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I. Introduction: The outliers in a dataset are the points in a minority that are highly unlikely to 

belong to the population from which the other points (i.e. inliers), which are in a majority, have 

been drawn. Alternatively, the outliers exhibit a pattern or characteristics that are alien or non-

conformal to those of the inliers.  Stated differently, if a majority of data points, ip p∈ ,  lie in a 

range (a, b), then a minority of data points, 
jq q∈ , far exterior to (a, b), are outliers in the data 

set .D p q≈ ∪ The said range that divides D into p and q is often fuzzy since the definition of 

‘far exterior’ cannot be exact. The points in the ‘near exterior’, which belong neither to p nor to 

q are in the indeterminate zone and to consider them the outliers or the inliers often needs 

some criterion, often ad hoc or presumptive in nature.  

 

In any case, outliers in a data set pull the measures of central tendency towards themselves and 

also inflate the measures of dispersion leading to biased and inefficient estimators. The pulled 

measures of location and inflated measures of dispersion often lead to masking of the outliers. 

A single prominent outlier can mask other relatively less prominent outliers and thus may cause 

delusion and evade their detection by a cursory inspection.    

 

II. Linear Regression Analysis: On many occasions we desire to explain changes in a dependent 

variable (Y ) as a response to changes in (a single or multiple) explanatory variables ( X ) and we 

hypothesize that the relationship between Y and X  is linear. That is to say that the data set is 

described as 1 1 2 2 ... m mY b X b X b X= + + +  or, in another sense, 1 2
1 2

... .
Y Y Y

mX X X
m

Y X X X
∂ ∂ ∂

∂ ∂ ∂
= + + + We 

obtain a data set ( ,1)Y n  and ( , )X n m such that .n m≥ This dataset may be presented as a system 

of n equations in m unknowns or, in matrix representation, .Y Xb=  If n m> and the equations 

are inconsistent among themselves, no b  will exactly satisfy the relationship ,Y Xb= but a 

residual, ( )e n , will make up .Y Xb e= +  From this, we have ,g g g
X Y X Xb X e

− − −= + where g
X

− is 

the generalized inverse of .X  Since 1( )g
X X X X

− −′ ′=  such that 1( ) ,g
X X X X X X I

− −′ ′= =  we have 

1 1( ) ( ) .X X X Y b X X X e
− −′ ′ ′ ′= +  We assume X and e  to be uncorrelated such that 0X e′ = whence 

we obtain 1ˆ ( ) .b X X X Y−′ ′= This procedure of estimation of b is known as the method of 

(ordinary) least squares or the OLS. 

 

The method of ordinary least squares is very powerful, but at the same time it is very sensitive 

to contamination in Y or X and the nature of e as well the relationship between X and .e  As for 

the residuals ( e ), it is required that each ie
 
should have zero mean and constant (non-zero) 

standard deviation, or 2 2( ) 0; ( ) 0,i ie E e σΕ = = ≠  where ( )Ε � is the (statistical) expectation of ( ).�

It is also necessary that ( ) 0,L Te eΕ =  where Le and Te
 
are leading and trailing points, which is 

relevant only if the data points obey some order such as one in the time series. Together, these 

requirements are summarized to state that 2( ) .E ee Iσ′ =  As to X and its relationship with e , it is 

necessary that ( ) 0.X e′Ε = Normally, X should be fixed or non-stochastic. If these conditions are 
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satisfied, the OLS provides the BLUE or best linear unbiased estimator (of the parameters, b ). 

These requirements are collectively called as the Gauss-Markov conditions (Plackett, 1950; 

Theil, 1971). It may be noted that the OLS to be BLUE does not require ie
 
to be normally or even 

identically distributed. 

 

Aitken (1935), who was perhaps the first statistician to present the method of the ordinary least 

squares in matrix notations, extended the OLS to his Generalized Least Squares (GLS)                                       

to take care of the cases when 2( ) .ee Iσ′Ε = Ω ≠  The GLS-estimated b  (to be denoted by GLSb ) is 

obtained as 1 1 1( ) .GLSb X X X Y
− − −′ ′= Ω Ω  Since Ω (and hence 1−Ω too) is a symmetric positive 

definite matrix, we may factorize 1 ω ω− ′Ω = , whence  1[( ) ( )] ( ) ( ).GLSb X X X Yω ω ω ω−′ ′=  In this 

sense, the GLS is a weighted least squares, where ω is the weight matrix. In the OLS we have 

(1/ ) .Iω σ=  Aitken showed that the GLS estimators are BLUE. In particular, when the off-

diagonal elements of Ω  are all zero, we have 1/ii iω σ=  for all 1,i n=  and 0ijω = for 

; , 1, .i j i j n≠ =  

  

III. The Case of Contaminated Datasets: In spite of  meeting all the conditions mentioned above, 

contamination of the dataset makes the OLS an unsatisfactory method of estimation. This fact 

can be demonstrated by a simple example.  

