source of the error in Krugman (1991b) pointed out by Fukao and
Benabou (1993).
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as one’s own choice. Note that any two games (f0, f1) and (f ′0, f
′
1) are

equivalent if they share the same payoff difference function f , i.e., f1(x) −
f0(x) = f ′1(x) − f ′0(x) for all x ∈ [0, 1]. A state x∗ ∈ [0, 1] is an equilibrium
state if x∗ > 0 ⇒ f(x∗) ≥ 0 and x∗ < 1 ⇒ f(x∗) ≤ 0; and x∗ is a strict
equilibrium state if x∗ > 0 ⇒ f(x∗) > 0 and x∗ < 1 ⇒ f(x∗) < 0. The
existence of an equilibrium state immediately follows from the continuity of
the function f . We further impose the following regularity assumption.

Assumption 2.1. There are finitely many equilibrium states.

A sufficient assumption for this is that f be a real analytic function that
is not identically zero.

We will invoke the concept of potential from game theory (Monderer and
Shapley (1996) and Sandholm (2001)).

Definition 2.1. F : [0, 1] → R is a potential function of f if

dF

dx
(x) = f(x)

for all x ∈ [0, 1].

Note that such a function F is unique up to constant. Note also that if
x∗ is a global maximizer of F over [0, 1] (i.e., F (x∗) ≥ F (x) for all x ∈ [0, 1]),
then x∗ is an equilibrium state (but not vice versa in general). We will be
interested in the generic case where F has a unique maximizer over [0, 1]
(i.e., a x∗ such that F (x∗) > F (x) for all x ∈ [0, 1] \ {x∗}).

While we proceed in the context of economic geography, the above ab-
stract framework is more general and captures many other economic sce-
narios such as sectoral adjustment as in Krugman (1991b) and Matsuyama
(1991). The reader most interested in the dynamic analysis independent of
the context may skip the next subsection and go directly to Section 3.

2.2 Analytically Solvable Core-Periphery Model

We briefly review how the (indirect) utility difference f(x) is derived from a
general equilibrium model of trade and migration. We employ the model by
Ottaviano (2001), often referred to as the ‘footloose entrepreneur’ model,
but with asymmetries in trade cost and market size (see also Forslid and
Ottaviano (2003) and Baldwin et al. (2003, Chapter 4)). This is an ana-
lytically solvable version of the original core-periphery model of Krugman
(1991a).

In addition to entrepreneurs, there are a mass L of unskilled workers,
who are immobile inter-regionally. Denote by Li the exogenously given mass
of workers in region i = 0, 1, so that L = L0+L1. There are two consumption
goods, a modern good and a traditional good, where the traditional good is
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chosen to be the numeraire. All individuals share the same preference given
by the Cobb-Douglas utility function

U(Mi, Ai) = α logMi + (1 − α) logAi, 0 < α < 1

with

Mi =

[
∫ ni

0
dii(z)

σ−1

σ dz +

∫ nj

0
dji(z)

σ−1

σ dz

]
σ

σ−1

, σ > 1

where Mi and Ai are the consumption (in region i) of the CES composite of
modern varieties and the consumption of the traditional good, respectively,
dji(z) is the consumption (in region i) of a variety z that is produced in j,
and nj is the mass of varieties produced in j.

The modern good is produced in a monopolistically competitive sector.
Production of a variety of the modern good involves a fixed input of one
entrepreneur and a marginal input of β units of labor, and thus the total
cost of production of mi units is given by ri + wLβmi, where ri and wL

i

are the wages for an entrepreneur and a worker, respectively. This implies
that an entrepreneur and a manufacturing firm correspond one to one with
each other, so that n0 = 1 − x and n1 = x in the market equilibrium.
Firms in the traditional sector produce the traditional good under perfect
competition and constant returns to scale, involving a marginal input of one
unit of labor. The traditional good is freely traded between the regions, so
that the nominal labor wage is equalized in the two regions.5 Consequently,
we have wL

i = 1 in equilibrium due to our choice of numeraire.
Trade in the modern good, on the contrary, is costly due to trade barriers

which are modeled by iceberg costs: for one unit of the modern good pro-
duced in j to reach i, τji > 1 units must be shipped.6 Let ρi = τ1−σ

ji ∈ (0, 1),
which we call the trade openness of region i. It increases as trade cost τji
decreases.

For a given x ∈ [0, 1], the key variables in the market equilibrium with
free entry and exit are determined as follows; for their derivation, see the
references cited above. In the following, we denote

x0 = 1 − x, x1 = x.

The domestic and the foreign prices of any variety produced in region i are
respectively

pii =
σβ

σ − 1
, pij =

τijσβ

σ − 1
,

5Wage equalization holds as long as the freely tradable, traditional good is produced in
both regions. The condition for this, which is called the ‘non-full-specialization’ condition
(Baldwin et al. (2003, Section 4.2.2)), is max{L0/L, L1/L} < (1 − α)[1 − (α/σ)] in our
environment, and it is assumed to hold.

6This is the element that distinguishes the two alternatives 0 and 1 in the reduced non-
atomic game (f0, f1) obtained below, in the sense that if τ01 = τ10 = 1, then f0(x) = f1(x)
for all x ∈ [0, 1].
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and thus the CES price index in i is

Pi =
σβ

σ − 1
(xi + ρixj)

− 1

σ−1 .

The reward to an entrepreneur located in i is given by

ri =
(α/σ)L

1 − (α/σ)

ρjxi + ψixj

D
,

where D = (x0 + ρ0x1)(x1 + ρ1x0) − (α/σ)(1 − ρ0ρ1)x0x1 and

ψi =
Li

L

[

1 +
L− Li

Li
ρ0ρ1 − (1 − ρ0ρ1)

α

σ

]

.

Since the indirect utility for an entrepreneur in i is

fi(x) = α log

(

α
ri
Pi

)

+ (1 − α) log ((1 − α)ri) ,

the utility difference function f is given by

f(x) = log

(

ρ0x1 + ψ1x0

ρ1x0 + ψ0x1

)

+
α

σ − 1
log

(

x1 + ρ1x0

x0 + ρ0x1

)

(2.1)

(compare to equation (13) in Ottaviano (2001, p.58)). Observe that, consid-
ered as a function defined on an open interval containing [0, 1], this function
f is real analytic (and not identically zero), so that Assumption 2.1 is sat-
isfied.

