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Abstract

This paper applies Contingent Claims model a la Dixit and Pindyck
(1994), on bank investment. Banks are indifferent between investing
their assets on their own and extending loans to investors. The critical
decision faced by the banker is the timing of the investment decision
and its uncertainty. When banks make an irreversible investment de-
cision they exercise the option to invest and give up the opportunity
of waiting for new information to arrive. This lost option value is in-
corporated in the investment cost. Therefore, the value of the project
must exceed the investment cost by the value of keeping the investment
option alive. Using a third-moment mean-reversion process of the in-
vestment’s volatility, the model shows that a higher mean-reversion
parameter reduces both the value of the option to invest and the crit-

ical value at which the project deems feasible.
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1 Introduction to the model

The neo-classical theory of investment postulates that a firm should
invest in a project as long as the present value of the expected stream
of profits that this project will generate should exceed (or at least
equal) the present value of the expenditures stream required to build
the project. Thus, the net present value (NPV) of the investment
project is greater than zero. This classical theory fails to capture
three main characteristics in most investment decisions. First is the
issue of irreversibility. A classical NPV calculation would implicitly
assume that if economic conditions turn to be sluggish, the firm shuts
down the project and recovers the money that is invested. However,
this is not a realistic outcome. Second, is the issue of wuncertainty.
Again, neoclassical NPV calculation does not assess probabilities of
alternative outcomes over the future of the project life. Third is the
timing of investment. Firms, or banks in this case, can postpone their
investments to obtain more information about the future, albeit never
complete information. The ability to delay an irreversible investment
project can affect the decision to invest. This is the main theme of the
real option approach, first developed by McDonald and Siegel (1986).
Firms or banks with an opportunity to invest are holding an ”option”
analogous to a financial call option. When a firm makes an irreversible
investment, it exercises its option to invest. Doing so, the firm gives
up the possibility of waiting for new information to arrive. That might
affect the decision to invest now. This lost option value is an opportu-
nity cost that must be included as part of the cost of the investment.
Therefore, the value of the project must exceed the investment cost,
by an amount equals to the value of keeping the investment option
alive. Besides its feasibility, the real options model reflects the varia-
tions in value for any investment project in a continuous setting that
is reflective of real economic variations, for example, fluctuations in

interest rates.



1.1  An illustrative example

! Suppose that the project generates a stream of cash flow equals to
the price of the output. Assume for now that price at time zero is
Py =200 and that the firm produces one output per year. This price
is subject to go up to 300 with 50% chance or go down to 100 with
50% chance. So the expected value of the price is 200. Trying to
avoid risk one can hedge against this price fluctuation. Let the initial

investment be 1,600, the value of the project today is

=, 200
—1600 + )
 (1.10)!

—1600 + 2200 = 600

If P drops to 100 then the investor needs to sell short % =11
units. Suppose P turns down to be 100 then the investor collects
100x 11 = 1100 from the hedging contract and the value of the project

turns to be

100
Sy —— =1100
< (1.10)"

so the net outcome is 1100 + 1100 = 2200.

Suppose now that the price went up to 300. The investor has sold
short 11 units for 11 x 200 = 2200 and should pay 11 x 300 = 3, 300
thus incur a net loss of 2200 — 3300 = —1100 However, the value of

the project is now

= 300
= 3300
£ (1.10)

and the net outcome is 3300 — 1100 = 2200 same as in the previous
case. 'Translating this example into a real option case let F; be the

value of the investment opportunity next year. If P = 300 then

300 1700

i 0
Fy = —1600 + =
2= (1.10)!

If P =100 then the option is unexercised so F; = 0. Now we need to

find the value of the option today Fy. For that we create a portfolio

!The example here is borrowed from Dixit and Pindyck (1994)



with two components: first, the investment opportunity itself. Second,
a certain amount of output. The portfolio is risk-free (no arbitrage).

The value of the portfolio today is
$o = Fo —nPy

If Py = 200 then ¢g = Fy — 200n. The value of the portfolio next year
is: ¢1 = F1 — nP; which depends on P;. If P, = 300 then

= 300
Fy = —-1600 + g = 1700
=0

(1.10)¢

Thus ¢1, = 1700 — 300n. If P, = 100, then F; = 0, the option goes
unexercised. Therefore ¢, = 0 — 100n. Now we need to chose n so

that the portfolio ¢, is risk-free. Set p1, = P1p:
1700 — 300n = —100n
so n = 8.5.
¢1 = 1700 — 300(8.5) = —850

whether P rises to 300 or falls to 100. To calculate the capital gain
of this portfolio, first we should figure the payment that must be paid
to the holder of the short position (the option premium).