 

Table-1. Generated Data Set to Demonstrate the Effect of Mutilation by Introduction of Outliers 

Original (Generated) Data Set Mutilated Data Set 
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The dataset presented in Table-1 (left panel) has been generated such that 

1 28.7 0.1 16 ,Y X X e= + + +
 

where e  is a very small disturbance. The ordinary least squares 

estimation of parameters from this data set gives 1
ˆ 8.74057 0.09872 15.99787Y X= + + which is very 

close to the generator equation. Next, we have mutilated 8,2X and 9,1X  only slightly, which 

cannot possibly be detected by a mere eye inspection (right panel). Once again we apply the 

ordinary least squares estimation, which gives 1 2
ˆ 11.52752 0.98960 14.65721Y X X= + + . It may be 

noted that there is a tenfold increase in the magnitude of the coefficient associated with 1.X The 

value of 2
R  has dropped down from 0.999998 to 0.760542. The moral of this story is clear: 

presence of outliers and corruption of only a few data points can sizably distort the estimated 

values of some or all parameters of the regression equation.   

        

IV. Detection of Contaminated or Outlier Data Points: If the contaminated or outlier data 

points can be detected, something can be done to eliminate them from the dataset or to abate 

their influence on the estimated regression coefficients.  In particular, such data points can be 

assigned a relatively lower (even zero) weights vis-à-vis the inlier data points and a weighted 

least squares approach to estimation can be employed.   
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Mahalanobis (1936) defined his generalized 

distance, 
1 / 21[{ ( )} { ( )}]d Y Y S Y Y

−′= − Ε − Ε , where the 

symbol S  stands for the covariance matrix of .Y

This distance is a measure of deviation of a 

(multivariate) data point from its center. If this 

distance is larger than a presumed value, the data 

point may be considered as an outlier. This measure 

is formally very similar to the device Ω  used by 

Aitken in developing his Generalized Least Squares. 

 

V. Campbell’s Robust Covariance Matrix: Using the Mahalanobis distance as a measure of 

deviation from center, Campbell (1980) obtained a robust covariance matrix. Campbell’s 

method is an iterative method that obtains the −m element vector of weighted (arithmetic) 

mean, ,x  and weighted variance-covariance matrix, ( , ),S m m  
in the following manner. Initially, 

all weights, ; 1,i i nω =  are considered to be equal, ,/1 n and the sum of weights, 
1

1.
n

ii
ω

=
=�  

Further, we define 
0 1 1 2/ 2; 2, 1.25.d m b b b= + = =  

Then we obtain 

1 1
/

n n

i i ii i
x xω ω

= =
=� �

                 
 

   

2 2

1 1
( ) ( ) / 1

n n

i i i ii i
S x x x xω ω

= =
� �′= − − −
� �� �

  

 
{ }

1/ 2
1( ) ( ) ; 1,

i i i
d x x S x x i n− ′= − − =

      

( ) / ; 1, :i i id d i nω ω= = 2 2

0 0 0 2( ) ( ) exp[ 0.5( ) / ].i i i i id d if d d else d d d d bω ω= ≤ = − −  

If S is ill-conditioned for ordinary inversion, a generalized or the Moore-Penrose inverse (Theil, 

1971) of S  or S +
may be used for 

1S −
 and if 0=id  or 0≈id  then  1.iω =  We will call it the 

Campbell-I procedure to obtain a robust covariance matrix.  

 

VI. Use of Hampel’s Median Absolute Deviation: Hampel et al. (1986) defined the median of 

absolute deviations (from median) as a measure of scale, 
* ( ) | ( ) |H a ia ia

i i
s x median x median x= −  

and * / 0.6745,H Hs s= which is a very robust measure of deviation. Using Hs , we may assign 

weights to different data points. If we heuristically assign the weight 1iω =  for 

( ) ( ),i H i i Hd s d d d s d− ≤ < +  
2(1/ 2)iω =

 
for 2 ( ) ( )i H i i Hd s d d d s d− ≤ < −  as well as 

2 ( ) ( )i H i i Hd s d d d s d+ ≥ > +  and so on, and use Campbell’s iterative method incorporating 

these weights, we may obtain a robust covariance matrix. Although not suggested so by 

Campbell (1980) himself, we will, however, obtain ω  in this manner and call the resulting 

procedure as the Campbell-II method to obtain a robust covariance matrix.  

 

VII. Two Algorithms for Robust Regression Analysis: Let [ | ].Z Y X=  First, we obtain a robust 

covariance matrix ( ).S S Z=  In the process, we also obtain ; 1, .i i nω =  With ω we construct a 

matrix ,n nW  such that ij iw ω=  for i j= else 0; , 1, .ijw i j n= =  Then, using this weight matrix we 

obtain the robust regression estimator, 1[( ) ( )] ( ) ( ).cb WX WX WX WY
−′ ′=  In obtaining ( )S Z we may 
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use the Campbell-I or the Campbell-II procedure and accordingly, we get two different cb both of 

which are notably robust against data contamination and outliers. 

