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Abstract

This paper examines occupational choices using a discrete choice model that
accounts for the fact that self-reported occupation data is measured with error.
Despite evidence from validation studies which suggests that there is a substan-
tial amount of measurement error in self-reported occupations, existing research
has not corrected for classification error when estimating models of occupational
choice. This paper develops a panel data model of occupational choices that
corrects for misclassification in occupational choices and measurement error in
occupation-specific work experience variables. The model is used to estimate
the extent of measurement error in self-reported occupation data and quantify
the bias that results from ignoring measurement error in occupation codes when
studying the determinants of occupational choices and estimating the effects of
occupation-specific human capital on wages. The parameter estimates reveal
that 9% of occupational choices in the 1979 cohort of the National Longitudi-
nal Survey of Youth are misclassified. Ignoring misclassification leads to biases
that affect the conclusions drawn from empirical occupational choice models.

JEL codes: J24, C25, C15
Keywords: Occupational choice, Misclassification, Discrete choice, Simula-
tion methods



1 Introduction

Occupational choices have been the subject of considerable research interest by economists be-
cause of their importance in shaping employment outcomes and wages over the career. Topics
of study range from the analysis of job search and occupational matching (McCall 1990, Neal
1999) to studies of the determinants of wage inequality (Gould 2002) to dynamic human capital
models of occupational choices (Keane and Wolpin 1997). Despite the large amount of research
into occupational choices and evidence from validation studies such as Mellow and Sider (1983)
which suggests that as many as 20% of one-digit occupational choices are misclassified, it is
surprising that existing research has not corrected for classification error in occupations when
estimating models of occupational choice. The existence of classification error in occupations is a
serious concern because in the context of a nonlinear discrete choice occupational choice model,
measurement error in the dependant variable results in biased parameter estimates.

The goal of this paper is to estimate a model of occupational choices that corrects for classifi-
cation error in occupation data when direct evidence on the validity of individuals’ self-reported
occupations is unavailable. The approach taken in this paper is to specify a model of occupational
choices that incorporates a parametric model of occupational misclassification. The parameters
of the occupational choice model and the parameters that describe the extent of misclassification
in occupation data are estimated jointly by simulated maximum likelihood. As is the case in all
structural models, a limitation of this approach is that it requires the researcher to make para-
metric assumptions about objects in the model such as the functional form of the wage equation,
the distribution of random variables that affect occupational choices, and the process by which
occupations are misclassified.

The classification error literature consists of two broadly defined approaches to estimating
parametric models in the presence of classification error.! One approach uses assumptions about
the measurement error process along with auxiliary information on error rates, which typically
takes the form of validation or re-interview data, to correct for classification error. Examples of
this approach to measurement error are found in work by Abowd and Zellner (1985), Chua and
Fuller (1987), Poterba and Summers (1995), Magnac and Visser (1999), and Chen, Hong, and

Tamer (2005). The second approach to estimating models in the presence of misclassified data

'An alternative approach to dealing with misclassification derives nonparametric bounds under relatively
weak assumptions about misclassification. See, for example, Bollinger’s (1996) study of mismeasurered binary
independent variables in a linear regression, and Kreider and Pepper’s (2004A, 2004B) work on misclassification
in disability status.



corrects for misclassification without relying on auxiliary information by estimating parametric
models of misclassification. Examples of this approach are found in Hausman, Abrevaya, and
Scott-Morton (1998), Dustmann and van Soest (2001), and Li, Trivedi, and Guo (2003).

The occupational choice model developed in this paper combines features of the two existing
approaches to misclassification. Instead of relying on the availability of auxiliary information
that provides direct evidence on misclassified occupational choices, information about misclassi-
fication is derived from observed wages. This approach takes advantage of the fact that observed
wages provide information about true occupational choices because wages vary widely across
occupations. Intuitively, the occupational choices identified by the model as likely to be misclas-
sified are the ones where the observed wage is unlikely to be observed in the reported occupation.
Also, the model developed in this paper uses additional information provided by the fact that
true occupational choices are strongly influenced by observable variables such as education to
draw inferences about the extent of misclassification in the data.

One methodological contribution of this work is that it develops a method of dealing with the
problems created in panel data models when misclassification in the dependant variable creates
measurement error in the explanatory variables in the model. Misclassification in occupation
codes creates measurement error in lagged occupational choices and occupation specific work
experience variables, so the true values of these variables are unobserved state variables. Ex-
isting research into occupational choices and misclassification in general has not addressed this

2 This work addresses the problem by using simulation methods to approximate the

problem.
otherwise intractable integrals over the unobserved state variables that appear in the likelihood
function.> The simulation algorithm developed in this paper is applicable in a wide range of
settings beyond occupational choice models.

The parameter estimates provide evidence that a substantial fraction of occupational choices

are misclassified in the NLSY data, and suggest that ignoring misclassification leads to bi-

ases that affect the qualitative and quantitative conclusions drawn from estimated occupational

2The only other paper to examine the connection between misclassification in the dependant variable and
meaurement error in explanatory variables is Keane and Sauer’s (2006) study of female labor supply that examines
misclassification in reported labor force status. Keane and Sauer (2006) estimate their model using the simulation
procedure developed by Keane and Wolpin (2001) to deal with the problem of unobserved state variables in
dynamic models.

3This application of simulation methods adds to a growing literature that uses simulation methods to solve
problems created by missing data and measurement error. For example, Lavy, Palumbo, and Stern (1998)
and Stinebrickner (1999) use simulation methods to solve estimation problems created by missing data, and
Stinebrickner and Stinebrickner (2004) develop a model of college outcomes that uses simulation methods to
correct for measurement error in self-reported study time.



choice models. Estimates of the transferability of human capital across occupations appear to
be particularly sensitive to the false occupational transitions created by misclassification. The
results also suggest that the extent of misclassification varies widely across occupations, and that
observed wages provide a large amount of information about which occupational choices in the
data are likely to be affected by misclassification. For example, the model predicts that high
wage workers who are observed as professionals are very likely to be correctly classified, but low
wage workers observed as professionals are likely to be misclassified.

The remainder of the paper is organized as follows. Section 2 describes the data and discusses
the possible sources of measurement error in occupation codes. Section 3 presents the model of
occupational choices and misclassification and discusses how the model is estimated. Section
4 presents the parameter estimates, and Section 5 analyzes the patterns in misclassification

predicted by the model using simulated occupational choice data. Section 6 concludes.

2 Data

The National Longitudinal Survey of Youth (NLSY) is a panel dataset that contains detailed
information about the employment and educational experiences of a nationally representative
sample of young men and women who were between the ages of 14 and 21 when first interviewed
in 1979. The employment data contain information about the durations of employment spells
along with the wages, hours, and three-digit 1970 U.S. Census occupation codes for each job.

This analysis uses only white men ages 18 or older from the nationally representative core
sample of the NLSY. The weekly labor force record found in the work history files is aggregated
into a yearly employment record for each individual. First, a primary job is assigned to each
month based on the number of weeks worked in each job reported for the month. An individual’s
primary job for each year is defined as the one in which the most months were spent during
that year. The yearly employment record is used to create a running tally of accumulated work
experience in each occupation for each worker. This analysis considers only full time employment,
which is defined as a job where the weekly hours worked are at least 20.

Descriptions of the one-digit occupation classifications along with average wages are presented
in Table 1a. The highest paid workers are professional and managerial workers, while the lowest
paid workers are found in the service occupation. Descriptive statistics are presented in Table 1b.
There are 954 individuals in the estimation sample who contribute a total of 10,573 person-year

observations to the data. On average, each individual contributes approximately 11 observations



to the data. Appendix A contains further details about the data used to estimate the model,
including the details of how the sample is selected, and a discussion of the representativeness of

the final sample.

2.1 Measurement Error in Occupation Codes

The NLSY provides the U.S. Census occupation codes for each job. Interviewers question respon-
dents about the occupation of each job held during the year with the following two questions:
What kind of work do you do? That is, what is your occupation? Coders use these descriptions
to classify each job using the three-digit Census occupation coding scheme. Misclassification
of occupation codes may arise from errors made by respondents when describing their job, or
from errors made by coders when interpreting these descriptions. Evidence on the extent of
misclassification is provided by Mellow and Sider (1983), who perform a validation study of oc-
cupation codes using occupation codes found in the CPS matched with employer reports of their
employee’s occupation. They find agreement rates for occupation codes of 58% at the narrowly
defined three digit level and 81% at the more broadly defined one digit level. Additional evidence
on measurement error in occupation codes is presented by Mathiowetz (1992). Mathiowetz (1992)
independently creates one and three-digit occupation codes based on occupational descriptions
from employees of a large manufacturing firm and job descriptions found in these worker’s per-
sonnel files. The agreement rate between these independently coded one-digit occupation codes
is 76%, while the agreement rate for three-digit codes is only 52%. In addition to comparing
the three and one-digit occupation codes produced by independent coding, Mathiowetz (1992)
also conducts a direct comparison of the company record with the employee’s occupational de-
scription to see if the two sources could be classified as same three-digit occupation. This direct
comparison results in an agreement rate of 87% at the three-digit level.

In general, papers examining occupational choices and the returns to occupation specific work
experience have not dealt with the difficult issues raised by measurement error in occupation codes
even though it is widely believed that occupation codes are quite noisy. Work by Kambourov
and Manovskii (2007) is a notable exception to this trend. They exploit the fact that the Panel
Study of Income Dynamics (PSID) originally coded occupations using an approach similar to the
NLSY in which occupation coders translated worker’s verbatim descriptions of their occupation
into an occupation code separately in each survey year. The PSID later released retrospective

occupation data files where occupation coders were instead given access to a worker’s complete



sequence of occupational descriptions over his career. Kambourov and Manovskii (2007) show
that occupational mobility is lower in the retrospective files, which is consistent with the hypoth-
esis that coders introduce measurement error into occupation codes when they interpret workers’
verbatim job descriptions. However, it is important to note that while this type of retrospective
coding is likely to reduce the number of false occupational transitions found in the data, it does
not provide any additional information about a worker’s true occupation. Given this limitation
of the PSID data, Kambourov and Manovskii (2007) estimate the returns to occupation specific
work experience, but they are not able to allow the wage equation to vary across occupations,

or to estimate the importance of cross occupation experience effects.

3 Occupational Choice Model with Misclassification

3.1 A Baseline Model of Misclassification

The model of occupational choices developed in this paper builds on previous models of sectoral
and occupational choices such as Heckman and Sedlacek (1985, 1990) and Gould (2002). These
models are all based on the framework of self selection in occupational choices introduced by Roy
(1951). Let Vi represent the utility that worker 7 receives from working in occupation ¢ at time
period t. Let N represent the number of people in the sample, let T'(i) represent the number
of time periods that person i in the sample, and let () represent the number of occupations.
Assume that the value of working in each occupation is the following function of the wage and
non-pecuniary utility,

V;Zt = Wigt + Higt + €ige, (1)

where w;q is the log wage of person 7 in occupation ¢ at time ¢, H,, is the deterministic portion
of the non-pecuniary utility that person i receives from working in occupation ¢ at time ¢, and
€iqt 1S an error term that captures variation in the utility flow from working in occupation ¢
caused by factors that are observed by the worker but unobserved by the econometrician.