Finally, we obtain the potential function F as follows:7

F (x) =
∑

i=0,1

[

1

ρj − ψi
{(ρj − ψi)xi + ψi} log ((ρj − ψi)xi + ψi)

+
α

σ − 1

1

1 − ρi
{(1 − ρi)xi + ρi} log ((1 − ρi)xi + ρi)

]

. (2.2)

We note that this function coincides (up to constant) with the function
F defined in Ottaviano (2001, p.65) in the degenerate case where the two
regions are completely symmetric, i.e., ρ1 = ρ2 = ρ and L1 = L2 = L/2 (and
thus ψ1 = ψ2 = ψ). The graph of the potential function for this degenerate
case is depicted for three ranges of trade openness in Figures 2(a), 3(a), and
4(a) in Ottaviano (2001, pp.67–69).

One can show that if ρ0 and ρ1 are sufficiently close to one,8 then f is
increasing so that F is convex, while if they are sufficiently close to zero

7With only two locations, a potential function trivially exists. See Oyama (2006) for
potentials in a new economic geography model with (finitely) many locations.

8A sufficient (but not necessary) condition is that (ρ0ρ1)
1/2 > (σ − α)/(σ + α).
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(with an assumption that α < σ− 1), then f is decreasing so that F is con-
cave and single-peaked in (0, 1) (the interior of [0, 1]). In the former (latter,
resp.) case, location choice of firms exhibits strategic complementarity (sub-
stitutability, resp.). Intuition behind this is well discussed in the literature:
With high trade barriers, competition is fierce since firms sell largely in their
domestic market, which discourages spatial clustering of firms. With low-
ered trade barriers, in contrast, this market competition effect is relaxed and
the effect of scale economies becomes dominant, fostering agglomeration.

In the former case, F is maximized at either x = 0 or x = 1. One can
verify that F (i) > F (j) holds if ρi < ρj when Li = Lj or if Li > Lj when
ρi = ρj . That is, the potential maximizer is the core-periphery state with
full agglomeration in the region that is relatively protected or has a larger
market size. Located in such a region, firms can have better access (in terms
of trade costs) to the markets than otherwise.

3 Equilibrium Dynamics

Given a pair of utility functions (f0, f1) as described in the previous section,
we consider in this section the dynamics due to Krugman (1991b) and Fukao
and Benabou (1993). Entrepreneurs can move between regions at any time
instant with moving costs, which depend on the size of the flow of moving
entrepreneurs in the economy. Specifically, for a given path x : [0,∞) →
[0, 1], the moving cost is given by |ẋ(t)|/γ, where γ > 0. The (common) rate
of time preference is denoted by θ > 0.

We need to impose a regularity condition on paths x(·). We say that a
path x : [0,∞) → [0, 1] is feasible if it is continuous and piecewise continu-
ously differentiable. We choose ẋ(·) to be right-continuous: i.e., we define
ẋ(t) for t at which x(·) is not differentiable by ẋ(t) = lims↓t ẋ(s).

An interval (τ1, τ2) ⊂ [0,∞) with τ1 < τ2 is called an interior interval
of x(·) if x(t) ∈ (0, 1) for all t ∈ (τ1, τ2).

9 An interval [τ1, τ2] ⊂ [0,∞) with
τ1 < τ2 is called a boundary interval if x(t) ∈ {0, 1} (and hence ẋ(t) = 0)
for all t ∈ [τ1, τ2]. A time instant τ1 is called an entry time if an interior
interval ends and a boundary interval starts at τ1; and τ2 is called an exit
time if a boundary interval ends at τ2. If the trajectory is in the interior
just before and just after τ , then τ is called a contact time. Entry, exit, and
contact times are called junction times.

We would now like to define equilibrium paths. To motivate our defi-
nition below, let a feasible path x(·) be given. For each t ∈ [0,∞) and for
∆t > 0, a migration strategy on [t, t + ∆t] of an agent who is currently
located in region i ∈ {0, 1} is characterized by a set of switching times
{t1, t2, . . . , tn} ⊂ [t, t + ∆t], t ≤ t1 < · · · < tn ≤ t + ∆t: at each time tk

9If (0, τ2) is an interior interval, we say that [0, τ2) is an interior interval even when
x(0) ∈ {0, 1}.
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(k = 1, . . . , n), the agent moves from ik−1 to ik, where ik = −ik−1 with
i0 = i. The value of locating in region i, Vi, then satisfies

Vi(t) = sup
{t1,...,tn}⊂[t,t+∆t]

{
∫ t1

t

e−θ(s−t)fi(x(s)) ds

+

n
∑

k=1

(
∫ tk+1

tk

e−θ(s−t)fik(x(s)) ds− e−θ(tk−t) |ẋ(tk)|
γ

)

+ e−θ∆tVin(t+ ∆t)

}

, (3.1)

where tn+1 = t+∆t. Equilibrium behavior on interior intervals is character-
ized by a non-arbitrage condition. That is, along an equilibrium path x(·),
at any time in interior intervals, if ẋ(t) ≥ 0 (ẋ(t) ≤ 0, resp.), then agents
must be indifferent between staying at region 0 (1, resp.) and moving to 1
(0, resp.) by incurring the moving cost |ẋ(t)|/γ.10 On boundary intervals
for the boundary x = i (i = 0, 1), on the other hand, agents must weakly
prefer to stay at region i, so that fi(i) ≥ f−i(i) must hold (note that, since
ẋ(t) = 0 on boundary intervals, agents can move between the regions with
no cost, so that the current location is irrelevant, and hence V0(t) = V1(t)).
Thus, if the system is in the interior or at the boundary x = i, then stay-
ing at region i is at least weakly optimal, until the system hits the other
boundary x = −i.
Definition 3.1. A feasible path x : [0,∞) → [0, 1] is an equilibrium path
from x0 ∈ [0, 1] if x(0) = x0, and for each i = 0, 1 there exists a function
Vi : [0,∞) → R that is right-continuous with left-hand limits and satisfies
(3.1) and the following conditions:

(a) for all t ∈ [0,∞),

ẋ(t) ≤ 0 ⇒ V0(t) −
|ẋ(t)|
γ

= V1(t), (3.2)

ẋ(t) ≥ 0 ⇒ V1(t) −
|ẋ(t)|
γ

= V0(t), (3.3)

(b-0) if (t, T ) is such that x(s) < 1 for all s ∈ (t, T ), then

V0(t) =

∫ T

t

e−θ(s−t)f0(x(s)) ds+ e−θ(T−t)V0(T
−), (3.4)

and if [t, T ] is such that x(s) = 1 for all s ∈ [t, T ], then

V0(t) =
1

θ

(

1 − e−θ(T−t)
)

f1(1) + e−θ(T−t)V0(T
−), (3.5)

