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Abstract

This paper derives the e¤ort-maximizing contest rule and the optimal endogenous entry in

a context where potential participants bear �xed entry costs. The organizer is allowed to design

the contest under a �xed budget with two strategic instruments: he sets the value of the prize

purse, and arranges a monetary transfer (entry subsidy or fee) for each participating contestant.

In other words, the budget can either be used to subsidize participation or an entry fee can be

charged to fund the prize purse. The results show that the optimally designed contest attracts

exactly two participating contestants in its unique subgame perfect equilibrium (when there is a

positive �xed entry cost) and extracts all the surplus from participating contestants. The study

also shows that the direction and amount of the monetary transfer depend on the magnitude of

the entry cost: the contest organizer subsidizes entry when contestants bear substantial entry

costs, but charges an entry fee to fund the prize purse whenever the entry cost is su¢ciently

low.
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1 Introduction

A contest is a situation in which economic agents expend costly and non-refundable resources

in order to win a limited number of prizes. Numerous academic surveys and anecdotal

accounts have shown that a wide variety of competitive activities can be viewed as winner-

take-all contests. These include research tournaments, political lobbying, sports races and

promotion tournaments in a �rm�s internal labor market. It has been widely recognized in

the literature that the incentive to win and the resultant behavior of contestants depend

largely on the competitive environment as de�ned by the rules of the contest. Therefore, a

forward-looking organizer must set the rules of a contest strategically such that the contest

structure best serves his interests.

While a contest organizer may have diverse objectives, enormous academic resources have

been devoted to the design of contests that maximize the e¤ort that has to be exerted by

contestants (see Baye, Kovenock and de Vries, 1993, Gradstein and Konrad, 1999, Rosen,

1986 etc.) This paper follows in the same vein and investigates the design of the e¤ort-

maximizing contest. It is assumed that to enter the contest, potential contestants must bear

a �xed sunk cost and that they must bear the cost of productive e¤orts that determine the

probability of them winning the prize. The traditional modeling approach assumes that (i)

all invested resources contribute to contestants� productive e¤orts and help increase their

likelihood of success; and (ii) contestants choose their e¤ort outlays rationally in order to

increase the likelihood of winning. In reality, however, contestants often bear additional costs

merely to participate which do not relate directly to winning. To provide an analogy of this

point, while an air ticket paves the way for American tennis star Venus Williams to arrive at

the courts of the Australian Open, it does not contribute to her winning the championship.

Similarly, a research company may have established the necessary laboratory equipment and

developed the project-speci�c knowledge required to participate in an innovation tournament,

but its success depends largely on its subsequent e¤orts and the value of its creative input.

It is clear from the above examples that a potential contestant would join a contest if

and only if the expected payo¤s from participation are higher than the entry costs. Unlike

the typical setting where there is generally a given pool of active contestants, in the context
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of this paper, the number of participating contestants is endogenously determined by the

contest structure.1 ;2

The model that is proposed in this paper pertains to the induction of maximal total

e¤ort from a �xed pool of potential contestants, with the contest organizer being �nancially

bound by a �xed budget. The contest organizer is allowed to design the competition with

two strategic instruments: the value of the (unique) winner�s purse and a direct monetary

transfer to each participating contestant. Conventional wisdom suggests that (i) a larger

number of contestants leads to greater total e¤ort; and (ii) a more generous winner�s purse

causes each contestant to exert more e¤ort. These insights, however, lead to a paradoxical

situation where no clear implications can be provided to the contest organizer with a limited

budget. The monetary transfer may be an entry subsidy aimed at mitigating contestants�

entry costs. For instance, the U.S. Department of Defense (DoD) substantially subsidizes

military research and development (R&D) activities conducted by contractors competing for

procurement contracts.3 An entry subsidy encourages more participation on the one hand,

while absorbing funds that would otherwise be used to award the winner on the other. It

is then called into question whether an entry subsidy is a desirable way to promote the

e¤ort outlay. By the way of contrast, when the monetary transfer between the contest

organizer and each participating contestant moves in the opposite direction instead, the

entry subsidy turns into an entry fee. This phenomenon is widely observed in many real-

life tournament settings.4 Despite the fact that entry fees discourage participation, the

revenue earned nevertheless enriches the winner�s purse and promotes competition among

participating contestants. Hence, the direction and amount of the optimal monetary transfer

have yet to be identi�ed, and the desirable number of participants in the contest remains

