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Abstract

This paper studies in a multiple-winner contest setting how the total efforts may vary
between a grand contest and a set of subcontests. We first show that the rent-dissipation rate

increases when the numbers of contestants and prizes are “scaled up”. In other words, the total

efforts of a contest exhibit a striking “increasing return to scale” property: when the numbers
of contestants and prizes scale up proportionally, the total efforts of the contest increase more
than proportionally. Thus, the total efforts must increase when a set of identical subcontests
are merged into a grand contest. Equivalently, the total efforts decrease when a grand contest
is evenly divided. We further allow the grand contest to be split into uneven subcontests. We

show that under a mild and plausible condition (regular contest technology), the grand contest

generates more efforts as compared to any split contests.
JEL Nos: C72, D72
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1 Introduction

Contest is the situation where economic agents expend costly and non-refundable efforts in

order to win a limited number of prizes. Abundant examples of such competition can be
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observed in everyday life, such as promotion tournaments in internal labor markets inside

firms, political campaigns, influence politics, college admissions, etc. Due to their ubiquity,

contests have naturally attracted enormous attention from economic scholars, and a huge

body of literature has been developed to explore the strategic behaviors of rent seekers in

a wide variety of contexts. It has been widely recognized that the rule or the organization

of a contest may pivotally influence contestants’ incentives and behaviors. As argued by

Gradstein and Konrad (1999), “. . . the contest structures are the outcome of a careful design

with the view of attaining a variety of objectives, one of which is maximization of efforts by

contenders”. A great number of papers therefore have been devoted to the optimal design

of contests that contribute to the interests of contest organizers.

Though a lion’s share of these papers assume that contestants compete against all others

for a single prize (winner-take-all), the assumption contrasts with many contest settings in

reality. For instance, the government telecommunication regulator may issue a few oper-

ating licenses. Universities pick out thousands of freshmen from hundreds of thousands of

applicants every year. A number of seats in parliament can be available to nevertheless a

greater number of statesmen up for election. In all these examples, more than one prize is

awarded, while each contestant may receive no more than one of them. While the design of

“winner-take-all” contests has been thoroughly investigated in the literature, only a handful

of papers concern themselves with the optimal structure of multi-winner contests1.

In this paper, we focus on one particular aspect of multi-winner imperfectly-discriminatory

contest design: the “size” of the contest. A contest organizer is planning to distribute a fixed

number of prizes to a fixed pool of contestants. We attempt to investigate how the total

efforts may vary between a grand contest and a set of subcontests. More specifically, the

purpose of this paper is to study how the total efforts induced from rent-seeking contestants

may vary when a set of subcontests are merged into a grand contest, or equivalently, when

the grand multi-winner contest splits into “smaller” subcontests.

To pick out the prize recipients, the contest can be organized in two ways: the “grand”

1Imperctly-discriminatory contest models that involve multiple-winner settings can be seen in the studies

by Clark and Riis (1996, 1998a, 1998b), Amegashie, and Yates and Heckelman (2001). Barut and Kovenock

(1998), Moldovanu and Sela (2006), and Moldovanu, Sela, and Shi (2006) investigate multiple-prize compe-

tition in perfectly-discriminatory conest setting (all-pay auction).
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contest and the “split” contest. The contest organizer may administer a “grand” contest, in

which every contestant competes against all others for all the prizes available. The swimming

competitions in Olympic Games and World Championships tournaments exemplify such a

grand contest. Swimmers are initially placed in different heats, and the eight fastest advance

to the finals. The qualification to finals is not determined by a swimmer’s rank within his/her

own heat, but his/her relative performance compared to all other opponents, including those

who are placed in other heats. By the way of contrast, the contest organizer may split the

grand contest into a set of subcontests, in each of which a subset of contestants compete

against each other for a subset of the prizes. The “split” or “divisionalized” contest is not

unusual either. For instance, in the recent past, the state government of Texas (as well as

California and Florida) administered the “Percentage Plan” in college admissions. Under

this policy, ten percent of top students in each high school are automatically admitted into

The University of Texas system (or the counterparts in California and Florida), no matter

how their academic performance is compared to students in other schools. As a result,

the previously statewide races for admissions are more or less “downsized” to intra-school

competitions.

How does the “grand” swimming competition rule differ from its “split” counterpart in

providing incentives to the swimmers? Does the shift of admissions policy affect high school

students’ incentive to engage in academic efforts? In general, which organizing institution

demands more efforts from contestants, the “grand”, or the “split”? Does the “grand”

dominate any set of “split” contests? Or does the comparison depend upon how the grand

contest is divided? In particular, consider two seemingly equivalent contests with one hun-

dred contestants and ten prizes: the first one consists of ten identical subcontests, each of

which awards a single prize to ten potential recipients; while the other is a grand pooling

competition that awards ten prizes to a hundred. Are they indeed identical? If they are not,

which contest demands more effort from contestants?

