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Abstract

In this paper, we present a limiting distribution theory for the break point estimator in a linear

regression model estimated via Two Stage Least Squares under two different scenarios regarding

the magnitude of the parameter change between regimes. First, we consider the case where

the parameter change is of fixed magnitude; in this case the resulting distribution depends on

distribution of the data and is not of much practical use for inference. Second, we consider

the case where the magnitude of the parameter change shrinks with the sample size; in this

case, the resulting distribution can be used to construct approximate large sample confidence

intervals for the break point. The finite sample performance of these intervals are analyzed in a

small simulation study and the intervals are illustrated via an application to the New Keynesian

Phillips curve.

JEL classification: C12, C13

Keywords: Structural Change, Multiple Break Points, Instrumental Variables Estimation.



1 Introduction

Econometric time series models are based on the assumption that the economic relationships, or

“structure”, in question are stable over time. However, with samples covering extended periods,

this assumption is always open to question and this has led to considerable interest in the

development for statistical methods for detecting structural instability.1

In designing such methods, it is necessary to specify how the structure may change over

time and a popular specification is one in which the parameters of the model are subject to

discrete shifts at unknown points in the sample. This scenario can be motivated by the idea of

policy regime changes.2 Within this type of setting, the main concern is to estimate economic

relationships in the different regimes and compare them. However, since not all policy changes

may impact the economic relationship of interest, an important precursor to this analysis is the

identification of the points in the sample, if any, at which the parameters change. This raises

the issue of how to perform inference about the location of the so-called “break points”, that is

the points in the sample at which the parameters change, and motivates the interest to obtain

a limiting distribution theory for break point estimators.3 It is the latter which is the focus of

this paper.

There is a literature in time series on the limiting distribution of break point estimators

for estimation of changes in mean of process; see Hinckley (1970), Picard (1985), Bhattacharya

(1987), Yao (1987), Bai (1994, 1997b). A limiting distribution theory has also been presented in

the context of linear regression models estimated via Ordinary Least Squares (OLS). Bai (1997b)

considers the case in which there is only one break. He presents two alternative limit theories

for the break point estimator. One assumes the magnitude of change between the regimes is

fixed; this turns out to depend on distribution of data. The other assumes the magnitude of

the parameter change is shrinking with the sample size: this theory approach leads to practical

methods for inference about the location of the break point. Bai and Perron (1998) consider

1See inter alia Andrews and Fair (1988), Ghysels and Hall (1990a,b), Andrews (1993), Andrews and Ploberger

(1994), Sowell (1996), Hall and Sen (1999) as well as the other references below.
2For example, Bai (1997b) explores the impact of changes in monetary policy on the relationship between

the interest rate and the discount factor in the US, and Zhang, Osborn, and Kim (2007) explore the impact of

monetary policy changes on the Phillips curve.
3The term “change point” is also used in the literature to denote the points in the sample at which the

parameter values change.
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the case of multiple break points that are estimated simultaneously. They present a limiting

distribution theory for the break point estimators based on the assumption that the parameter

change is shrinking as the sample size increases; this can be used by practitioners to perform

inference about the location of the break points.

One maintained assumption in Bai’s (1997b) and Bai and Perron’s (1998) analyses is that the

regressors are uncorrelated with the errors so that OLS is an appropriate method of estimation.

This is a leading case, of course, but there are also many cases in econometrics where the

regressors are correlated with the errors and so OLS yields inconsistent estimators. It is desirable,

therefore, to develop comparable methods for inference about the break fraction in this more

general setting. Hall, Han, and Boldea (2007) consider the estimation of linear regression models

with multiple breaks via 2SLS. Their framework allows for the regressors to be correlated with

errors and for multiple breaks in the structural equation of interest. Their focus is on developing

methods for inference about the parameters in the structural equation of interest. To establish

these results, they prove the consistency of the break fraction estimators and also find their

rate of convergence under the assumption that the magnitude of the parameter shift is fixed.

However, they do not consider the distribution of the break point estimators.

In this paper, we derive the distribution of the break point estimator in the 2SLS model

under the assumption that the parameter change is of fixed magnitude. This distribution is

shown to be the natural extension of Bai’s (1997b) result for OLS estimators and consequently

shares the property that it depends on distribution of the data. Therefore, we also explore

the distribution of the break point estimator when magnitude of the parameter change shrinks

with the sample size. We establish the rate of convergence of the estimator and also a limiting

distribution theory. Once again, this distribution is shown to be the natural generalization of

the corresponding distribution for OLS estimation. As in the OLS case, this distribution can

be used to perform inferences about the break point. We report results from a small simulation

study that indicates this limiting distribution provides a good approximation to the finite sample

behaviour of the estimated break fraction when the true break fraction is not too large. The use

of these intervals is illustrated via an empirical application to the New Keynesian Phillips curve.