1An imperfectly discriminatory contest with concave contest technology does not involve endogenous

entry if no �xed cost is incurred upon entry. The internal equilibrium would guarantee that all participating

contestants would receive positive expected payo¤s.
2Exceptions are explored in the seminal works of Baye, Kovenock and de Vries (1993) and Fullerton and

McAfee (1999).
3The DoD�s subsidies for independent military R&D projects have been empirically documented by Licht-

enberg (1988).
4One such example is the National Scholastic Sur�ng Association (NSSA) National Tournament, where

an entry fee applies to participating teams and individuals.
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foggy.

The properties of the optimally designed contest can be illustrated by using a three-stage

model. Consider a �xed pool of identical potential contestants who may choose to compete

for a unique prize. In the �rst stage of the contest, the organizer announces the value of the

winner�s purse, V , as well as the amount of money to be transferred, S, to each participating

contestant.5 In the second stage, the potential contestants are informed about the rules of

the contest as indicated by the contest organizer�s strategy pair (V; S). They then make

their entry decisions sequentially with full knowledge of the number of existing participants

and incur a �xed participation cost, C > 0 for entering the contest. In the third stage, all

participants choose their e¤ort outlays simultaneously, and a unique winner is found through

a stochastic selection procedure. The contest (V; S) needs to be feasible in the sense that

the prize V cannot be greater than the total resources available to the contest organizer

(including the revenue collected from the entry fees).

The main �ndings of this analysis are summarized as follows.

1. �It takes (exactly) two to tango�: the optimally designed contest induces exactly two

contestants to participate, regardless of the contest technology.

2. The contest organizer charges an entry fee when the participation cost is relatively low,

and awards an entry subsidy when the participation cost is su¢ciently high.

In the speci�c case when C = 0, the contest organizer does not need to restrict the

number of participating contestants to exactly two in order to maximize the contestants�

e¤orts. There are a number of equilibria in which an optimal contest can occur, involving

di¤ering entry fees, prize purse, and the number of participants required for equilibrium. All

these possibilities will induce the same level of total e¤ort, while fully utilizing the budget

of the contest organizer.

This paper is inspired by and linked closely to the seminal works of Baye, Kovenock and

de Vries (1993) and Fullerton and McAfee (1999). Baye, Kovenock and de Vries (1993) show

that a (rent-seeking) revenue-maximizing contest organizer may strategically shortlist two

�nalists from a pool of candidates to participate in a contest. Fullerton and McAfee (1999)

5A participating contestant receives an entry subsidy if S > 0, but pays an entry fee if S < 0:
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consider the optimal design of a research tournament, in which the �rst stage involves an

all-pay auction for entry, with only the two highest bidders being allowed entry into the

innovation race.

This section of the paper has introduced the topic of contest design. Section 2 sets up

the model, while in Section 3, the formal analysis is presented and the results are brie�y

discussed. Concluding remarks are presented in Section 4.

2 Preliminaries

This section considers the design of a winner-take-all contest within a three-stage framework

with endogenous entry.

The contest organizer begins with a �xed budget of �0 with which to fund a contest.

A �xed pool of M(� 3) identical risk-neutral potential contestants demonstrate interest in

the contest. In the �rst stage, the organizer announces the rules, and commits to a prize

purse V (� 0) and a direct monetary transfer S 2 < to each participating contestant. For

the ease of notation, a contest will be denoted by (V; S), which also represents the contest

organizer�s strategy. In the second stage, contestants decide whether or not to participate.

It is assumed that they enter the contest sequentially, and that they are fully aware of the

number of current participants.6 Each contestant incurs a �xed participation cost of C > 0

upon entry, but is either rewarded with an entry subsidy S when S > 0, or is charged an

entry fee jSj when S < 0. In the third stage, all contestants simultaneously submit their

e¤ort entries .

In the event that there are no contestants, the organizer simply keeps the prize. The set

of contestants is denoted by 
N when N(� 1) of the M(� 3) potential contestants partic-

ipate in the contest (V; S). In the event that there is only one contestant, this contestant

automatically receives the prize V , regardless of the amount of e¤ort exerted.

