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Abstract This paper studies endogenous entry and ex ante revenue-maximizing auctions

in an independent private value setting where potential bidders have private-information

entry costs. The contribution of this paper is four-fold. First, we show that any equi-

librium entry can be characterized through a set of continuous and monotonic shutdown

curves that separate the bidders’ types into participating and nonparticipating categories.

Second, the expected winning probability of a participant does not depend on his private

entry cost. Furthermore, the expected winning probabilities of the participating types are

given by the slopes of the shutdown curves. Third, symmetric entry equilibria (shutdown

curves) implemented by the classes of ex post efficient or ex post revenue-maximizing

mechanisms are completely characterized. Fourth, within these two classes of mecha-

nisms, a modified Vickrey auction with uniform reserve price and entry subsidy is ex ante

revenue-maximizing. The desired entry subsidy and reserve price are determined by the

lower end of the corresponding shutdown curve.

Keyword: Auctions Design; Ex Post Efficiency; Endogenous Participation; Multidimen-

sional Screening; Vickrey Auction.

JEL classifications: D44; D82.

2



1 Introduction

The impact of participation costs on bidders’ entry and auctions design has been exten-

sively studied. Samuelson (1985) has derived the symmetric entry equilibria that maximize

the social welfare and the seller’s expected revenue in a symmetric setting with fixed en-

try cost. Stegeman (1996) has further studied ex ante efficient auction without imposing

symmetry on bidders. Tan and Yilankaya (forthcoming) provide a sufficient condition

that guarantees the uniqueness of entry equilibrium in a standard second price auction.

Kaplan and Sela (2004) instead study the efficient entry when the participation costs are

private information of the bidders while their valuations are common knowledge. Green

and Laffont (1984) allow both the valuations and entry costs to be private information

of the bidders. They establish the existence and uniqueness of an equilibrium shutdown

curve for a Vickrey auction with zero reserve price and zero entry subsidy. The shut-

down curve specifies a critical value of private entry cost for each private value. A bidder

participates in the auction if and only if his entry cost is lower than the critical value

corresponding to his private value. Lu (2006) finds that a simple second price auction is

ex ante efficient in a two-dimensional setting where the bidders have private information

on both their valuations and entry costs.1 In this paper, we further study the endogenous

entry and ex ante revenue-maximizing auctions in this two-dimensional setting. Follow-

ing Green and Laffont (1984), we assume that every potential bidder observes his private

value and entry cost before his entry decision.2

Multidimensional Screening has been extensively studied by Wilson (1993), Armstrong

1This result extends the finding of Stegeman (1996) to a multidimensional signal setting
2This differs from the other branch of literature on endogenous entry and entry cost, which assumes

that bidders learn their valuations after incurring the entry costs. This branch of literature includes

Engelbrecht-Wiggans (1993), Levin and Smith (1994), McAfee and McMillan (1987), Tan (1992) and Ye

(2004) among others.
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(1996, 2000), and Rochet and Chone (1998) among others in various contexts such as price

discrimination, multi-product auction and regulation. Armstrong (1996) establishes that

the optimal mechanism usually involves shutdown of some lower-type agents. Rochet

and Chone (1998) point out that the difficulty in multidimensional screening problem

lies in the characterization of all the implementable endogenous entry equilibria. In this

paper, we show that for our setting the expected winning probability of a participating

bidder does not depend on his private cost at any entry equilibrium. Furthermore, the

slope of any implementable shutdown curve at any inner point in the type space equals

the expected winning probability of the corresponding type. This insight leads to a full

characterization of the shutdown curves which are compatible with the classes of ex post

efficient and ex post revenue-maximizing mechanisms. Here and hereafter, “Ex post effi-

cient” refers to allocating the object to the participant with highest private value, provided

that this value is higher than the seller’s valuation. “Ex post revenue-maximizing” refers

to allocating the object to the participant with highest virtual value, provided that this

value is higher than the seller’s valuation. For these classes of mechanisms, we fully identi-

fied the implementable shutdown curves. The closed form shutdown curves are explicitly

provided for a 2-bidder case.

For any shutdown curve that is compatible with any of these two classes of mecha-

nisms, we find that a modified Vickrey auction with appropriately set reservation price

and participation subsidy implements the corresponding entry and maximizes the seller’s

expected revenue within the class of mechanisms. The desired entry subsidy and re-

serve price are determined by the lower end of the corresponding shutdown curve. Thus

the search for the ex ante revenue-maximizing auction within these classes boils down

to the search for the optimal shutdown curve that is compatible with these classes of

mechanisms. Therefore, it must be a modified Vickrey auction that is ex ante revenue-

maximizing within each class.
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The paper is organized as follows. Section 2 sets up the model and provides the

necessary and sufficient conditions for a feasible mechanism-entry combination, when

bidders have two private signals, namely their private values and entry costs. Section

3 then characterizes the entry equilibria that are compatible with the classes of ex post

efficient and ex post revenue-maximizing mechanisms. Section 4 shows that a modified

Vickrey auction is ex ante revenue-maximizing within each of these classes. Section 5

concludes.

2 The Model and Preliminaries

In this section, we will first introduce the model and the concepts of mechanism and

shutdown curve. Second, we will characterize the sufficient and necessary conditions for a

feasible mechanism-entry combination. Third, we show a version of revenue equivalence

theorem, which says that the seller’s expected revenue from a mechanism that implements

any given untrivial endogenous entry equilibrium is completely determined by the winning

probabilities.3

2.1 The Setting

A seller wants to sell an indivisible object to N potential bidders through an auction.

Denote the set of potential bidders by N = {1, 2, ..., N}. The seller’s value of the object is

v0, which is public information. The ith bidder’s private value for the object is vi, i ∈ N .