 

VIII. Performance of Robust Regression Algorithms on Some Test Datasets: Many 

investigators in robust statistics (e.g. Andrews, 1974; Rupert and Carrol, 1980; Rousseeuw and 

Leroy, 1987; Kashyap and Maiyuran, 1993, etc) have tested their methods on certain specific 

datasets that contain outliers. In particular, the datasets used by Rousseeuw and Leroy  (1987) 

are available on http://www.uni-koeln.de/themen/Statistik/data/rousseeuw. Those datasets 

provide a good and widely accepted test bed for robust regression analysis. Among those the 

“stackloss datasets” (Brownlee, 1965), water salinity dataset (Rupert and Carrol, 1980), 

Hawkins-Bradu-Kass dataset (Hawkins et al., 1984), the Hertzsprung-Russell star dataset 

(analysed by Rousseeuw and Leroy, 1987), and the Pilot-Point dataset (Daniel and Wood, 1971) 

have been used here to test the performance of the presently proposed methods of robust 

regression. Other test datasets also could be used, but we consider that exercise unnecessary. 

 

VIII.1. The Stackloss Dataset: The dataset describes the operation of a plant for the oxidation of 

ammonia to nitric acid. The stackloss ( y ) is a function of the rate ( 1x ), temperature ( 2x ) and 

acid concentration ( 3x ). The dataset has 21 observations or cases. The dataset is reproduced in 

the Table-2. 

�

Table-2. Stackloss Dataset (Brownlee, 1965;  Rousseeuw and Leroy, 1987) 

sl y  
1x  2x  3x  sl y  

1x  2x  3x  sl y  
1x  2x  3x  

1 42 80 27 89 8 20 62 24 93 15 8 50 18 89 

2 37 80 27 88 9 15 58 23 87 16 7 50 18 86 

3 37 75 25 90 10 14 58 18 80 17 8 50 19 72 

4 28 62 24 87 11 14 58 18 89 18 8 50 19 79 

5 18 62 22 87 12 13 58 17 88 19 9 50 20 80 

6 18 62 23 87 13 11 58 18 82 20 15 56 20 82 

7 19 62 24 93 14 12 58 19 93 21 15 70 20 91 

 
It is widely acclaimed that the data points  (1, 3, 4, 21) and possibly the point (2) are outliers. 

While the points (1, 3, 4, 21) are considered outliers, Kashyap and Maiyuran (1993) estimate the 

parameters as (-37.65, 0.80, 0.577, -0.067) of which the first is the y-intercept and the 

subsequent three are the coefficients associated with 1 2,x x  and 3x  respectively.  

 

We applied Campbell-I robust estimator on the data, but it did not detect any outlier and 

therefore the estimated coefficients were the OLS estimates (-39.92,  0.716, 1.295, -0.152) only. 

However, Campbell-II detected the points (1, 2, 3, 4, 21) as clear outliers and the points (13, 17) 

as very mild outliers. The estimated coefficients were (-32.47, 0.852, 0.451, -0.132). 

 

VIII.2. The Water Salinity Dataset: The water salinity (i.e., its salt concentration) dataset (Rupert 

and Carrol, 1980) comprises data on water salinity ( y ) as the dependent variable and lagged 

salinity ( 1x ), trend ( 2x ) and river discharge in North Carolina's Pamlico Sound ( 3x ) as the 

explanatory variables. The dataset has 28 points (Table-3). 
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In this dataset, Rousseeuw and Leroy’s method detects the points (5, 16, 23, 24) as outliers 

whereas Rupert and Carrol's method detects (1, 11, 13, 15, 16, 17) as outliers. Kashyap and 

Maiyuran’s method detects (5, 8, 15, 16, 17) as outliers for which the coefficients are (22.30, 

0.724, -0.279, -0.786).   

 

Table-3. Water Salinity Dataset (Rupert and Carrol, 1980;  Rousseeuw and Leroy, 1987) 

sl y  
1

x  
2

x  
3

x  sl y  
1

x  
2

x  
3

x  sl y  
1

x  
2

x  
3

x  sl y  
1

x  
2

x  
3

x  
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The Campbell-I detects the points (5, 16) as outliers and yield the estimates of regression 

equation as (20.63  0.708 -0.202 -0.725). On the other hand, Campbell-II detects the points (5, 

16) as clear outliers, points (23, 24) as severe outliers and points (9, 12, 15, 18, 19, 25) as very 

mild outliers. The estimated regression coefficients are (21.98,  0.722 , -0.276, -0.783).  

 
VIII.3. Hawkins-Bradu-Kass Dataset: This dataset was artificially generated by Hawkins et al. 

(1984) and consists of 75 points of four variables, 1 2, ,y x x and 3x . It is widely held that the 

dataset has ten extreme outliers and four other points which obey the regression model, but are 

located away from other inliers (Kashyap and Maiyuran, 1993). 
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We have applied Campbell-I and Campbell-II methods to detect the outliers and estimate the 

coefficients of robust regression. Campbell-I detects the points (11, 12, 13, 14) as outliers and 

the estimated coefficients are (-0.828,  0.156,  0.106,  0.226). Campbell-II detects the points (1 

through 14) as clear outliers, points (18, 53, 71, 72) as strong outliers and the points (19, 28, 29, 

40, 47, 50, 55, 59, 67, 68) as very mild outliers. The estimated regression coefficients by the 

Campbell-II method are (-0.775,  0.1625,  0.1812,  0.06517). The OLS estimates of coefficients 

are (-0.38755, 0. 239185, -0.334548, -0.383341). A comparison of the Campbell-II and the OLS 

estimates of regression coefficients show the damage done by the outliers.  