When there are at least two participants in a contest, the probability that a contestant

6Sequential entry and complete information ensure that potential contestants play pure strategies (0 or

1 probability of entry) in the entry stage of the game.
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i 2 
N wins the unique prize is

pi(ei; e�i; 
N) =
f(ei)

f(ei) +
X

j2
N ;j 6=i

f(ej)
,7 (1)

where ei is i�s e¤ort and e�i denotes the e¤ort vector of the other participating contestants.
8

The impact function f(�) represents the technology of the contestants. To guarantee the

existence of a unique symmetric pure-strategy equilibrium, f(�) is assumed to be strictly

increasing and weakly concave, with f(0) = 0 and f
0

(0) > 0. We de�ne H(�) � f(�)

f
0
(�)
. Due

to the concavity of f(�), H�1(�) must be strictly increasing. In addition, dH
�1(x)
dx

2 (0; 1). If

all the participating contestants exert zero e¤ort, it is assumed that the prize will be given

away at random.

Assume that the cost of e¤ort equals the e¤ort itself. A potential contestant can then

expect to receive a payo¤ of

�i(ei; e�i; 
N ; V; S) = pi(ei; e�i; 
N)V � ei + S � C; (2)

if he participates and exerts e¤ort ei, provided that the e¤orts of the other participating

contestants are e�i. Every participating contestant will choose the level of e¤ort to maximize

his expected payo¤.

Since all N(� 1) participating contestants are identical, every individual contestant in

symmetric equilibrium has the equilibrium probability 1
N
of receiving the prize, and receives

an equilibrium payo¤ of �(N; V; S) = 1
N
V � e(N; V; S) + S � C; where e(N; V; S) denotes

the equilibrium e¤ort as a function of N , V and S. The results below indicate the partici-

pants� equilibrium individual e¤ort and equilibrium payo¤, which can be established through

standard techniques.

Lemma 1 In the unique symmetric Nash equilibrium of a contest (V; S) with N participating

7This model, together with a ratio-form success function, can be applied to a wide variety of contest

settings. For instance, Baye and Hoppe (2003) establish strategic equivalence between Tullock rent-seeking

contests and research tournaments, as well as patent races.
8We assume that a nonparticipant will not be awarded the prize.
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contestants, where N � 1, each contestant exerts an e¤ort of

e(N; V; S) =

8

<

:

0 if N = 1;

H�1( V
N
(1� 1

N
)) if N � 2;

(3)

and each contestant receives an expected payo¤ of

�(N; V; S) =

8

<

:

V + S � C if N = 1;

1
N
V �H�1( V

N
(1� 1

N
)) + S � C if N � 2:

(4)

Based on Lemma 1, the equilibrium number of entrants in contest (V; S) is characterized

in the following lemma.

Lemma 2 A contest (V; S) attracts a unique number of N(V; S) = argmax
f�(N;V;S)�0;1�N�Mg

fNg

contestants to participate if �(1; V; S) � 0, since �(N; V; S) strictly decreases with N(� 1):

If �(1; V; S) < 0, the contest will have no participant.

Proof. Clearly, �(1; V; S) > �(2; V; S): To show that �(N; V; S) strictly decreases with N for

any N � 2; all that is necessary is that function g(x) = V x�H�1(x(1� x)V ) is increasing

over the interval (0; 1=2]: Note that dg(x)
dx

= V � dH�1(y)
dy

jy=H�1(x(1�x)V )(1 � 2x)V � 0 as

dH�1(y)
dy

2 (0; 1): Since contestants 
N enter the contest (V; S) if and only if �(N; V; S) � 0;

N(V; S) is the unique equilibrium number of entrants in contest (V; S) if �(1; V; S) � 0: It

is then obvious that no one participates in the contest if �(1; V; S) < 0.

The contest organizer has a total budget of �0 available from his own pocket. He has

the freedom either to split the budget between the prize purse and the payment of entry

subsidies up to the budget limit, or to fund the prize purse using the revenue from the entry

fees. Such �exibility in resource allocation represents one of the main features of the analysis

in this paper.