To address these questions, we consider a grand contest C, in which K > 1 prizes are

available to N > K contestants. We allow the grand contest to be split into a set of M > 1

subcontests Ci. In each of them, Ni persons compete for Ki prizes, with Ni ≥ Ki ≥ 1,
MX

i=1

Ni = N , and
MX

i=1

Ki = K. Our main findings are summarized as follows.
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1. The output (total efforts) of contests exhibits a striking “increasing-return-to-

scale” property: When the numbers of contestants and prizes scale up proportionally,

the total efforts of the contest increase more than proportionally. Therefore the rent-

dissipation rate increases. Consequently, our result implies that the total efforts of a

contest decrease when the grand contest is evenly split into a set of identical partitions.

In other words, the total efforts increase when a set of identical subcontests merge into

a grand contest.

2. We further allow the grand contest to be unevenly divided. We establish a mild suffi-

cient condition (regular contest technology defined in Section 3.2), under which given

the total number of contestants and the total number of prizes, the grand contest

dominates any split contests in terms of the total efforts induced.

The rest of the paper proceeds as follows. In Section 2, we set up the model and present

the general equilibrium solutions. The research questions are analyzed in details in Section

3. Section 4 discusses the implications and applications of our results, and concludes this

paper.

2 Preliminaries

2.1 Multi-Winner Contests

Denote byC ≡ C(N,K, V ) a contest withN ≥ 2 identical risk-neutral contestants competing
for K ∈ {1, 2, ..., N} prizes of the unit value V . The N contestants simultaneously choose

their effort outlays to compete for the K prizes. In the case where K = 1, a single winner

receives the prize. We consider a contest success function, which is axiomized by Skaperdas

(1996). A contestant i wins the prize with the probability

Pi =
f(ei)

NP
j=1

f(ej)

, (1)

given the contestants’ efforts profile e = (e1, e2, . . . , eN). Wärneryd (2001) names f the im-

pact function, which indicates contestants’ technology. To guarantee an interior equilibrium,
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we assume the function f is strictly increasing, twice differentiable, and weakly concave.

Thus, a contestant i chooses his/her effort ei to maximize the expected payoff

πi = PiV − ei. (2)

In the case where K > 1, we then consider a multi-winner nested contest as studied

by Clark and Riis (1996, 1998), as well as Fu and Lu (2006), but assume a general impact

function f(e) as defined above. A block of K prizes are awarded in a sequential lottery

process. Contestants simultaneously submit their efforts, while the winners of the contest

are sequentially selected in K consecutive draws. Each contestant is allowed to receive no

more than one prize. Thus, once a contestant is selected to win a prize, he/she is immediately

removed from the pool of candidates up for the next draw. Denote by Ωm the set of remaining

contestants for the m−th draw, with m ≤ K. The conditional probability that a contestant

i ∈ Ωm wins the m−th prize is given by

p(ei, e−i;ΩM) =
f(ei)P

j∈ΩM
f(ej)

. (3)

Denote by Pm(ei, e−i) the probability that contestant i is selected in the m−th draw.
Note that Pm(ei, e−i) =

X

∀Ωml

[Pr(Ωm
l ) Pr(i ∈ Ωm

l )p(ei, e−i;Ω
m
l )], where Pr(Ω

m
l ) is the prob-

ability that the remaining contestants up for the m-th draw are Ωm
l , and Pr(i ∈ Ωm

l ) is

the probability that contestant i belongs to Ωm
l . A contestant i chooses his/her effort ei to

maximize

πi = V
KP

m=1

Pm(ei, e−i)− ei. (4)

2.2 Equilibrium Solutions

Denote by e the equilibrium effort each contestant exerts in a symmetric Nash equilibrium

of the contest (N,K, V ), and denote by E ≡ Ne the total efforts the N contestants make in

the contest. With a symmetric Nash equilibrium effort e, we have

∂Pm(e, ..., e)

∂ei
=

(1−
m−1P
t=0

1
N−t)

N

f
0

(e)

f(e)
. (5)

Note that
KX

m=1

(1−
m−1P
t=0

1

N − t
) = K −

K−1P
g=0

K − g

N − g
. (6)
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Define H(e) ≡ f(e)

f 0(e)
. Because f(e) is increasing and concave, we have H 0(e) > 0. Inserting

(6) into (5), we establish the first order condition for the symmetric Nash equilibrium

H(e)− 1

N
(K −

K−1P
g=0

K − g

N − g
)V = 0. (7)

Proposition 1 In the symmetric Nash equilibrium of aN−person, K-prize contest (N,K, V ),

each contestant makes an effort

e = H−1[
1

N
(K −

K−1P
g=0

K − g

N − g
)V ]. (8)

The total efforts the N contestants make in the contest is then given by

E = NH−1[
1

N
(K −

K−1P
g=0

K − g

N − g
)V ]. (9)

3 Analysis

In this paper, we consider a situation where the contest organizer plans to give away a

total of K prizes of unit value V to K recipients from a pool of a total of N contestants,

with N > K > 1. We define C = C(N,K, V ) the grand contest, where the N contestants

compete for the K prizes. The grand contest C can be split into M ≥ 2 subcontests

Ci = C(Ni,Ki, V ), where N =
MX

i=1

Ni and K =
MX

i=1

Ki. In a subcontest Ci, Ni contestants

compete for Ki ∈ {1, ..., Ni} prizes of the unit value V . Thus, in other words, the grand

contest C is the combination of the M subcontests Ci.