Capital gain = ¢1 — ¢y — option premium

No investor would be willing to hold a long position if capital gain is
zero. The holder of a long position will require the risk free rate which
is assumed 10%. Since expected price is 200 per unit, the required
return is 0.1P; = 0.1 x 200 = 20 per unit. Previously, the number
of units in the portfolio was found to be 8.5, therefore the option
premium is 20 x 8.5 = 170. Then the capital gain of holding this

portfolio over the year is given by:

$1 — ¢o — 170
¢1 - (Fg - ’I’LPO) — 170

—850 — [Fo — (8.5 x 200)] — 170
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=680 — Fy

Since there is no arbitrage, any capital gain must equal to 10% of the

initial portfolio, that is
680 — Fy = 0.1¢g

680 — Fy = 0.1(F, — 1700)
Fo =173

that is the opportunity cost of investing today. The full cost of invest-
ing today is 1600 + 773 = 2373 which is greater than 2200.

2 Basic real options model

Assume that the bank invests directly in a portfolio of projects in
order to diversify risk. The bank’s investments are partly irreversible
(sunk cost). These investments can be delayed, so the bank has the
opportunity to wait for new information to arrive in order to reduce
risk.

Let V be the value of the investment project of the bank. We can think
of V' as the discounted bank’s cash flow from this project. Following
McDonald and Siegel (1986), assume that in a given period of time V'

follows the following geometric Brownian motion:
dV =aVdt+oVdz (1)

where « is the growth rate of V' or the expected percentage rate of
change in V. ¢ is the standard deviation (uncertainty), and dz is the
increment of a Wiener process. The bank’s investment opportunity
is equivalent to a call option. An example would be if the bank is
contemplating a decision to invest in either project A or project B.
Therefore, the investment decision is considered as a problem of option
valuation. The bank will want to maximize the value of its investment
opportunity, F(V).

Let S denote the cost of the investment project. The payoff from



investing at time ¢ is V; — S. In a classical setting the bank’s maxi-

mization problem would be represented by:
F(V) = maz E[(Vy — S)e™"] (2)

T is the future time where the investment will be made and r is the
discount rate. But since we assume that V evolves stochastically,
we will not be able to determine a time 71'. Instead, the investment
condition will take the form of a critical value V* such that it is optimal
to invest as long as V > V*. We want to determine the point at which
it is optimal for the bank to invest S in return for an asset worth V.

To solve for V* we can use Contingent Claims analysis.

2.1 Contingent Claims solution

To make use of contingent claims analysis we should assume that the
stochastic variations in V' must be spanned by existing assets with
a price that is perfectly correlated with V' so that uncertainty over
future values of V' can be replicated by existing assets. Following
the conventional procedure of the spanning technique, let P be the
price of the asset that is perfectly correlated with V. Let ppas be
the correlation of P with the market portfolio M, then, ppas = pv .
Since P is perfectly correlated with V, P is assumed to evolve the
same way:

dP = puPdt + o Pdz (3)

i is the risk-adjusted rate of return on this asset. By the Capital
Asset Pricing Model (CAPM), p also reflects the asset’s systematic
risk. The p is given by:

p="r+¢ppro (4)

(rm=r)

where ¢ = is the aggregate market price of risk. rj; is the
expected return on the market. We assume that a < p for the bank
to invest in the project.

Let 6 = p — «, so that § > 0. If we think of 4 = a 4+ ¢ as the total



expected return on the project, that is , the dividend rate plus the
expected rate of capital gain, then § is an opportunity cost of delaying
investing in the project and keeping the option to invest alive. If § = 0,
that is if p = «, then there would be no opportunity cost to keeping
the option alive, and the bank would never invest in this project. Note
that if § is very large, the opportunity cost of waiting is large, thus
the value of the option will be very small. a then can be expressed as:
1 _.dV

= _Eg[—

o= gy
and 0 can be expressed as a function of V:

5(V) =~ Bl

Now F(V) can be determined by constructing a risk-free portfolio,
determining its expected rate of return, and equating that return to
the risk-free rate of interest r. To construct such a portfolio, consider
holding an option to invest which is worth F'(V). Assume a short

position of N = F'(V') units of the project. The value of this portfolio

is given by:
w=F{V)-F(V)V (5)
dw=dF (V) —dF'(V)V — F'(V)d(V)
where
F'(V)= %

This is a dynamic portfolio, so when the value V' changes, F'(V) may
change from one short interval of time to the other. Therefore, the
composition of the portfolio will be changed.