De�nition 1 A contest design (V; S) is feasible if and only if

0 � V � �0 �N(V; S)S: (5)

The feasibility condition (5) states that the prize purse cannot exceed the total resources

available to the contest organizer. We de�ne E �
X

i2
N(V;S)

ei, where 
N(V;S) is the set of
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equilibrium participants who enter the contest (V; S): In this paper, it is assumed that the

objective of the contest organizer is to optimally design the contest so as to induce the

highest total amount of e¤ort from the participating contestants. In other words, this is

a search for the optimal contest (V �; S�) that maximizes the total e¤ort exerted by the

endogenously-determined number of participating contestants.

3 Analysis

The following is assumed to make the analysis more interesting.

Assumption 1 C � �0
2
:

The prize is assumed to be automatically awarded if there is only one contestant. This

is because a contestant would exert zero e¤ort if he turns out to be the unique participant.

Therefore, a contest rule cannot create an optimal situation if less than two contestants

participate. Assumption 1 guarantees that the contest organizer can induce the entry of at

least two participants by providing an entry subsidy, as shown by the following Lemma.

Lemma 3 A feasible contest that induces at least two potential contestants to participate

exists if and only if Assumption 1 holds.

Proof. Let S0 denote the solution of

�(2;�0 � 2S; S) =
�0
2
�H�1(

�0 � 2S

4
)� C = 0: (6)

Su¢ciency First, note that �0
2
� H�1(�0�2S

4
) � C increases with S: Second, when

S = �0
2
; �(2;�0�2S; S) =

�0
2
�C � 0 based on Assumption 1: Third, when S = �0

2
�2H(�0

2
);

�(2;�0 � 2S; S) = �C < 0: Thus, there exists a unique solution S0 2 (
�0
2
� 2H(�0

2
); �0

2
) for

equation (6).

Set S = S0 and V = �0 � 2S0 > 0: Since �(2;�0 � 2S0; S0) = 0; we have N(�0 �

2S0; S0) = 2 by Lemma 2, which indicates that two contestants will participate in the contest

(�0 � 2S0; S0). In addition, contest (�0 � 2S0; S0) is feasible according to De�nition 1. It

has thus been shown that Assumption 1 represents a su¢cient condition for the existence of

a feasible contest that induces at least two contestants to participate.
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Necessity We attempt to prove that a feasible contest that induces at least two

participants would not exist if Assumption 1 does not hold. We prove it by contradiction.

Suppose the contrary that C > �0
2
.

Step 1: A feasible contest that attracts exactly two participants does not

exist.

Suppose it is possible for exactly two contestants to participate. This means that there

must exist a feasible contest (V; S) with 0 � V � �0� 2S; such that �(2; V; S) � 0 holds. It

implies the following: �rstly, S � �0
2
since 0 � �0�2S; secondly, �(2; V; S) � �(2;�0�2S; S)

since V � �0 � 2S. Because �(2;�0 � 2S; S) increases with S, S =
�0
2
would maximizes

�(2;�0 � 2S; S) with �(2; 0;
�0
2
) = �0

2
� C, which is strictly negative if C > �0

2
. This result

con�icts with the existence of a feasible contest (V; S) that induces the entry of exactly two

participants.

Step 2: A feasible contest that attracts more than two participants does not

exist.

Since �(N; V; S) decreases with N(� 2); it follows that �(N; V; S) � �(2; V; S) for any

feasible contest (V; S) for N > 2: Thus, in any feasible contest (V; S), a participant would

expect to receive a payo¤ �(N; V; S) � �0
2
�C, which is strictly negative as long as C > �0

2
.

As a result, N would not be the equilibrium number of participants. This means that there

exists no feasible contest that induces N(> 2) contestants to participate.

In conclusion, we show that Assumption 1 also represents a necessary condition for the

existence of a feasible contest that induces the participation of at least two contestants.

Clearly, when C is small, more than two potential contestants can be induced to partic-

ipate. The contest organizer therefore has more freedom in term of the (desirable) number

of participants he can attract. Lemma 4 and Lemma 5 characterize two intuitive necessary

conditions for the optimal feasible contest. The formal proofs are laid out in the Appendix.

Lemma 4 In the optimal feasible contest (V �; S�), every participating contestant breaks

even, i.e. �(N(V �; S�); V �; S�) = 0.