The values vi, i ∈ N are independently distributed on interval [v, v] with cumulative

distribution function F (·) and density function f(·)(> 0). The virtual value function is

defined as J(v) = v − 1−F (v)
f(v)

. Each potential bidder i has a private participation cost

3Here, an untrivial endogenous entry equilibrium refers to the situation where the measure of the

participating types belongs to (0, 1).
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ci, i ∈ N . The private participation costs ci, i ∈ N are independently distributed on

the interval [c, c] with cumulative distribution function G(·) and density function g(·).

F (·) and G(·) are public information. In this paper, we consider the case where all ci

and vj, i, j ∈ N are mutually independent. Every bidder observes his private value and

private participation cost before he makes his participation decision. The seller and the

bidders are risk neutral. The timing of the game is as follows.

Time 0: Nature reveals the set of potential bidders N , the seller’s private value v0

and distributions F (·) and G(·), which are public information. Every bidder i observes

his private value vi and participation cost ci, i ∈ N .

Time 1: The seller announces the rule of the mechanism.

Time 2: The bidders simultaneously and confidentially make their entry decisions. If

bidder i participates, he incurs the entry cost ci and then submits a message. If a bidder

does not participate, he takes the outside opportunity and receives 0.

Time 3: The payoff of the seller and the participating bidders are determined accord-

ing to the announced rule at time 1.

A mechanism that implements endogenous entry naturally cannot require nonpartici-

pants to submit messages. Following Stegeman (1996), we introduce a null message ∅ to

denote the signal of a nonparticipant.

In a direct semirevelation mechanism, the message space is M = MN where M =

{[c, c] × [v, v]} ∪ {∅}, the outcome functions accommodate all participation possibili-

ties in the following form: payment function xi(m) and winning probability function

pi(m) for bidder i, ∀i ∈ N , where m = (m1, m2, ..., mN) is the message vector and

mi ∈ M is the message of bidder i. We denote the above mechanism by (p,x), where

p = (p1(m), p2(m), ..., pN(m)) and x = (x1(m), x2(m), ..., xN (m)). It is clear that p

should satisfy the following “feasibility” restrictions: pi(m) ≥ 0, ∀i ∈ N , ∀m ∈ M,

and
∑N

i=1 pi(m) ≤ 1, ∀m ∈ M. In addition, we naturally assume that nonparticipants
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have no chance of winning the object and their payments to the seller are zero, i.e,

pi(m) = xi(m) = 0 if mi = ∅, ∀i ∈ N .4

Stegeman (1996) provides a semirevelation principle that accommodates nonpartic-

ipation of bidders.5 Although this principle is proved for the case of fixed entry cost,

clearly it also applies to our setting where entry costs are private information of bidders.6

Based on this semirevelation principle, there is no loss of generality to characterize the im-

plementable entry equilibria and ex ante revenue-maximizing mechanisms by considering

only the truthful direct semirevelation mechanisms. For a truthful direct semirevela-

tion mechanism, every participant reveals truthfully his type, the nonparticipants submit

a null message.

2.2 Characterizing Feasible Mechanism-Entry Combinations

The following Lemma 1 partially characterizes the implementable entry equilibria. It

states that at any entry equilibrium, the participating and nonparticipating types of any

bidder must be divided by a nondecreasing and continuous shutdown curve.

Lemma 1: Any equilibrium entry can be described through a set of nondecreasing and

continuous shutdown curves Ci(vi) : [v, v] → [c, c], ∀i ∈ N , which satisfies the following

property: For bidder i, i ∈ N with type (ci, vi), he participates if ci < Ci(vi), and he does

not participate if ci > Ci(vi).

Proof: see appendix.

If Ci(·) is not always equal to c or c, let (vℓ
i , v

u
i ) to denote the interval on which Ci(vi)

falls into (c, c). For convenience, if Ci(vi) ≡ c, we define vℓ
i = vu

i = v; and if Ci(vi) ≡ c,

4This assumption is consistent with the no passive reassignment (NPR) assumption adopted by

Stegeman (1996).

5Please refer to Lemma 1 of Stegeman (1996) for details.

6Detailed proof will be provided upon request.
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we define vℓ
i = vu

i = v. Note that Ci(vi) = c if vi < vℓ
i , and Ci(vi) = c if vi > vℓ

i .

For those types on the shutdown curves, their expected payoff if they participate is as

follows. First, if vℓ
i < vu

i , the expected payoff of types (Ci(vi), vi) where vi ∈ [vℓ
i , v

u
i ] is

exactly zero when participating. On one hand, it can not be bigger than zero. Otherwise,

bidder i with type (Ci(vi) + ǫ, vi) where ǫ is a small positive number, will get strictly

positive expected payoff if he participates and mimics the message of (Ci(vi), vi). This

conflicts with the definition of Ci(vi). On the other hand, the expected payoff of types

(Ci(vi), vi) where vi ∈ [vℓ
i , v

u
i ] can not be smaller than zero. If he participates and mimics

the message of type (Ci(vi)− ǫ, vi), he will at least get −ǫ. Since ǫ can be arbitrarily close

to zero, the best expected payoff of type (Ci(vi), vi) cannot be negative if he participates

and submits the optimal message. Similar arguments lead to that the expected payoff of

types (Ci(vi), vi) where vi ∈ [v, vℓ
i ) is no bigger than zero when participating; the expected

payoff of bidder i with types (Ci(vi), vi) where vi ∈ (vu
i , v] is no smaller than zero when

participating. Second, if Ci(vi) ≡ c, the expected payoff of bidder i with types (c, vi)

where vi ∈ [v, v] is no bigger than zero if he participates. Third, if Ci(vi) ≡ c, the

expected payoff of bidder i with types (c, vi) where vi ∈ [v, v] is no smaller than zero if he

participates.