The log wage equation is

Q

Wigt = [ig T+ Zitﬁq + Z O BTt + €igt, (2)
k=1

where 11, is the intercept of the log wage equation for person ¢ in occupation g, Z; is a vector

of explanatory variables, and Exp;; is person ¢’s experience at time ¢ in occupation k. This



specification allows for a full set of cross-occupation experience effects, so the parameter estimates
provide evidence on the transferability of skills across occupations. The final term, e;,; represents
a random wage shock. The deterministic portion of the non-pecuniary utility flow equation for

person 1 is specified as

Q Q

Hip = Xum, + Z Yo Expine + Z XgrLastocciy + ¢y, (3)
k=1 k=1

where X;; is a vector of explanatory variables and Lastocc;; is a dummy variable equal to 1 if
person ¢ worked in occupation k at time ¢ — 1. This variable allows switching occupations to have
a direct impact on non-pecuniary utility, as it would if workers incur non-pecuniary costs when
switching occupations. The final term, ¢,;, represents person i’s innate preference for working
in occupation ¢. In general, sectoral choice models of this type are identified even if the same
explanatory variables appear in both the wage equation and the non-pecuniary utility flow equa-
tion. However, it is normally considered desirable to include a variable that impacts occupational
choices but does not directly impact wages. In this application lagged occupational choice dum-
mies and high school and college diploma dummies are included in the non-pecuniary equation
but excluded from the wage equation. The exclusion of the lagged occupational choice dummies
from the wage equation assumes that individuals incur psychic mobility costs when switching
occupations, but there is no direct monetary switching cost. However, because occupation spe-
cific experience effects vary across occupations, when an individual switches occupations his
accumulated skills may be valued less highly in his new occupation.*

Let O;; represent the occupational choice observed in the data for person ¢ at time ¢. This
variable is an integer that takes a value ranging from 1 to ). A person’s true occupational choice
may differ from the one observed in the data if classification error exists. Let 5“ represent the

true occupational choice, which is simply the occupation that yields the highest utility,

~

Oi = q if V7, = max{ fire i;t7"'7%at}' (4)

iqt
The model of misclassification allows the probability of misclassification to depend on the

value of the latent variable V*

it~ The misclassification probabilities are denoted as

Ok = Pr<Oit :] | 6it = k)a for j = 17 “'7@7 k= 17 7@ (5)

4As in all selection models of this type, one can attempt to justify exclusion restrictions based on theory, but
ultimately they are untestable assumptions.



That is, o, represents the probability that the occupation observed in the data is j, conditional
on the actual occupational choice being k. The a’s are estimated jointly along with the other
parameters in the model. The «;; terms are the probabilities that occupational choices are
correctly classified. There are ) x ) misclassification probabilities, but there are only [(QxQ)—@Q)]
free parameters because the misclassification probabilities must sum to one for each possible

occupational choice,
Q
ap=1 for k=1,.,Q. (6)
j=1

Following existing parametric models of misclassification, the model assumes that the mis-
classification probabilities {a, : k =1,..,Q, j = 1,...,Q} depend only on j and k, and not on
the other explanatory variables in the model. One possible shortcoming of this baseline model
of occupational misclassification is that it rules out person specific heterogeneity in the propen-
sity to misclassify occupations that may be present in panel data such as the NLSY. Section
3.4 of this paper presents an extension of the model that allows for this type of within-person
correlation in misclassification rates.

It is necessary to specify the distributions of the error terms in the model before deriving the
likelihood function. Assume that ;; ~ iid extreme value and e;oe ~ N(0,02,). Let ¢; represent
a () x 1 vector of person ¢’s preferences for working in each occupation, and let p, represent the
@ x 1 vector of person i’s log wage intercepts in each occupation. Let F'(u,¢) denote the joint
distribution of the wage intercepts and occupational preferences.

Let 6 represent the vector of parameters in the model, 0 = {3, Vy;, Xpj» i Ths Ok, Ters F (11, @) :
k=1,..,Q,j=1,..Q}. For brevity of notation, when it is convenient I suppress some or all
of the arguments {6, Z;; Xit, Expig, Lastocciyy, w;’tbs} at some points when writing equations for
probabilities and likelihood contributions, even though the choice probabilities and likelihood
contributions are functions of all of these variables. Define ﬁit(q, wg®) as the joint probability
that person i chooses to work in occupation ¢ in time period ¢ and receives a wage of w?’*. The

outcome probability is

obs obs

Pi( Qawz‘otbs| s ¢) = Pr(v;:;t = max{V;y;, Vi -, ‘/;at} | Wigr = ;") X Pr(wig = wiy®) . (7)

There is no closed form solution for this probability, so it is approximated using simulation meth-
ods. This involves taking random draws from the distribution of the errors, and computing the

mean of the simulated probabilities.” The likelihood function for the observed data is constructed

A consequence of the extreme value assumption is that conditional on e, this probability has a simple closed
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using the misclassification probabilities and the true choice probabilities. Define Py (q, wi) as
the probability that person ¢ is observed working in occupation ¢ at time period ¢t with a wage
obs

of w$®. This probability is the sum of the true occupational choice probabilities weighted by the

misclassification probabilities,

Q
Pu(qwy* | 1,0) = agePalk,wi | 1, ). (8)

k=1
Note that the outcome probability imposes the restriction that the observed wage is drawn
from the worker’s actual occupation, which rules out situations where a worker intentionally
misrepresents his occupation and simultaneously provides a false wage consistent with the false
occupation. The likelihood function is simply the product of the probabilities of observing the
sequence of occupational choices observed in the data for each person over the years that they

are in the sample,

N T@) Q
L@::H/HZu%zme#wwwmm (9)

= 1/ tmoarine), (10)

where 1{e} denotes the indicator function which is equal to 1 if its argument is true and 0
otherwise. The likelihood function must be integrated over the joint distribution of skills and
preferences, F'(u,¢). Following Heckman and Singer (1984), this distribution is specified as a
discrete multinomial distribution.® Suppose that there are M types of people, each with a Q x 1
vector of wage intercepts ™ and @) x 1 vector of preferences ¢™. Let w,, represent the proportion

of the mth type in the population. The unconditional likelihood function is simply a weighted

form solution. As a result it is straightforward to use a smooth simulator for the probabilities in the likelihood
function. During estimation, 60 draws from the distribution of the errors are used to simulate the integral.
Antithetic acceleration is used to reduce the variance of the simulated integral. As a check on the sensitivity of
the estimates to the number of simulation draws the optimization routine was re-started using 600 draws. The
parameter estimates (and value of the likelihood function at the maximum) were essentially unchanged by this
increase in the number of simulation draws.

6There is a large literature advocating the use of discrete distributions for unobserved heterogeneity. See, for
example, Mroz (1999).



average of the type specific likelihoods,

N

@) = ] [ Ltéln.oar (.o

=1
N M

_ H > wnLiO | gy = p", 6 = ™)

3.2 [Evaluating the Likelihood Function

The major complication in evaluating the likelihood function arises from the fact that classifica-
tion error in occupation codes creates non-classical measurement error in the observed occupation
specific work experience variables and previous occupational choice dummy variables that de-
scribe an individual’s state. This implies that the true state of each agent is unobserved. Previous
research into occupational choices has not addressed this issue. The key to understanding the so-
lution to this problem is to realize that the model of misclassification implies a distribution of true
values of occupation specific work experience and lagged occupational choices for each individual
in each time period. Estimating the parameters of the model by maximum likelihood involves
integrating over the distribution of these unobserved state variables. However, there is no closed
form solution for this integral, and, more importantly, the distribution is intractably complex.
These problems are solved by simulating the likelihood function. The algorithm involves recur-
sively simulating R sequences of occupation specific work experience and lagged occupational
choices that span a worker’s entire career. The individual’s likelihood contribution is computed
for each simulated sequence, and the path probabilities are averaged over the R sequences to
obtain the simulated likelihood contribution. A detailed description of the simulation algorithm

is presented in Appendix B.

3.3 Identification

This section presents the identification conditions for the occupational choice model with mis-

classification and discusses several related issues.



3.3.1 Identification Conditions

The identification conditions for a model of misclassification in a binary dependant variable are
presented by Hausman, Abrevaya, and Scott-Morton (1998). This condition is extended to the
case of discrete choice models with more than two outcomes by Ramalho (2002). The parameters
of the model are identified if the sum of the conditional misclassification probabilities for each
observed outcome is smaller than the conditional probability of correct classification. In the
context of the occupational choice model presented in this paper this condition amounts to the

following restriction on the misclassification probabilities,

Y <ag, j=1,..,Q. (12)
ki
This condition implies that it is not possible to estimate the extent of misclassification along

with the rest of the parameter vector if the quality of the data is so poor that one is more likely

to observe a misclassified occupational choice than a correctly classified occupational choice.

3.3.2 Discussion

Estimating the extent of classification error in the NLSY occupation data along with the parame-
ters of the occupational choice model is only possible if one is willing to adopt a parametric model
along with the associated functional form and distributional assumptions.” It is worthwhile to
consider at an intuitive level how the parametric occupational choice model and misclassification
model are linked together. Let E represent the parameter vector for the occupational choice
model, and let a represent the vector of misclassification parameters. Given E , the parametric
model of occupational choices provides the probability that each occupational choice and wage
combination observed in the NLSY is generated by the model. Taking E as given, one could
choose the value of a that maximizes the probability of observing the NLSY occupation and
wage data. Broadly speaking, this will happen when the combinations of occupational choices
and wages that are unlikely to be generated by the model at the parameter vector E are assigned
a relatively high probability of being affected by misclassification. During estimation, E is not
fixed, it is estimated simultaneously with @, so estimating the model amounts to choosing the
value of B that best fits the data, with the added consideration that the chosen value of a allows

misclassification to account for some of the observed patterns in the data.

Tt should be noted that as is the case with all parametric models of this type, if the model is mis-specified,
parameter estimates will be biased.

10



Existing parametric models of misclassification estimate misclassification rates using discrete
choice models, while in contrast this paper jointly models discrete occupational choices along
with wages. The advantage of this approach is that to the extent that wages vary across occupa-
tions, observed wages provide information about which observed choices are likely to be affected
by misclassification.® This approach uses information about the relationship between observable
variables (such as education) and occupational choices, along with information about the con-
sistency of observed wages with reported occupations to infer the extent of misclassification in
the data. It should be noted that when occupations are measured with error, it is not possible
to nonparametrically determine the exact relationship between true occupational choices, wages,
and observable variables such as education. However, within a particular parametric model of
occupational choices and wages, these parameters can be estimated. °

The availability of validation data on occupations from an outside data source would, in
principle, allow one to relax some of the parametric assumptions adopted in this paper. For
example, if another data set contained information about reported occupations, true occupations,
and possibly other explanatory variables, this information could be used to integrate out the effect
of measurement error. Of course, this approach relies on the assumption that the measurement
error process is identical in the two sources of data. While this approach appears promising
and is certainly worth pursuing in future research, on a practical level adopting this approach
would most likely require additional data collection that was targeted specifically at validating

occupation codes.!” One possible approach would be to validate an individual’s occupation by

8In the extreme case where the wage distribution is identical across occupations observed wages do not pro-
vide any additional information about misclassification. However, even if the unconditional wage distribution is
identical across occupations, if the wage distribution in each occupation is a function of observable characteristics
(such as education and occupation specific experience), and the effects of these variables on wages vary across
occupations, then observed wages will still provide information about misclassification.

9 Although panel data is used to estimate the model, it is also possible to estimate this type of model using
cross sectional data. As an experiment, I randomly selected a cross section of workers from the panel data NLSY
sample and re-estimated the model. The estimated level of misclassification in the cross sectional version of the
model was 8%, compared to 9% in the panel data version. The fact that these estimates are so close suggests
that misclassification rates are primarily identified by the consistency of an individual’s reported occupation with
the cross sectional distribution of choices, wages, and observable variables, rather than by the extent to which an
observed occupational choice is consistent with an individual worker’s observed sequence of career choices.

10The major problem is that existing validation studies, such as the 1977 supplement to the CPS, question
respondents about their occupation and then attempt to validate the reported occupations by surveying employers.
In general there is no reason to be confident that the employer surveys provide occupation data that is free from
error. Depending on the information contained in personnel files and the system that an employer uses to
categorize employees, the responses provided by firms could in fact be noisier than those provided by individuals.
As a result, it is generally accepted that these validation studies provide an upper bound on the extent of
measurement error. In contrast, validating wage data appears to be a much simpler task, since one would expect
that firms could normally provide accurate salary information from their payroll records.

11



questioning his supervisor, since presumably supervisors know the type of work performed by
workers that they manage. This approach would circumvent some of the problems associated
with validating occupation codes using personnel records, which may or may not contain job

descriptions that accurately reflect occupations.