Lemma 5 In the optimal feasible contest (V �; S�), the contest organizer must put all the

resources available in the prize purse, i.e., V � = �0 �N(V
�; S�)S�.
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From Lemmas 4 and 5, it follows that the e¤ort-maximizing contest exhausts the resources

available to the contest organizer, while causing all participating contestants to break even.

As a result, the e¤ort-maximizing contest (V �; S�) must satisfy V � = �0�N(V
�; S�)S� and

�(N(V �; S�); V �; S�) = 0.

3.1 Main Results

Next, the optimal number of entrants N(V �; S�) needs to be revealed. In the optimal contest

(V �; S�), each contestant receives an equilibrium payo¤ of

�(N(V �; S�); V �; S�) =
�0 �N(V

�; S�)S�

N(V �; S�)
� e(N(V �; S�); V �; S) + S� � C:

Thus,

N(V �; S�)�(N(V �; S�); V �; S�)

= (�0 �N(V
�; S�)S�)�N(V �; S�)e(N(V �; S�); V �; S�) +N(V �; S�)S� �N(V �; S�)C;

which leads to

E = N(V �; S�)e(N(V �; S�); V �; S�)

= �0 �N(V
�; S�)�(N(V �; S�); V �; S�)�N(V �; S�)C:

Combining Lemma 4, the following important fact can thus be established:

E = �0 �N(V
�; S�)C: (7)

Note the importance of Equation (7). It states that in the optimally designed contest,

the equilibrium total e¤ort is given by the di¤erence between the total budget of the contest

organizer and the total entry costs incurred by participating contestants, regardless of the

contest technology. In addition, the right-hand side of Equation (7) strictly decreases with

N(V �; S�), the equilibrium number of participating contestants, for any N(V �; S�) � 2.

Hence, it can be deduced that the equilibrium e¤orts are bound from above by E = �0�2C:

The following result is now ready to be established.

Theorem 1 The unique optimal contest induces exactly two potential contestants to partic-

ipate, and induces the total e¤ort of E = �0 � 2C.
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Proof. Equation (7) shows that only a contest that attracts two contestants to participate

may induce the total e¤ort of E.

Thus, it is only necessary to show that a feasible contest (V �; S�) exists that induces

exactly two participants and satis�es the conditions given by Lemmas 4 and 5. To this end,

it is necessary only to show that there exists an S� that satis�es the following condition

�(2;�0 � 2S
�; S�) =

�0
2
�H�1(

�0 � 2S
�

4
)� C

= (
�0
2
� C)�H�1(

�0 � 2S
�

4
) = 0: (8)

The existence and uniqueness of such an S� have been established in the proof of Lemma 3.

Theorem 1 shows that a unique optimal contest exists that maximizes the total amount

of e¤ort exerted in the contest. The optimal contest attracts exactly two contestants and

induces the equilibrium total e¤ort �0�2C regardless of the contest technology. The following

theorem further characterizes the properties of (V �; S�).

Theorem 2 The optimally designed contest awards a unique equilibrium prize purse of V � =

4H(�0
2
� C)(> 0): When C � �0

2
� H�1(�0

4
), the contest organizer charges an entry fee of

S� = [�0
2
� 2H(�0

2
�C)](� 0) to each contestant. When �0

2
�H�1(�0

4
) < C < �0

2
, the contest

organizer awards an entry subsidy of S� = [�0
2
� 2H(�0

2
� C)](> 0) to each contestant.

Proof. Equation (8) implies S� = �0
2
� 2H(�0

2
� C): This leads to V � = �0 � 2S

� =

4H(�0
2
� C): Thus S� � 0 if and only if �0

2
� 2H(�0

2
� C) � 0:

It is worth pointing out that the critical value �0
2
� H�1(�0

4
) represents an individual

contestant�s equilibrium surplus �(2;�0; 0) in a feasible contest (V; S) = (�0; 0) with two

participating contestants. At least two contestants are willing to participate in the contest

(�0; 0) when C � �(2;�0; 0). An entry fee can then be imposed to enhance the prize

purse while maintaining su¢cient participation (two contestants). On the other hand, when

C > �(2;�0; 0), only one contestant is willing to participate in (�0; 0). Thus, an entry

subsidy is required in this situation in order to induce su¢cient participation.