10To see this, consider for example the case where ẋ(t) ≥ 0, so that agents at least
weakly prefer to move to region 1. Since agents have the option to move at any time
instant, if the preference were strict, then all the agents would move simultaneously,
which in turn makes the moving cost infinity. Clearly, this cannot be supported by an
equilibrium.
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(b-1) if (t, T ) is such that x(s) > 0 for all s ∈ (t, T ), then

V1(t) =

∫ T

t

e−θ(s−t)f1(x(s)) ds+ e−θ(T−t)V1(T
−), (3.6)

and if [t, T ] is such that x(s) = 0 for all s ∈ [t, T ], then

V1(t) =
1

θ

(

1 − e−θ(T−t)
)

f0(0) + e−θ(T−t)V1(T
−). (3.7)

The existence of equilibrium paths will be shown later (in Corollary 5.3).
While it follows from the definition that Vi is continuous at junction times

for x = i as well as on interior and boundary intervals, it is not assumed to
be continuous at junction times for x = −i; yet, it turns out that it is in
fact the case. The following proposition characterizes equilibrium paths in
terms of the “shadow price” that represents the difference in value between
locating in region 1 rather than in region 0:

q(t) = V1(t) − V0(t).

It shows, in particular, that q(·) is continuous at any junction time. This is
precisely the point made by Fukao and Benabou (1993).

Proposition 3.1. A feasible path x : [0,∞) → [0, 1] is an equilibrium path
from x0 if and only if x(0) = x0, and there exists a function q : [0,∞) → R

that is continuous and piecewise differentiable and satisfies the following
conditions:

(i) for any time t in an interior interval,

ẋ(t) = γq(t), (3.8a)

q̇(t) = θq(t) − f(x(t)), (3.8b)

(ii) for any time t in a boundary interval and for any contact time t,

q(t) = 0, (3.9)

and

x(t) = 0 ⇒ f(0) ≤ 0, (3.10a)

x(t) = 1 ⇒ f(1) ≥ 0. (3.10b)

Furthermore, such a function q(·) is bounded.

Proof. See Appendix.

Condition (i) says that on interior intervals, the law of motion of (x(t), q(t))
is governed by the system of differential equations (3.8), while (ii) implies
that if the equilibrium path hits the boundary of [0, 1] at x = i, then q(t) = 0

9



(by (3.9)), and x = i must be an equilibrium state (by (3.10)).11 Nonethe-
less, q(·) must be continuous, while satisfying

q(t) =

∫ τ

t

e−θsf(x(s)) ds

if (t, τ) is an interior interval with τ being an entry time or τ = ∞, and

q(t) = 0

if t is in a boundary interval.
Clearly, the behavior of the dynamics depends on the values of the

parameters θ and γ. We note that it is fully captured by the ratio be-
tween θ and

√
γ. This is easily verified by applying the change of variables:

x′(s) = x(s/
√
γ) and q′(s) =

√
γq(s/

√
γ). Then, the system (3.8) is written

as

ẋ′(s) = q′(s), (3.11a)

q̇′(s) =
θ√
γ
q′(s) − f(x′(s)). (3.11b)

We thus view δ = θ/
√
γ > 0 as the degree of friction. It is smaller when the

future is more important (i.e., θ is smaller) and/or migration is less costly
so that the adjustment is faster (i.e., γ is larger).

It is immediate to see that the stationary states of our dynamics are
precisely the equilibrium states of the static model.

Observation 3.2. The feasible path x(·) such that x(t) = x∗ for all t ≥ 0
is an equilibrium path if and only if x∗ is an equilibrium state.

In general, there may exist multiple equilibrium states, and this is indeed
the case when agglomeration forces are strong so that the utility difference f
is increasing. Our main objective is to discriminate among the equilibrium
states based on their stability properties under the equilibrium dynamics.
We employ the following stability concepts, which formalize the argument
of ‘history versus expectations’.

Definition 3.2. (a) x∗ ∈ [0, 1] is absorbing if there exists ε > 0 such that
any equilibrium path from any x ∈ Bε(x

∗) converges to x∗.
(b) x∗ ∈ [0, 1] is accessible from x ∈ [0, 1] if there exists an equilibrium

path from x that converges to x∗. x∗ is globally accessible if x∗ is accessible
from any x.

11In particular, due to (3.10), for i ∈ {0, 1} the constant path x(·) such that x(t) = i
for all t ≥ 0 cannot be an equilibrium path if i is not an equilibrium state.
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To give the intuition behind these concepts, let us consider a core-
periphery configuration x∗ = i ∈ {0, 1}, the state in which all the agents are
located in region i. If x∗ is absorbing, then the following is true: if history
sets the initial state to be one in which a sufficiently large amount of agents
are already located in i, then any form of self-fulfilling expectations cannot
alter the outcome and the agents located in the other region will eventually
migrate to i. If x∗ is globally accessible, then the following is true: whatever
the initial state is, the expectation that all agents will eventually be settled
in i may become self-fulfilling.

It is clear that if the degree of friction δ = θ/
√
γ is large (i.e., the future

is unimportant and/or the adjustment is slow), then the dynamics becomes
similar to myopic dynamics, so that any strict equilibrium state, if any,
is absorbing. We are interested in a (unique, by definition) state that is
both absorbing and globally accessible whenever the degree of friction is
sufficiently small. In the sequel, we show that, except for knife-edge cases,
such a state exists and coincides with a unique maximizer of the potential
function F .

4 Main Results

In this section, we state and illustrate the main theorems of this paper.
Their proofs are given in Section 5.

Theorem 4.1. Assume that x∗ is the unique maximizer of F over [0, 1].
Then, there exists δ̄ > 0 such that x∗ is globally accessible whenever δ ≤ δ̄.

Theorem 4.2. Assume that x∗ is the unique maximizer of F over [0, 1].
Then, x∗ is absorbing (independently of δ).

In particular, the potential maximizer x∗ is a unique absorbing (and
globally accessible) state whenever the friction δ is sufficiently small.

To illustrate our results, we consider in the rest of this section the most
interesting case where strong agglomeration economies are present so that
the indirect utility difference function f is upward-sloping. In this case,
there are two strict equilibrium states, the core-periphery configurations
x = 0 and x = 1, and one mixed equilibrium state. Since the potential
function F becomes convex, it is maximized at a vertex of [0, 1] (i.e., x = 0
or x = 1). Let us assume that F (1) > F (0), so that x = 1 is the unique
potential maximizer.