Based on the results in the previous paragraph, we can specify the participation of bid-

ders whose types are on the shutdown curves as follows: If vℓ
i < vu

i , we assume that bidder

i with types (Ci(vi), vi) where vi ≥ vℓ
i participates, and bidder i with types (Ci(vi), vi)

where vi < vℓ
i does not participate. If Ci(vi) ≡ c, we assume all types of bidder i par-

ticipate; If Ci(vi) ≡ c, we assume no type of bidder i participates. Because the measure

of all involved types on the shutdown curves is zero, this specification does not affect

the participation and bidding strategies of other types of bidders. Therefore, the seller’s

expected revenue is not affected. Denote the set of all participating types of bidder i

corresponding to Ci(·) by Se
i (Ci), i ∈ N . Note that Se

i (Ci) is empty if Ci(vi) ≡ c, and
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Se
i (Ci) is [c, c] × [v, v] if Ci(vi) ≡ c.

Se
i (Ci) can be equivalently described through a nondecreasing and continuous function

Vi(ci) on [c, c], which is defined as follows. If Se
i (Ci) is empty, we define Vi(ci) ≡ v.

Otherwise, Vi(ci) = inf{vi|(ci, vi) ∈ Se
i (Ci)} when ci ≤ cu

i = Ci(v
u
i ), and Vi(ci) = v, if

ci > cu
i . Clearly, Vi(·) satisfies the following properties: For bidder i, i ∈ N with type

(ci, vi), he participates if vi > Vi(ci), and he does not participate if vi < Vi(ci).

Denote the type of bidder i by ti = (ci, vi). For a continuous and nondecreasing

shutdown curve Ci(·) for bidder i, define mi(ti) = ti if ti ∈ Se
i (Ci), and mi(ti) = ∅ if

ti /∈ Se
i (Ci). ∀ ti, t

′
i ∈ [c, c] × [v, v], define

Ui(p,x; ti, t
′
i) = Et−i

{vipi(t
′
i,m−i(t−i)) − xi(t

′
i,m−i(t−i))} − ci, (1)

where t−i = (t1, ..., ti−1, ti+1, ..., tN), and m−i(t−i) = (m1(t1), ..., mi−1(ti−1), mi+1(ti+1), ...,

mN (tN)). The support of t−i is T−i = {[c, c] × [v, v]}N−1. If (p,x) is a truthful direct

semirevelation mechanism which implements C = (Ci(·)), then Ui(p,x; ti, t
′
i) is bidder i’s

interim expected utility when he submits t′i given his private signal is ti.

Using Ui(p,x; ti, ti), the necessary and sufficient conditions for a direct auction mech-

anism (p,x) to be a truthful direct semirevelation mechanism that implements given C

can be written as follows.

(i) Ui(p,x; ti, ti) ≥ 0, ∀ ti ∈ Se
i (Ci), ∀ i ∈ N , (2)

(ii) Ui(p,x; ti, ti) ≥ Ui(p,x; ti, t
′
i), ∀ ti, t

′
i ∈ Se

i (Ci), ∀ i ∈ N , (3)

(iii) Ui(p,x; ti, ti) ≥ Ui(p,x; ti, t
′
i), ∀ ti ∈ Se

i (Ci), t′i /∈ Se
i (Ci), ∀ i ∈ N , (4)

(iv) Ui(p,x; ti, t
′
i) ≤ 0, ∀ ti /∈ Se

i (Ci), t
′
i ∈ [c, c] × [v, v], ∀ i ∈ N , (5)

(v) pi(m) = xi(m) = 0 if mi = ∅, pi(m) ≥ 0, ∀i ∈ N ,
N

∑

i=1

pi(m) ≤ 1, ∀m ∈ M. (6)

(5) guarantees that low-type bidders do not participate while (2) guarantees that high-

type bidders do participate. (3) and (4) guarantee that high-type bidders reveal truthfully

their types when participating.
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Define

Qi(p, ti) = Et−i
pi(m(t)), (7)

where m(t) = (m1(t1), m2(t2), ..., mN(tN )), t = (t1, t2, ..., tN). If (p,x) is a truthful direct

semirevelation mechanism that implements shutdown C, then Qi(p, ti) is the conditional

expected probability that bidder i with type ti gets the object.

Using Ui(p,x; ti, ti) and Qi(p, ti), the following Lemma reinterprets the necessary and

sufficient conditions (2) to (6) for a direct semirevelation mechanism (p,x) to be a truth-

ful direct semirevelation mechanism that implements C.

Proposition 1: A direct semirevelation mechanism (p,x) is a truthful direct semirev-

elation mechanism that implements C where Ci(·), ∀i ∈ N is not always equal to c or c,

if and only if the following conditions and (4), (5) and (6) hold.

Qi(p, ti) ≥ Qi(p, t′i), ∀ ti = (ci, vi), t
′
i = (ci, v

′
i) ∈ Se

i (Ci), vi ≥ v′
i, ∀i ∈ N , (8)

∂Ui(p,x; ti, ti)

∂vi

= Qi(p, ti), ∀ti = (ci, vi) ∈ Se
i (Ci), ∀i ∈ N , (9)

∂Ui(p,x; ti, ti)

∂vi
= C ′

i(vi), ∀ti = (ci, vi) ∈ Se
i (Ci), where vi ∈ [vℓ

i , v
u
i ], ∀i ∈ N , (10)

∂Ui(p,x; ti, ti)

∂ci
= −1, ∀ti = (ci, vi) ∈ Se

i (Ci), ∀i ∈ N , (11)

Ui(p,x; ti, ti) = 0, ∀ ti = (ci, vi), where ci = Ci(vi), vi ∈ [vℓ
i , v

u
i ], ∀i ∈ N . (12)

Proof: see appendix.

From (9) and (10), we have that Qi(p, ti) is independent of ci for given vi ∈ [vℓ
i , v

u
i ],

and Ci(vi) must be a nondecreasing function. If vu
i < v, it is also true that Qi(p, ti) is

independent of ci if vi ∈ (vu
i , v]. The reasons are the following. If vu

i < v, then (11)

implies that the difference in the expected payoff of bidder i with types (ci, vi) and (ci, v
′
i)

in Se
i (Ci) does not depend the entry cost ci. Thus from (9), Qi(p, ti) = ∂Ui(p,x;ti,ti)

∂vi
does

not depend on ci. Combining (8), we further have that a participant wins in a higher
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probability if and only if his value is higher. These results are formally stated in the

following Corollary.