Although N = F'(V) may change from one short period to another,
it is fixed over each short interval of length d¢. The short position in
this portfolio will require a payment of §V F'(V') dollars to the holder
of the long position (the bank) every time period. An investor holding

a long position in this option will demand the risk-adjusted return

wV =aV + 0V



where oV represents the growth of the bank’s project (the capital
gain) and JV represents interest earnings or the dividend stream to
the depositors. The total return from holding the portfolio over a

short time interval dt is given by
dw — SV F'(V)dt

dw = dF (V) — F/(V)dV — 6V F'(V)dt (6)

In equation (6) the term dF'(V)V was omitted because we assume
that N = F'(V) is held constant over dt. To obtain an expression for

dF we use Ito’s lemma:

dF = F'(V)dV + %F”(V)(dV)2 (7)
where 2
F'(V) = 7
(dV)? = (aVdt)? + 2a0dtdz + (0Vdz)*
as

dz> =dt and dt*> ~0

(dV)? = 0%V?2d2?

(dV)? = o?V3at (8)

Substituting equation (8) into (6) gives the total risk-free return on
the portfolio:
1
§F”(V)(dV)2 — OVF'(V)dt (9)
again substituting equation (8) into (9) yields

1

50—2V2F"(V)dt — SV F'(V)dt (10)

In equilibrium equation (9) must equal equal the risk-free return in

the market, that is
rwdt = r[F(V) — F'(V)V]dt

%UQV2F"(V)dt —OVF'(V)dt =r[F(V) — F'(V)V]dt



Dividing through by dt and rearranging yields the differential equation
that F(V) must satisfy

%UQVQF”(V) +(r—=0)VF(V)—rF(V)=0 (11)

F(V) must also satisfy the following boundary conditions:

F(0)=0 (12)
F(V*)=V*-§ (13)
F(V) =1 (14)

Again V* represents the value of the project at which it is optimal to
invest.?

Condition (12) states that the option to invest will be of no value
when V = 0. Equation (13) is the value-matching condition, that is
upon investing, the bank receives a net payoff of V* — S. Rewriting
(13) as V* — F(V*) = S implies that when the bank invests in the
project, it gets the project value V', but gives up the opportunity to
invest F'(V). The critical value V* is obtained when this net gain
V* — F(V*) equals the direct cost of investment S. In other words,
the value of the project V* is set to equal the direct cost S plus the
opportunity cost F(V*).

Equation (14) is the smooth-pasting condition. That is, if F(V') were
not continuous and smooth at the critical exercise point V* | it is
better for the bank to wait Af to observe the next step of V. To
solve for F(V') we must solve equation (11) subject to the boundary
conditions (12), (13), and (14). McDonald and Siegel (1986) suggested

that the solution that satisfies condition (12) must take the form:
F(V)= AV’ (15)

Conditions (13) and (14) can be used to solve for A which is a constant

to be determined, and for the optimal value V*. 3

2Cox and Ross (1976) show that the same solution is obtained using dynamic program-

ming analysis if we assume that all agents are risk neutral.
3The general solution to equation (11) as suggested by McDonald and Siegle takes the

form F(V) = A; V% 4+ A5V but the boundary condition (12) implies that (r—&)V F'(V) =



0 is a known constant which depends on the parameters o, r, and ¢
of equation (11) where 6 > 1.
To obtain values for A and V*, we substitute equation (15)into (13)
and (14) so that
F(V)=Av*¥=v*_3§
a=V28 (16)
By equation (14), F'(V*) = §AV*~1 = 1. Using equation (16) to

substitute for A we obtain:

Vi=(—)S (17)

Substituting equation (17)into (16) to obtain a value for A as*

(6 —1)!

A= 00501

(18)

Equations (15),(17), and (18) give the solution to the critical values
of V* and F(V*).

3 A mean-reversion model

Geometric Brownian motion models have been criticized theoretically
on the ground that these processes do not diverge over time. This
implies that firms facing this sort of price or cash flow process can earn
infinite profit (Metcalf and Hasset, 1995). Mean-reversion precesses in
many ways provide a more plausible approximation to the stochastic
nature of a project or an asset value. This section introduces the
mean-reversion process based on the derivations made in the previous

section.?