If the friction δ is large enough, the behavior of the dynamics is qual-
itatively the same as that under myopia, so that there is no room for ex-
pectations to play a role. For intermediate frictions or smaller, expectations
become relevant. Figure 1(a) shows the phase portrait of (x(·), q(·)) for in-
termediate frictions. In this case, if the initial state x(0) lies within the
range [x, x], which Krugman (1991b) refers to as the “overlap”, then there

11
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Figure 1: Phase portraits

are multiple equilibrium paths, some leading to x = 1 and others to x = 0.
If the overlap [x, x] is strictly contained in [0, 1] (i.e., 0 < x and x < 1) as in
Figure 1(a), then from a neighborhood of each strict equilibrium state x = i
(i = 0, 1), there is a unique equilibrium path, which leads to x = i; that is,
both states x = 0 and x = 1 are absorbing.

Intuitively, as the friction becomes smaller, expectations become more
likely to be decisive, thus making the overlap wider. What Theorem 4.1 tells
us is that the overlap must reach x = 0, the endpoint of [0, 1] opposite to
the potential maximizer x = 1, for small frictions, while Theorem 4.2 says
that, however small the friction is, the overlap never contains the potential
maximizer x = 1 and thus never fills the entire space [0, 1].12 The phase
portrait for this situation is depicted in Figure 1(b), where the overlap is
the interval [0, x]. For any initial condition, there is an equilibrium trajectory

12This is true also for δ = 0, in which case x is given by F (x) = F (0).
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that leads to (x, q) = (1, 0), which is the uppermost trajectory in the figure,
while if the initial condition is set in (x, 1], then the equilibrium trajectory
is unique, and the system necessarily leads to (x, q) = (1, 0).

We should mention the work by Ottaviano (2001), who studies the same
dynamics in the case of completely symmetric regions. In this case, since
the utility difference function f is skew symmetric around x = 1/2 (i.e.,
f(1/2 − z) = −f(1/2 + z)), the potential function F is symmetric around
x = 1/2, so that we have F (0) = F (1), thereby violating our assumption that
F has a unique global maximizer. Ottaviano (2001) shows that for positive
friction δ, the overlap is strictly contained in the space [0, 1], and hence, in
our terminology, both stationary states x = 0 and x = 1 are absorbing; and
that for δ = 0, the overlap precisely coincides with the whole space [0, 1],
so that both stationary states are globally accessible.13 Our theorems, in
contrast, show that, once the regions are asymmetric so that F (0) 6= F (1),
there is only one state that becomes absorbing as well as globally accessible
for small δ, demonstrating in fact that the results for the knife-edge case
of symmetric regions are not robust to exogenous asymmetries between the
regions.14,15

5 Proofs

We prove Theorems 4.1 and 4.2 in Subsections 5.1 and 5.2, respectively. The
proof strategy follows that due to Hofbauer and Sorger (1999).

5.1 Global Accessibility

The proof exploits the relationship between equilibrium paths of the dynam-
ics in consideration and optimal solutions to an associated optimal control
problem.

13For the case where f is linear in addition to being skew symmetric around x = 1/2,
Fukao and Benabou (1993) explicitly computes the width of the overlap, which is strictly
smaller than one for positive δ and converges to one as δ goes to zero.

14This point seems not to have been recognized in the literature. For instance,
Baldwin (2001, p.46), who considers the core-periphery (CP) model with symmetric loca-
tions, states that “the region of overlapping saddle paths will never include a CP outcome”.
This statement also appears in the textbook of Baldwin et al. (2003, p.60).

15This has to be contrasted with stability under myopic dynamics, where local maximiz-
ers of a potential function are all locally stable, so that introduction of small asymmetries
does not alter the local stability.
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The optimal control problem is defined as follows:

maximize J(x(·), u(·)) =

∫ ∞

0
e−θt

(

F (x(t)) − u(t)2

2γ

)

dt, (5.1a)

subject to ẋ(t) = u(t), (5.1b)

x(t) ≥ 0, 1 − x(t) ≥ 0, (5.1c)

x(0) = x0. (5.1d)

An admissible pair is a pair (x(·), u(·)) of an absolutely continuous function
x : [0,∞) → [0, 1] and a measurable function u : [0,∞) → R that satisfy the
constraints (5.1b)–(5.1d). An admissible pair is called an optimal pair if it
attains the maximum valued of J over all admissible pairs.

We show in Proposition 5.2 that a solution to this maximization problem
is an equilibrium path of our dynamics. This may be seen as a dynamic
analog to the fact in the static model that a maximizer of the potential
function F is an equilibrium state. We then show in Lemma 5.4 that an
optimal path must visit neighborhoods of the potential maximizer when the
degree of friction δ = θ/

√
γ > 0 is sufficiently small. Together with the

absorption proved in Subsection 5.2, these prove the global accessibility of
the potential maximizer.

We first obtain the existence of optimal solution.

Proposition 5.1. An optimal pair to problem (5.1) exists for each x0 ∈
[0, 1].

Proof. Follows from Baum (1976, Theorem 7.1).

The following proposition establishes the relationship between the max-
imization problem and the equilibrium dynamics.

Proposition 5.2. If (x(·), u(·)) is an optimal pair to problem (5.1), then
x(·) is an equilibrium path from x0.

Proof. See Appendix.

We have the following as an immediate consequence of the above propo-
sitions.

Corollary 5.3. There exists an equilibrium path for each initial condition
x0 ∈ [0, 1].

Note that the converse of Proposition 5.2 is not true in general.
We here give a heuristic proof of Proposition 5.2 based on “Informal

Theorem” 4.1 in Hartl et al. (1995), while the formal proof is given in
the Appendix. Due to the (pure state variable) inequality constraints in
(5.1c), which will be binding in particular when F is convex, we need to rely
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on a non-standard technique for necessary conditions.16 The current value
Hamiltonian H and the Lagrangian L are defined respectively by

H(x, u, q) = F (x) − u2

2γ
+ qu (5.2)

and
L(x, u, q, ν0, ν1) = H(x, u, q) + ν0x+ ν1(1 − x). (5.3)

By Hartl et al. (1995, Informal Theorem 4.1), we have the following necessary
conditions for optimality: If (x(·), u(·)) is an optimal pair, then there exist
a piecewise absolutely continuous function q : [0,∞) → R and piecewise
continuous functions ν0, ν1 : [0,∞) → R such that

Hu(x(t), u(t), q(t)) = −u(t)
γ

+ q(t) = 0, (5.4)

q̇(t) = θq(t) − Lx(x(t), u(t), q(t), ν0(t), ν1(t))

= θq(t) − f(x(t)) − ν0(t) + ν1(t), (5.5)

ν0(t) ≥ 0, ν0(t)x(t) = 0, (5.6)

ν1(t) ≥ 0, ν1(t)(1 − x(t)) = 0, (5.7)

and for any time τ in a boundary interval and for any contact time τ , q(·)
may have a discontinuity given by the following jump conditions:

q(τ−) = q(τ+) + η0(τ) − η1(τ), (5.8)

η0(τ) ≥ 0, η0(τ)x(τ) = 0, (5.9)

η1(τ) ≥ 0, η1(τ)(1 − x(τ)) = 0 (5.10)

for some η0(τ), η1(τ) for each τ . Observe first that conditions (5.4)–(5.7) im-
ply that, with the adjoint q(·), the equilibrium conditions in Proposition 3.1
are satisfied for interior intervals.