3.4 An Extended Model: Heterogeneity in Misclassification Rates

The model of misclassification presented in Section 3.1 assumes that all individuals have the
same probability of having one of their occupational choices misclassified. In a panel data
setting such as the NLSY, it is possible that during the yearly NLSY interviews some individuals
consistently provide poor descriptions of their jobs that are likely to lead to measurement error
in the occupation codes created by the NLSY coders. On the other hand, some workers may
be more likely to provide accurate descriptions of their occupations that are extremely unlikely
to be misclassified. The remainder of this section extends the occupational choice model with
misclassification to allow for time persistent misclassification by using an approach similar to the
one adopted by Dustmann and van Soest (2001) in their study of misclassification of language
fluency.

The primary goal of the extended model is to allow for person-specific heterogeneity in mis-
classification rates in a way that results in a tractable empirical model. Suppose that there
are three subpopulations of workers in the economy, and that these subpopulations each have
different probabilities of having their occupational choices misclassified. Define the occupational

choice misclassification probabilities for subpopulation y as

ajk(y) - Pr(Oit = j|6zt - k)a j = 17 "'7Q7 k= 17 "'7Q7 (13)

Q
Zajk(y) - 17 k - ]'7 "'7@7 y - 1727 3‘ (14)
j=1

3
Denote the proportion of subpopulation y in the economy as £(y), where y = 1,2, 3 and Z E(y) =
1. This specification of the misclassification rates allows for time-persistence in misclaé/s:i%ication,
since the a;;(y)’s are fixed over time for each subpopulation. During estimation the £(y)’s and
a;(y)’s of each subpopulation are estimated along with the other parameters of the model, so it

is necessary to specify the misclassification model in such a way that the number of parameters

in the model does not become unreasonably large. In order to keep the number of parameters

12



at a tractable level, the number of subpopulations is set to a small number (3), and the mis-
classification probabilities are restricted during estimation so that the occupational choices of
subpopulation 1 are always correctly classified.!!

This model of misclassification incorporates the key features of heterogeneous misclassifica-
tion rates in a fairly parsimonious way. Some fraction of the population (£(1)) is always correctly
classified, and the remaining two subpopulations are allowed to have completely different mis-
classification rates, so that both the overall level of misclassification and the particular patterns
in misclassification are allowed to vary between subpopulations.

The likelihood function presented in section 3.1 can be modified to account for person-specific
heterogeneity in misclassification. The observed choice probabilities are easily modified so that

they are allowed to vary by subpopulation,

Pzt(Q: obs | 1, ¢ y Zaqk k wftbs | y )7 (15)

where y = 1, 2, 3 indexes subpopulations. Conditional on subpopulations, the likelihood function
is

Loly) = H / Hzl{ot—quq, Wl | 6, 5)AF (1, ) (16)

=TT 0l )i, (")

The subpopulation that a particular person belongs to is not observed, so the likelihood function
must be integrated over the discrete distribution of the type-specific misclassification rates,

N 3 M

LO) = J]D.D WwnLil0 |y, p; = p™, ¢; = ¢™) (18)

i=1 y=1 m=1
N

= HLi(e)

4 Parameter Estimates

This section presents the simulated maximum likelihood parameter estimates for the occupational
choice model. First, the parameters that reveal the extent of classification error in reported occu-

pations are discussed, and then the parameter estimates from the occupational choice model that

' This version of the model already has 421 parameters that must be estimated, so in order to keep the model
tractable it was never estimated with more than three subpopulations.
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corrects for classification error and allows for person-specific heterogeneity in misclassification
are compared to the estimates from a model that does not correct for measurement error. Next,
the sensitivity of the estimates to measurement error in wages is examined. Finally, the model

is used to simulate data that is free from classification error in occupation codes.

4.1 The Extent of Measurement Error in Occupation Codes

The estimates of the misclassification probabilities for subpopulations 2 and 3 along with the
estimated proportions of each type in the population are presented in Panels A and B of Table
3. The bottom row of panel A shows that correcting for classification error results in a large
improvement in the fit of the model, since the likelihood function improves from —18, 695 when
classification error is ignored to —17,821 when classification error is corrected for. The proba-
bility in row ¢, column j is the estimate of «;;(y), which is the probability that occupation ¢ is
observed in the data conditional on occupation j being the actual choice for a person in subpop-
ulation y. For example, the entry in the third column of the first row indicates that condition of
being a member of subpopulation 2, there is a 2.6% chance that a person who is actually a sales
worker will be misclassified as a professional worker. The diagonal elements of the two panels
of Table 3 show the probabilities that occupational choices are correctly classified. Averaged
across all occupations, the probability that an occupational choice is correctly classified is .868
for subpopulation 2 and .840 for subpopulation 3. One striking feature of the estimated misclas-
sification probabilities is that they provide substantial evidence that misclassification rates vary
widely across occupations. For example, in subpopulation 2 the probability that an occupational
choice is correctly classified ranges from a low of .56 for sales workers to a high of .99 for crafts-
men, while in subpopulation 3 the probability that an occupational choice is correctly classified
ranges from a low of .60 for sales workers to a high of .98 for operatives.

The estimates of the probabilities that a person belongs to subpopulations 2 and 3 are 42%
and 19%, which leaves an estimated 38% of the population belonging to subpopulation 1, the
group whose occupational choices are never misclassified. The fact that a substantial fraction of
the population belongs to the subpopulation whose occupational choices are never misclassified
highlights the importance of allowing for person-specific heterogeneity in misclassification rates.
When averaged over subpopulations, the subpopulation-specific misclassification rates indicate
that 91% of one-digit occupational choices are correctly classified. This estimate of the overall

extent of misclassification in the NLSY data is lower than the misclassification rates reported in
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validation studies based on other datasets. For example, Mellow and Sider (1983) find an agree-
ment rate of 81% at the one-digit level between employee’s reported occupations and employer’s
occupational descriptions in the January 1977 Current Population Survey (CPS). Mathiowetz
(1992) finds a 76% agreement rate between the occupational descriptions given by workers of a
single large manufacturing firm and personnel records.'?

One possible explanation for the lower misclassification rate found in this study compared to
the validation studies is that the NLSY occupation data is of higher quality than both the CPS
data and the survey conducted by Mathiowetz (1992). It appears that the procedures used by
the CPS and NLSY in constructing occupation codes are quite similar, so it is not clear that one
should expect the NLSY data to have a lower misclassification rate than the CPS. An alternative
explanation is that the employer reports of occupation codes that are assumed to be completely
free from classification error in validation studies are in fact measured with error.'® If this is true,
then comparing noisy self reported data to noisy employer reported data would cause validation
studies to overstate the extent of classification error in occupation codes. The idea that this
type of validation study may result in an overstatement of classification error in occupation or
industry codes is not a new one. For example, Krueger and Summers (1988) assume that the
error rate for one-digit industry classifications is half as large as the one reported by Mellow
and Sider (1983) as a rough correction for the overstatement of classification error in validation
studies.

The wide variation in misclassification rates across occupations along with the patterns in
misclassification suggest that certain types of jobs are likely to be misclassified in particular
directions. In addition, the misclassification matrix is highly asymmetric. For example, there is
only a 1.4% chance that a manager will be misclassified as a sales worker, but there is a 21%
chance that a sales worker will be misclassified as a manager. Reading down the laborers column
of panel A of Table 3 shows that laborers are frequently misclassified as service workers (22%),
but service workers are very unlikely to be misclassified as laborers (.39%). Further evidence of

asymmetric misclassification is found throughout Table 3.

12This study is the first to estimate a parametric model of occupational misclassification, so the validation
studies provide the only basis for comparison for the estimated misclassification rates.

131t is widely acknowledged that although validation studies are frequently based on the premise that one source
of data is completely free from error, in reality no source of data will be completely free from measurement error.
See Bound, Brown, and Mathiowetz (2001) for a discussion of this issue.
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4.2 Occupational Choice Model Parameter Estimates

The parameter estimates for the occupational choice model estimated with and without correcting
for classification error are presented in Table 4. In addition, this table presents a measure of
the difference between each parameter in the baseline (/3,) and classification error (f3,.) models,
(By — Bee)/se(B,.), where se(8,,) is the standard error of .. In the remainder of the paper
this standard error normalized difference will be referred to as the normalized change in the

parameter.

4.2.1 Wage Equation

While theoretical results regarding the effects of measurement error in simple linear models have
been derived, there are no clear predictions for nonlinear models such as this occupational choice
model. Broadly speaking, one would expect the patterns of misclassification present in the data
to be a key determinant of the magnitude and direction of the resulting bias. Due to the large
number of wage equation parameters, this discussion focuses on a small subset of parameter
estimates with the goal of demonstrating that classification error is something that needs to be
accounted for when estimating occupation specific wage equations. In addition, this discussion
will attempt to highlight the type of questions in general that one might receive misleading
answers to if one examines occupational choices and ignores misclassification.

The wage equation parameter estimates are presented in Panel A of Table 4. The estimates
of the wage equation for the professional occupation show a number of large changes in the es-
timated effects of occupation specific work experience on wages between the model that ignores
classification error in occupations and the one that accounts for classification error. For ex-
ample, the effect of a year of managerial experience on wages in the professional occupation
is biased downward by 42% from .064 to .037 when misclassification is ignored. The standard
error normalized difference for this parameter is -2.19, so the bias appears relatively large rel-
ative to the standard error. The bias in this particular parameter is also interesting because
the estimated misclassification probabilities show that professionals are rarely misclassified as
managers (ag;(2) = .0066, ao(3) = .0099), and managers are rarely misclassified as profession-
als (a12(2) = .0018, a12(3) = .0043). The low misclassification rates between these occupations
combined with the large bias in the experience coefficient illustrates the point that even a small
amount of misclassification can produce large biases in estimates of the transferability of human

capital across occupations.
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Sales workers are the most frequently misclassified workers in both subpopulations 2 and 3.
Averaged across all three subpopulations, only 72% of sales workers are correctly classified. In
the most common subpopulation, sales workers are most likely to be misclassified as managers
(ae3(2) = .21), so one might expect significant bias in estimates of the parameters of the man-
agerial and sales wage equations. The estimates show that ignoring classification error causes
the value of experience as a manager in the managerial occupation to be overstated by 19%
(normalized change = 1.99). In addition, ignoring classification error leads to the misleading
conclusion that one year of clerical experience increases wages by nearly 13% in the sales occupa-
tion, and this effect is statistically significant at the 5% level. However, once classification error
is corrected for, the estimated effect of clerical experience on sales wages falls by 2/3, and the
effect is not statistically different at conventional levels. Similarly, ignoring classification error
leads to an overstatement in the value of professional experience in the sales occupation (.0672
vs. .0308), although the normalized difference for this parameter is only .67.

Further evidence of large changes in estimates of the transferability of human capital across
occupations is found in the craftsman occupation. The model that does not correct for classifi-
cation error implies that a year of professional experience increases a craftsman’s wages by 2.9%,
and this effect is statistically significant at the 5% level. Once classification error is accounted
for this effect falls to 1.8% and it is not statistically different from zero at the 5% level. This
finding suggests that the type of skills accumulated during employment as a professional have
little or no value in craftsman jobs. It appears that the false transitions created by classification
error lead to an overstatement of the transferability of human capital between the professional
occupation and this seemingly unrelated lower skill occupation.

Another way of comparing the wage equations in the baseline and measurement error model
is to determine the number of hypothesis tests where the results of the test change between
the baseline and classification error models. For example, one hypothesis that is commonly of
interest is the null hypothesis that the effect of each individual explanatory variable on wages
equals zero. Comparing the results of these hypothesis tests for the baseline model and the
classification error model shows that the rejection or acceptance of the null hypothesis at the
5% level changes for 17 variables in the wage equation between the two models. In other words,
ignoring classification error would cause one to mistakenly accept or reject the null hypothesis
that the effect of an explanatory variable equals zero for 17 wage equation variables.

The final parameters of the wage equation are the standard deviations of the random shock
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to wages in each occupation, o4, for ¢ = 1,...,8. The estimates of these standard deviations
show that random fluctuations in wages are overstated in six out of the eight occupations in the
model that ignores classification error. The intuition behind the direction of this bias is that the
model must provide an explanation for the large number of short duration occupation switches
that occur in the data. When classification error is ignored, the model accomplishes this through
relatively large transitory wage shocks.