Corollary 1: (i) The expected winning probabilities of the participating bidders do not

depend on their entry costs. (ii) A participant wins in a higher probability if and only if

his value is higher.

2.3 The Seller’s Expected Revenue

For any truthful direct semirevelation mechanism (p,x) that implements given C, the

seller’s expected utility is given by

R0(p,x) = Et

{

v0[1 −
N

∑

i=1

pi(m(t))] +
N

∑

i=1

xi(m(t))
}

. (13)

The support of t is T = {[c, c] × [v, v]}N .

Proposition 1 does not consider the cases of Ci(·) ≡ c and Ci(·) ≡ c, ∀i ∈ N . When

Ci(·) ≡ c or Ci(·) ≡ c, ∀i ∈ N , only (12) in Proposition 1 may not hold. However,

even when Ci(·) ≡ c or Ci(·) ≡ c, ∀i ∈ N , there is no loss of generality to derive the ex

ante revenue-maximizing auction by simply assuming (12) holds for the following reasons.

First, when Ci(·) ≡ c, (12) does not change the entry decision of bidder i, we still have

Se
i (Ci) = ∅. Second, when Ci(·) ≡ c, (12) may not hold because the left hand side can be

positive. In this case, an entry fee equal to the expected payoff of type (c, v) restores (12)

while increases the seller’s expected revenue. With these observations, we can assume the

conditions in Proposition 1 for revenue-maximization.

Using Proposition 1, the seller’s expected utility from a truthful direct semirevelation

mechanism (p,x) that implements C can be written as in Lemma 2. The seller’s problem

is to maximize R0(p,x) subject to the restrictions on (p,x) and C, which are specified in

Proposition 1.

Lemma 2: For any truthful direct semirevelation mechanism (p,x) that implements C,
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we have

R0(p,x) = v0 −
N

∑

i=1

∫ c

c

∫ v

Vi(ci)
cif(vi)g(ci)dvidci −

N
∑

i=1

∫ cℓ
i

c
(cℓ

i − ci)g(ci)dci

+Et

{ N
∑

i=1

pi(m(t))(J(vi) − v0)
}

. (14)

Proof: see appendix.

Note that the expected revenue of the seller does not depend on the payment functions

x. This is due to the property (12) for this two-dimensional screening problem.

From Proposition 1 and Lemma 2, we have the following revenue equivalence the-

orem with endogenous entry.

Corollary 2: For a mechanism that implements endogenous entry C where Ci(·), ∀i ∈ N

is not always equal to c, the seller and bidders’ expected payoffs are completely determined

by the shutdown curves C and the bidders’ winning probabilities for all t ∈ T .

proof: For a truthful direct semirevelation mechanism that implements endogenous entry

C, the result follows immediately from Proposition 1 and Lemma 2. For a general mech-

anism that implements endogenous entry C, the result holds due to the semirevelation

principle. ✷

If Ci(·) ≡ c, then the seller and bidders’ expected payoffs also depend on the payoff of

the lowest participating type (c, v).

3 Some Classes of Implementable Entry Equilibria

Now we are ready to characterize the entry equilibria implemented by two classes of mech-

anisms: the ex post efficient mechanisms and ex post revenue-maximizing mechanisms.

Due to the complexity of the problem, we focus on symmetric entry across bidders. In

other words, all bidders participate following a common shutdown curve C(·).
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Definition 1: A mechanism is ex post efficient if it allocates the object to the player

(the seller or a participating bidder) with the highest valuation.

Definition 2: A mechanism is ex post revenue-maximizing if it allocates the object

to the player (the seller or a participating bidder) with the highest virtual valuation.

Note that an ex post revenue-maximizing mechanism maximizes the seller’s ex post

expected revenue for any given participating bidders. When the virtual value function

J(v) increases v, the ex post revenue-maximization implies allocating the object to the

participating bidder with the highest valuation given it is higher than J−1(v0). The

optimality of setting a reserve price of J−1(v0) for the seller’s ex post revenue is clear

from Myerson (1981).

3.1 Entry with Ex Post Efficient Mechanisms

We first characterize the symmetric shutdown curve implemented by any ex post efficient

mechanism.

Proposition 2: Suppose that (p,x) is a truthful direct semirevelation mechanism that

implements C(·). If (p,x) is ex post efficient, the symmetric shutdown curve C(·) must

satisfy

C ′(v) =











(A0 +
∫ v
vs

G(C(v′))f(v′)dv′
)N−1

, if v ∈ [max{v0, vs}, vu],

0, if v ∈ [v, max{v0, vs}),
(15)

where A0 =
∫ v
v

∫ c
C(v) g(c)f(v)dcdv, and vu = sup{C(v)<c} v. The initial condition is given by

C(vs) = cs, where (cs, vs) can be any point on the left or bottom boundary of [c, c]× [v, v].

Proof: see appendix.

Proposition 2 implies that for any ex post efficient mechanism, the implemented C(v)

must belong to the family characterized by (15). As the lower end of the shutdown curve

moves from (c, v) to (c, v) along the left and bottom boundaries of the domain of (c, v),

we obtain all the shutdown curves which are compatible with ex post efficiency.
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3.2 Entry with Ex Post Revenue-Maximizing Mechanisms

We now characterize the symmetric shutdown curve implemented by a mechanism with

ex post optimality. When J(·) is an increasing function, the ex post optimality in terms

of the seller’s revenue means allocating the object to the participating bidder with the

highest valuation if it is higher than J−1(v0). Similar to Proposition 2, we have

Proposition 3: Suppose that (p,x) is a truthful direct semirevelation mechanism that

implements C(·). If (p,x) is ex post revenue-maximizing, the symmetric shutdown curve

C(·) must satisfy

C ′(v) =











(A0 +
∫ v
vs

G(C(v′))f(v′)dv′
)N−1

, if v ∈ [max{J−1(v0), vs}, vu],

0 if v ∈ [v, max{J−1(v0), vs}),
(16)

where A0 =
∫ v
v

∫ c
C(v) g(c)f(v)dcdv, and vu = sup{C(v)<c} v. The initial condition is given

by C(vs) = cs, where (cs, vs) is a point on the left or bottom boundary of [c, c] × [v, v].