We denote by Ei the total equilibrium efforts the Ni contestants make in each subcontest

Ci, with i ∈ {1, . . . ,M}, and denote by E the total efforts the total of N contestants make

in the combined contest C. By Proposition 1, we obtain

Ei = NiH
−1[

1

Ni
(Ki −

Ki−1P
gi=0

Ki − gi
Ni − gi

)V ], (10)

and

E = NH−1[
1

N
(K −

K−1P
h=0

K − h

N − h
)V ]. (11)

Without a merger, theN contestants make the effort
MX

i=1

Ei =
MX

i=1

{NiH
−1[ 1

Ni
(Ki−

Ki−1P
gi=0

Ki−gi
Ni−gi )V ]}

in the set of M smaller contests Ci.
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The intent of this paper is to compare the total efforts of the grand contest to that of

the set of split subcontests. Consider the equilibrium effort solution we have obtained. The

comparison between
MX

i=1

Ei =
MX

i=1

{NiH
−1[ 1

Ni
(Ki −

Ki−1P
gi=0

Ki−gi
Ni−gi )V ]} and E = NH−1[ 1

N
(K −

K−1P
g=0

K−g
N−g )V ] would be inconclusive, since virtually no restriction has been imposed on the

form of the impact function f(e).

3.1 The “Replication” of Contests

For this moment, we consider a simple but interesting case, which requires the subcontests

Ci(Ni,Ki, V ) to be identical, with Ni = Nj = eN and Ki = Kj = eK,∀i, j ∈ {1, ...,M}.
As a result, the grand contest C(N,K, V ) is therefore a “M-fold replication”2 of each

single subcontest, with N = M eN , and K = M eK. When the set of subcontests are merged
into the grand one, the ratio of the number of prizes to the number of contestants hold

constant. In the symmetric equilibrium of either setting, a contestant has a chance of K
N
to

receive a prize. Does the behavior of the contestants differ between a grand contest and a

subcontest?

By equation (10), we have

Ei = eNH−1[(
eK
eN
− 1

eN
K−1P
g=0

eK − g

eN − g
)V ], and (12)

MX

i=1

Ei = M eNH−1[(
eK
eN
− 1

eN
K−1P
g=0

eK − g

eN − g
)V ]. (13)

In the grand contest that is a “M-fold replication” of each single subcontest, the equilib-

rium total effort E can be rewritten as

E = M eNH−1[
1

M eN
(M eK −

MK−1P
h=0

M eK − h

M eN − h
)V ]

= M eNH−1[(
eK
eN
− 1

M eN
MK−1P
h=0

M eK − h

M eN − h
)V ]. (14)

2Wärneryd (2001) defines a contest with rN contestants competing for a prize of the value rV as the

r−fold replication of the contest with N contestants competing for a prize of the value V . In our context,

which may involve more than one winner, we borrow the terminology “r−fold replication” of the original
contest, but it represents a different setting from Wärneryd (2001). We allow the number of prizes and the

number of contestants vary, but keep constant the value of each single prize.
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Proposition 2 When a grand contest is split into a set of identical subcontests, with the

same number of contestants competing for the same number of prizes in each of them, the

total efforts induced decrease, i.e., E >
MX

i=1

Ei.

Proof. To show this result, we only need to compare (13) to (14) and show that E >
MX

i=1

Ei,

for M > 1. We rewrite
MK−1P
h=0

MK−h
MN−h as

MK−1P
h=0

M eK − h

M eN − h
=

M−1P
h=0

M eK − h

M eN − h
+
2M−1P
h=M

M eK − h

M eN − h
+ · · ·+

KM−1P
h=(K−1)M

M eK − h

M eN − h

=
KX

i=1

iM−1X

hi=(i−1)M

M eK − hi

M eN − hi
. (15)

Because

M eK − hi

M eN − hi
=

M eK − (i− 1)M
M eN − (i− 1)M

=
eK − (i− 1)
eN − (i− 1)

, (16)

and MK−hi
MN−hi

is decreasing in hi, we have

iM−1X

hi=(i−1)M

M eK − hi

M eN − hi
< M

eK − (i− 1)
eN − (i− 1)

. (17)

Inequality (17) implies

KX

i=1

iM−1X

hi=(i−1)M

M eK − hi

M eN − hi
< M

KX

i=1

eK − (i− 1)
eN − (i− 1)

= M
K−1X

i=0

eK − i

eN − i

= M
K−1P
g=0

eK − g

eN − g
. (18)

Hence,

eK
eN
− 1

M eN
MK−1P
h=0

M eK − h

M eN − h
=

eK
eN
− 1

eN
[
1

M

MK−1P
h=0

M eK − h

M eN − h
]

>
eK
eN
− 1

eN
K−1P
g=0

eK − g

eN − g
. (19)
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As H−1(·) is an increasing function, we have

E >
MX

i=1

Ei. (20)

Q.E.D.