The determinants of occupational choices have been the subject of considerable research
interest, and several recent papers have examined the related question of the role of occupation
specific human capital in determining wages. Although labor economists have typically focused
on determining the roles of firm tenure and general work experience in determining wages, new
evidence suggests that in fact occupation specific skills play an important role in determining
wages.!* Comparing the estimates of the wage equation found in this paper to existing estimates
is difficult for a number of reasons. First, there is no existing paper that estimates directly
comparable occupation specific wage equations at the one-digit level. Second, existing papers
that estimate wage equations that are similar in some respects do not allow for the type of
cross-occupation experience effects found in this study.!® However, overall the wage equation
estimates appear to be broadly consistent with existing research in this area. For example,
Both Kambourov and Manovskii (2007) and Sullivan (2007) find that while experience in a
workers’ current occupation has as an important effect on wages, wages are strongly impacted
by total work experience. This finding is consistent with the relatively large cross occupation
experience effects reported in this paper. Keane and Wolpin (1997) also find relatively large
cross occupation experience effects between blue collar and white collar employment, which is
again broadly consistent with the wage equation estimates reported in this paper. It is also
possible to get a rough sense of how the magnitudes of the estimated effects of occupation
specific work experience on wages in this paper compare to existing research. The estimates in
this paper suggest that when classification error is ignored, averaged across all occupations one
year of occupation specific work experience increases wages by approximately 7%. Kambourov
and Manovskii (2007) do not report a parameter estimate that is directly comparable to this

number, but combining the different parameter estimates that they report suggest that wages

1See, for example, Kambourov and Manovskii (2007) and Sullivan (2007).

I5Kambourov and Manovskii (2007) and Sullivan (2007) consider the special case of the wage equation estimated
in this paper where all of the cross occupation experience effects are equal. However, these studies also consider
firm tenure and industry specific work experience. Keane and Wolpin (1997) allow for cross occupation experience
effects, but their work uses occupation codes aggregated to the level of blue and white collar jobs.
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grow by approximately 5%-8% with each year that a worker spends in an occupation.
4.2.2 Non-pecuniary Utility Flows & Unobserved Heterogeneity

The occupational choice model presented in this paper allows occupational choices to depend
on non-pecuniary utility flows as well as wages. The importance of modelling occupational
choices in a utility maximizing framework rather than in an income maximizing framework is
demonstrated in work by Keane and Wolpin (1997) and Gould (2002). The parameter estimates
for the non-pecuniary utility flow equations for the models estimated with and without accounting
for classification error are presented in Panel B of Table 4. These results show that ignoring
classification error leads to significant biases in estimates of the effects of variables such as age,
education, and work experience on occupational choices.

The non-pecuniary utility flow parameters are all measured in log-wage units relative to the
base choice of service employment. For example, the estimate of the effect of working as a pro-
fessional in the previous time period on the professional utility flow is 2.469 in the model that
ignores classification error. This means that a person who previously worked as a professional re-
ceives utility that is 2.469 log wage units higher than a person who was previously employed as a
service worker but is currently employed as a professional. The effect of previous professional em-
ployment on the professional utility flow is biased downwards by 21% when classification error is
ignored (normalized difference = -1.74). It appears that the false transitions between occupations
created by classification error lead to an understatement of the importance of state dependence
in professional employment. Overall, the estimates of the effects of lagged occupational choices
on current occupation specific utility flows are fairly sensitive to classification error.

As is the case with the wage equation, another way of examining the consequences of not
correcting for misclassification is to determine the number of hypothesis tests where the results of
the test at the 5% level change between the baseline and classification error models. Comparing
the results of these hypothesis tests for the baseline model and the classification error model show
that the rejection or acceptance of the null hypothesis that the effect of each variable equals zero
changes for 22 variables in the non-pecuniary utility flow equation between the two models. In
other words, ignoring classification error would cause one to mistakenly accept or reject the null
hypothesis that the effect of an explanatory variable on non-pecuniary utility equals zero for 22
variables.

The estimates of the wage intercepts (u’s) and non-pecuniary intercepts (¢’s) for the three
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types of people in the model are presented in Panel C of Table 4. These parameter estimates
reveal the extent of unobserved heterogeneity in skills and preferences for employment in each
occupation. The final section of Panel C of Table 4 shows the averages of the wage and non-
pecuniary intercepts across the three types of people for the models that correct for and ignore
classification error in occupation codes. The largest bias among these parameters occurs in
parameters that measure preferences for employment in each occupation (¢’s). For example,
the average preference for working as a craftsman changes from .048 in the model that ignores
classification error to .23 in the model that corrects for classification error. Biases of similar
magnitudes are found in the average preferences for employment as operatives and laborers. The
relatively large biases in estimates of preference parameters caused by ignoring classification error
occurs because unobserved heterogeneity in preferences helps explain occupational transitions
that are not well explained by the other parts of the model. When classification error is ignored
and all occupational transitions are treated as true occupation switches, the model attempts to
explain transitions that are not well explained by wages or the deterministic portion of non-

pecuniary utility flows in part through preference heterogeneity.

5 Simulating Data that is Free from Misclassification

One application of the model presented in this paper is that the estimated model can be used
to simulate occupational choice data that is free from classification error. The simulated data is
used to examine which workers tend to be identified as misclassified by the model, the predicted
patterns in misclassification over workers’ careers, and the predicted relationship between wages

and misclassification.
5.1 Simulated Occupational Choices

5.1.1 Which Workers are Misclassified?

One explanatory variable that is of central importance when investigating occupational choices
is education, since there is strong sorting across occupations based on completed education.
Given this fact, it is useful to see how completed education levels vary between choices that are
identified as misclassified choices in the simulated data compared to choices that are identified

as correctly classified choices.

20



Table 5 shows the distribution of completed education for correctly classified and misclassified
occupational choices, disaggregated by occupation. For example, the table shows that the model
predicts that 10.8% of those workers who are correctly classified as professionals have not com-
pleted any years of college, while 48.6% of workers who are misclassified as professionals have not
completed any years of college. A correctly classified professional has a 71.8% change of being a
college graduate, while a worker misclassified as a professional has only a 30.2% chance of being a
college graduate. Clearly, education serves as a strong predictor of which observations are likely
to be true professionals as opposed to observations that are falsely classified as professionals.
These results are consistent with the fact that the jobs located in the professional occupation are
overwhelmingly ones that require a college degree, or at least some amount of completed higher
education.

Across the other occupations, similarly strong and sensible relationships exist between ed-
ucation and misclassification. For example, in blue collar occupations, one would expect to
see the opposite relationship between misclassification and education from the one found in the
professional occupations. This is in fact what the results in Table 5 show. For example, the
percentage of correctly classified workers who have graduated from college is 2.1% for craftsmen,
2.5% for operatives, and 3.2% for laborers. In contrast, for workers who are falsely classified in
these occupations the percentage of workers who are college graduates is 18.7% for craftsmen,
21.5% for operatives, and 11.7% for laborers. In general, the model tends to flag workers as mis-
classified who have reported education levels that appear to be inconsistent with their reported

occupation.

5.1.2 The Frequency of Misclassification Over an Individual’s Career

Given the panel nature of the data, the simulated occupational choice data can be used to
examine how often occupational choices are misclassified over a typical individual’s career. Table
6 presents the distribution of the total number of times that occupational choices are misclassified
over the course of a person’s career. The majority of workers never experience misclassification
(57.2%), 17.6% of workers are misclassified once over their career, and very few workers are
misclassified more than five times over their career (4.3%). Table 6 also provides information
about the distribution of the lengths of misclassification spells. For example, the first entry in the
final column of Table 6 shows that conditional on an occupational choice being misclassified, there

is a 72.9% chance that the person will be correctly classified in the next survey. Conditional on
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being misclassified, there is an 18.3% chance that a person will be misclassified in two consecutive
periods, and there is only a 5.2% chance that a person will be misclassified in three consecutive

periods.'6

5.1.3 True Occupational Choices, Observed Choices, and Wages

Table 7 shows the average true occupational choice probabilities conditional on observed choices
and observed wages that are predicted by the empirical model. This analysis shows how the
classification error rates generated by the model vary with observed wages and provides a more
detailed analysis of the type of occupational choice and wage combinations that are likely to be
affected by classification error.

Observed occupational choices are listed in the far left column of Table 7, while actual oc-
cupational choices are listed in the top row. Conditional on the observed choice and wage (and
all of the other explanatory variables), the model is used to calculate the conditional probability
that the actual choice is each of the eight occupations for each occupational choice observed in
the data. The average of each probability for each occupation is presented in Table 7. Proba-
bilities are disaggregated by the percentile of the observed wage in the wage distribution of the
observed occupation to show how misclassification rates vary with observed wages. For example,
the top left cell of Table 7 shows that a worker observed in the data as a professional worker
with a wage in the top 10% of the professional wage distribution has a 90.9% chance of being
correctly classified as a professional worker. However, a worker observed as a professional with
a wage in the bottom 10% of the professional distribution has only a 75.7% chance of actually
being a professional worker. People observed in the data as low wage professional workers are
primarily service workers (9.5%).

Similar patterns of misclassification are found in the sales and clerical occupations, where
workers in certain areas of the wage distribution are more likely to be misclassified than those in
other areas of the wage distribution. For example, 91.6% of clerical workers in the top 10% of the
clerical wage distribution are correctly classified, but 3.9% of those observed as high wage clerical
workers are actually professionals. However, the unconditional probability that a professional is

misclassified as a clerical worker is much lower (ay4;(2) = .013, a4(3) = .013).

16One implication of the relatively short durations of misclassification spells is that the model does not tend to
repeatedly flag individuals as misclassified who have consistently high (or low) wages for their reported occupation
over the course of their entire career.
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5.2 Sensitivity Analysis: Measurement Error in Wages

One important question regarding the model presented in this paper is the sensitivity of the
results to the existence of measurement error in wages. One way of addressing this question is
to simulate noisy wage data, re-estimate the model using the noisy wage data (leaving the rest
of the NLSY data unchanged), and see how the estimates of misclassification parameters change
when the noisy wage data is used in place of the actual wages found in the NLSY data. The

noisy wages (w¢) are generated using the following equation,
Wit = wi* + vy, where vy ~ N(0,02). (19)

Recall that w?’ is a log wage, so the extent of measurement error in the noisy log wage data

2

is captured by 7. A number of validation studies have quantified the extent of measurement
error in wages, see Bound, Brown, and Mathiowetz (2001) for a thorough survey of this literature.
Actual estimates of 02 do not exist for the NLSY, so in simulating the noisy data the measurement
error term is set towards the upper end of the reported estimates found in the literature based
on other data sources. The exact value used is 02 = .10. This value of 02 creates a substantial
amount of measurement error in the noisy wage data, since in the noisy data, measurement error
accounts for approximately one third of the total variation in log wages.

Rather that presenting a complete set of parameter estimates for the misclassification model
estimated using the noisy data, it is sufficient to summarize the overall effect that the noisy
wage data has on the parameter estimates. When the noisy wage data is used in place of
the NLSY wage data the average parameter in the model changes by approximately 2%, so it
appears that the overall bias introduced by measurement error is relatively small. The primary
concern about measurement error in wages is that it may impact the estimates of the extent of
measurement error in occupation codes. The overall extent of misclassification is summarized
by the diagonal elements of the misclassification rate matrices for subpopulations two and three,
a;i(y), 7 =1,..,Q, y = 2,3. Across both subpopulations, the use of noisy wage data results
in the average probability of correct classification decreasing by only —.006 from .8546 to .8486.
Adding measurement error slightly increases the overall estimated rate of misclassification, but
the magnitude of the increase is quite small. The corresponding average absolute change in
the probability of correct classification is only .008, and the average change in the off-diagonal

elements is only .0015, so it appears that estimates of the overall extent of misclassification in

the NLSY occupation data are quite robust to measurement error in wages.
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There are a number of reasons why the estimates of the misclassification parameters are
robust to a relatively large amount of measurement error in wages. The first reason is that,
as discussed earlier in the paper, wages are not the only source of information that the model
uses to infer that an occupational choice is misclassified. Another key point is that many of
the occupational choices that are flagged in the simulations as misclassifications are associated
with extremely large differences between the reported wage and the average wage in the reported
occupation. Differences of this magnitude are unlikely to be generated in large numbers by a
reasonable amount of measurement error in wages. For example, the median wage for workers
who are identified in the simulations as falsely classified professionals is $5.59, while the median

wage for workers who are correctly classified as professionals is $10.32.