0 thus As = 0, therefore the solution is confined to the form F(V) = AV? or just
F(V) = AV®.

4See appendix for solution.

>The analysis here follows Dixit and Pindyck (1994).
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Let V now follow the mean-reversion process given below, which is

known as Geometric Ornstein-Uhlenbeck process
AV =n(V = V)Vdt+ oVdz (19)

where 7 is the rate of the reversion to the mean. Again, o is the stan-
dard deviation and dz is the increment of a Wiener process. Equation
(19) implies that the current value of the project is known, but future
values are lognormally distributed with a variance that grows linearly
with time. The future value of the project is always uncertain. Further
we assume that total revenue from the project covers its average total
cost, so the bank will not either shut down or abandon the project in
the short-run at least. Another auxiliary assumption is needed to pre-
serve the assumption of lognormality, is that the value of the project,
V is always positive.

The expected percentage rate of change in V is

1 _dv, 1 _n(V—-V)Vdt+oVdz
—E[—]=—E
| 1% ] dt [ 1% ]

dt
=n(V=V)

as
El[dz] =0

The expected absolute rate of change is given by

1 1 _
ZBldV] = ZE[(n(V — V)Vt + oV dz]

1 _
d_tE[dV] =n(V-V)V

1 _
BV =nVV - nV? =0
if

Tt has a maximum at®

TV 2
6That is obtained by setting W =0.
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This particular process does have an analytical solution to the optimal
investment problem. By substituting the value of 6(V) = p—n(V —V)
into equation (11) we obtain the following second order differential
equation:

%UQVQF”(V) +r—p+n(V-VIVEV)—-rF(V)=0  (20)

Again this equation must satisfy the boundary conditions (12), (13),
and (14). Now assume that the speed of the mean-reversion process
is a linear function of the value of the investment project V. A rela-
tionship of the form

n=p+p6V (21)

B2 is the “acceleration” parameter that measures the speed of ad-
justment by which the value of the project converges to the long-run
mean. Substituting equation (21)into (20) yields

%JQVQF”(V) +r—p+ B+ BV)V =V)VF'(V)=rF(V) =0 (22)

One advantage of allowing for a third moment process for distribution

of V is to gain insights about the skewness of this distribution around

the mean.”

E _17)3
7One measure of skewness can be defined as %
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3.1 An analytical solution

The analytical solution to equation (22) is presented in detail in the

appendix. As demonstrated, the solution is expressed by the following

equation:
1 _
VIR(V)[5o*0(0 = 1) + (r — p+0V)0 — rl+
1 .
V9+1[§U2Vh"(V)+(020+r—u+nV—nV)h’(V)—nﬁh(V)] =0 (23)

Equation (23) must hold for any value of V', thus the two main brack-
eted terms in the equation must equal zero. The quantity in the first
bracket represents a quadratic equation which has two solutions for 6.
One is positive and the other is negative. Ounly the positive solution
satisfies the boundary condition #'(0) = 0.

Setting the quadratic equation to zero and solving for 6 as follows:

1 _
~o* 90— 1)+ (r—p+nV)0—1r=0

2
1 _
30202—(502—7“-!-;1—771/)0—7“:0 (24)

. . . . b b? dac
The positive solution to equation (24) is given by 0 = ——5——=9¢,

then

1 (u=r—nV) \/(r—,u—i—nV) 1,  2r
9—5"‘ 0_2 + [ 0_2 —5] +§ (25)

The second bracketed term of equation (23) is set to equal zero:

1 _
§U2Vh”(V) +(@?0+r —p+nV —qV)W (V) —=nbh(V) =0 (26)

To transform equation (26) into a standard form equation we pro-
ceed as follows:
Let z = 2;7—;/ and h(V) = g(x) therefore,

W(V) =g )’ = g'() () (27)
WYY = (@) ) = ' () Y (28)



Substituting equations (27) and (28) back into (26) yields

xg"(z) + (y — z)g'(z) — Og(x) =0 (29)
where _
y=2p 2l

Equation (29) is known as Kummer’s equation. Its solution is given
by the confluent hypergeometric function H{z,0,y(0)], which has the
following series:

0 00+ 00+ 1)(0+2)2°
Hlz: 0yO) =1+ ot Pyt D+ 23

(30)