 

VIII.4. The Hertzsprung-Russell Star Dataset: This data set was introduced by Rousseeuw and 

Leroy (1987). It has 47 points in two variables, logarithm of the light intensity of the star  as the 

dependent variable ( y ) and logarithm of the effective temperature at the surface of the star as 

the explanatory variable ( 1x ).  It has four very strong outliers, the so-called giant stars, 

represented by the points (11, 20, 30, 34). 

 

Table-5. Hertzsprung-Russell Star Dataset (Rousseeuw and Leroy, 1987) 

sl y  
1x  sl y  

1x  sl y  
1x  sl y  

1x  sl y  
1x  

1 4.37 5.23 11 3.49 5.73 21 4.29 4.38 31 4.38 4.42 41 4.38 4.62 

2 4.56 5.74 12 4.43 5.45 22 4.29 4.22 32 4.56 5.10 42 4.45 5.06 

3 4.26 4.93 13 4.48 5.42 23 4.42 4.42 33 4.45 5.22 43 4.50 5.34 

4 4.56 5.74 14 4.01 4.05 24 4.49 4.85 34 3.49 6.29 44 4.45 5.34 

5 4.30 5.19 15 4.29 4.26 25 4.38 5.02 35 4.23 4.34 45 4.55 5.54 

6 4.46 5.46 16 4.42 4.58 26 4.42 4.66 36 4.62 5.62 46 4.45 4.98 

7 3.84 4.65 17 4.23 3.94 27 4.29 4.66 37 4.53 5.10 47 4.42 4.50 

8 4.57 5.27 18 4.42 4.18 28 4.38 4.90 38 4.45 5.22    

9 4.26 5.57 19 4.23 4.18 29 4.22 4.39 39 4.53 5.18    

10 4.37 5.12 20 3.49 5.89 30 3.48 6.05 40 4.43 5.57    

 
The Campbell-I method detects the points (11, 20, 30, 34) as clear outliers, the point (7) as a 

strong outlier, and points (9, 14) as very mild outliers. The regression coefficients are (3.7789,  

0.126). the Campbell-II detects the points (7, 9, 11, 14, 20, 30, 34) as clear outliers and the 

points (3, 5, 18, 25, 28, 33, 38, 41, 42, 43, 46) as very mild outliers. The estimated regression 

equations are (3.7415, 0.13688). Against this, the OLS estimates of the coefficients are (4.847, -

0.1071). The OLS estimates indicate that light intensity decreases as the temperature increases, 

which is obviously misleading. The robust regression coefficient, however, is positive. 

 

VIII.5. The Pilot-Plant Dataset:  Daniel and Wood (1971) provide the dataset of 20 points in two 

variables, where the dependent variable ( y ) is the acid content determined by titration, and the 

explanatory variable ( 1x ) is the organic acid content determined by extraction and weighing.  

 

Table-6. Pilot Point Dataset (Daniel and Wood, 1971;  Rousseeuw and Leroy, 1987) 

sl y  
1x  sl y  

1x  sl y  
1x  sl y  

1x  sl y  
1x  

1 76 123 5 55 57 9 41 16 13 88 159 17 89 169 

2 70 109 6 48 37 10 43 28 14 58 75 18 88 167 

3 55 62 7 50 44 11 82 138 15 64 88 19 84 149 

4 71 104 8 66 100 12 68 105 16 88 164 20 88 167 

 

The Campbell-I method does not detect any outlier in this data and hence the estimated 

regression coefficients, (35.4583, 0.3216) are the OLS estimates. However, the Campbell-II 
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method detects a single very strong outlier point (11), four strong outlier points (4, 10, 13, 15) 

and  three very mild outlier points (2, 8, 14). None of the points is a clear outlier. The estimated 

regression coefficients are (36.190,  0.3137).  

 

These tests indicate that in detecting the outliers (and yielding the estimates of robust 

regression coefficients), the Campbell-I method is rather blunt and the Campbell-II is very 

sensitive. Where the outliers are not much deviant from the center, the Campbell-I fails to 

detect them. But Campbell-II detects very mild outliers too, occasionally signaling false positive. 

 

IX. Some Monte Carlo Experiments: We generated artificially a forty points ‘base data’ on three 

variables ( 1 2,x x  and 3x ), obtained 1 2 380 16 +12 -2 , y x x x= −  and add a very small error to it to 

meet the requirements of regression analysis. We present the ‘base data’ in Table-7. These data 

have no outliers and the OLS regression coefficients are ( 80.0071, -16.0001, 12.0001, -1.9998). 

 

Table-7. Generated (Artificial) Base Dataset for Introducing Outliers in Monte Carlo Experiments 

sl y  1x  2x  3x  sl y  1x  2x  3x  sl y  1x  2x  3x  
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IX.1. Experiment-1: We add one quantum of a random size between (-10, -5) and (5, 10) to equi-

probably randomly chosen point of every variable (including y ). We do this exercise 200 times 

and find mean, b , standard deviation, ( )s b , and root-mean-square, Rms, for each coefficient 

(having 200 replicates).  Estimation is done by Campbell-I and Campbell-II methods.  Then we 

change the number of perturbation quanta to be made to each variable to 2, 5 and 10 keeping 

other parameters of the experiment constant. The results are presented in Table-8. 