Proposition 2 contends that the grand contest induces more efforts as compared to the

set of identical subcontests. This result requires only the weak concavity on f , therefore it

holds under fairly general settings. Because all contestants are identical, it reveals that in

the symmetric equilibrium, a contestant behaves more competitively in the grand contest,

although in the equilibrium he/she has the same chance to receive a prize in either contest

setting. Our analysis therefore sheds light on a more fundamental question: How does the

structure of a multiple-winner contest affect contestants’ incentives to make efforts? We

argue that the equilibrium effort of a contest exhibits the following “increasing-return-

to-scale” property.

Theorem 1 In a multiple-winner contest, holding constant the unit prize value, when the

number of contestants and the number of prizes increase by a common integer factor t,

(i) each contestant increases his/her equilibrium effort;

(ii) the total efforts end up with increasing by more than t times.

The equilibrium rent-dissipation rate for a contest is defined as the ratio of total effort

and total prizes, i.e. Ne
KV
. The following implication naturally arises.

Corollary 1 When the number of contestants and the number of prizes increase proportion-

ally, the rent-dissipation rate strictly increases.

We contend that a “bigger” contest would demand more efforts than contestants even if

the number of prizes increase in proportion to the number of contestants. Theorem 1 yields

important insights for economic studies on contests. It implies that contestants behave

differently when the “scale” of the contest varies. Thus, insights obtained from relatively

small contest settings may not naturally extend to contests of large scale.

To understand the intuition behind the result, consider two identical smaller contests, C1

and C2. Suppose in each of them, N identical risk-neutral contestants compete for K < N
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prizes of the unit value V , while in the merged contest 2N identical risk-neutral contestants

compete for 2K < 2N prizes of the unit value V . In contests C1 and C2, the efforts exerted

by the contestants increase their winning probabilities for the first K draws. By the way of

contrast, in the merged contest, the efforts exerted by the contestants increase their winning

probabilities for the first 2K draws, which yields higher marginal return as compared to the

smaller contest. The increased marginal return to effort therefore leads to higher equilibrium

efforts as the marginal costs of effort remain unchanged. It should be clarified that the higher

individual effort in the “scaled-up” contest does not stem from the escalated competition

among a larger number of contestants. This is clear from the equilibrium effort solution as

given by equation (8): When f(e) = e and K = 1 in (8), we have e = 1
N
(1 − 1

N
), which

decreases with N for N ≥ 2.

3.2 Uneven Subcontests

Our previous results show that the total efforts decrease when a grand contest is evenly

split into a set of identical subcontests. In this part, we extend our analysis to the setting

where the grand contest can be unevenly divided. Consider a simple example with a grand

contest C = C(10, 4, 1) and a linear impact function f(e) = e. The grand contest C can

be split into two subcontests C1 = C(7, 3, 1) and C2 = C(3, 1, 1) . From Proposition 1,

we have e = 0.287, e1 = 0.291 and e2 = 0.222. Once the grand contest is split into C1

and C2 in the above way, contestants allocated to C1 increase effort, while contestant in

C2 reduce efforts. But nevertheless, when it comes to the total efforts induced, we see that
2X

i=1

Ei = 2.704 < E = 2.87, and the grand contest C dominates the set of two split contests.

However, a contest can be structured and split in numerous ways. Thus, an interesting

question arises: is the dominance of the grand contest we observed from this example merely

an artifact of the particular setting, or does it stem from any regularity that applies in

broader contexts? Alternatively, if such regularity exists, then to what extent does it hold?

To this purpose, we consider the class of contests that satisfy the following regularity

condition.

Definition 1 A contest is regular if and only if
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(i) contestants’ impact function f(e) is strictly increasing, concave and third-order dif-

ferentiable;

(ii) H−1(·) is concave, where H(·) = f(·)

f 0(·)
.3

To compare
MX

i=1

Ei with E, we first present the following key Lemma, which summarizes

an interesting property of the series {K−g
N−g}

K−1
g=0 .

Lemma 1

K1−1X

g1=0

K1−g1
N1−g1 +

K2−1X

g2=0

K2−g2
N2−g2 >

K1+K2−1X

g=0

K1+K2−g
N1+N2−g , ∀N1 ≥ K1 > 0, N2 ≥ K2 > 0, with

N1 +N2 > K1 +K2.