Proposition 3 implies that for any ex post revenue-maximizing mechanism, the imple-

mented C(v) must belong to the family characterized by (16). As the lower end of the

shutdown curve moves from (c, v) to (c, v) along the left and bottom boundaries of the

domain of (c, v), we obtain all the shutdown curves which are compatible with ex post

optimality.

3.3 Examples of Closed Form Shutdown Curves

Suppose (ci, vi), ∀i ∈ N are independently and uniformly distributed on [0, 1] × [0, 1].

Assume v0 = 0. We have from (15)

C ′(v) = (A0 +
∫ v

vs

C(v′)dv′
)N−1

, ∀v ∈ [vs, vu]. (17)

This leads to

C ′′(v)

C(v)
= (N − 1)C ′(v)

N−2

N−1 , ∀v ∈ [vs, vu]. (18)
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This ordinary differential equation combined with initial condition C(vs) = cs pins down

a particular solution for C(v). While (cs, vs) moves from (0, 1) to (1, 0) along the left and

bottom boundary of [0, 1] × [0, 1], all implementable shutdown curves are obtained.

In particular, when N = 2, we can obtain the closed form shutdown curves that are

implemented by the ex post efficient mechanisms. When cs = 0, vs ∈ [0, 1), C(v) is given

by

C(v) =











e−vs

e1−vs+evs−1 e
v − evs

e1−vs+evs−1 e
−v, if v ∈ [vs, 1],

0, if v ∈ [0, vs].
(19)

When cs ∈ [0, e−1], vs = 0, C(v) is given by

C(v) =
1 + cse

−1

e + e−1
ev −

1 − cse

e + e−1
e−v, v ∈ [0, 1]. (20)

When cs ∈ [e−1, 1], vs = 0, C(v) is given by

C(v) =











1+vu

2
ev−vu + 1−vu

2
evu−v, if v ∈ [0, vu],

1 if v ∈ [vu, 1],
(21)

where vu ∈ [0, 1] and cs = C(0).

Moreover, the closed form shutdown curves that are implemented by the ex post

revenue-maximizing mechanisms are the following. When cs = 0, vs ∈ [J−1(0), 1) where

J−1(0) = 1/2, C(v) is still given by (19). When cs ∈ [0, e−1/2], vs = 0, C(v) is given by

C(v) =











1+cse−1/2

1+e
ev − 1−cse1/2

1+e−1 e−v, if v ∈ [1/2, 1],

cs if v ∈ [0, 1/2].
(22)

When cs ∈ [e−1/2, 1], vs = 0, C(v) is given by

C(v) =



























1 if v ∈ [vu, 1],

1+vu

2
ev−vu + 1−vu

2
evu−v, if v ∈ [1/2, vu],

cs if v ∈ [0, 1/2],

(23)

where vu ∈ [1/2, 1] and cs = C(1
2
).
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4 Ex Ante Revenue-Maximizing Auctions

This section provides the ex ante revenue-maximizing mechanisms among each of the two

classes studied in section 3. We first establish the following Lemma.

Lemma 3: Suppose C(·) is not always equal to c. (i) Any ex post efficient mechanism

implementing a shutdown curve C(·) of the Proposition 2 class achieves the same expected

revenue for the seller. (ii) Any ex post revenue-maximizing mechanism implementing a

shutdown curve C(·) of the Proposition 3 class achieves the same expected revenue for the

seller.

Proof: The results hold from Corollary 2. Corollary 2 shows that the seller’s expected

revenue from a mechanism implementing a given entry equilibrium C(·) which is not al-

ways equal to c, is completely determined by the winning probabilities of the bidders. Note

that no matter for ex post efficient mechanism or ex post revenue-maximizing mechanism,

the winning probabilities have already been fixed provided that the shutdown curve has

been given. ✷

In the case that C(·) ≡ c, we can use an entry fee to extract all the expected surplus

of the lowest type (c, v). Therefore, when C(·) ≡ c Lemma 3 still holds for mechanisms

that provides the lowest type (c, v) zero payoff.

4.1 Revenue-Maximizing Auctions with Proposition 2 Entry

The following proposition gives some results on the revenue-maximizing auction that

implements a shutdown curve C(v) of the Proposition 2 family.

Proposition 4: Suppose C(v) is a solution of (15) and vℓ = inf{C(v)>c} v, cℓ = C(vℓ).

(i) A modified Vickrey auction with a reserve price of max{v0, vℓ} and an entry subsidy

cℓ to the participating bidders is revenue-maximizing among all ex post efficient auctions

that implement C(v). (ii) Under the regularity condition that J(v) increases wrt. v, if
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J(vℓ) ≥ v0, the above-defined auction is also revenue-maximizing among all auctions that

implement C(v).

Proof: see appendix.

Based on Proposition 4, the following Corollary 3 establishes that a modified Vickrey

auction with a uniform reserve price and a uniform participation subsidy is the revenue-

maximizing auction that allocates the object to the participant with the highest private

value provided that it is higher than the seller’s valuation.

Corollary 3: A modified Vickrey auction with an optimal uniform reserve price and a

uniform participation subsidy is the revenue-maximizing ex post efficient auction. Among

those who participate in the auction, the highest bidder gets the object if his valuation is

higher than the seller’s valuation. The winner pays the second highest bid or the reserve

price, whichever is higher. Moreover, every participating bidder gets the participation

subsidy. While the optimal participation subsidy equals the entry cost at the lower end of

the optimal shutdown curve, the optimal reserve price equals the seller’s valuation or the

valuation at the lower end of the optimal shutdown curve, whichever is higher.