It has been assumed thus far that the contest organizer attempts solely to maximize the

amount of total e¤ort exerted. However, a contest organizer may seek other objectives as
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well, such as maximizing the e¤ort exerted by each individual (symmetric) contestant. For

example, the organizer of a design competition would be more concerned about the quality

of the potential supplier who secures the contract, rather than the overall amount of e¤ort

exerted by the entire pool of competitors. It turns out that the optimal contest that has been

derived above serves this objective as well. Equation (7) implies that the individual e¤ort

of a participating contestant is bound from above by e = �0
2
� C, which can be achieved if

and only if the contest is organized as de�ned by Theorem 2.

Corollary 1 The optimally designed contest that maximizes the total amount of e¤ort also

maximizes the amount of individual e¤ort exerted by a representative participating contestant.

4 Discussion and Extensions

4.1 Why �Two�: When Fixed Entry Cost Is Present

The �xed entry cost C plays an essential role in determining the optimal contest structure.

As equation (7) implies, the main results discussed in the earlier sections of this paper stem

from the existence of a positive entry cost, while the optimal contest rule depends largely

on the size of the �xed cost. Theorem 2 states that an entry subsidy is desirable in order

to invite participation and to maintain a su¢cient level of competition, if and only if the

entry cost is prohibitively high. Thus, the result applies directly to the design competition

for military procurement: R&D projects with a military purpose would arguably require

substantial initial set-up investment, which could play a large part in deterring the entry of

independent contractors, notwithstanding the generous potential rewards. Thus, a subsidy

would be an e¤ective way to maintain the optimal amount of competition.

An entry subsidy would not be justi�able if the level of the �xed entry cost falls below

the threshold value �0
2
� H�1(�0

4
). The contest organizer would instead charge an optimal

entry fee to restrict the level of participation to the unique optimum of two participants,

and attach the in-�ow of cash to the winner�s purse. For example, although a civilian R&D

project may involve a �xed set-up costs, the investment may not be completely sunk because

it could most likely be used for alternative purposes. Consequently, an entry fee that restricts
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entry may successfully enhance the quality of competition for the design of a civilian product

through enhanced prize value. Hence, the results of this paper are consistent with the optimal

research tournament design suggested by Fullerton and McAfee (1999), where the setting

involves di¤erential types and incomplete information.

4.2 Why Not �Two�: When No Entry Cost Is Present

Although it has explicitly been assumed that C > 0, the analysis up to Equation (7) applies

to the speci�c case where C = 0, in which participation involves no sunk costs. As Equation

(7) implies, the entry of additional participants does not reduce the maximum amount of

e¤ort that can be possibly induced in an optimally designed contest. Hence, the optimal

contest structure would not be unique, and the optimal number of participating contestants

would not necessarily be two. The contest organizer can allow any number of contestants

(but no less than 2) to participate, and simply charge each of them an appropriate entry fee

to extract all the expected surplus they would enjoy from the contest. Thus, the optimal

monetary transfer (entry fee) S� satis�es

1

N
V � �H�1(

V �

N
(1�

1

N
)) + S� = 0;8 N 2 f2; :::;Mg: (9)

Since the contest organizer at the optimum directs all revenue towards the prize purse,

Equation (9) is equivalent to

�0
N
= H�1(

(�0 �NS
�)

N
(1�

1

N
)); N 2 f2; :::;Mg: (10)

Theorem 3 When a pool of M � 3 potential contestants are up for a contest, and each of

them bears zero entry costs, the optimal contest can take a variety of forms (V �(N); S�(N)),

8N 2 f2; :::;Mg: In an optimal contest (V �(N); S�(N)); the contest organizer charges an

entry fee of

S�(N) =
�0
N
�

N

N � 1
H(
�0
N
) < 0; (11)

and awards a prize of

V �(N) =
N2

N � 1
H(
�0
N
) > 0: (12)

In the contest (V �(N); S�(N)), exactly N contestants participate and each of them enjoys

zero surplus. All these contests induce the same total amount of e¤ort, �0.
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Theorem 3 de�nes a wide variety of optimal contest structures that di¤er in terms of

their entry fees, prize purse and the equilibrium level of participation. When contestants

bear negligible entry costs, the contest organizer has complete �exibility to design the contest.