6 Conclusion

Although occupational choices have been a topic of considerable research interest, existing re-
search has not studied occupational choices in a framework that addresses the biases created by
classification error in self-reported occupation data. This paper develops an approach to estimat-
ing a panel data occupational choice model that corrects for classification error in occupations
by incorporating a model of misclassification within an occupational choice model. Estimating
this model provides a solution to the problems created by measurement error in the discrete de-
pendant variable of an occupational choice model. Methodologically, this approach contributes
to the literature on misclassification in discrete dependant variables by demonstrating how sim-
ulation methods can be used to address the problems created in a panel data setting where
measurement error in a discrete dependant variable creates measurement error in explanatory
variables. The simulation technique is applicable to any discrete choice panel data model where
misclassification in a current period dependent variable creates measurement error in future ex-
planatory variables. This paper also contributes to the literature on misclassification by using
observed wages within the framework of an occupational choice model to obtain information
about misclassified occupational choices.

The main findings of this paper are that a substantial number of occupational choices in the
NLSY are affected by misclassification, with an overall misclassification rate of 9%. The results
also suggest that person-specific heterogeneity in misclassification rates is an important feature
of the data. An estimated 38% of the population never experiences a misclassified occupational

choice, and the remaining two subpopulations have substantially different propensities to have
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their occupational choices misclassified in particular directions. The parameter estimates also
indicate that misclassification rates vary widely across occupations, and that the probability of
a worker being misclassified into each occupation is strongly influenced by the worker’s actual
occupation. Most importantly, this paper demonstrates the large bias in parameter estimates
that results from estimating a model of occupational choices that ignores the fact that occupa-
tions are frequently misclassified. Consistent with existing research in the area of misclassified
dependant variables, the results show that even relatively small amounts of misclassification cre-
ates substantial bias in parameter estimates. Especially large biases are found in parameters
that measure the transferability of occupation specific work experience across occupations, since
these parameters are quite sensitive to the false occupational transitions created by classification
error.

Overall, the results indicate that one should use caution when interpreting the parameter
estimates from occupational choice models that are estimated without correcting for classification
error in self-reported occupations. In addition, these results suggest that similar bias may arise
when occupation dummy variables are used as explanatory variables, as is commonly done in a
wide range of studies. A possible avenue for future research would be to investigate the effects
of classification error in occupation codes on parameter estimates in this wider class of models,

such as simple wage regressions that make use of self-reported occupation data.
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Table 1a: Description of Occupations

One-Digit Occupation Mean Wage Example Three-Digit Occupations

Professional, technical & kindred Accountants, chemical engineers, physicians,

workers $11.19 social scientists

Managers & administrators $12.89 Banl.< (?fﬁcers, office managers, school
administrators

Sales workers $9.05 Advertising salesmen, real estate agents, stock
and bond salesmen, salesmen and sales clerks

Clerical & unskilled workers $7.48 Bank tellers, cashiers, receptionists, secretaries

Craftsmen & kindred workers $8.53 Carpenters, electrlclags, machinists,
stonemasons, mechanics

Operatives $7.20 Dry wgll installers, butchers, drill press
operatives, truck drivers

Laborers $7.01 Garbage collgctors, groundskeepers, freight
handlers, vehicle washers

Service workers $6.34 Janitors, child care workers, waiters, guards and

watchmen

Notes: Based on the U.S Census occupation codes found in the 1979 cohort of the NLSY. Wages
are in 1979 dollars.

Table 1b: Descriptive Statistics

Variable NLSY Estimation Broader Sample from
Sample NLSY (for comparison)

Age 24.4 25.5
Years of high school 3.5 3.7
Years of College 1.2 1.0
Log wage 1.95 1.98
North central 32 -
South .30 -
West 17 -
Professional 14 12
Managers A1 A1
Sales .05 .06
Clerical .08 .08
Craftsmen 25 24
Operatives 17 20
Laborers 10 A1
Service .09 .10
Number of observations 10,573 20,073
Number of individuals 954 1,932

Note: log wages in 1979 dollars. The NLSY estimation sample is described in Appendix A. The
broader sample relaxes an age restriction imposed on the estimation sample so it contains more
individuals.



Table 2: Occupational Transition Matrix — NLSY Data (top entry) and Simulated

Data (bottom entry)
Professional Managers Sales  Clerical Craftsmen Operatives Laborers Service Total
. 74.7 6.9 2.3 4.5 5.0 3.0 1.3 22
Professional -~ 7¢ "5 5.6 12 37 32 22 1.4 1o 100
Manasers 6.4 57.4 72 73 10.7 3.5 2.5 50 100
£ 6.6 58.5 9.4 7.4 10.3 2.9 2.6 2.3
Sales 8.0 14.9 535 77 5.4 52 22 320 o0
7.6 9.2 552 63 6.8 5.9 52 3.6
. 10.3 12.4 590 448 6.8 7.0 8.3 4.6
Clerical 8.7 114 72 458 6.3 6.8 9.8 40 100
2.9 53 1.0 22 66.6 11.1 8.1 2.6
Craftsmen 2.0 4.7 2.3 2.0 67.4 10.8 9.6 1o 100
Oneratives 2.4 2.2 2.1 3.1 18.4 56.8 10.1 49 0o
peratly 1.9 1.3 3.3 2.9 183 56.3 11.6 4.4
2.7 3.3 1.8 7.9 232 18.6 36.2 6.1
Laborers 2.5 2.7 4.0 7.3 21.6 16.5 39.1 6o 100
Service 3.9 7.8 1.5 3.5 8.4 6.8 8.6 595 100
3.7 42 2.8 3.1 6.8 6.2 9.5 63.7
14.0 115 53 7.6 25.8 16.9 9.6 9.4
Total 13.9 9.5 7.9 73 252 16.2 11.5 g4 100

Entries are the percentage of employment spells starting in the occupation listed in the left column that end in

the occupation listed in the top row.



Table 3, Panel A: Parameter Estimates- Misclassification Probabilities for Subpopulation 2

(ax(2)
Observed/Actual Professional =~ Managers Sales Clerical Craftsmen Operatives Laborers Service
Professional 9570 .0018 .0264 .0017 .0033 .0007 .0380 .0641
(.0023) (.0096) (.0025) (.0074) (.0002) (.0004) (.0004)  (.0017)
Manaeers .0066 9762 2128 .0052 .0013 .0021 .0011 .0238
& (.0041) (.0042) (.0026) (.0082) (.0002) (.0015) (.0022)  (.0003)
Sales .0036 .0148 5578 .0133 .0000 .0029 .0019 0774
(.0016) (.0046) (.0001) (.0045) (.0015) (.0017) (.0040)  (.0009)
Clerical 0131 .0031 0131 9579 .0002 .0021 .0046 .0042
(-0002) (.0101) (.0055) (.0046) (.0016) (.0022) (.0067)  (.0033)
Craftsmen .0055 .0022 .1063 .0052 9897 .0055 .0204 .0024
(-0023) (.0045) (.0098) (.0025) (.0054) (.0030) (.0121)  (.0023)
Operatives 0121 .0000 .0456 .0013 .0000 .9849 .0063 .0004
p (.0025) (.0064) (.0005) (.0082) (-0039) (-0058) (.0009) (.0223)
Laborers .0000 .0000 .0164 .0136 .0054 .0016 7029 .0039
(-0003) (.0131) (.0043) (.0085) (.0021) (.0082) (.0014)  (.0079)
Service .0018 .0018 .0213 .0014 .0000 .0000 2243 .8235
(.0002) (.0043) (.0008) (.0086) (.0018) (.0022) (.0012)  (.0068)
. 4243
Pr(subpopulation 2) (0211)
Ignore Correct for
misclassification — misclassification
Log-likelihood -18,695 -17,821

Notes: Element o(i,j) of this table, where i refers to the row and j refers to the column is the probability that occupation i is observed,
conditional on j being the true choice: a(j,k)=Pr(occupation j observed | occupation k is true choice). Standard errors in parentheses.
“Subpopulation” refers to the fact that the misclassification model controls for unobserved heterogeneity in misclassification rates by
allowing for a discrete number of subpopulations that are each allowed to have different misclassification matrices.




Table 3, Panel B : Misclassification Probabilities for Subpopulation 3 (a;(3))

Observed/Actual Professional Managers Sales Clerical Craftsmen Operatives Laborers Service
Professional .9289 .0043 .0394 .0012 .0357 .0007 .0104 .0190
(.0022) (.0097)  (.0024) (.0079) (.0005) (.0003) (.0003) (.0016)
Manaeers .0099 9641 .0822  .0032 .0046 .0030 .0041 2548
& (.0040) (.004)  (.0027) (.0081)  (.0003) (.0016) (.0021) (.0002)
Sales .0096 .0248 .6007  .0125 .0002 .0003 .0022 .0026
(.0016) (.0056)  (.0001) (.0046) (.0016) (.0018) (.0041) (.0008)
Clerical .0126 .0027 .0052 .9634 .0004 .0012 .0031 .0006
(.0001) (.0103)  (.0054) (.0045) (.0011) (.0023) (.0061) (.0037)
Craftsmen .0234 .0025 .0904  .0068 9475 .0067 .0504 .0041
(.0024) (.0043)  (.0096) (.0024) (.0061) (.0031) (.0130) (.0026)
Operatives .0106 .0007 1335 .0029 .00000 9833 .0054 .0000
p (.0026) (.0065)  (.0005) (.0081) (.0047) (.0051) (.0008) (-0001)
Laborers .0000 .0000 .0307  .0082 0114 .0040 6215 .0042
(.0001) (.0141)  (.0041) (.0084) (.0020) (.0084) (.0005) (.0069)
Service .0049 .0008 .0176 .0016 .0000 .0006 3028 7139
(.0002) (.0043)  (.0009) (.0088) (-0017) (.0024) (-0008) (.0048)
. .1937
Pr(subpopulation 3 (.0235)

Notes: Element ou(i,j) of this table, where i refers to the row and j refers to the column is the probability that occupation i is observed,
conditional on j being the true choice: o(j,k)=Pr(occupation j observed | occupation k is true choice). Standard errors in parentheses.
“Subpopulation” refers to the fact that the misclassification model controls for unobserved heterogeneity in misclassification rates by
allowing for a discrete number of subpopulations that are each allowed to have different misclassification matrices.




Table 4 Panel A: Parameter Estimates — Wage Equation

Wage Professional Normalized | Managers Normalized
equation difference difference
Ignore Correct for Ignore Correct for
classification classification classification classification
error error error error
Age 0.0233 0.0079 0.0474 0.0351
g (0.0154) (0.0073) 2.12 (0.0184) (0.0091) 1.35
2 -0.2280 -0.1434 -0.4028 -0.3543
Age/100
(0.0985) (0.0426) -1.98 (0.1230) (0.0630) -0.77
Education 0.0734 0.0626 0.0825 0.0837
(0.0057) (0.0041) 2.66 (0.0082) (0.0060) -0.20
Professional 0.0715 0.0687 0.0944 0.0896
experience (0.0053) (0.0034) 0.81 (0.0130) (0.0086) 0.56
Managerial 0.0375 0.0644 0.0656 0.0547
experience (0.0158) (0.0123) -2.19 (0.0071) (0.0055) 1.99
Sales 0.0493 0.0499 0.0888 0.0879
experience (0.0147) (0.0101) -0.06 (0.0135) (0.0097) 0.09
Clerical 0.0430 0.0377 0.0191 0.0209
experience (0.0191) (0.0162) 0.33 (0.0096) (0.0073) -0.25
Craftsmen 0.0280 0.0203 0.0488 0.0556
experience (0.0092) (0.0100) 0.77 (0.0074) (0.0062) -1.10
Operatives 0.0447 0.0259 0.0634 0.0705
experience (0.0236) (0.0210) 0.90 (0.0124) (0.0121) -0.59
Laborer 0.0146 -0.0083 0.0416 0.0233
experience (0.0291) (0.0232) 0.99 (0.0268) (0.0179) 1.02
Service 0.0000 0.0718 0.0100 0.0069
experience (0.0224) (0.0234) -3.07 (0.0140) (0.0117) 0.26
North central -0.0635 -0.0139 -0.1063 -0.0667
(0.0262) (0.0189) -2.63 (0.0302) (0.0233) -1.70
South -0.0448 0.0222 -0.0726 -0.0849
(0.0245) (0.0182) -3.69 (0.0345) (0.0284) 0.43
West 0.0412 0.1046 -0.0919 -0.0531
(0.0294) (0.0205) -3.09 (0.0438) (0.0311) -1.25

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of f(correct for class. error)].