Proof: From Proposition 2, for a mechanism selling the object to the bidder with the high-

est private value among the participants, the shutdown curve C(v) must be the solution of

(15). Thus Proposition 4 applies. The problem of finding the revenue-maximizing ex post

efficient auction reduces to selecting the best shutdown curve among the family defined in

Proposition 2. No matter which shutdown curve is optimal,7 a modified Vickrey auction

with an optimal reservation price and participation subsidy is the revenue-maximizing ex

post efficient mechanism. According to Proposition 4, the optimal participation subsidy

equals the entry cost at the lower end of the optimal shutdown curve, the optimal re-

serve price equals the seller’s valuation or the valuation at the lower end of the optimal

7Since the set of all equicontinuous and monotonic shutdown curve is compact, the optimal shutdown

curve exists. The equicontinuity and monotonicity of the shutdown curve come from Proposition 1.
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shutdown curve, whichever is higher. ✷

4.2 Revenue-Maximizing Auctions with Proposition 3 Entry

The following proposition gives the counterpart results on revenue-maximizing auction

that implements an entry of the Proposition 3 family.

Proposition 5: Suppose C(v) is a solution of (16) and vℓ = inf{C(v)>c} v, cℓ = C(vℓ).

Under the regularity condition that J(v) increases wrt. v, a modified Vickrey auction with

a reserve price of max{J−1(v0), vℓ} and an entry subsidy cℓ to the participating bidders is

revenue-maximizing among all mechanisms that implement C(v).

Proof: The Proof is similar to that of Proposition 4. ✷

Based on Proposition 5, the following Corollary 4 establishes that a modified Vickrey

auction with a uniform reserve price and a uniform participation subsidy is the revenue-

maximizing auction satisfying ex post revenue-maximization.

Corollary 4: A modified Vickrey auction with optimally set uniform reserve price and

entry subsidy is revenue-maximizing among all auctions that satisfy ex post revenue-

maximization. Among those who participate in the auction, the highest bidder gets the

object and pays the second highest bid or the reserve price, whichever is higher. Moreover,

every participating bidder gets the entry subsidy. While the optimal participation subsidy

equals the entry cost at the lower end of the optimal shutdown curve, the optimal reserve

price equals J−1(v0) or the valuation at the lower end of the optimal shutdown curve,

whichever is higher.

Proof: The Proof is similar to that of Corollary 3. ✷
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5 Concluding Remarks

This paper considers the endogenous entry and auctions design when bidders have a two-

dimensional private signals, i.e., their participation costs and private values. We find that

for any implementable entry equilibrium, the expected winning probability of a participant

must not depend on his private cost. Moreover, the expected winning probabilities of the

participants are given by the slopes of their shutdown curves. Based on this insight, the

families of implementable shutdown curves by the classes of ex post efficient mechanisms

and ex post revenue-maximizing mechanisms are fully characterized.

We further establish that in each of these classes of mechanisms, a modified Vick-

rey auction with a uniform reserve price and a uniform participation subsidy is ex ante

revenue-maximizing. The optimal entry subsidy and reserve price are determined by the

lower end of the respective optimal shutdown curve. For the ex nate revenue-maximizing

auction within the ex post efficient class, the optimal reserve price equals the seller’s

valuation or the valuation at the lower end of the optimal shutdown curve, whichever is

higher. For the ex ante revenue-maximizing among the ex post revenue-maximizing class,

the optimal reserve price equals the usual optimal reserve price J−1(v0) or the valuation

at the lower end of the optimal shutdown curve, whichever is higher.
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Appendix

Proof of Lemma 1: First, we show the existence of shutdown curves. For a given mechanism,

consider any type (ci, vi) ∈ [c, c] × [v, v]. If this type of bidder i participates with a positive

probability, bidder i with types (c′i, vi) where c′i < ci must participate with probability 1. The

arguments are the following. If bidder i with (c′i, vi) where c′i < ci participates with probability

1 and mimics the message of type (ci, vi) when participating, he gets strictly positive expected

payoff since his entry cost is lower. This implies that bidder i with (c′i, vi) where c′i < ci must

gain strictly positive payoff when he participates and submits optimal message. Thus bidder i

with (c′i, vi) where c′i < ci participates with probability of 1. Equivalently, if bidder i with (ci, vi)

participates with probability 0, bidder i with types (c′i, vi) where c′i > ci must participate with

probability 0. Based on this observation, for each vi ∈ [v, v], we have a critical value Ci(vi) ∈ [c, c]

so that bidder i with types (ci, vi) where ci < Ci(vi) must participate with probability 1, and

bidder i with types (ci, vi) where ci > Ci(vi) must not participate at all. Note that there is no

possibility of stochastic participation unless for types (vi, Ci(vi)),∀vi ∈ [v, v].

Second, we consider the monotonicity of these shutdown curves. We claim that Ci(vi) ≥

Ci(v
′
i), if vi > v′i. We show this by contradiction. Suppose Ci(vi) < Ci(v

′
i) for v ≥ vi > v′i ≥ v.

Consider bidder i with type (ci, vi) where ci ∈ (Ci(vi), Ci(v
′
i)). If he participates and mimics

the message of type (ci, v
′
i), his expected payoff is at least equal to that of type (ci, v

′
i), which is

strictly positive. This leads to that bidder i with type (ci, vi) must participate with probability

of 1. This conflicts with the assumption that bidder i with type (ci, vi) where ci ∈ (Ci(vi), Ci(v
′
i))

does not participate.

Third, we show that Ci(vi) is continuous. We show this by contradiction. Suppose Ci(·) is not

continuous at vi ∈ (v, v) without loss of generality. Then we must have limv→vi− Ci(v) < Ci(vi)

since Ci(·) is nondecreasing. Note that Ci(·) is a bounded nondecreasing function, so we have

limv→vi− Ci(v) exists. Consider bidder i with type (ci, vi) where ci ∈ (limv→vi− Ci(v), Ci(vi)).