Optimally designed contests may attract any feasible level of participation, although they

all yield an equivalent outcome where the entire budget is dissipated, �0. Thus, our analysis

does not lose its bite in those settings where a �more-than-two� participation rate could be

considered optimal as well.

5 Concluding Remarks

This paper has investigated the design of an e¤ort-maximizing contest where contestants bear

a �xed entry cost and have the freedom to decide whether or not to participate. The �ndings

indicate that contest organizers will subsidize entry when contestants bear substantial entry

costs, while charging an entry fee to fund the prize purse when the entry cost is su¢ciently

low. Interestingly, the optimally designed contest invites exactly two participants as long as

the entry cost is positive. Thus, this paper provides a clear rationale for the contest structure

involving only two contestants that is widely assumed in contest literature. This optimal

participation is assumed to be attributed to the presence of a �xed entry cost. In addition,

it has been proven that in the absence of a �xed entry cost, the organizer of an optimally

designed contest can invite any feasible number of contestants (from 2 to M) to participate,

with all of equilibria yielding an equivalent outcome in terms of the total e¤orts induced.

This framework leaves tremendous room for the extension of research. One possible

avenue for further research is to allow for di¤erent types of contestants. Indeed, this is a

future research concern for the authors of this paper.
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Appendix

Proof of Lemma 4

Proof. The lemma is proven by contradiction. Suppose the contrary that �(N(V �; S�); V �; S�) >

0. Two possible cases are considered.

Case I: N(V �; S�) =M:

In this case, there exists a transfer S < S� such that �(M;V �; S) > 0 holds, since

�(M;V �; S) is continuous with respect to S: This leads to �(M;V � + M(S� � S); S) >

�(M;V �; S) > 0: Thus, N(V � +M(S� � S); S) = M: It is clear that (V � +M(S� � S); S)

is feasible since (V �; S�) is feasible. However, contest (V � +M(S� � S); S) induces a larger

total amount of e¤ort since the prize is higher and the number of potential participants who

enter the contest does not change.

Case II: 2 � N(V �; S�) < M:

By Lemma 2, we must have �(N(V �; S�); V �; S�) > 0 and �(N(V �; S�) + 1; V �; S�) < 0.

There must exist a " > 0 which is small enough such that �(N(V �; S�); V �+N(V �; S�)"; S��

") > 0 and �(N(V �; S�) + 1; V � + N(V �; S�)"; S� � ") < 0 since function �(N; V; S) is

continuous with respect to all its arguments. We thus have N(V � + N(V �; S�)"; S� � ") =

N(V �; S�): It is clear that (V � + N(V �; S�)"; S� � ") is feasible since (V �; S�) is feasible.

However, (V � + N(V �; S�)"; S� � ") induces a larger total amount of e¤ort since the prize

is higher and the number of potential participants who enter the contest does not change.

Based on the above arguments, �(N(V �; S�); V �; S�) = 0 for the optimal feasible contest

(V �; S�):

Proof of Lemma 5

Proof. The lemma is proven by contradiction. Suppose V � < �0 � N(V
�; S�)S�. We

consider two possible cases.

Case I: N(V �; S�) =M

The contest organizer has the option to allocate the balance of (�0�N(V
�; S�)S�)� V �

to the prize without inducing the entry of additional participants, while increasing the total

15



amount of e¤ort induced.

Case II: 2 � N(V �; S�) < M:

In this case, we have �(N(V �; S�); V �; S�) = 0 by Lemma 4, and �(N(V �; S�)+1; V �; S�) <

0 by the de�nition of N(V �; S�): By the continuity of �(N; V; S), there exists a small " > 0

such that V �+" � �0�N(V
�; S�)S�; �(N(V �; S�); V �+"; S�) > 0 and �(N(V �; S�)+1; V �+

"; S�) < 0. Thus (V � + "; S�) is feasible and N(V � + "; S�) = N(V �; S�) holds. However,

(V � + "; S�) induces a larger amount of total e¤ort since the prize is higher and the number

of participants does not change. Based on the above arguments, V � = �0�N(V
�; S�)S� for

the optimal feasible contest (V �; S�):
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