Table 4 Panel A: Parameter Estimates — Wage Equations

Wage Sales Normalized | Clerical Normalized
equation difference difference
Ignore Correct for Ignore Correct for
classification classification classification classification
error error error error
Ace 0.0662 0.1354 0.0480 0.0413
g (0.0368) (0.0272) -2.55 (0.0153) (0.0157) 0.43
Ace?/100 -1.0006 -1.0984 -0.4330 -0.3588
g (0.2662) (0.1886) 0.52 (0.1057) (0.1095) -0.68
Education 0.1837 0.1593 0.0528 0.0511
(0.0189) (0.0268) 091 (0.0087) (0.0081) 0.21
Professional 0.0672 0.0308 0.0957 0.1051
experience (0.0366) (0.0542) 0.67 (0.0146) (0.0230) -0.41
Managerial 0.1316 0.1089 0.0454 0.0418
experience (0.0274) (0.0322) 0.71 (0.0104) (0.0121) 0.30
Sales 0.1774 0.1571 0.0806 0.0888
experience (0.0163) (0.0195) 1.04 (0.0162) (0.0203) -0.40
Clerical 0.1281 0.0430 0.0562 0.0572
experience (0.0333) (0.0433) 1.97 (0.0085) (0.0093) -0.11
Craftsmen -0.0183 -0.0453 0.0502 0.0646
experience (0.0258) (0.0297) 0.91 (0.0083) (0.0119) -1.21
Operatives 0.0845 0.0845 0.0516 0.0500
experience (0.0284) (0.0297) 0.00 (0.0118) (0.0125) 0.13
Laborer 0.0507 0.0521 0.0420 0.0345
experience (0.0431) (0.0552) -0.03 (0.0167) (0.0153) 0.49
Service 0.0241 -0.0657 0.0191 0.0215
experience (0.0295) (0.0826) 1.09 (0.0177) (0.0183) -0.13
North central -0.2505 -0.3711 -0.1688 -0.1965
(0.0754) (0.1051) 1.15 (0.0311) (0.0369) 0.75
South 0.1225 0.1249 -0.0847 -0.1030
(0.0764) (0.0915) -0.03 (0.0307) (0.0377) 0.49
West 0.0979 0.1015 -0.0228 -0.0230
(0.0945) (0.1070) -0.03 (0.0342) (0.0362) 0.01

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of f(correct for class. error)].



Table 4 Panel A: Parameter Estimates — Wage Equations

Wage Craftsmen Normalized | Operatives Normalized
equation difference difference
Ignore Correct for Ignore Correct for
classification classification classification classification
error error error error
Age 0.0606 0.0489 0.0128 0.0123
g (0.0068) (0.0053) 2.21 (0.0085) (0.0073) 0.07
2 -0.5257 -0.4576 -0.2230 -0.2605
Age/100
(0.0481) (0.0398) -1.71 (0.0642) (0.0604) 0.62
Education 0.0290 0.0254 0.0209 0.0079
(0.0048) (0.0045) 0.80 (0.0054) (0.0048) 2.74
Professional 0.0290 0.0188 0.0670 0.0751
experience (0.0120) (0.0210) 0.49 (0.0229) (0.0344) -0.24
Managerial 0.0558 0.0646 0.0432 0.0552
experience (0.0115) (0.0113) -0.78 (0.0157) (0.0152) -0.79
Sales 0.0100 0.0438 0.0200 0.0157
experience (0.0169) (0.0183) -1.85 (0.0149) (0.0176) 0.24
Clerical 0.0381 0.0366 0.0499 0.0370
experience (0.0125) (0.0210) 0.07 (0.0110) (0.0191) 0.68
Craftsmen 0.0591 0.0605 0.0607 0.0764
experience (0.0028) (0.0027) -0.52 (0.0067) (0.0062) -2.52
Operatives 0.0386 0.0352 0.0549 0.0470
experience (0.0052) (0.0048) 0.71 (0.0045) (0.0041) 1.92
Laborer 0.0217 0.0114 0.0708 0.0512
experience (0.0069) (0.0066) 1.57 (0.0090) (0.0077) 2.56
Service 0.0254 0.0361 -0.0023 0.0285
experience (0.0094) (0.0106) -1.00 (0.0149) (0.0147) -2.10
North central -0.1034 -0.1201 -0.0637 -0.0948
(0.0197) (0.0185) 0.91 (0.02606) (0.0222) 1.40
South -0.0786 -0.0828 0.0234 0.0026
(0.0209) (0.0182) 0.23 (0.0270) (0.0222) 0.94
West 0.0847 0.0868 0.0086 -0.0043
(0.0210) (0.0208) -0.10 (0.0307) (0.0268) 0.48

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of f(correct for class. error)].



Table 4 Panel A: Parameter Estimates — Wage Equations

Wage Laborers Normalized Service Normalized
equation difference difference
Ignore Correct for Ignore Correct for
classification classification classification classification
error error error error
Ae 0.0268 0.0235 -0.0083 -0.0116
g (0.0119) (0.0119) 0.28 (0.0120) (0.0093) 0.35
2 -0.3202 -0.3339 0.0234 0.0314
Age/100
(0.0994) (0.0961) 0.14 (0.0889) (0.0666) -0.12
Education 0.0331 0.0184 0.0965 0.0864
(0.0087) (0.0077) 1.92 (0.0071) (0.0070) 1.45
Professional 0.0715 0.0295 0.0285 0.0274
experience (0.0515) (0.0905) 0.46 (0.0359) (0.0258) -9.49
Managerial 0.0457 0.0597 0.0294 0.0419
experience (0.0232) (0.0478) -0.29 (0.0151) (0.0316) -0.40
Sales -0.0165 0.0364 0.0132 -0.0121
experience (0.0633) (0.0378) -1.40 (0.0178) (0.0414) 0.61
Clerical 0.0445 0.0401 0.0240 0.0086
experience (0.0234) (0.0247) 0.18 (0.0185) (0.0391) 0.39
Craftsmen 0.0559 0.0683 0.0681 0.0167
experience (0.0082) (0.0088) -1.41 (0.0103) (0.0362) 1.42
Operatives 0.0525 0.0584 0.0304 -0.0382
experience (0.0083) (0.0088) -0.67 (0.0179) (0.0199) 3.44
Laborer 0.0504 0.0556 0.0177 0.0674
experience (0.0085) (0.0083) -0.63 (0.0219) (0.0341) -1.46
Service 0.0040 0.0009 0.0562 0.0542
experience (0.0158) (0.0195) 0.16 (0.0066) (0.0062) 0.32
North central -0.0866 -0.0675 -0.2492 -0.2297
(0.0393) (0.0363) -0.53 (0.0291) (0.0239) -0.81
South -0.1109 -0.0859 -0.1181 -0.0865
(0.0408) (0.0376) -0.67 (0.0304) (0.0315) -1.00
West -0.0043 0.0235 -0.1278 -0.1273
(0.0492) (0.0524) -0.53 (0.0290) (0.0307) -0.02

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of B(correct for class. error)].



Table 4 Panel A: Parameter Estimates — Error Standard Deviations

Occupation
Ignore classification Correct for Normalized
error classification error difference
Professional 0.3249 0.2394
(0.0055) (0.0069) 341
Managers 0.3701 0.2493
(0.0080) (0.0163) 1.33
Sales 0.5724 0.6850
(0.0217) (0.0248) -2.56
Clerical 0.2763 0.2636
(0.0136) (0.0211) 1.70
Crafismen 0.3039 0.2683
(0.0051) (0.0068) 6.40
Operatives 0.3317 0.2643
(0.0063) (0.0105) 3.56
Laborers 0.3364 0.3411
(0.0109) (0.0122) -0.20
Service 0.3250 0.2802
(0.0090) (0.0154) 0.57

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of B(correct for class. error)].



Table 4 Panel B: Parameter Estimates — Non-pecuniary Utility

Professionals Normalized Managers Normalized
difference difference
Ignore Correct for Ignore Correct for
classification classification classification classification
error error error error 1.89
Ace 0.1203 0.0973 -0.0409 -0.1448
g (0.0799) (0.0305) 0.75 (0.0809) (0.0551) -1.40
Aoe?/100 -0.2295 -0.0345 0.4907 1.0633
g (0.6142) (0.2001) 0.97 (0.5784) (0.4094) -2.02
Education 0.4260 0.4715 0.2145 0.2631
(0.0543) (0.0370) -1.23 (0.0570) (0.0240) 0.35
High school -0.6393 -0.3529 -0.2384 -0.3125
diploma (0.2354) (0.2103) -1.36 (0.2213) (0.2106) -0.99
College 0.0984 0.3509 0.2867 0.5197
diploma (0.1881) (0.2144) -1.18 (0.2013) (0.2353) -0.46
Professional 0.4819 0.4894 0.3134 0.3707
experience (0.1484) (0.1162) -0.06 (0.1468) (0.1250) -0.63
Managerial -0.0761 -0.0229 0.2605 0.3433
experience (0.0830) (0.1472) -0.36 (0.0688) (0.1308) -0.17
Sales -0.1569 -0.1803 0.0811 0.1052
experience (0.1171) (0.1604) 0.15 (0.1009) (0.1430) -0.75
Clerical -0.1028 -0.0184 0.1471 0.2410
experience (0.1126) (0.1637) -0.52 (0.0860) (0.1249) -1.08
Craftsmen 0.1531 0.2813 0.2197 0.3523
experience (0.0657) (0.1271) -1.01 (0.0579) (0.1224) -1.06
Operatives -0.1836 -0.1056 0.0218 0.1383
experience (0.0874) (0.1784) -0.44 (0.0608) (0.1102) -1.39
Laborer -0.0459 0.1008 -0.0207 0.2366
experience (0.1420) (0.2052) -0.71 (0.1182) (0.1849) 0.10
Service -0.4737 -0.8955 -0.2765 -0.2843
experience (0.0645) (0.1467) 2.88 (0.0574) (0.0820) -1.62
Previously a 2.469 3.108 1.237 2.022
professional (0.339) (0.368) -1.74 (0.379) (0.484) -1.47
Previously a 0.792 1.181 2.780 3.717
manager (0.340) (0.665) -0.59 (0.261) (0.636) 0.14
Previously 1.194 0.893 1.703 1.623
sales (0.459) (0.594) 0.51 (0.432) (0.591) -1.20
Previously 1.628 1.546 1.853 2.198
clerical (0.354) (0.364) 0.22 (0.322) (0.287) -1.71
Previously a 1.042 1.064 1.673 2.482
craftsman (0.298) (0.485) -0.05 (0.294) 0.472) -0.18
Previously an 0.752 0.537 0.400 0.493
operative (0.305) (0.488) 0.44 (0.320) (0.516) -0.20
Previously a 0.634 0.341 0.839 0.931
laborer (0.346) (0.509) 0.58 (0.333) 0.471) 1.89

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of B(correct for class. error)].