Please refer to the appendix for the proof of Lemma 1. The main idea of the proof

is quite straightforward. Define S to be the set composed of all the K1 + K2 elements in

series {K1+K2−g
N1+N2−g }

K1+K2−1
g=0 , and eS to be the set composed of all the K1 + K2 elements in

the combined series of {K1−g1
N1−g1 }

K1−1
g1=0 ∪ {K2−g2

N2−g2 }
K2−1
g2=0 . In the proof, we constructively set up a

one-to-one correspondence between S and eS, such that any element in S is smaller than or

equal to its counterpart in eS.
With the property revealed by Lemma 1, we obtain the following result.

Theorem 2 The grand contest induces more total efforts than the set of subcontests, i.e.

E >
MX

i=1

Ei,∀M ≥ 2.

Proof. We first consider two subcontests C1 and C2, which belong to the set of M contests.

Without loss of generality, we assume K1 + K2 < N1 + N2. We denote by C1∪2 = (N1 +

N2,K1+K2, V ) the contest that combinesC1 andC2. By Proposition 1, without combination,

the total efforts induced by the two subcontests are given by

E1 +E2 = N1H
−1[

1

N1
(K1 −

K1−1P
g1=0

K1 − g1
N1 − g1

)V ] +N2H
−1[

1

N2
(K2 −

K2−1P
g2=0

K2 − g2
N2 − g2

)V ]. (21)

In contrast, in the combined contest, the total efforts contestants make amount to

E1∪2 = (N1 +N2)H
−1[

1

N1 +N2
(K1 +K2 −

K1+K2−1P
h=0

K1 +K2 − h

N1 +N2 − h
)V ]. (22)

3This property is not necessary for the results in section 3.1.
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Step 1: E1 +E2 ≤ (N1 +N2)H
−1{[(K1 +K2)− (

K1−1P
g1=0

K1−g1
N1−g1 +

K2−1P
g2=0

K2−g2
N2−g2 )]V }.

Because H(e) = f(e)

f 0(e)
is concave, it follows that H−1(·) is convex in its argument. By

Jensen’s inequality, we establish

E1 +E2

= N1H
−1[

1

N1
(K1 −

K1−1P
g1=0

K1 − g1
N1 − g1

)V ] +N2H
−1[

1

N2
(K2 −

K2−1P
g2=0

K2 − g2
N2 − g2

)V ]

≤ (N1 +N2)H
−1{

N1

N1 +N2
· [
1

N1
(K1 −

K1−1P
g1=0

K1 − g1
N1 − g1

)V ] +
N2

N1 +N2
· [
1

N2
(K2 −

K2−1P
g2=0

K2 − g2
N2 − g2

)V ]}

= (N1 +N2)H
−1{

1

N1 +N2
[(K1 +K2)− (

K1−1P
g1=0

K1 − g1
N1 − g1

+
K2−1P
g2=0

K2 − g2
N2 − g2

)]V }. (23)

Step 2: (K1 +K2)− (
K1−1P
g1=0

K1−g1
N1−g1 +

K2−1P
g2=0

K2−g2
N2−g2 ) < (K1 +K2)−

K1+K2−1X

g=0

K1+K2−g
N1+N2−g .

This inequality directly follows from Lemma 1.

Step 3: E1 +E2 < E1∪2.

Because H−1(·) is strictly increasing, we have

H−1{[(K1 +K2)− (
K1−1P
g1=0

K1 − g1
N1 − g1

+
K2−1P
g2=0

K2 − g2
N2 − g2

)]V }

< H−1{[(K1 +K2)−
K1+K2−1X

g=0

K1 +K2 − g

N1 +N2 − g
]V } = E1∪2, (24)

which implies E1∪2 > (N1 +N2)H
−1{[(K1 +K2)− (

K1−1P
g1=0

K1−g1
N1−g1 +

K2−1P
g2=0

K2−g2
N2−g2 )]V } > E1 +E2.

Step 4: E >
MX

i=1

Ei.

Consider another contest C3 = C(N3,K3, V ). Combine C1∪2 with C3. Then by the

result of Step 3, we must have E1∪2∪3 > E1∪2 + E3. In other words, the combined contest

C1∪2∪3 generates higher efforts than the two separate contests C1∪2 and C3. Following this

argument, we have E >
MX

i=1

Ei, ∀M ≥ 2.

Q.E.D.

Theorem 2 establishes a mild sufficient condition (regular contest technology) for the

dominance of the grand contest: A grand contest always generates strictly more efforts then

the split “smaller” subcontests, no matter how the pool of contestants are divided or how

the prizes are allocated across subcontests. Alternatively, merging “smaller” contests always
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creates more competition and induces contestants to exert more efforts, no matter how these

“smaller” contests are constructed. But nevertheless, the regularity condition, i.e. the

weak concavity of H(e), is by no means a strong restriction. It is satisfied by the class of

power functions f(e) = eα, which have been commonly assumed as the contest technology

in the literature. Hence, the result of Theorem 2 holds for a wide class of contest settings.