We then claim that q(τ−) = q(τ+) = 0 for any time τ in a boundary
interval and for any contact time τ . Let us verify this in the case where
x(τ) = 1, so that ν0(τ) = η0(τ) = 0 by (5.6) and (5.9). First, it must be
that ẋ(τ−) ≥ 0 (otherwise, we would have x(τ) < 1), and hence q(τ−) ≥ 0
by (5.1b) and (5.4). Second, it must be that ẋ(τ+) ≤ 0 (otherwise, we would
have x(τ + ε) > 1), and hence q(τ+) ≤ 0 again by (5.1b) and (5.4). Last,
by the jump condition (5.8), q(τ−) = q(τ+)− η1(τ) ≤ q(τ+) since η1(τ) ≥ 0
as in (5.10). These imply that q(τ−) = q(τ+) = 0.

Finally, we can verify from (5.5)–(5.7) that

ν0(t) =

{

−f(0) if t is in a boundary interval for x = 0,

0 otherwise,

16Here, we follow the “direct adjoining approach”. See also Seierstad and Sydsæter
(1987, Chapter 5) and Sethi and Thompson (2000, Chapter 4), where the “indirect ad-
joining approach” is discussed.
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and

ν1(t) =

{

f(1) if t is in a boundary interval for x = 1,

0 otherwise.

Since ν0(t), ν1(t) ≥ 0, it follows that the conditions (3.10) in Proposition 3.1
are satisfied.

Remark 5.1. As noted in Proposition 3.1, the adjoint function q(·) is bounded.
Thus, the transversality condition, limt→∞ e−θtq(t) = 0, holds.

We next have the following lemma, which corresponds to the “visit
lemma” in turnpike theory.

Lemma 5.4. Assume that x∗ is the unique maximizer of F over [0, 1]. For
any ε > 0, there exists δ̄(ε) > 0 such that for all δ ≤ δ̄(ε) and for all
x0 ∈ [0, 1], if (x(·), u(·)) is an optimal pair to the problem (5.1), then there
exists t ≥ 0 such that |x(t) − x∗| < ε.

Proof. See Appendix.

To understand the intuition behind this claim, consider the equivalent
maximization problem:

maximize J̃(y(·), v(·)) =

∫ ∞

0
δe−δs

(

F (y(s)) − v(s)2

2

)

ds,

subject to ẏ(s) = v(s), 0 ≤ y(s) ≤ 1, and y(0) = x0, where δ = θ/
√
γ,

which is obtained by applying to J the change of variables, y(s) = x(s/
√
γ)

and v(s) = u(s/
√
γ)/

√
γ, with a positive multiplicative θ. If δ is small,

large weights are put on the values of the integrand for far future times s.
Therefore, for any small neighborhood of the maximizer of F , if y(·) does
not visit this neighborhood, then (y(·), v(·)) does not maximize J̃ , provided
that δ is sufficiently small.

The above claims as well as the absorption imply the global accessibility
of x∗.

Proof of Theorem 4.1. Due to Theorem 4.2, x∗ is absorbing for any value of
δ = θ/

√
γ > 0, that is, there exists ε > 0 such that any equilibrium path

starting from any initial state in Bε(x
∗) converges to x∗. From the proof

of Theorem 4.2, we can take ε independently of δ. Fix this value of ε and
assume that δ ≤ δ̄ = δ̄(ε) with δ̄(ε) as in Lemma 5.4. Consider any initial
state x0 ∈ [0, 1]. From Proposition 5.1, there exists an optimal solution x(·)
starting from x0, and from Proposition 5.2, it is an equilibrium path from
x0. By Lemma 5.4, there exists T ≥ 0 such that x(T ) ∈ Bε(x

∗). Since the
truncated path y(t) = x(t + T ) is also an equilibrium path, it follows from
the choice of ε and Theorem 4.2 that limt→∞ x(t) = x∗. Since x0 has been
chosen arbitrarily, this proves that x∗ is globally accessible when δ ≤ δ̄.
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5.2 Absorption

Define the function H∗ : R × R → R by

H∗(x, q) = F (x) +
γ

2
q2, (5.11)

which is the maximized Hamiltonian, i.e., H∗(x, q) = maxuH(x, u, q), where
H is defined in (5.2). We first show in Lemma 5.5 that H∗ works as a
Lyapunov function for the system (3.8)–(3.10) which describes the behavior
of equilibrium paths. We then show in Lemma 5.6 that if (x(·), q(·)) is
a solution to (3.8)–(3.10), then we must have limt→∞ q(t) = 0, and thus
any accumulation point x̂ of x(·) must be an equilibrium state and satisfy
H(x(0), q(0)) ≤ H∗(x̂, 0), which implies F (x(0)) ≤ F (x̂). Hence, if we take
a neighborhood of the potential maximizer x∗ such that for all x in the
neighborhood, F (x) > F (x̂) for all equilibrium states x̂ 6= x∗, then any
equilibrium path from this neighborhood converges to x∗, which means the
absorption of x∗.

Lemma 5.5. Let (x(·), q(·)) be a solution to (3.8)–(3.10). Then, for almost
all t ≥ 0,

d

dt
H∗(x(t), q(t)) ≥ 0,

with equality holding if and only if q(t) = 0.

Proof. From (3.8)–(3.10) we have

d

dt
H∗(x(t), q(t)) = f(x(t))ẋ(t) + γq(t)q̇(t)

= γq(t)
(

f(x(t)) + q̇(t)
)

=

{

γθq(t)2 ≥ 0 if t is in an interior interval

0 otherwise,

since, by Proposition 3.1, q̇(t)+ f(x(t)) = θq(t) if t is in an interior interval,
while q(t) = 0 if t is in a boundary interval or is a contact time.

Lemma 5.6. Let x(·) be an equilibrium path from x0. If x̂ is an accumula-
tion point of x(·), then

(1) F (x̂) ≥ F (x0), and
(2) x̂ is an equilibrium state.

Under Assumption 2.1, (2) implies that any equilibrium path converges
to an equilibrium state.