Table 4 Panel B: Parameter Estimates — Non-pecuniary Utility

Sales Normalized | Clerical Normalized
difference difference
Ignore Correct for Ignore Correct for
classification classification classification classification
error error error error
Age -0.1327 -0.3511 -0.1327 -0.3511
& (0.1137) (0.0484) 4.52 (0.1137) (0.0484) 1.38
Aoe?/100 1.3350 2.8694 1.3350 2.8694
& (0.8122) (0.4692) -3.27 (0.8122) (0.4692) -1.19
Education 0.1403 0.1338 0.1403 0.1338
(0.0764) (0.0563) 0.12 (0.0764) (0.0563) 0.28
High school -0.0762 -0.3263 -0.0762 -0.3263
diploma (0.3236) (0.2981) 0.84 (0.32306) (0.2981) 0.15
College 0.6676 0.9465 0.6676 0.9465
diploma (0.2308) (0.2761) -1.01 (0.2308) (0.2761) -1.04
Professional 0.0865 0.0444 0.0865 0.0444
experience (0.1731) (0.1797) 0.23 (0.1731) (0.1797) 0.08
Managerial 0.0223 0.0827 0.0223 0.0827
experience (0.0903) (0.1555) -0.39 (0.0903) (0.1555) -0.40
Sales 0.1072 0.0814 0.1072 0.0814
experience (0.1016) (0.1502) 0.17 (0.1016) (0.1502) 0.34
Clerical -0.0090 0.0779 -0.0090 0.0779
experience (0.1083) (0.1501) -0.58 (0.1083) (0.1501) -0.53
Craftsmen 0.1471 0.3264 0.1471 0.3264
experience (0.0948) (0.1370) -1.31 (0.0948) (0.1370) -0.70
Operatives 0.0325 0.1358 0.0325 0.1358
experience (0.0869) (0.1214) -0.85 (0.0869) (0.1214) -1.20
Laborer -0.0951 0.0596 -0.0951 0.0596
experience (0.1618) (0.1700) -0.91 (0.1618) (0.1700) -0.87
Service -0.3775 -0.4288 -0.3775 -0.4288
experience (0.0972) (0.1928) 0.27 (0.0972) (0.1928) -0.25
Previously a 1.312 1.934 1.312 0.1.934
professional (0.476) (0.599) -1.04 (0.476) (0.0599) -1.11
Previously a 1.837 2.194 1.837 2.194
manager (0.393) (0.735) -0.49 (0.393) (0.735) -0.85
Previously 3.262 2.869 3.262 2.869
sales 0.411) (0.544) 0.72 (0.411) (0.544) 0.48
Previously 2.005 1.864 2.005 1.864
clerical (0.388) (0.0427) 0.33 (0.388) (0.427) -0.73
Previously a 1.358 1.778 1.358 1.778
craftsman (0.407) (0.573) -0.73 (0.407) (0.573) -0.72
Previously an 1.272 1.049 1.272 1.049
operative (0.361) (0.457) 0.49 (0.361) (0.457) 0.37
Previously a 1.358 1.015 1.358 1.015
laborer (0.457) (0.545) 0.63 (0.457) (0.545) 0.65

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of B(correct for class. error)].



Table 4 Panel B: Parameter Estimates — Non-pecuniary Utility

Craftsmen Normalized OPerativeS Normalized
difference difference
Ignore Correct for Ignore Correct for
classification classification classification classification
error error error error
Ace -0.1896 -0.2998 -0.1519 -0.2535
g (0.0717) (0.0799) 1.82 (0.0551) (0.0558) 1.87
Ace?/100 1.1693 1.8996 1.3557 2.0207
g (0.5598) (0.6139) -1.43 (0.4459) (0.4634) -1.51
Education 0.1443 0.1253 -0.0703 -0.0873
(0.0638) (0.0678) 0.40 (0.0479) (0.0422) 0.36
High school 0.2760 0.2466 0.1959 0.1931
diploma (0.2437) (0.1995) 0.02 (0.1839) (0.1680) -0.09
College 0.5009 0.7951 -0.4700 -0.4137
diploma (0.2163) (0.2838) -0.16 (0.2633) (0.3614) -0.05
Professional 0.1874 0.1779 0.1858 0.1962
experience (0.1529) (0.1211) -0.08 (0.1581) (0.1387) 0.79
Managerial 0.0188 0.0697 -0.1568 -0.0980
experience (0.0762) (0.1283) -0.45 (0.0753) (0.1321) 0.00
Sales -0.1264 -0.1851 -0.2418 -0.3401
experience (0.1093) (0.1752) 0.54 (0.1272) (0.1816) -0.14
Clerical 0.3591 0.4253 -0.1887 -0.1428
experience (0.0857) (0.1258) -0.32 (0.0887) (0.1439) -0.46
Craftsmen 0.1197 0.2104 0.3067 0.4074
experience (0.0637) (0.1293) -0.86 (0.0520) (0.1172) -0.64
Operatives 0.0786 0.2151 0.0571 0.1824
experience (0.0707) (0.1136) -1.24 (0.0552) (0.1010) -1.36
Laborer 0.0089 0.1485 0.0430 0.2381
experience (0.1066) (0.1601) -1.35 (0.0848) (0.1449) -1.30
Service -0.3782 -0.3587 -0.4665 -0.5178
experience (0.0623) (0.0787) 0.74 (0.0448) (0.0697) 0.41
Previously a 1.338 1.866 0.1124 1.337
professional (0.380) (0.478) -0.40 (0.0394) (0.526) -0.84
Previously a 1.477 2.034 0.1527 2.115
manager (0.325) (0.653) -0.90 (0.0312) (0.651) -0.55
Previously 1.710 1.415 0.1413 1.059
sales (0.457) (0.618) 0.66 (0.0489) (0.536) 0.52
Previously 2.804 2.874 0.1198 1.166
clerical (0.301) (0.097) 0.10 (0.0333) (0.324) -0.07
Previously a 1.105 1.462 0.2903 3.368
craftsman (0.307) (0.492) -1.26 (0.0195) (0.368) -1.02
Previously an 0.763 0.609 0.1521 1.415
operative (0.280) (0.416) 0.36 (0.0195) (0.294) 0.42
Previously a 1.672 1.411 0.1636 1.312
laborer (0.286) (0.399) 0.98 (0.0231) (0.329) 1.06

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- B(correct for class.
error)]/[Standard error of B(correct for class. error)].



Table 4 Panel B: Parameter Estimates — Non-pecuniary Utility

Laborers Normalized
difference
Ignore Correct for
classification classification
error error
Age -0.2017 -0.3403
£ (0.0634) (0.0650) 2.13
2 1.8105 2.7642
Age7100 (0.5104) (0.5240) -1.82
Education -0.1514 -0.1099
(0.0613) (0.0545) -0.76
. . 0.2912 0.1422
High school diploma 557, (0.2124) 0.70
. 0.0821 0.3030
College diploma (0.3341) (0.3584) -0.62
Professional -0.4791 -0.3477
experience (0.2656) (0.4226) -0.31
Managerial -0.2364 -0.3256
experience (0.1162) (0.1955) 0.46
Sales -0.2337 -0.2623
experience (0.1279) (0.1937) 0.15
Clerical 0.0255 0.0713
experience (0.0883) (0.1468) -0.31
Craftsmen 0.0943 0.1882
experience (0.0594) (0.1207) -0.78
Operatives 0.0370 0.1673
experience (0.0575) (0.1032) -1.26
Laborer 0.3250 0.4753
experience (0.0910) (0.1501) -1.00
Service -0.4093 -0.4625
experience (0.0654) (0.0884) 0.60
Previously a 0.943 0.175
professional (0.484) (0.695) -0.33
Previously a manager 0.609 0.129
Y & (0.400) (0.776) -0.67
Previously sales 0.604 0.754
y (0.699) (0.707) 20.21
Previously clerical 1310 1.322
Y (0.354) (0.351) -0.04
Previously a craftsman 1.525 1.832
Y (0.240) (0.435) -0.70
Previously an 1.139 0.976
operative (0.204) (0.311) 0.53
Previously a laborer 1.870 1.579
y (0.213) (0.331) 0.88

Note: Standard errors in parentheses. Normalized difference = [B(ignore class. error)- f(correct for class.
error)]/[Standard error of B(correct for class. error)].



Table 4 Panel C: Parameter Estimates — Unobserved Heterogeneity: Classification Error Model

Type 1 Type 2 Type 3
Non-pecuniary intercepts Parameter Std. error | Parameter Std. error | Parameter Std. error
Professional -4.7210 0.3270 -4.1600 0.2920 -2.8250 0.3810
Managers -3.1880 0.0930 -3.0920 0.1770 -2.2050 0.2510
Sales -6.1960 0.4940 -0.9120 0.3780 0.0160 0.3850
Clerical -1.7920 0.3340 -1.7200 0.3460 -0.5640 0.3520
Craftsmen -0.1250 0.2410 -0.0660 0.2260 0.5370 0.3130
Operatives 0.0310 0.2470 0.0570 0.2310 0.6560 0.3100
Laborers 0.3220 0.2590 0.4030 0.2180 1.2000 0.3180
Wage intercepts
Professional 1.9360 0.0220 1.1810 0.0250 1.6380 0.0220
Managers 1.4510 0.0350 1.0740 0.0260 1.5990 0.0360
Sales 2.3700 0.2600 -0.2990 0.1770 0.2740 0.1850
Clerical 1.4400 0.0380 1.1220 0.0450 1.5480 0.0300
Craftsmen 1.6460 0.0260 1.3670 0.0250 1.9630 0.0300
Operatives 1.6220 0.0240 1.3810 0.0230 1.9710 0.0260
Laborers 1.4130 0.0480 1.3000 0.0470 1.7150 0.0420
Service 1.5020 0.0310 1.0620 0.0240 0.0010 0.1240
Type probabilities
Pr(Type 1) 0.1216 .032
Pr(Type 2) 03675 .041
Pr(Type 3) 5109 .042




Table 4 Panel C: Parameter Estimates — Unobserved Heterogeneity: Model that Ignores
Classification Error

Type 1 Type 2 Type 3
Non-pecuniary intercepts Parameter Std. error | Parameter Std. error | Parameter Std. error
Professional -3.6890 0.3330 | -3.4730 0.3160 | -2.1610 0.3520
Managers -2.4600 0.3300 | -2.5340 0.3060 | -1.5880 0.3640
Sales -7.2570 0.7340 | -2.0600 0.4340 | -1.0310 0.4350
Clerical -1.8030 0.2820 | -2.0260 0.2860 | -0.9600 0.3590
Craftsmen -0.1680 0.2170 | -0.3450 0.2110 0.5080 0.2910
Operatives -0.1820 0.2210 | -0.1820 0.2180 0.5370 0.2930
Laborers -0.0110 0.2560 | -0.0090 0.2420 0.6280 0.3030

Wage intercepts

Professional 1.7720 0.0630 1.0550 0.0610 1.5460 0.0600
Managers 1.3740 0.0750 0.9420 0.0720 1.4420 0.0720
Sales 1.8580 0.1800 | -0.0220 0.1420 0.4980 0.1390
Clerical 1.4640 0.0470 1.1000 0.0510 1.5630 0.0490
Craftsmen 1.5540 0.0320 1.2910 0.0300 1.8530 0.0340
Operatives 1.5590 0.0380 1.3020 0.0360 1.7940 0.0360
Laborers 1.4670 0.0570 1.2880 0.0550 1.7770 0.0600
Service 1.4630 0.0520 1.0170 0.0480 1.3190 0.0690
Type probabilities

Pr(Type 1) 0.0456 .033

Pr(Type 2) 0.5030 .039

Pr(Type 3) 4514 040




Table 4 Panel C: Average Wage & Non-pecuniary Intercepts Across Types

Average non-pecuniary Ignore classification Correct for
intercepts (’s) error classification error
Professional -2.890 -3.546
Managers -2.103 -2.650
Sales -1.832 -1.080
Clerical -1.534 -1.138
Craftsmen 0.048 0.234
Operatives 0.142 0.359
Laborers 0.278 0.800

Average wage intercepts (1’s)

Professional 1.309 1.506
Managers 1.187 1.388
Sales 0.298 0.318
Clerical 1.325 1.378
Craftsmen 1.556 1.705
Operatives 1.535 1.711
Laborers 1.516 1.525
Service 1.173 0.5734

Note: Averages computed across types.