The expected payoff of bidder i with type (ci, vi) must be strictly positive. Then bidder i with

type (ci, ṽi) where ṽi is slightly smaller than vi also get strictly positive expected payoff if he

mimics the message of type (ci, vi). This result conflicts with the assumption that (ci, ṽi) does
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not participate. ✷

Proof of Proposition 1: From the arguments that follow Lemma 1, we have (12) must hold.

From (1) and (7), we have that

Ui(p,x; ti, t
′
i) = Ui(p,x, t′i, t

′
i) + (vi − v′i)Qi(p, t′i) + (c′i − ci),

∀ ti = (ci, vi), t
′
i = (c′i, v

′
i) ∈ Se

i (Ci),∀i ∈ N . (A.1)

From (3) and (A.1), we have

Ui(p,x; ti, ti) ≥ Ui(p,x, t′i, t
′
i) + (vi − v′i)Qi(p, t′i) + (c′i − ci),

∀ti = (ci, vi), t
′
i = (c′i, v

′
i) ∈ Se

i (Ci),∀i ∈ N . (A.2)

Thus (3) is equivalent to (A.2). Using (A.2) twice, we have that

(vi − v′i)Qi(p, t′i) ≤ Ui(p,x; ti, ti) − Ui(p,x, t′i, t
′
i) ≤ (vi − vi

′)Qi(p, ti),

∀ ti = (ci, vi), t
′
i = (ci, v

′
i) ∈ Se

i (Ci), vi ≥ v′i,∀ i ∈ N . (A.3)

Equation (A.3) implies (8). From (A.3), we have that

Qi(p, ti)δ ≤ Ui(p,x, t′i, t
′
i) − Ui(p,x; ti, ti) ≤ Qi(p, t′i)δ,

∀ t′i = (ci, vi + δ), ti = (ci, vi) ∈ Se
i (Ci), ∀ i ∈ N . (A.4)

Since Qi(p, ti) is increasing in vi, (A.4) implies

∂Ui(p,x; ti, ti)

∂vi
= Qi(p, ti), ∀i ∈ N , ∀ti = (ci, vi) ∈ Se

i (Ci),∀ i ∈ N . (A.5)

Adopting similar procedure for deriving (A.5), we have

∂Ui(p,x; ti, ti)

∂ci
= −1, ∀i ∈ N , ∀ti = (ci, vi) ∈ Se

i (Ci),∀ i ∈ N . (A.6)

(A.5) and (A.6) give (9) and (11).

Consider any four types in Se
i (Ci): (ci, vi), (Ci(vi), vi), (ci, v

′
i) and (Ci(v

′
i), vi) where v′i =

vi + dvi with dvi > 0 and vi, v′i ∈ [vℓ
i , v

u
i ]. From (A.5), we have

Ui(p,x; (ci, v
′
i), (ci, v

′
i)) − Ui(p,x; (ci, vi), (ci, vi))

=
∂Ui(p,x; (ci, vi), (ci, vi))

∂vi
dvi + O((dvi)

2). (A.7)
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From (12) and (A.6), we have

Ui(p,x; (ci, v
′
i), (ci, v

′
i)) − Ui(p,x; (ci, vi), (ci, vi)) = C ′

i(vi)dvi + O((dvi)
2). (A.8)

(A.7) and (A.8) imply that

C ′
i(vi) =

∂Ui(p,x; ti, ti)

∂vi
, ∀ti = (ci, vi) ∈ Se

i (Ci), where vi ∈ [vℓ
i , v

u
i ], ∀i ∈ N . (A.9)

(A.9) gives (10).

We have shown (8)-(12) from (2), (3) and (5). Now we need to show (2) and (3) from (8)-

(12), (5) and (6). (2) is directly from (12), (9) and (11). In order to show (3), we only need to

show (A.2).

∀ti = (ci, vi), t
′
i = (c′i, v

′
i) ∈ Se

i (Ci),∀i ∈ N , where vi > v′i, (8), (9) and (11) imply

Ui(p,x; ti, ti) − Ui(p,x, t′i, t
′
i)

= [Ui(p,x; ti, ti) − Ui(p,x, t′′i , t
′′
i )] + [Ui(p,x, t′′i , t

′′
i ) − Ui(p,x, t′i, t

′
i)]

= (c′i − ci) +

∫ vi

v′i

Qi(p, si)dv ≥ (vi − v′i)Qi(p, t′i) + (c′i − ci), (A.10)

where t′′i = (c′i, vi) and si = (c′i, v). Similarly, ∀ti = (ci, vi), t
′
i = (c′i, v

′
i) ∈ Se

i (Ci),∀i ∈ N , where

vi < v′i, the same result holds.

Thus we have (A.2), i.e., (3) is shown. ✷

Proof of Lemma 2: From (1),

∫ c

c

∫ v

v
Ui(p,x; ti,mi(ti))f(vi)g(ci)dvidci

=

∫ c

c

∫ v

Vi(ci)

{

∫

T−i

[vipi(m(t)) − xi(m(t))]f−i(t−i)dt−i − ci

}

f(vi)g(ci)dvidci

=

∫

T
[vipi(m(t)) − xi(m(t))]f(t)dt −

∫ c

c

∫ v

Vi(ci)
cif(vi)g(ci)dvidci, (A.11)

where f−i(·) is the density function of t−i, and f(·) is the density function of t. We use

Ui(p,x; ti, ∅) to denote the expected payoff of bidder i if he does not participate. Note that

Ui(p,x; ti, ∅) = 0, ∀ti, ∀i ∈ N .
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From (A.11), we have

N
∑

i=1

∫ c

c

∫ v

v
Ui(p,x; ti,mi(ti))f(vi)g(ci)dvidci

=

∫

T

N
∑

i=1

[vipi(m(t)) − xi(m(t))]f(t)dt −
N

∑

i=1

∫ c

c

∫ v

Vi(ci)
cif(vi)g(ci)dvidci. (A.12)