Contestants in different subcontests may respond differently after the grand contest is

split. Some of them may have to exert more efforts, while others exert less, depending on the

particular structures of the subcontests. However, the “gain” of efforts in some subcontests

always comes at the cost of “loss” in the others, and the “gain” must be more than offset by

the “loss”. As a consequence, the total efforts unambiguously decreases as the grand contest

is split.

Theorem 2 directly implies the following corollary.

Corollary 2 The grand contest generates a higher rent-dissipation rate than the set of split

contests.

4 Discussion and Conclusion

In this paper, we show that, compared to any split contests, the grand contest maximizes

the total efforts induced. Thus, if the efforts exerted by contestants accrue to the benefits

of the contest organizer, then a grand contest of a greater size better serves the interest of

the contest organizer. Besides the theoretical contribution, our results shed light on many

real-life situations that resemble the competition as we modeled in this paper.

Firstly, our results directly apply to the “Percentage Plan” admission policy undertaken

by the states of Texas, California and Florida. The “Percentage Plan” guarantees admissions

to a fixed portion of top students from each high school in the state. This policy has been

generally regarded as the natural alternative to affirmative action to maintain ethnic diversity

in the state universities’ student body. However, this policy has been controversial ever since

its very inception. Despite of the high profile of the debate, claims have long been centered

on the effectiveness of this policy as a means to achieve diversity, but nevertheless, its

ramifications on the efficiency of the education system has yet to be investigated. Our model

13



brings forth the possibility to assess the “Percentage Plan” on the ground of academic quality.

How does the admission scheme affect high school students’ incentive to exert academic

efforts? Our results predict that “downsizing” the admission competitions among students

from the state level to school level weakens students’ incentives to engage in academic efforts.

High school students tend to be less willing to invest in academic efforts. As a result,

the prediction may raise additional concerns to the policy makers, because the potential

benefits of the policy may come at the cost of the schooling systems’ educational output.

A comprehensive and fair assessment of the policy would be difficult. Yet our results may

provide a novel view towards the “Percentage Plan”: its incentive effect!

Secondly, our finding is also relevant to the organization of internal labor market inside a

firm. Team production has become an increasingly popular mechanism in organizing working

force. However, promotion-based compensation schemes are universally adopted to motivate

workers, while the evaluation of workers relies on their comparative performance, which re-

sembles a contest or a tournament. Thus, when workers are organized into a number of

teams, how should the firm pick out and reward top-performing workers? In particular, the

firm may distribute a number of “prizes” (higher-level positions, bonus, or other compensa-

tion packages) among these teams, thus top-performing workers within each team receive the

awards; by contrast, the firm may ignore workers’ ranks within their own teams, but allocate

the prizes based on the performance comparison across the entire working force. Our re-

sults suggest that workers’ intra-team rankings should be assigned lesser weights. Of course,

teams may perform different tasks, and therefore the management may lack a universally

acceptable criterion to evaluate workers from different teams. However, if the outputs of dif-

ferent teams can be compared on a common ground, the comparative performance should be

evaluated beyond each individual team, in order to provide a stronger incentive for workers

to exert productive efforts.

Thirdly, our papers are closely related to the studies by Amegashie (2000), andMoldovanu

and Sela (2006). Amegashie (2000) compares two ways of “shortlisting” in two-stage imperfectly-

discriminatory contests. To selectK finalists from a pool of N contestants in the preliminary

stage, one shorting-listing procedure is to run a grand contest, in which each of the N con-

testants compete against all others. The other procedure is to evenly divide the pool of

contestants into K groups. In each group one winner survives to the final. Amegashie
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(2000) shows the former dominates the latter and induces more efforts if contestants have

linear contest technology. We confirm his important insight and extend this thread of think-

ing in a context that allows for general contest technology and flexible division of the grand

contest. In a perfectly-discriminatory contest setting, Moldovanu and Sela (2006) show that

evenly spliting a grand contest into parallel subcontests do not benefit the contest organizer

if his/her payoff is given by the total expected effort outlays.

By the way of contrast, when a grand contest is split into a set of subcontests, in each

of which a subset of contestants compete for a subset of prizes, the total efforts decrease.

Hence, to the extent that the rent-seeking activity is considered to be wasteful and undesir-

able, our results suggest that the contest organizer can successfully reduce the waste of loud

lobbying by dividing the grand contest into a set of subcontests of lower scales. Hence, our

results provide a rationale for “quota” systems, which are widely practiced when government

agencies allocate public resources. When public resources are distributed among different

regions or groups in fixed quota, the rent-seeking activities are therefore downgraded to a

set of “intra-region” or “intra-group” competition. Thus, our paper is also related to Wärn-

eryd (1998), and Inderst, Müller, and Wärneryd (2005). Both of these papers suggest that

distributional conflicts can be reduced, if the jurisdictional organizations are more hierarchal.