Table 5: Completed Education by Observed Occupation for Correctly Classified and Misclassified
Occupational Choices

Observed Occupation in NLSY % No College % College
Data Completed Graduate
Professional Correctly classified 10.8% 71.8%
Misclassified 48.6% 30.2%
Managers Correctly classified 39.8% 36.8%
£ Misclassified 47.2% 28.7%
Sal Correctly classified 25.2% 54.2%
ares Misclassified 44.8% 24.7%
Clerical Correctly classified 54.9% 23.7%
Misclassified 36.0% 49.0%
Craftsmen Correctly classified 77.9% 2.1%
Misclassified 53.3% 18.7%
Overati Correctly classified 85.2% 2.5%
peratives Misclassified 61.3% 21.5%
Laborer Correctly classified 83.7% 3.2%
Orers Misclassified 73.0% 11.7%
Servi Correctly classified 60.2% 13.7%
ervice Misclassified 74.2% 8.1%

Notes: Generated using the simulated data that identifies occupational choices as correctly or incorrectly classified. The
“correctly classified” row refers to observations where the occupation in the leftmost column matches the true occupation
code generated by the model. The “misclassified” row refers to observations where a person is observed in the occupation in
the leftmost column and the simulated true occupation differs from the observed occupation. So, 71.8% of correctly classified
professionals graduated from college, while only 30.2% of those incorrectly classified as professionals graduated from
college.

Table 6: Distribution of Total Number of Times a Person’s Occupational Choices are
Misclassified Over the Career and Length of Misclassification Spells

Total # of Times Percentage | # of Consecutive Times Percentage
Misclassified Misclassified

0 57.2% 1 72.9%

1 17.6% 2 18.3%

2 11.5% 3 52%

3 6.3% 4 1.8%

4 3.0% 5 1%

5 2.2% >5 .93%
6-9 1.9%

>9 .20%

Entries are the distributions of the number of times that a person’s occupational choices are misclassified over
the course of the career and lengths misclassification spells based on the simulated data.



Table 7: Average True Choice Probabilities by Observed Choice and Wage Percentile

Observed/Actual Professional Managers Sales  Clerical Craftsmen Operatives Laborers Service
Top 10% .909 .000 .074 .000 .000 .000 .004 011
Professional Middle 10% 953 .001 .006 .000 .013 .000 .012 014
Bottom 10% 157 .001 .053 .001 .020 .001 .070 .095
Top 10% .052 .565 374 .001 .002 .000 .000 .005
Managers Middle 10% .020 .858 .067 .002 .003 .002 .001 .046
Bottom 10% .010 .544 272 .004 .004 .005 012 148
Top 10% .039 .033 916 .017 .000 .000 .000 .038
Sales Middle 10% .033 .018 911 .000 .000 .002 .002 .026
Bottom 10% .004 .005 .834 016 .000 .007 .007 127
Top 10% .039 .005 916 .001 .000 .000 .000 .038
Clerical Middle 10% .033 .017 911 .008 .000 .002 .002 .026
Bottom 10% .004 .005 .834 016 .000 .007 .007 127
Top 10% .031 .001 .091 .000 .872 .000 .003 .000
Craftsmen Middle 10% .008 .000 015 .000 .965 .002 .007 .000
Bottom 10% .005 .000 124 .003 818 .005 .041 .002
Top 10% .084 .000 110 .000 .000 .801 .003 .000
Operatives Middle 10% .009 .000 .008 .000 .000 979 .003 .000
Bottom 10% .003 .000 119 .000 .000 .869 .006 .000
Top 10% .000 .000 .065 012 .032 .002 .885 .003
Laborers Middle 10% .000 .000 .003 .007 .008 .003 976 .001
Bottom 10% .000 .000 071 .004 .003 .002 915 .004
Top 10% .054 .004 .072 .000 .000 .000 150 719
Service Middle 10% .005 .001 .001 .001 .000 .000 251 732
Bottom 10% .000 .000 .100 .000 .000 .000 174 725

Note: Entries are the average true choice probabilities found in the simulated data conditional on the observed choice and wage. Top, middle, and
bottom 10% refer to the location of the observed wage in the wage distribution of the observed occupation.



Appendix A: Data

The goal of this paper is to follow workers from the time they make a permanent transition
to the labor market and start their career. There is no clear best way to identify this transition
to the labor market, so this analysis follows people from the month they reach age 18 or stop
attending school, whichever occurs later. Individuals are followed until they reach age 35, or exit
from the sample due to missing data. There are 6,111 men in the nationally representative cross
sectional sample of the NLSY. Of these workers, there are 2,439 white males who are candidates
to be used in this analysis. As noted in the text, respondents are between the ages of 14 and
21 in the first year of the NLSY. One issue raised by the fact that respondents enter the sample
at different ages is that there is an initial conditions problem for the older workers because the
data does not contain any information on their work history before they enter the sample. For
example, if someone enters the sample at age 21 they may have never worked before, or they
could have accumulated a number of years of experience in a particular occupation.

Based on these considerations, individuals who enter the NLSY sample at an age older than
18 are dropped from the sample, so that each individual enters the sample at the start of his
career. Since individuals are nearly evenly distributed across initial ages, approximately 43% of
the sample is dropped as a result of the age restriction. In addition, individuals are dropped
if they serve in the military at some point during their career, if they ever work as farmers, if
they report being self employed, if it is not possible to determine when they stopped attending
school and started their career, or if information on completed schooling is missing. Finally,
observations are truncated if geographic data, wage data, or occupation data are missing, or
if the individual exits from the sample. The final sample contains 954 individuals and 10,573
observations.

Since the estimation sample is considerable smaller that the entire NLSY sample due to the
age restriction, one might wonder how this sample compares to a broader sample from the NLSY.
Table 1b shows descriptive statistics for the estimation sample and a broader sample of white
men from the NLSY cross sectional sample that includes roughly twice as many individuals
because it includes individuals who enter the NLSY sample at ages older than 18. Overall, the
samples appear to be quite similar in terms of observable characteristics. As an additional check,
equation number 20 shows the estimates of a simple regression of wages on age, education, and
occupation dummy variables for the estimation sub-sample, and equation number 21 shows the

estimates based on the broader sample (standard errors in parentheses),
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In(w) = 1.16 +.035age + .054educ — .062manag — .129sales (20)
(.034) (.001)  (.003)  (.018) (.023)

—.173cleric — .046¢craft — .1750per — .222labor — .331serv

(021)  (.017) (.018) (.021) (.020)
In(w) = .829+ .026age + .062educ — .039manag — .097sales (21)
(.035) (.001) (.002) (.014) (.016)

—.190cleric — .037craft — .142o0per — .220labor — .360serv.

(.016) (.013) (.013) (.015) (.015)

Appendix B: Simulating the Likelihood Function

B1: The Likelihood Function

Let Ea?piqt represent person i’s true experience in occupation ¢ in time period t. Define E/ﬁyt
as a () x 1 vector of experience in each occupation. Let La/sa)ccit represent a () X 1 vector of
dummy variables where the gth element is equal to 1 if person i’s true occupational choice was ¢
in time period t—1. Let Fit(E/x-E,;t, Lc:e;)ccit) represent the distribution of true occupation specific
experience and lagged occupational choices for person ¢ in time period t. This distribution is
a function of each person’s observed characteristics, and observed choices and wages, but these
conditioning variables are suppressed for brevity of notation. The likelihood function can be
evaluated by integrating over the distribution of the unobserved state variables,

L(@):f{l/

(i)
Liy(0|Exp,,, Lastoccy)dFy(Exp,,, Lastoccy). (22)
t=1

However, in practice this is very difficult to do because the distribution Et(E/x;it, Lcw/t\occ,-t)
is intractably complex. This problem can be overcome by simulated the likelihood function
using a recursive simulation algorithm that is similar to the Geweke (1991), Hajivassiliou (1990),

and Keane (1994) (GHK) algorithm. The GHK algorithm breaks a choice probability up into

a sequence of transition probabilities, and then recursively simulates the sequence. Simulation
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methods have not been used extensively in this manner to solve problems created by measurement
error, although it is a natural application of these techniques.

B2: The Simulation Algorithm

This section provides the details of the simulation algorithm used to evaluate the likelihood
function. For simplicity, the algorithm is outlined for the case where the number of unobserved
heterogeneity types (M) equals one because the extension to multiple types is straightforward.

The object that must be simulated is

T@E) Q

L(9) H / 11> 140 = ¢} Pula.wi* 9. Zio Xit, Expyy, Lastocci)dF (Expy, Lastoccs)
t=1 g=1
H/HL” i, W |0, Zyy Xlt,Explt,Lastocclt)dF(Ea:pZt,Lastocczt) (23)
Let variables with a * superscript represent simulated variables, and let r = 1,..., R in-

dex simulation draws. Using this notation, O} (7|0, Oy, w3, Zy X, Exp},, Lastoccy,) is a sim-
ulated occupational choice, Exp}, (7|0, Owu, ws*, Ziy Xy, Exp}y, Lastoccy,) is a Q x 1 vector of
simulated occupation specific experience, Lastocc), (r|0, O, wir*, Ziy Xu, Exp},, Lastoccy) is a
vector of dummy variables representing the simulated occupational choice in the previous pe-
riod, and L, (r, Oy, w3®|0, Zit Xit, Exp},, Lastoccy,) is a simulated likelihood contribution. For
brevity of notation, define the set of conditioning variables for the simulated choices as p =

{0, O, wsP*, Ziy X, Exp}y, Lastocc, }. The simulation algorithm for person i is:

1. Start in time period ¢ = 1, simulation draw r = 1. All experience variables equal zero at
the start of the career by definition, so initialize the simulated experience vector to zero

for time periods t =1, ..., T.

2. Evaluate and store the simulated likelihood contribution for year ¢, simulation draw r,

L3 (r, O, Ob5|9 Zip X, Expl, (1), Lastoccy,(r)).

3. Compute and store the probability that person ¢’s true choice in time period ¢ (&t) is each of
the Q possible occupations, conditional on the parameter vector (#), observed choice (Oy),
observed wage (w@’®), explanatory variables (Z;; X;;), and simulated previous occupational
choice (Lastocc},(r)) and experience variables (Expf(r)). Let Qu(r, qlp) for ¢ = 1,...,Q
represent the conditional probability for simulation draw r that the true occupational

choice is ¢ for person 7 in time period t. These probabilities can be written using Bayes’
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rule as

Qu(r,qlp) = Pr(Ou=4q|p) (24)

Q0,1 Pﬁ(Q? wiotbs)

Zgzl aOit,k-Pit(ka wi’f’s) .

(25)

Recall that Et(o) is a function of all of the variables that £, (e) is conditioned on, but these
arguments are suppressed here. This implies that the conditional true choice probabilities
(Q;:(e)) are a function of the observed wage and all of the explanatory variables in the

model.

. Use the @) computed conditional true choice probabilities, Q;(r, ¢|p), to define the discrete
distribution of true occupational choices {Pr(O}(r) = q) = Qu(r,qlp)}, ¢ = 1, ...,Q}. Next,
randomly draw a simulated true occupational choice O} (r|p) for person i at time period

t from the discrete distribution of the () possible true occupational choices.

. Use the simulated choice O} (r|p) to update the vectors of simulated experience and lagged
occupational choice vectors, Expj, ,(r) and Lastocc}, ,(r). The updating rules are to in-
crease the element of the experience vector by one in the simulated occupation, and leave
all other elements of the vector unchanged. For the previous occupation dummy, set the
element of the Lastocc],, (r) vector corresponding to the simulated occupation in time ¢

equal to one and set all other elements of the vector to zero.

. If t = T'(i) (the final time period for person i), go to step 7. Otherwise, Set t = ¢ + 1 and
go back to step 2.

. Compute the likelihood function for simulated path r,
T(3)

Li(0) = H L (r, 04, w0, Ziy Xy, Exply(r), Lastoccl(r)).
t=1

. Repeat this algorithm R times, and the simulated likelihood function is the average of the

R path probabilities over the R draws,

L0) =+ > L)
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During estimation, antithetic acceleration is used to reduce the variance of the simulated
integrals. The number of simulation draws is set at R = 60. Increasing the number of simulation
draws to R = 600 leads to only a .01% change in the value of the likelihood function at the

simulated maximum likelihood parameter estimates.!”

17 As a further check on the robustness of the parameter estimates to the choice of R, the model was re-estimated
using R = 300. The program converged to essentially the same parameter vector as it did when R = 60 was used.
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