 

Table-8. Results of the  Monte Carlo Experiments for Perturbations between (-10,  -5) and (5, 10) 

NO EM 0b  1b  2b  3b  0( )s b  1( )s b  2( )s b  3( )s b  
0

Rms  
1

Rms  
2

Rms  
3

Rms  

1 
C1 79.9653 -15.9975 12.0000 -2.0000 0.4637 0.0146 0.0171 0.0147 0.4650 0.0148 0.0171 0.0147 

C2 79.9484 -15.9982 12.0000 -1.9987 1.0798 0.0282 0.0388 0.0257 1.0811 0.0283 0.0388 0.0258 

2 
C1 80.0780 -15.9944 11.9882 -1.9991 1.9785 0.0395 0.0825 0.0452 1.9800 0.0399 0.0833 0.0452 

C2 79.8596 -15.9927 11.9992 -1.9993 1.4753 0.0426 0.0490 0.0405 1.4820 0.0432 0.0490 0.0405 

5 
C1 83.8509 -15.7211 11.6521 -2.0359 16.6481 0.5297 0.5722 0.5203 17.0877 0.5986 0.6697 0.5216 

C2 80.7855 -15.9914 11.9688 -2.0015 4.6661 0.1116 0.1441 0.1247 4.7317 0.1120 0.1474 0.1247 

10 
C1 83.1449 -15.2665 11.3806 -2.1560 24.2318 0.7452 0.8149 0.7094 24.4350 1.0456 1.0236 0.7263 

C2 83.4905 -15.7827 11.6428 -2.0122 28.4410 0.8036 0.8973 0.8302 28.6544 0.8324 0.9658 0.8303 

Note: NO=No. of perturbations per variable; EM= Estimation Method; C1=Campbell-I method; C2=Campbell-II method. 
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IX.2. Experiment-2. Next, we repeat the experiment with change in the size of perturbation 

quanta, but keeping everything else as elaborated in Experiment-1. The perturbation quanta 

now lie in a larger range of (-25, -20) and (20, 25). The results are presented in Table-9. 

 

Table-9. Results of the  Monte Carlo Experiments for Perturbations between (-25, -20) and (20, 25) 

NO EM 0b  1b  2b  3b  0( )s b  1( )s b  2( )s b  3( )s b  
0

Rms  
1

Rms  
2

Rms  
3

Rms  

1 
C1 79.9745 -15.9756 11.9848 -2.0048 1.4511 0.0483 0.0595 0.0597 1.4513 0.0541 0.0615 0.0599 

C2 79.9635 -15.9800 11.9854 -2.0015 3.0999 0.0856 0.1173 0.0938 3.1001 0.0880 0.1182 0.0939 

2 
C1 80.3301 -15.9319 11.9346 -2.0095 5.9550 0.2491 0.1728 0.1467 5.9641 0.2583 0.1847 0.1470 

C2 79.9951 -15.9494 11.9633 -2.0092 4.8627 0.1564 0.1658 0.1419 4.8627 0.1644 0.1698 0.1422 

5 
C1 102.2277 -13.3051 9.1346 -2.4067 42.5440 1.3607 1.3525 1.3570 48.0007 3.0190 3.1686 1.4167 

C2 81.6860 -15.9585 11.7975 -1.8904 11.9805 0.3729 0.4931 0.4217 12.0986 0.3752 0.5330 0.4357 

10 
C1 100.8889 -10.9714 7.2610 -2.5784 53.1775 1.4913 1.6434 1.4639 57.1331 5.2451 5.0159 1.5740 

C2 108.7593 -13.4929 8.5766 -2.1912 75.5747 2.4112 2.3043 2.1935 80.8618 3.4784 4.1267 2.2018 

Note: NO=No. of perturbations per variable; EM= Estimation Method; C1=Campbell-I method; C2=Campbell-II method. 

 

IX.3. Experiment-3. Once again we repeat the experiment with further changes in the size of 

perturbation quanta, but keeping everything else as elaborated in Experiment-1. The 

perturbation quanta now lie in a still larger range of (-100, -50) and (50, 100). The results are 

presented in Table-10. 

 

Table-10. Results of the  Monte Carlo Experiments for Perturbations between (-100,  -50) and (50, 100) 

NO EM 0b  1b  2b  3b  0( )s b  1( )s b  2( )s b  3( )s b  
0

Rms  
1

Rms  
2

Rms  
3

Rms  

1 
C1 80.9852 -15.7714 11.8010 -2.0469 7.3542 0.2993 0.3634 0.3857 7.4198 0.3766 0.4144 0.3885 

C2 80.4523 -15.7762 11.8439 -2.0677 11.5777 0.3792 0.4672 0.4666 11.5865 0.4403 0.4926 0.4715 

2 
C1 84.0103 -15.5509 11.5696 -2.1508 16.6481 0.7617 0.7323 0.7673 17.1243 0.8843 0.8495 0.7820 

C2 82.3807 -15.5821 11.6483 -2.1339 18.3389 0.7976 0.7269 0.7900 18.4927 0.9004 0.8075 0.8012 

5 
C1 114.2855 -10.9362 5.8761 -1.7315 92.7163 5.2181 3.9374 1.8410 98.8524 7.2713 7.2804 1.8605 

C2 89.6809 -15.1442 11.0092 -2.1745 40.8676 1.6265 1.6630 1.3783 41.9986 1.8379 1.9357 1.3893 

10 
C1 53.8971 -3.7093 1.7535 -1.2798 65.2209 2.6154 1.7382 1.4089 70.2505 12.5658 10.3929 1.5823 

C2 97.7946 -8.0965 3.9146 -1.7399 116.3931 5.2697 3.4541 2.1912 117.7455 9.4992 8.7922 2.2065 

Note: NO=No. of outliers per variable; EM= Estimation Method; C1=Campbell-I method; C2=Campbell-II method. 