In the practice of “quota” system, the prizes are often distributed among regions or

groups with the number of prizes in proportion to the populations of the regions or the

sizes of the groups. For instance, University of Texas system guarantees admissions to

students among the top four percent of each high school in the State of Texas. Such rules of

“proportional representations” mainly address the equity issue in allocation. However, our

results raise additional concerns regarding the implementation of a “quota” system: Does

the rule of “proportional representation” (assigning prizes proportional to the size of the

groups) guarantee fair re-distribution? We show by Theorem 1 that the larger the size of the

group, the more demanding the contest, and the more efforts contestants in that group have

to expend in order to win the prizes. Consequently, those who are in a larger group receive

less surplus than those who are in a smaller group, although in the symmetric equilibria,

their expected gross payoffs are not different from the contestants in smaller groups.

As a result, our results confirm the conventional wisdom that “the first in village is better

than the second in Rome” from an alternative angle. Theorem 1 implies that being among
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the top ten of a hundred requires a contestant of more efforts than being the unique winner

of ten. The success among the mass usually rewards more than the success among a few,

and yet it as well demands more sacrifices. Thus, one may prefer to stay in “village”, instead

of going to “Rome” to struggle for a rise, in spite of the abundant opportunities for success

in “Rome”.

Finally, our paper leaves tremendous room for future extensions. A major caveat of our

paper is that we assume all contestants are identical. One challenging extension would be

to allow contestants to differ in ability.
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Appendix: The proof of Lemma 1

Without loss of generality, we assume K1

N1
≥ K2

N2
. The case K1

N1
= 1 is trivial. If K1

N1
= 1,

then
K1−1X

g1=0

K1−g1
N1−g1 = K1 >

K1−1X

g1=0

K1+K2−g
N1+N2−g . The rest of the sequence {

K1+K2−g
N1+N2−g }

K1+K2−1
g=0 starts

from the term K2

N2
. This leads to

K1+K2−1X

g1=K1

K1+K2−g
N1+N2−g =

K2−1X

g1=0

K2−g2
N2−g2 . Therefore, we obtain

K1−1X

g1=0

K1−g1
N1−g1 +

K2−1X

g2=0

K2−g2
N2−g2 >

K1+K2−1X

g=0

K1+K2−g
N1+N2−g . Next we focus on the case

K2

N2
≤ K1

N1
< 1, which

leads to that 1 ≤ K2 < N2 and 1 < K1 < N1.

For any 1 ≤ L1 < M1, 1 ≤ L2 < M2 and integer t ≥ 0, we have the following properties.
Property 1: L1

M1

S L1+L2
M1+M2

S L2
M2

if and only if L1
M1

S L2
M2

; equivalently, L1−t
M1−t S

L1+L2−t
M1+M2−t S

L2
M2

if and only if L1−t
M1−t S

L2
M2

, where L1 − t ≥ 1.
Property 2: L1−t

M1−t strictly decreases with t; while L2−t
M2−t and

L1+L2−t
M1+M2−t strictly decrease

with t.

Property 3: Assume L1 − t ≥ 1. If L1−t
M1−t ≤

L1+L2−t
M1+M2−t , then

L1−(t+1)
M1−(t+1) <

L1+L2−(t+1)
M1+M2−(t+1) ;

equivalently, if L1−(t+1)
M1−(t+1) ≥

L1+L2−(t+1)
M1+M2−(t+1) , then

L1−t
M1−t >

L1+L2−t
M1+M2−t .

Our proof proceeds as follows.

Step 1: Because K1

N1
≥ K2

N2
, by Property 1, K1

N1
≥ K1+K2

N1+N2
. We define t1 = maxt∈{0,1,...,K1}{t|

K1−t
N1−t ≥

K2

N2
}, where K1−t

N1−t decreases with t from Property 2. Note that t1 is well defined as when t = 0,

K1−t
N1−t ≥

K2

N2
, and when t = K1,

K1−t
N1−t <

K2

N2
. Thus we have t1 ∈ {0, 1, ...,K1−1}. from Property

1, we have K1−t
N1−t ≥

K1+K2−t
N1+N2−t for t ∈ [0, t1]. Thus

t1X

h=0

K1 +K2 − h

N1 +N2 − h
≤

t1X

h=0

K1 − h

N1 − h
. (25)

We separate two cases: t1 = K1 − 1 and 0 ≤ t1 < K1 − 1.

Case 1: t1 = K1−1. In this case, the sequence {K1−g1
N1−g1 }

K1−1
g1=0 is exhausted.

t1X

h=0

K1+K2−h
N1+N2−h ≤

t1X

h=0

K1−h
N1−h is equivalent to

K1−1X

g=0

K1+K2−g
N1+N2−g ≤

K1−1X

g1=0

K1−g1
N1−g1 .

The rest of the sequence {K1+K2−g
N1+N2−g }

K1+K2−1
g=0 starts from the term K1+K2−t1−1

N1+N2−t1−1 =
K2

N1+N2−K1

.

Clearly K2−h
N2−h > K2−h

N1+N2−K1−h , ∀h ∈ [0,K2 − 1] as N1 > K1.