An outline of the paper is as follows. Section 2 lays out the model, estimation framework and

certain preliminary results. Section 3 presents the large sample distribution of the break point

estimator in the case where the change in the parameters across regimes is of fixed magnitude.
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Section 4 presents a corresponding theory under the assumption that the magnitude of the

parameter change is shrinking as the sample size increases. This section also reports the results

from our simulation study. Section 5 contains the empirical application and Section 6 concludes.

All proofs are relegated to a mathematical appendix.

2 The model, estimation framework and preliminary re-

sults

Consider the following linear structural equation model

yt = x′
tβ

0
x,i + z′1,tβ

0
z1,i + ut, i = 1, 2 t = T 0

i−1 + 1, . . . , T 0
i ; T 0

0 = 0 and T 0
2 = T (1)

in which the vector xt = (1, xt,2, · · · , xt,p1
)′ is correlated with the error term ut, and z1,t is a

p2 × 1 vector of explanatory variables that are uncorrelated with ut and includes the intercept.

We define p = p1 + p2 and β0
i = (β0

x,i
′
, β0

z1,i
′
)′. The error term, ut, is assumed to have a mean of

zero.

Notice that this equation has a single break point at sample observation t = T1. For the

majority of what follows, it is assumed that the total number of break points is known to be

one, but the location of the break point is not known. However, we consider the extension of

certain results for the one break model to the multiple break model at the end of Section 4.

Suppose that a researcher is interested in estimating the coefficients β0 = (β0′
1 , β0′

2 )′. It is

well known that, in view of the correlation between xt and ut, OLS estimation of (1) would yield

inconsistent estimators of the regression parameters. Instead, we consider estimation based on

the Two-Stage Least Squares (2SLS) principle. To implement 2SLS, it is necessary to estimate

the reduced form for xt. In this paper, we assume this reduced form is as follows,

x′
t = z′t∆0 + v′t (2)

where zt = (zt,1, zt,2, . . . , zt,q)
′ = (z′1,t, z

′
2,t)

′, ∆0 = (δ1,0, δ2,0, . . . , δp1,0) with dimension q × p1

and each δj,0 for j = 1, . . . , p1 has dimension q × 1. The instrument vector, zt, is assumed to

be uncorrelated with both the error term in the reduced form, vt, and the error term in the

structural equation of interest, ut.
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To estimate β0, the researcher must also estimate the break point. The estimation process

proceeds as follows.

On the first stage of the 2SLS estimation, the reduced form in (2) is estimated via OLS to

obtain,

x̂′
t = zt

′∆̂T = zt
′(

T
∑

t=1

ztzt
′)−1

T
∑

t=1

ztxt
′ (3)

On the second stage of the 2SLS estimation, the regression coefficients are estimated for each

partition of the sample (T0 = 0, T1, T2 = T ) such that T1 > q and T − T1 > q via

β̂(T1) = arg min
β(T1)

2
∑

i=1

Ti
∑

t=Ti−1+1

(yt − x̂′
tβx,i − z′1,tβz1,i)

2

∣

∣

∣

∣

β=β(T1)

where β = (β′
1, β

′
2)

′. The estimator of the break point is then

T̂1 = arg min
T1

2
∑

i=1

Ti
∑

t=Ti−1+1

(yt − x̂′
tβx,i − z′1,tβz1,i)

2

∣

∣

∣

∣

β=β(T1)

(4)

and the associated estimator of β0 is

β̂ = β̂(T̂1) (5)

Hall, Han, and Boldea (2007) focus on inference about the parameters β0 in a generalized

version of the above model that allows for m breaks in the sample. Specifically, they derive

the limiting distributions of both β̂ and also various tests for parameter variation. However, to

establish these results, they need to prove certain convergence results regarding the break point

estimators. These results are also relevant to our analysis of the limiting distribution of the break

point estimator, and so we summarize them below in a lemma. Rather than present Hall, Han,

and Boldea’s (2007) results for the m break model, we specialize them to the single break model

being considered here. To present these results, we must state the assumptions under which they

are derived. These assumptions are also imposed in our analysis of the limiting distribution of

the break point estimator.

Let “=⇒” denote weak convergence in the space D[0, 1] under the skorohod metric, and [.]

denote the integer part of the quantity in the brackets.