This confirmed that the solution to equation (20) is indeed of the form
given by
F(V) = AV’n(V)

as indicated in the appendix. Then the solution takes the form:
0 772N
F(V) = AVIH(Z3V;0,y) (31)

Again A is a constant to be determined. A and V* must be solved
numerically using the boundary conditions (13) and (14).
To check whether there exist an analytical solution to equation (22)
we substitute n = 1 + 2V into (26)
1 _ _
SO VI (V) +[0°0 47— p+ BV = (B = V)V = BV (V)
—[(B1 = B2V)0 + B20VIR(V) = 0

Factoring out f; and rearranging terms yields the following second

order differential equation?
zg"(z) + [y — (1 — c1)z — cp2®]g () — (1 — e1 — co)0g(x) = 0 (32)
where

[(r — p+ (B1 + B2V)V]

o2

2
y =20+

8See appendix for solution
9 Again, solution is provided in the appendix
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¢ ==V
B

oy — 0252
2 2512

There is no direct analytical solution to equation (32) as it was the
case for equation (29) where the solution was approximated by the
confluent hypergeometric expansion. Therefore, a numerical solution
must be established realizing that the numerical solution of (32) is
equivalent to the numerical solution of (22). The following subsection
provides an elaborate discussion of the numerical solution to the bank
investment problem with various scenarios as how the speed of con-
vergence or the acceleration of the mean-reverting process affects the

value of the option for the bank to invest.

3.2 A numerical solution

In solving equation (22) numerically, the parameters of the models are
given the following values: S =1, r = 0.04, 4 = 0.08, and ¢ = 0.2.
Again, S is the amount of initial investment. It is normalized to one.
r is the risk-free interest rate. u is the expected rate of return on the
investment, and o is the measure of uncertainty. of These values are
widely adopted in the real options literature.

Three cases are of a special interest; V > 8,V < S, and V = S. The
solutions are depicted in the figures (1)-(??) provided in the appendix.

Analyzing these figures, we can remark the following results.

e The larger is V, the larger is F(V) and the higher is V*, the
critical value at which it is optimal for the bank to invest (Figures
(1)-(3)). Larger V implies a higher expected rate of growth of V

so that the value of an option to invest V' will become higher.

e For V < S, a larger value of 3, the mean reversion parameter,
reduces the investment opportunity (V') (Figures (4)-(6)). This
also implies that a larger value of By results in a lower value of
V.

15



e For a large V, that is for V > S as B gets larger, F'(V) becomes
concave for small values of V', so (35 rises rapidly, therefore F'(V)
rises rapidly as well for a small value of V. However, the value
of F(V) diminishes with large 8y as V gets larger (Figures (7)-
(22)).

Assuming that small banks invest in relatively small projects and large
banks invest in large projects, the implication of this real options set-
ting to banking is that the size of the bank does not matter with re-
spect to its financial soundness, what matters is the quality of bank’s
investment, whether the value of the investment exceeds its initial cost

is the critical question.

4 Conclusion

Following Dixit and Pindyck (1994), a real options approach is adopted
to model bank investments. A new dimension is added to the mean-
reversion process by modelling the mean-reversion parameter as a lin-
ear function of the value of the project. Unlike Dixit-Pindyck model,
the proposed process has no direct analytical solution so that a nu-
merical solution was derived. As the average value of the investment
project gets large so does the value of the option to invest in the
project. It is also shown that as the average value of the project goes
below its initial cost, a larger value of the mean-reversion parameter
reduces the value of the investment option. However, as the value of
the project exceeds its initial cost, then a larger mean-reversion pa-
rameter rises the value of the option only for small values of the project
and reduces it as the value of the project gets larger. The implication
for bank’s investments are exemplified by the fact that large banks
usually invest in relatively large projects compared to small banks.
If we regard the rate of speed of the mean-reversion parameter as a
stabilizing factor for the financial soundness of the bank, the model

suggests that the size of the project should not really matter, what

16



matters is whether the value of the project is lower or higher that the

initial cost of investment.
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APPENDIX

Solution to equation (18).