Hence, we obtain
K1−1P
g1=0

K1−g1
N1−g1 +

K2−1P
g2=0

K2−g2
N2−g2 >

K1+K2−1P
g=0

K1+K2−g
N1+N2−g , which completes the proof.
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Case 2: 0 ≤ t1 < K1 − 1. In this case, by the definition of t1, we have K1−t1
N1−t1 ≥

K2

N2
and

K1−t1−1
N1−t1−1 <

K2

N2
. Thus, by Property 1, we have K2

N2
> K1+K2−(t1+1)

N1+N2−(t1+1) >
K1−t1−1
N1−t1−1 .

Then we define t2 = maxt∈{0,1,...,K2}{t|
K2−t
N2−t ≥

K1−(t1+1)
N1−(t1+1)}. Note that t2 is well defined and

t2 ∈ [0,K2 − 1]. Thus, we obtain
t2X

h=0

K1+K2−(t1+1)−h
N1+N2−(t1+1)−h <

t2X

g=0

K2−g
N2−g , which implies

t1+t2+1X

g=0

K1 +K2 − g

N1 +N2 − g
<

t1X

g1=0

K1 − g1
N1 − g1

+
t2X

g2=0

K2 − g2
N2 − g2

. (26)

The rest of sequence {K1+K2−g
N1+N2−g }

K1+K2−1
g=0 starts from the term K1+K2−(t1+1)−(t2+1)

N1+N2−(t1+1)−(t2+1) . Again,

we consider two possibilities.

Case 2.1: t2 = K2− 1. In this case, the sequence {K2−g2
N2−g2 }

K2−1
g2=0

is exhausted. The rest of

sequence {K1+K2−g
N1+N2−g }

K1+K2−1
g=0 starts from the term K1−(t1+1)

N1+N2−K2−(t1+1) , while the rest of sequence

{K1−g
N1−g}

K1−1
g=0 starts from the term K1−(t1+1)

N1−(t1+1) . Clearly,
K1−(t1+1)−h
N1−(t1+1)−h > K1−(t1+1)−h

N1+N2−K2−(t1+1)−h for all

h ∈ [0,K1 − t1 − 2] as N2 > K2. Hence we have

K1−t1−2X

h=0

K1 − (t1 + 1)− h

N1 − (t1 + 1)− h
>

K1−t1−2X

h=0

K1 − (t1 + 1)− h

N1 +N2 −K2 − (t1 + 1)− h
, (27)

which implies
K1−1X

g1=t1+1

K1 − g1
N1 − g1

>
K1+K2−1X

g=t1+K2+1

K1 +K2 − g

N1 +N2 − g
. (28)

Combine inequalities (25), (26) and (28), we have

K1−1X

g1=0

K1 − g1
N1 − g1

+
K2−1X

g2=0

K2 − g1
N2 − g1

>
K1+K2−1X

g=0

K1 +K2 − g

N1 +N2 − g
, (29)

which completes our proof.

Case 2.2: t2 < K2 − 1. We go to Step 2.
Step 2: In the Case 2.2, we have 0 ≤ t2 < K2 − 1 and 0 ≤ t1 < K1 − 1. From (26),

In order to show Lemma 1, we only need to show

K1+K2−1X

g=t1+t2+2

K1 +K2 − g

N1 +N2 − g
<

K1−1X

g1=t1+1

K1 − g1
N1 − g1

+
K2−1X

g2=t2+1

K2 − g2
N2 − g2

. (30)

Equivalently,
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[K1−(t1+1)]+[K2−(t2+1)]−1X

g=0

{[K1 − (t1 + 1)] + [K2 − (t2 + 1)]}− g

{[N1 − (t1 + 1)] + [N2 − (t2 + 1)]}− g

<

[K1−(t1+1)]−1X

g1=0

[K1 − (t1 + 1)]− g1
[N1 − (t1 + 1)]− g1

+

[K2−(t2+1)]−1X

g2=0

[K2 − (t2 + 1)]− g2
[N2 − (t2 + 1)]− g2

. (31)

Note that there are at most K1 − 2 and K2 − 2 terms in the two sequences on the right
hand side, since t1 > 0 and t2 > 0. By definition of t2, we have

K2−t2
N2−t2 ≥

K1−(t1+1)
N1−(t1+1) and

K2−(t2+1)
N2−(t2+1) <

K1−(t1+1)
N1−(t1+1) . In other words, the first term in the first sequence on the right hand

side of (31) is greater than the counterpart of the second sequence. The procedure in Step

1 can thus be applied again to the two sequences on the right hand side of (31).

We repeat the procedures in Steps 1 and 2 until we reach the end of sequence {K1−g1
N1−g1 }

K1−1
g1=0

or {K2−g2
N2−g2 }

K2−1
g2=0

. Then we can apply the reasoning in Case 2.1 of Step 1 to complete the

proof.

Q.E.D.
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