Assumption 1 Let bt = (ut, v
′
t)

′ and F = σ − field{. . . , zt−1, zt, . . . , bt−2, bt−1}. Assume bt is

a martingale difference relative to {Ft} and suptE[‖bt‖4] < ∞.

Assumption 2 rank {Υ0 } = p where Υ0 = (∆0, Π), Π′ = (Ip2
, 0p2×(q−p2)), Ia denotes the

a × a identity matrix and 0a×b is the a × b null matrix.
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Assumption 3 There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of

Ail = (1/l)
∑T0

i
+l

t=T0

i
+1

ztzt
′ and of A∗

il = (1/l)
∑T0

i

t=T0

i
−l

ztzt
′ are bounded away from zero for all

i = 1, 2.

Assumption 4 T 0
1 = [Tλ0

1], where 0 < λ0
1 < 1.

Assumption 5 T−1
∑[Tr]

t=1 ztz
′
t

p→ QZZ(r) uniformly in r ∈ [0, 1] where QZZ(r) is positive

definite for any r > 0 and strictly increasing in r.

A few comments on these assumptions are in order. Assmption 1 includes the restriction that

E[ztut] = 0, and thus, that the instruments, zt, are orthogonal to the structural equation error,

ut. Assumptions 2 and 5 imply the standard rank condition for identification in IV estimation

in the linear model4 because Assumptions 1, 2 and 5 together imply that

T−1

[Tr]
∑

t=1

zt(x
′
t, z

′
1,t) ⇒ QZZ(r)Υ0 = QZ,[X,Z1](r) uniformly in r ∈ [0, 1]

where QZ,[X,Z1 ](r) has rank equal to p for any r > 0. Assumption 3 requires that there are

enough observations near the true break points so that they can be identified. Assumption 4 is

a standard requirement to allow the development of an asymptotic theory. It implies that each

segment increases proportionately as the sample size increases. Assumption 5 is standard for

multiple linear regressions. It rules out perfect linear dependencies among zt.

Within this framework, the break point is indexed by the break fraction λ0
1. Let λ̂1 = T̂1/T

be the estimator of λ1. Hall, Han, and Boldea (2007)[Theorems 1 & 2] establish the following

properties of this break fraction estimator.

Lemma 1 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (3) and As-

sumptions 1-5 hold, then (i) λ̂1
p→ λ0

1; (ii) for every η > 0, there exists C such that for all large

T , P (T |λ̂1 − λ0
1| > C) < η.

Therefore, the break fraction estimator deviates from the true break fractions by a term of

order in probability T−1.

4See e.g. Hall(2005)[p.35].
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3 Fixed magnitude of shift in the regression parameters

In this section, we present a limiting distribution for the break point estimator within our

single break model under the assumption that the shift in the regression parameters is of fixed

magnitude. To simplify the notation, we now denote the true break point by k0, that is k0 = T 0
1 ,

and denote the break point estimator by k̂, that is k̂ = T̂1.

In the previous section, k̂ is defined via the minimization of the residual sum of squares on

the second stage of the 2SLS estimation. However, for the derivation of the limiting distribution

theory, it is more convenient to redefine k̂ via the maximization involving quasi-Wald statistics

for testing parameter stability in this second stage regression; the prefix “quasi” refers here to

that fact that the statistics in question are proportional to the Wald statistics as is described

below. To present this alternative - but equivalent - definition, it is necessary to introduce a

reparameterization of the regression model in the second stage of the 2SLS.

First consider the case where the true break point is known. In this case, the second stage

regression model is:

yt = x′
tβ

0
x,1 + z′1,tβ

0
z1,1 + ũt, t = 1, · · · , k0 (6)

yt = x′
tβ

0
x,2 + z′1,tβ

0
z1,2 + ũt, t = k0 + 1, · · · , T (7)

where

ũt = (xt − x̂t)
′β0

x,1 + ut, t = 1, . . .k0

= (xt − x̂t)
′β0

x,2 + ut, t = k0 + 1, . . .T

Equation (7) can be reaparameterized as follows

yt = x̂′
tβ

0
x,1 + z′1,tβ

0
z1,1 + x̂′

t(β
0
x,2 − β0

x,1) + z′1,t(β
0
z1,2 − β0

z1,1) + ũt (8)

Equations (6) and (8) can be then combined to yield

Y = Wβ0
1 + W0θ

0 + Ũ (9)

where Y = (y1, . . . , yT )′, W = (w1, w2, . . . , wT )′, wt = (x̂′
t, z

′
1,t)