The proof follows that of Lemma 4 in Hofbauer and Sorger (1999).

Proof. Let q(·) be associated with the equilibrium path x(·). Let {tk} be a
sequence such that limk→∞ tk = ∞ and limk→∞ x(tk) = x̂. Let, without loss
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of generality, q̂ = limk→∞ q(tk). Define (x∗(·), q∗(·)) by t 7→ limk→∞(x(t +
tk), q(t+ tk)), which satisfies (3.8)–(3.10) with (x∗(0), q∗(0)) = (x̂, q̂).

We show that H∗(x∗(t), q∗(t)) is constant. Assume that for some t, s ∈
[0,∞),

H∗(x∗(t), q∗(t)) < H∗(x∗(s), q∗(s)).

By Lemma 5.5, we must have t < s. Since limk→∞ tk = ∞, we may assume
without loss of generality that tk+1 > tk + (s− t). Using Lemma 5.5 again,
we obtain

H∗(x∗(t), q∗(t)) = lim
k→∞

H∗(x(tk + t), q(tk + t))

= lim
k→∞

H∗(x(tk+1 + t), q(tk+1 + t))

≥ lim
k→∞

H∗(x(tk + s), q(tk + s))

= H∗(x∗(s), q∗(s)),

which is a contradiction. Thus we have (d/dt)H∗(x∗(t), q∗(t)) = 0 for all
t ≥ 0. Hence, q∗(t) = 0 for all t ≥ 0 by Lemma 5.5. Since (x∗(·), q∗(·))
satisfies (3.8)–(3.10) and x∗(0) = x̂, it follows that x∗(t) = x̂ for all t ≥ 0,
and therefore x̂ is an equilibrium state by Observation 3.2, which proves (2).
Also, we have

F (x0) ≤ H∗(x(0), q(0)) ≤ H∗(x(t), q(t)) ≤ H∗(x∗(t), q∗(t)) = F (x̂),

which proves (1).

We are now ready to prove the absorption property of the potential
maximizer x∗: that if an equilibrium path starts in a neighborhood of x∗,
then it must converge to x∗.

Proof of Theorem 4.2. Since the potential maximizer x∗ is isolated from
other equilibrium states by Assumption 2.1, we can take ε > 0 such that
F (x) > F (x̂) for all x ∈ Bε(x

∗) and all equilibrium states x̂ 6= x∗. Lemma 5.6
thus implies that any equilibrium path x(·) from any x0 ∈ Bε(x

∗) satisfies
limt→∞ x(t) = x∗.

Remark 5.2. Ottaviano (2001) makes use of the function H∗ for the case
of symmetric regions, and observes that if θ = 0, then along a trajectory
(x(·), q(·)) satisfying the system (3.8)–(3.10), (d/dt)H∗(x(t), q(t)) = 0 for
all t ≥ 0 and, in particular, when x = 0 and x = 1 are equilibrium states,
there are trajectories that connect (x, q) = (0, 0) and (x, q) = (1, 0). By
considering perturbation of the system, he concludes that in this case, both
x = 0 and x = 1 are, in our terminology, absorbing for positive small θ. As
our result shows for the generic case of asymmetric regions, however, this is
a knife-edge result which is not robust to exogenous asymmetries.
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6 Concluding Remarks

In this paper, we have addressed the issue of ‘history versus expectations’ in
a two-location new economic geography model, which typically has multiple
equilibria, by embedding the model in the class of equilibrium dynamics
due to Krugman (1991b) and Fukao and Benabou (1993) (KFB dynamics).
Agents are assumed to incur moving costs upon migration which depend on
the rate of aggregate migration flow. This, along with agents’ impatience
(i.e., positive time discounting), constitutes the friction of our dynamic envi-
ronment. We obtained an equilibrium selection result based on the stability
properties under the dynamics: that, except for knife-edge cases, there exists
a (unique, by definition) spatial configuration that is absorbing and glob-
ally accessible whenever the degree of friction is sufficiently small, and such
a configuration is characterized as the unique maximizer of the potential
function of the static model. While we proceeded in the specific context of
economic geography, we emphasize that our analysis is general enough to
capture many situations of social interactions with binary choice.

The fact that forward-looking behavior combined with frictions can lead
to equilibrium selection is also observed in the class of equilibrium dynamics
as considered by Matsuyama (1991) and Matsui and Matsuyama (1995)
(MM dynamics). In fact, the proof strategy for our main theorems follows
that of Hofbauer and Sorger (1999) who prove the same stability properties
under the MM dynamics in potential games with (finitely) many actions.
Here we briefly discuss the differences in the mathematical properties of the
KFB and the MM dynamics.

In the MM dynamics, the opportunities for agents to revise their choice
arrive only occasionally, according to independent Poisson processes. There-
fore, the speed of adjustment at the aggregate level is bounded exogenously,
since, during a short interval, only a given fraction of the population is
assumed to receive a revision opportunity. An equilibrium path of this dy-
namics is simply defined to be a feasible path along which each agent, when
given a revision opportunity, takes a best alternative that maximizes the
expected discounted payoff, which is independent of his current choice.

Agents in the KFB dynamics are allowed to revise their choice at any
time instance with adjustment costs which depend on the rate of change
in the population state. Equilibrium behavior in the interior of the state
space is characterized by the non-arbitrage condition, i.e., the equality be-
tween the adjustment cost and the option value of adjustment, while once
the economy reaches the boundary, individual agents are able to instanta-
neously move between the locations with no cost. Accordingly, the formal
definition of equilibrium paths in the KFB dynamics must carefully incorpo-
rate transition between these phases. This is in fact the source of the error
in Krugman (1991b) pointed out by Fukao and Benabou (1993).

Furthermore, while it is conjectured to be the case, it is left as an open
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question whether, as in the MM dynamics, the stability of a potential max-
imizer in the KFB dynamics extends to the case of more than two alter-
natives. On the other hand, using the MM dynamics the companion paper
(Oyama (2006)) is able to study forward-looking migration behavior in a new
economic geography model with many locations that admits a potential.

It should be noted, however, that when we consider policy issues, the
two models may yield different implications. In the KFB dynamics, the
speed of aggregate adjustment is directly determined by the no-arbitrage
condition and thus can be controlled by governmental instruments such as
tax and subsidy, whereas in the MM dynamics, it is bounded by the Pois-
son parameter and independent of agents’ utilities. This point is discussed
in the context of infant industry protection in a sectoral choice model by
Kaneda (2003), who demonstrates that a subsidy scheme with a shorter du-
ration and a higher rate is not isomorphic to that with a longer duration
and a lower rate under the Poisson formulation where the speed of growth
in the industry is independent of the subsidy rate, while noting that these
schemes are substitutable for each other under the adjustment cost formu-
lation. Conclusive policy implications on such issues should be obtained by
developing a more general model that unifies these formulations. We leave
this task for future research.