 

IX.4. Observations: For small perturbations both Campbell-I and Campbell do perform well, but 

if the number of perturbations is smaller, the Campbell-I performs better. This edge of 

Campbell-I over Campbell-II is lost with an increase in the number of perturbations. Secondly, as 

the size as well as the number of perturbations increase, the robust estimators by both the 

methods tend to become biased as reflected in the increasing difference between ( )s b and Rms 

values. It may be noted that for unbiasedness ( ) .s b Rms=  It has been empirically observed that 

ten perturbations per variable amount to corruption of about 35 percent points in the dataset. 

Further, considering the size/magnitude of independent variables ( 1 2,x x  and 3x ) that lie 

between (-10, 50), a perturbation lying between (-100, -50) or (50, 100) is quite large. Such 

perturbations can always induce biases in the estimated coefficients. As it is observed, when the 

perturbations per variable is up to  five in number, Campbell-II produces very good results even 

when the size of perturbations is large.  
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X. Concluding Remarks: In this paper we have elaborated upon the deleterious effects of 

outliers and corruption of dataset on estimation of linear regression coefficients by the Ordinary 

Least Squares method. Motivated to ameliorate the estimation procedure, we have introduced 

the robust regression estimators based on Campbell’s robust covariance estimation method. We 

have investigated into two possibilities: first, when the weights are obtained strictly as 

suggested by Campbell and secondly, when weights are assigned in view of the Hampel’s 

median absolute deviation measure of dispersion. Both types of weights are obtained 

iteratively. Using these two types of weights, two different types of weighted least squares 

procedures have been proposed. These procedures are applied to detect outliers in and 

estimate regression coefficients from some widely used datasets such as stackloss, water 

salinity, Hawkins-Bradu-Kass, Hertzsprung-Russell Star and pilot-point datasets. It has been 

observed that Campbell-II in particular detects the outlier data points quite well (although 

occasionally signaling false positive too as very mild outliers). Subsequently, some Monte Carlo 

experiments have been carried out to assess the properties of these estimators. Findings of 

these experiments indicate that for larger number and size of outliers, the Campbell-II 

procedure outperforms the Campbell-I procedure. Unless perturbations introduced to the 

dataset are sizably numerous and very large in magnitude, the estimated coefficients by the 

Campbell-II method are also nearly unbiased.   
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1:       PROGRAM ROBOLS ! ROBUST REGRESSION BY CAMPBELL METHOD
2: C     PROGRAM BY SK MISHRA, NEHU, SHILLONG (INDIA)
3:       PARAMETER(N=21,M=4,ITRN=50,NTYPE=2)! CHANGE THESE AS REQUIRED
4: C     N=NO. OF OBSERVATIONS, M=NO. OF VARIABLES INCLUDING Y
5: C     ITRN=NO. OF ITERATIONS (AT LEAST 50)
6: C     NTYPE =1 FOR CAMPBELL-I AND NTYPE = 2 FOR CAMPBELL-II REGRESSION
7:       IMPLICIT DOUBLE PRECISION (A-H,O-Z)

8:       DIMENSION Z(N,M),WT(M),VX(M,M),VY(M),CF(M),AVZ(M)

9:       DIMENSION X(N,M),V(M,M),AV(M),W(N),XD(M),D(N),VV(M,M),DN(N)

10:       DATA B1,B2/2,1.25/ ! NOT TO BE CHANGED
11: C     READ DATA FROM FILE
12: C     -----------------------------------------------------------------
13:       OPEN(7,FILE='STACKLOSS.TXT')! INPUT FILE DATA [Y, X1, X2,..., XM]
14: C     -----------------------------------------------------------------
15:       D0=DSQRT(DFLOAT(M))+B1/DSQRT(2.D0)

16:       B22=B2**2

17:       DO I=1,N

18:       READ(7,*)(Z(I,J),J=1,M)

19:       ENDDO

20:       DO J=1,M

21:       AVZ(J)=0.D0

22:       DO I=1,N

23:       AVZ(J)=AVZ(J)+Z(I,J)

24:       ENDDO

25:       AVZ(J)=AVZ(J)/N

26:       DO I=1,N

27:       Z(I,J)=Z(I,J)-AVZ(J)

28:       ENDDO

29:       ENDDO

30:       DO I=1,N

31:       DO J=1,M

32:       X(I,J)=Z(I,J)

33:       ENDDO

34:       ENDDO

35:       CLOSE(7)