=Gk
V= (008
0— S
7 (T;—%)_GS ) (?z—{)l
A= (2 = - 15090
a= G

The analytical solution to equation (22).
First, we proceed by solving equation (20) so we defer the substitution
of n = 1 + B2V to the end.
Cox and Ross (1976) suggested that the solution to a second order
differential equation of form (20) will take the form of the following
function:

F(V) = AV'n(V) (A-33)

where A and 6 are constant to be determined in a way such that
h(V) satisfy a differential equation with known solution. We need to
substitute equation (A-33) into (20), but first we derive the first and

second derivatives of F/(V') in order to make the substitution tractable.
F'(V) = 0AV '~ Ih(V) + W' (V) AV?
F'(V) = AVO[oVth(V) + ' (V)] (A-34)
F"(V) = (0-1)0AV? 2 (V)41 (V)OAV 11" (V) AVO+0h' (V) AVO T
F'(V)=AV°[0(60 — )V 2h(V) + VIR (V) + (V) + 0V 1R (V)]
F'"(V)=AVP[0(60 — )V 2h(V) + 20V IR/ (V) + K" (V)] (A-35)

Now using equations (A-34) and (A-35) in (20) yields:

1
§a2v2AV"[9(9 — 1)V 2h(V) + 20V R (V) + " (V)]+

18



[r—p+n(V—=V)VAV[OV h(V) + ' (V)] —rAV’R(V) =0

Dropping A from all terms and rearranging terms result in

%a2v9 [0(0 — 1)I(V) + 20VHE (V) + K" (V)V2]+

VOr —p+n(V—=W]OhV)+HVIV]-rVh(V) =0

V%(V)[%(ﬂe(e — 1)+ (r—p+nV)0—r]+
VISP VRY (V) +0%0H (V) +[r— (V7 — V) (V) = nBh(V)} = 0
V‘gh(V)[%UQQ(H D) (r—p V)0 — o]

1 _
V"“[502Vh”(V)+(020+r—u+nV—nV)h’(V)—nﬁh(V)] =0 (A-36)
The solution to equation (29).
Substituting equations (27) and (28) into (26) yields

SOPVIg" @) )+ (0% 47— i+ — V) () 2] —mfg) = 0

2V ) (TN Y (@) — (o) = 0
WY )+ (g + 2TV 20V ) gyt =0
oY g @) + 20+ 2T I () =0

2 )+ 20+ XAV 20 ) ) =0

The solution to equation (32).

1<72Vh"(V) +[02 0+ —p+ BV — (B — B2V)V — BoVEIR (V)

2
—[(B1 = B2V)0 + B20V]R(V) = 0

%JQVh"(V) +[0% 0+ —p+ BV — (B — BV)V — BVZR (V)

—[(B1 — B2V) + B2VIOW(V) =0

261 )2 +[0%0+1—p+ BV — (81— B V)V —B2V?]g (2)(

L,
50 Vg"(f)(?

2

2p
)

19



—[(B1 — B2V) + B2V ]0g(x) = 0
(r—p+BV)Bi 2(81 = BV)BiV 251521/2] ,
o2 - g (z)

o2 02

262V
02

¢ (@) +[26:0+
—[(B1 — B2V) + B2V]0g(x) = 0

Factoring 1 out results in:

— I/ , 2
2(r p;—ﬁlV) 2BV n 20,VV. 2BV 19/ (z)

201V
'6—129"(20) +[20 +

o o o2 o2 o2
T By B _
il 5 V+ B V1bg(z) =0

7 B2 U2ﬁ2 2\ 1 B2 02/82 _
g (x)+(y—x+EVx— 25 z%)g (m)—(l—EV+ 25 z)fg(z) =0

zg"(x) + [y — (1 — c1)z — c22”]g (2) — (1 — ¢1 — com)0g(z) = 0

Graphs.
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Figure 1: F(V) against V for V < S, 8, = 0.1, and 3, = 0.5.
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Figure 2: F(V) against V for V. < S, V > S, and V = S, 5 = 0.1, and
Ba = 0.5.

22



Figure 3: F(V) against V for V > S, 8, = 0.1, and 3, = 0.5.
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Figure 4: F(V) against V for V < S, 3, = 0.05 .
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Figure 5: F(V) against V for V < S, 8, = 0.1.
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Figure 6: F(V) against V for V < S, 3, = 0.5.
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Figure 7: F(V) against V for V =S, 3, = 0.05.
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Figure 8: F (V) against V for V = S, 8, = 0.1.
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Figure 9: F(V) against V for V =S, 3, = 0.5.
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Figure 10: F(V) against V for V > S, 3, = 0.05.
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Figure 11: F(V) against V for V> S, ; = 0.1.
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