Appendix

Proof of Proposition 3.1. Let x(·) be an equilibrium path and V0(·), V1(·) the
corresponding value functions. Define q : [0,∞) → R by q(t) = V1(t)−V0(t),
which by definition is continuous on any interior or boundary interval and
right-continuous at junction times. We want to show that this function q
satisfies the desired conditions in each of cases (i) and (ii).

(i) First, if ẋ(t) ≤ 0, then V0(t) + ẋ(t)/γ = V1(t), while if ẋ(t) ≥ 0, then
V1(t) − ẋ(t)/γ = V0(t), so that in each case, we have

ẋ(t) = γ(V1(t) − V0(t)) = γq(t).

Second, for any sufficiently small ∆t > 0,

Vi(t) =

∫ t+∆t

t

e−θ(s−t)fi(x(s)) ds+ e−θ∆tVi(t+ ∆t)

for each i = 0, 1, so that

q(t) =

∫ t+∆t

t

e−θ(s−t)f(x(s)) ds+ e−θ∆tq(t+ ∆t).

Thus, we have

q(t+ ∆t) − q(t)

∆t
=

1 − e−θ∆t

∆t
q(t+ ∆t) +

1

∆t

∫ t+∆t

t

e−θ(s−t)f(x(s)) ds.
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As ∆t → 0, the right hand side converges to θq(t) − f(x(t)). The same
argument applies to the limit of (q(t) − q(t− ∆t))/∆t.

(ii) If t is in a boundary interval for the boundary x = 0 (x = 1, resp.),
then by definition, f(0) ≤ 0 (f(1) ≥ 0, resp.), x(t) = 0 (x(t) = 1, resp.),
and q(t) = 0.

We need to show that q(·) is continuous at junction times. The follow-
ing three lemmata correspond respectively to Lemmata 1–3 in Fukao and
Benabou (1993).

Lemma A.1. If τ is an entry time, then q(τ−) = 0.

Proof. We only consider the case where τ is an entry time for the boundary
x = 1. First, q(τ−) ≥ 0 (otherwise, we would have x(τ) < 1). Next, for
sufficiently small ε > 0, we have

V0(τ − ε) ≥
∫ τ+ε

τ−ε

e−θ(s−τ+ε)f0(x(s)) ds+ e−2θεV1(τ + ε),

where the right hand side is the payoff that the agent would obtain if he
waited until τ + ε to move from 0 to 1. As ε → 0, we have V0(τ

−) ≥ V1(τ)
by the continuity of V1 at τ , so that q(τ−) = V1(τ) − V0(τ

−) ≤ 0.

Lemma A.2. If τ is an exit time, then q(τ+) = 0.

Proof. We only consider the case where τ is an exit time for the boundary
x = 1. First, q(τ+) ≤ 0 (otherwise, we would have x(τ + ε) > 1). Next, for
sufficiently small ε > 0, we have

V1(τ − ε) ≥
∫ τ+ε

τ−ε

e−θ(s−τ+ε)f0(x(s)) ds+ e−2θεV0(τ + ε),

where the right hand side is the payoff that the agent would obtain if he
moved from 1 to 0 at τ − ε. As ε → 0, we have V1(τ) ≥ V0(τ

+) by the
continuity of V1 at τ , so that q(τ+) = V1(τ) − V0(τ

+) ≥ 0.

Lemma A.3. If τ is a contact time, then q(τ−) = q(τ+) = 0.

Proof. We only consider the case where τ is a contact time for the boundary
x = 1. First, q(τ−) ≥ 0 and q(τ+) ≤ 0 as previously. Next, for sufficiently
small ε > 0, we have

V0(τ − ε) ≥
∫ τ+ε

τ−ε

e−θ(s−τ+ε)f0(x(s)) ds+ e−2θεV0(τ + ε),

where the right hand side is the payoff that the agent would obtain if he
remained in 0. As ε → 0, we have V0(τ

−) ≥ V0(τ
+), so that q(τ−) =

V1(τ) − V0(τ
−) ≤ V1(τ) − V0(τ

+) = q(τ+).
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Finally, we show that |q(·)| is bounded by M/θ, where M > 0 is the
maximum value of |f(x)| over x ∈ [0, 1]. Suppose that this is not true, say,
that q(T ) > M/θ for some T . Then, we would have q̇(t) > 0 for all t ≥ T
by (3.8b), and therefore, ẋ(t) ≥ γM/θ for all t ≥ T by (3.8a). This implies
that x(T ′) = 1 for some finite T ′ ≥ T , while q(T ′) > M/θ, which contradicts
(3.9).

To show the converse, let x(·) and q(·) be as in the statement. Then,
define Vi(·) by

Vi(t) =

∫ ∞

t

e−θ(s−t)f̃i(x(s)) ds,

where f̃i : [0, 1] → R is defined by

f̃i(x) =

{

fi(x) if 0 < x < 1,

fi∗(i
∗) if x = i∗.

One can verify that V1(t) − V0(t) = q(t) for all t and thus the equilibrium
conditions in Definition 3.1 are satisfied.

Proof of Proposition 5.2. Let (x∗(·), u∗(·)) be an optimal pair for the prob-
lem (5.1). We want to show the existence of a function q(·) that satisfies the
conditions in Proposition 3.1.

Consider the finite horizon optimal control problem parameterized by
T > 0:

maximize JT (x(·), u(·)) =

∫ T

0
e−θt

(

F (x(t)) − u(t)2

2γ

)

dt, (A.1a)

subject to ẋ(t) = u(t), (A.1b)

h(x(t)) ≥ 0, (A.1c)

x(0) = x∗(0), (A.1d)

x(T ) = x∗(T ), (A.1e)

where h(x) = (h0(x), h1(x)) = (x, 1 − x).
Let

H̃(x, u, λ0, λ, t) = λ0e
−θt

(

F (x) − u2

2γ

)

+ λu.