36: C     STANDARDIZE
37:       DO J=1,M

38:       AV(J)=0.D0

39:       XD(J)=0.D0

40:       DO I=1,N

41:       AV(J)=AV(J)+X(I,J)

42:       XD(J)=XD(J)+X(I,J)**2

43:       ENDDO

44:       AV(J)=AV(J)/N

45:       XD(J)=DSQRT(XD(J)/N-AV(J)**2)

46:       ENDDO

47:       DO J=1,M

48:       DO I=1,N

49:       X(I,J)=(X(I,J)-AV(J))/XD(J)

50:       ENDDO

51:       ENDDO

52: C     INITIALIZE WEIGHT VECTOR BY UNITY
53:       DO I=1,N

54:       W(I)=1.D0

55:       ENDDO

56: C     FIND SUM OF WEIGHTS
57:       DO ITER=1,ITRN

58: 

59:        SW=0.D0

60:        SSW=0.D0

61:        DO I=1,N

62:        SW=SW+W(I)

63:        SSW=SSW+W(I)**2

64:        ENDDO

65:        SSW=SSW-1.D0

66: 

67: C     COMPUTE MEAN VECTOR AND COVARIANCE MATRIX
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68:        DO J=1,M

69:        AV(J)=0.D0

70:        DO I=1,N

71:        AV(J)=AV(J)+X(I,J)*W(I)

72:        ENDDO

73:        AV(J)=AV(J)/SW

74:        ENDDO

75:        DO J=1,M

76:        DO JJ=J,M

77:        V(J,JJ)=0.D0

78:        DO I=1,N

79:        V(J,JJ)=V(J,JJ)+(X(I,J)-AV(J))*(X(I,JJ)-AV(JJ))*W(I)**2

80:        ENDDO

81:        V(J,JJ)=V(J,JJ)/SSW

82:        IF(J.NE.JJ) V(JJ,J)=V(J,JJ)

83:        ENDDO

84:        ENDDO

85:        DO J=1,M

86:        DO JJ=1,M

87:        VV(J,JJ)=V(J,JJ)

88:        ENDDO

89:        ENDDO

90: C     INVERT V
91:        CALL MINV(V,M,DD) ! ON RETURN V IS INVERTED V
92:        DO I=1,N

93:        D(I)=0.D0

94:        DO J=1,M

95:        XD(J)=0.D0

96:        DO JJ=1,M

97:        XD(J)=XD(J)+(X(I,JJ)-AV(JJ))*V(JJ,J)

98:        ENDDO

99:        ENDDO

100:        DD=0.D0

101:        DO J=1,M

102:        DD=DD+XD(J)*(X(I,J)-AV(J))

103:        ENDDO

104:        DD=DSQRT(DD)

105:        D(I)=DD

106:        DN(I)=DD

107:        ENDDO

108:       IF(NTYPE.EQ.2) THEN

109:        CALL MEDIAN(DN,N,DNA,DNV)

110:        DO I=1,N

111:        DN(I)=DABS(DN(I)-DNA)

112:        ENDDO

113:        CALL MEDIAN(DN,N,DNAA,DNVV)

114:        ENDIF

115:        DNAA=DNAA/0.6745

116:        DO I=1,N

117:        IF(NTYPE.EQ.1) THEN

118:        IF(D(I).LE.D0)THEN

119:        WD= D(I)

120:        ELSE

121:        WD=D0*DEXP(-0.5D0*(D(I)-D0)**2/B22)

122:        ENDIF

123:        W(I)=1.D0

124:        IF(DABS(D(I)).GT.0.00001) W(I)=WD/D(I)

125:        ENDIF

126:        IF(NTYPE.EQ.2) THEN

127:        W(I)=0.D0

128:       DX=DABS(D(I)-DNA)

129:       IF(DX.LE.DNAA) W(I)=1.D0

130:       IF(DX.LE.2*DNAA.AND.DX.GT.DNAA) W(I)=.25D0

131:       IF(DX.LE.3*DNAA.AND.DX.GT.2*DNAA) W(I)=0.11D0

132:       IF(DX.LE.4*DNAA.AND.DX.GT.3*DNAA) W(I)=0.06D0

133:        ENDIF

134:        ENDDO
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135:       ENDDO

136:       DO J=1,M

137:       DO JJ=1,M

138:       VX(J,JJ)=VV(J,JJ)

139:       V(J,JJ)=VV(J,JJ)/DSQRT(VV(J,J)*VV(JJ,JJ))

140:       ENDDO

141:       ENDDO

142: C     DO J=1,M
143: C     WRITE(*,1)(V(J,JJ),JJ=1,M)
144: C     ENDDO
145:     1 FORMAT(8F9.3)

146:       WRITE(*,*)'-----------------'

147: C     WRITE(*,1)(AV(J),J=1,M)
148: C     FIND REGRESSION COEFFICIENTS
149:       DO J=1,M

150:       DO JJ=1,M

151:       VX(J,JJ)=0.D0

152:       DO I=1,N

153:         VX(J,JJ)=VX(J,JJ)+Z(I,J)*Z(I,JJ)*W(I)**2

154: C        VX(J,JJ)=VX(J,JJ)+Z(I,J)*Z(I,JJ)
155:       ENDDO

156:       VX(J,JJ)=VX(J,JJ)/N

157:       ENDDO

158:       ENDDO

159: 