From (13) and (A.12),

R0(p,x) = v0 −
N

∑

i=1

∫ c

c

∫ v

v
Ui(p,x; ti,mi(ti))f(vi)g(ci)dvidci −

N
∑

i=1

∫ c

c

∫ v

Vi(ci)
cif(vi)g(ci)dvidci

+

∫

T

N
∑

i=1

pi(m(t))(vi − v0)f(t)dt. (A.13)

From (9), (11) and (12), we have

∫ c

c

∫ v

v
Ui(p,x; ti,mi(ti))f(vi)g(ci)dvidci

=

∫ c

c

∫ v

Vi(ci)
Ui(p,x; ti, ti)f(vi)g(ci)dvidci

=

∫ c

c

(

∫ v

Vi(ci)
(

∫ vi

Vi(ci)
Qi(p, (ci, si))dsi)f(vi)dvi

)

g(ci)dci

+

∫ c

c

∫ v

Vi(ci)
Ui(p,x, (ci, Vi(ci)), (ci, Vi(ci)))f(vi)g(ci)dvidci

=

∫ c

c

∫ v

Vi(ci)
Qi(p, (ci, vi))(1 − F (vi))g(ci)dvidci +

∫ cℓ
i

c

(

∫ v

v
(cℓ

i − ci)f(vi)dvi

)

g(ci)dci

=

∫ c

c

∫ v

Vi(ci)
Qi(p, (ci, vi))

1 − F (vi)

f(vi)
f(vi)g(ci)dvidci +

∫ cℓ
i

c
(cℓ

i − ci)g(ci)dci. (A.14)

Note that the type (ci, Vi(ci)) where ci ≤ cℓ
i enjoys a surplus of cℓ

i − ci.

From (7), we have
∫ c

c

∫ v

Vi(ci)
Qi(p, (ci, vi))

1 − F (vi)

f(vi)
f(vi)g(ci)dvidci =

∫

T
pi(m(t))

1 − F (vi)

f(vi)
f(t)dt. (A.15)

From (A.14) and (A.15), we have

N
∑

i=1

∫ c

c

∫ v

v
Ui(p,x; ti,mi(ti))f(vi)g(ci)dvidci

=

∫

T

N
∑

i=1

[pi(m(t))
1 − F (vi)

f(vi)
]f(t)dt +

∫ cℓ
i

c
(cℓ

i − ci)g(ci)dci. (A.16)
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From (A.13) and (A.16), we have

R0(p,x) = v0 −
N

∑

i=1

∫ c

c

∫ v

Vi(ci)
cif(vi)g(ci)dvidci −

N
∑

i=1

∫ cℓ
i

c
(cℓ

i − ci)g(ci)dci

+

∫

T

{ N
∑

i=1

pi(m(t))(J(vi) − v0)

}

f(t)dt. (A.17)

✷

Proof of Proposition 2: From (10) and (9), C ′(v) is the winning probability of participant i

with value vi = v. For an ex post efficient auction, the winning probability of participant i with

vi < v0 is zero; the winning probability of participant i with vi ≥ v0 is the probability of all the

other bidders do not participate or their valuations are lower when they participate. ✷

Proof of Proposition 4: Since the mentioned auction is a modified second price auction, it

is a weakly dominant strategy of the participants to bid their true values when participating.

Therefore, the allocation of the auction must be ex post efficient.

Next, we show the auction implements C(·). We consider the case where C(·) is not always

equal to c or c without loss of generality. We use C̃(·) to denote the symmetric shutdown

curve implemented by the auction. According to Lemma 1, C̃(·) must be nondecreasing and

continuous. Clearly, C̃(·) cannot be always equal to c or c. We define ṽℓ = inf{C̃(v)>c} v,

c̃ℓ = C̃(vℓ) and ṽu = sup{C̃(v)<c} v. Note that we must have ṽℓ ≥ v0.

Denote the probability of nonparticipation of a bidder by Ã0. Since the auction is ex

post efficient, we have that the winning probability of bidder i is Q̃i(ci, vi) = 0, ∀vi ∈ [v, ṽℓ).

Q̃i(ci, vi) = (Ã0 +
∫ vi
ṽℓ

G(C̃(v))f(v)dv
)N−1

, ∀vi ∈ [ṽℓ, ṽu]. From Proposition 1, we have C̃ ′(vi) =

(Ã0 +
∫ vi
ṽℓ

G(C̃(v))f(v)dv
)N−1

,∀vi ∈ [ṽℓ, ṽu], ci ≤ C̃(vi). This means that C̃(·) belongs to the

Proposition 2 class.

To show that C̃(·) is same as C(·), we only need to show that (c̃ℓ, ṽℓ) = (cℓ, vℓ). The type

(c̃ℓ, ṽℓ) is indifferent between participation and nonparticipation by construct of C̃(·). On the

other hand, the type (cℓ, vℓ) is clearly indifferent between participation and nonparticipation

in the mentioned auction. If (c̃ℓ, ṽℓ) is different from (cℓ, vℓ), then either vℓ < ṽℓ, cℓ ≥ c̃ℓ or

vℓ > ṽℓ, cℓ ≤ c̃ℓ as both (c̃ℓ, ṽℓ) and (cℓ, vℓ) are on the left or bottom boundary of the type
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space. However, in either case, it is impossible that both types (c̃ℓ, ṽℓ) and (cℓ, vℓ) are indifferent

between participation and nonparticipation in the mentioned auction. This contradiction implies

that (c̃ℓ, ṽℓ) = (cℓ, vℓ) must hold.

Based on Lemma 3, the mentioned auction is then the revenue-maximizing auction among

all ex post efficient auctions that implement C(·). Moreover, under the regularity condition that

J(v) increases wrt. v, the above-defined auction is the revenue-maximizing auction mechanism

implementing shutdown C(v) if J(vℓ) ≥ v0. This is clear from (14). ✷
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