Since the restriction of (x∗(·), u∗(·)) to [0, T ] is optimal for the problem (A.1),
it must satisfy the following necessary conditions due to Theorem 4.2 in
Hartl et al. (1995): there exist a constant λ0 ∈ {0, 1}, a right-continuous
function λ : [0, T ] → R, and functions ν̃i : [0, T ] → R (i = 0, 1) that are of
bounded variation, nonincreasing, constant on intervals where hi(x(t)) > 0,
and right-continuous with left-hand limits everywhere such that

(λ0, λ(t), ν̃0(T ) − ν̃0(0), ν̃1(T ) − ν̃1(0)) 6= 0 (A.2)
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for all t ∈ [0, T ],

H̃u(x∗(t), u∗(t), λ0, λ(t), t) = −λ0e
−θtu

∗(t)

γ
+ λ(t) = 0 (A.3)

for almost all t ∈ [0, T ], and

λ(t+1 ) − λ(t+0 )

= −λ0

∫ t1

t0

H̃x(x∗(t), u∗(t), λ0, λ(t), t) dt+

∫

(t0,t1]
hx(x∗(t)) · dν̃

= −λ0

∫ t1

t0

e−θtf(x∗(t)) dt

+ (ν̃0(t
+
1 ) − ν̃0(t

+
0 )) − (ν̃1(t

+
1 ) − ν̃1(t

+
0 )) (A.4)

for t0 < t1.
We first claim that λ0 6= 0. Indeed, if λ0 = 0, then (A.3) and (A.4)

would contradict (A.2). Therefore, (A.1b) and (A.3) implies

λ(t) = e−θt ẋ
∗(t)

γ
. (A.5)

If (t0, t1) is an interior interval, then by (A.4), for all t ∈ (t0, t1) we have
ν̃0(t) − ν̃0(t

+
0 ) = ν̃1(t) − ν̃1(t

+
0 ) = 0 and

λ(t) = λ(t+0 ) −
∫ t

t0

e−θsf(x∗(s)) ds.

This implies that λ(t) is differentiable and λ̇(t) = −e−θtf(x∗(t)) on interior
intervals.

We then show that λ(t−) = λ(t+) = 0 for any time t in a boundary
interval and any contact time t. Let us show this in the case where x(t) = 1.
First, it must be that ẋ(t−) ≥ 0 (otherwise, we would have x(t) < 1), and
hence λ(t−) ≥ 0 by (A.5). Second, it must be that ẋ(t+) ≤ 0 (otherwise,
we would have x(t+ ε) > 1), and hence λ(t+) ≤ 0 again by (A.5). Last, let
t0 < t be such that x(s) > 0 for all s ∈ [t0, t], so that ν̃0(t

+) − ν̃0(t
+
0 ) = 0.

By (A.4), we have

λ(t+) = λ(t+0 ) −
∫ t

t0

e−θsf(1) ds− (ν̃1(t
+) − ν̃1(t

+
0 )), (A.6)

and therefore
λ(t+) = λ(t−) − (ν̃1(t

+) − ν̃1(t
−))

in the limit as t0 ↑ t. Since ν̃1 is nonincreasing so that ν̃1(t
+) − ν̃1(t

−) ≤ 0,
we have λ(t+) ≥ λ(t−). These imply that λ(t−) = λ(t+) = 0.
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Furthermore, since (A.6) reduces to

ν̃1(t) − ν̃1(t
+
0 ) = −

∫ t

t0

e−θsf(1) ds

and ν̃1 is nonincreasing, we have f(1) ≥ 0. The same argument applies to
boundary intervals for x = 0.

Now, let 0 < T 1 < T 2 < · · · be such that limk→∞ T k = ∞. Let λk(·)
be the adjoint for the problem (A.1) with T = T k. Note that if k < k′,
λk(t) = λk′

(t) for all t ∈ [0, T k]. Let λ∗(·) be the extension of λk(·)’s to
[0,∞): i.e., λ∗(t) = λk(t) where k is such that t ∈ [T k−1, T k) (with T 0 = 0).
Finally, let q(t) = eθtλ∗(t). Then, verifying that the obtained q(·) satisfies
the conditions of Proposition 3.1 completes the proof.

Proof of Lemma 5.4. Assume the contrary: i.e., that there exists ε > 0 such
that for all δ̄ > 0, there exists an optimal pair (x(·), u(·)) for some θ and
γ with δ = θ/

√
γ ∈ (0, δ̄] and some x0 ∈ [0, 1] with x(0) = x0 such that

|x(t)−x∗| ≥ ε for all t ≥ 0. Given such an ε > 0, let c = c(ε) > 0 be defined
by

c = F (x∗) − max
x∈[0,1]

{F (x) | |x− x∗| ≥ ε}

and δ̄ = δ̄(ε) > 0 be such that

(

1 − e−δ̄
)

(

2M +
1

2

)

< e−δ̄c,

where M > 0 is a constant such that |F (x)| ≤ M for all x ∈ [0, 1]. Given
such a δ̄ > 0, let (x(·), u(·)) be an optimal pair with θ/

√
γ ∈ (0, δ̄] and

x0 ∈ [0, 1] such that |x(t) − x∗| ≥ ε for all t ≥ 0, as assumed. We assume
without loss of generality that x0 ≤ x∗.

Define y(·) and v(·) by y(s) = x
(

s/
√
γ
)

and v(s) = u
(

s/
√
γ
)

/
√
γ. Note

that |y(s) − x∗| ≥ ε and therefore F (y(s)) − F (x∗) ≤ −c for all s ≥ 0.
Observe that (y(·), v(·)) is an optimal pair to the maximization problem for

J̃(y(·), v(·)) =

∫ ∞

0
δe−δs

(

F (y(s)) − v(s)2

2

)

ds

subject to ẏ(s) = v(s), 0 ≤ y(s) ≤ 1, and y(0) = x0, where δ = θ/
√
γ (≤ δ̄).

Now define an admissible pair (y′(·), v′(·)) by

v′(s) =

{

1 if s < T

0 if s ≥ T ,
y′(s) =

{

x0 + s if s < T

x∗ if s ≥ T ,
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where T = x∗ − x0 (≤ 1). Then,

J̃(y(·), v(·)) − J̃(y′(·), v′(·))

=

∫ T

0
δe−δs

{(

F (y(s)) − v(s)2

2

)

−
(

F (y′(s)) − 12

2

)}

ds

+

∫ ∞

T

δe−δs

{(

F (y(s)) − v(s)2

2

)

− F (x∗)

}

ds

≤
∫ T

0
δe−δs

(

F (y(s)) − F (y′(s)) +
1

2

)

ds

+

∫ ∞

T

δe−δs
(

F (y(s)) − F (x∗)
)

ds

≤
∫ T

0
δe−δs

(

2M +
1

2

)

ds−
∫ ∞

T

δe−δsc ds

=
(

1 − e−δT
)

(

2M +
1

2

)

− e−δT c

≤
(

1 − e−δ̄
)

(

2M +
1

2

)

− e−δ̄c < 0,

which contradicts the optimality of (y(·), v(·)).
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