160:       DO I=1,M

161:       VY(I)=VX(I,1)

162:       VX(1,I)=0.D0

163:       VX(I,1)=0.D0

164:       ENDDO

165:       VX(1,1)=1.D0

166:       VY(1)=0.D0

167:       CALL MINV(VX,M,DD)

168:       DO J=1,M

169:       CF(J)=0.D0

170:       DO JJ=1,M

171:       CF(J)=CF(J)+VX(J,JJ)*VY(JJ)

172:       ENDDO

173:       ENDDO

174:       SW=0.D0

175:       DO I=1,N

176:       SW=SW+W(I)

177:       ENDDO

178:       DO J=1,M

179:       AV(J)=0.D0

180:       DO I=1,N

181:       AV(J)=AV(J)+(Z(I,J)+AVZ(J))*W(I)

182:       ENDDO

183:       AV(J)=AV(J)/SW

184:       ENDDO

185:       CF(1)=AV(1)

186:       DO J=2,M

187:       CF(1)=CF(1)-CF(J)*AV(J)

188:       ENDDO

189:       WRITE(*,*)'REGRESSION COEFFICIENTS'

190:       WRITE(*,*)(CF(J),J=1,M)

191:       WRITE(*,*)'WEIGHTS. UNITY IS CLEAR INLIER. SMALLER IS THE WEIGHT'

192:       WRITE(*,*)'MORE STRONG IS THE OUTLIER. EXTREME OUTLIER IS ZERO'

193:       DO I=1,N

194:       WRITE(*,3) I,W(I)

195:       ENDDO

196:       OPEN(8,FILE='ROBOLSRESULTS.TXT')

197:       WRITE(8,*)'REGRESSION COEFFICIENTS'

198:       WRITE(8,*)(CF(J),J=1,M)

199:       WRITE(8,*)'WEIGHTS. UNITY IS CLEAR INLIER. SMALLER IS THE WEIGHT'

200:       WRITE(8,*)'MORE STRONG IS THE OUTLIER. EXTREME OUTLIER IS ZERO'

201:       DO I=1,N
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202:       WRITE(8,3) I,W(I)

203:       ENDDO

204:       CLOSE(8)

205:     3 FORMAT(I5,F10.4)

206:       WRITE(*,*)'END OF THE PROGRAM'

207:       WRITE(*,*)'RESULTS ARE STORED IN FILE ROBOLSRESULTS.TXT'

208:       END

209: C     SUBROUTINE FOR MATRIX INVERSION
210:       SUBROUTINE MINV(A,N,D)

211:       IMPLICIT DOUBLE PRECISION (A-H,O-Z)

212:       DIMENSION A(N,N)

213:       U=1.D0

214:       D=U

215:       DO I=1,N

216:       D=D*A(I,I)

217:       A(I,I)=U/A(I,I)

218:          DO J=1,N

219:          IF(I.NE.J) A(J,I)=A(J,I)*A(I,I)

220:          ENDDO

221:          DO J=1,N

222:          DO K=1,N

223:          IF(I.NE.J.AND.K.NE.I) A(J,K)=A(J,K)-A(J,I)*A(I,K)

224:          ENDDO

225:          ENDDO

226:          DO J=1,N

227:          IF(J.NE.I) A(I,J)= -A(I,J)*A(I,I)

228:          ENDDO

229:       ENDDO

230:       RETURN

231:       END

232: C     -----------------------------------------------------------------
233:       SUBROUTINE MEDIAN(X,N,A,V) ! ------------------------------------
234: C     SUBROUTINE MEDIAN : FINDS MEDIAN (A) AND MEAN DEVIATION (V) OF A
235: C     GIVEN VARIATE, VARIATE X(N)
236:       PARAMETER (NMAX=1000)

237:       IMPLICIT DOUBLE PRECISION (A-H,O-Z)

238:       DIMENSION X(N),Z(NMAX)

239: C     STORE X IN Z
240:       DO I=1,N

241:       Z(I)=X(I)

242:       ENDDO

243: C     ARRANGE Z IN AN ASCENDING ORDER
244:       DO I=1,N-1

245:       DO J=I+1,N

246:       IF(Z(I).GT.Z(J)) THEN ! EXCHANGE
247:       TEMP=Z(I)

248:       Z(I)=Z(J)

249:       Z(J)=TEMP

250:       ENDIF

251:       ENDDO

252:       ENDDO

253:       K=(N+1)/2 ! K IS OBTAINED AS INT((N+1)/2.0D0)
254:       A=(Z(K)+Z(N+1-K))/2.D0 ! GIVES MEDIAN FOR ODD AS WELL AS EVEN N
255: C     FIND MEAN DEVIATION
256:       V=0.D0

257:       DO I=1,N

258:       V=V+DABS(Z(I)-A) ! A IS MEDIAN
259:       ENDDO

260:       V=V/N ! V IS MEAN DEVIATION FROM MEDIAN
261: C     WRITE(*,*)'MEDIAN =',A,'  MEAN DEVIATION =',V
262:       RETURN

263:       END

264: 
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