′, W0 = (0, . . . , 0, wk0+1, . . . , wT )′,

θ0 = β0
2 − β0

1 , and Ũ = (ũ1, . . . , ũT )′. A test of parameter stability, i.e. β0
1 = β0

2 , can be

performed by estimating (9) and then calculating the Wald test for H0 : θ0 = 0.
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Suppose now that k0 is unknown. In this case, a strategy for testing parameter stability is

as follows. For each possible break point, k, estimate the analagous version of (9)

Y = Wβ1(k) + W2θ(k) + “error”

where W2 = (0, . . . , 0, wk+1, . . . , wT )′, and calculate the Wald statistic for the null hypothesis

that θ(k) = 0. For our purposes, it turns out to be more convenient to consider inference based

on the quasi-Wald statistic,5

ξW (k) =
θ̂(k)′(W ′

2MW W2)θ̂(k)

σ̂2(k)

where MW = I − W (W ′W )−1W ′, σ̂2(k) = ST (k)/(T − 2p), [β̂i(k), θ̂(k)] and ST (k) is the

residual sum of squares from OLS regression of Y on W and W2. Inference is then based on

supk∈([πT ],[(1−π)T ]) ξW (k) where π ∈ (0, 0.5).6

In Section 2, the estimated break point is defined as

k̂ = arg min
1≤k≤T

ST (k) (10)

The following proposition establishes two alternative characterizations of k̂ based on {ξW (k)}.

Proposition 1 Let yt, xt and x̂t be generated respectively by (1), (2) and (3) then we have:

(i) k̂ = arg max1≤k≤T ξW (k).

(ii) k̂ = arg max1≤k≤T VT (k) where VT (k) = θ̂(k)′(W ′
2MW W2)θ̂(k).

Part (i) of this proposition states that k̂ is the break point associated with the supk ξW (k)

statistic; part (ii) states that k̂ is the choice of break point that maximizes the numerator of the

Wald statistics. The latter is more useful for our subsequent analysis.

It follows trivially from Proposition 1(ii) that

k̂ = arg max
k

[VT (k) − VT (k0)], (11)

5The prefix “quasi” refers to that fact that the denominator is calculatedusing the residuals from the regression

equation on the second step of the 2SLS estimation rather than using the “residuals” form the structural equation

evaluated at the 2SLS estimates.
6Using the Wald statistic, this approach to testing is proposed by Quandt (1960) in the context of linear models

estimated via OLS. Andrews (1993) derives the limiting distribution of this statistic in the case of nonlinear

dynamic models estimated via Generalized Method of Moments.
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and it is convenient to work with this definition of k̂. This leads us to consider VT (k) − VT (k0).

It is shown in the appendix that

VT (k) − VT (k0) = −|k0 − k|GT (k) + HT (k), for all k (12)

where GT (k) is defined as follows

GT (k) =
θ0′

[W ′
0MW W0 − W ′

0MW W2(W
′
2MW W2)

−1W ′
2MW W0]θ

0

|k0 − k| , for k 6= k0 (13)

= θ0′

θ0, for k = k0 (14)

and

HT (k) = 2θ0′

(W ′
0MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ −

2θ0′

(W ′
0MW Ũ ) + Ũ ′MW W2(W

′
2MW W2)

−1W ′
2MW Ũ

−Ũ ′MW W0(W
′
0MW W0)

−1W ′
0MW Ũ (15)

Equation (12) is used to deduce the large sample behaviour of VT (k) − VT (k0) which in turn

plays a key role in the derivation of the limiting distribution of break point estimator under

the assumption of fixed magnitude of shift in regression parameters. In order to present these

results, we introduce the following notation. Define W△ as follows

W△ = W2 − W0 = (0, · · · , 0, wk+1, · · · , wk0
, 0, · · · , 0)′ for k < k0

W△ = −(W2 − W0) = (0, · · · , 0, wk0+1, · · · , wk, 0, · · · , 0)′ for k > k0

W△ = 0 for k = k0

and define Ξ as

Ξ = 1 for k0 > k

Ξ = −1 for k0 < k

Notice that

W2 = W0 + W△ · Ξ (16)

Proposition 2 Under Assumptions 1 - 5, we have:

VT (k) − VT (k0) = −θ0′

W ′
△W△θ0 + 2θ0′

W ′
△Ũ · Ξ + op(1) (17)
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The limiting distribution of k̂ is determined by the limiting behaviour of the terms on the right

hand side of (17). However, without further restrictions, this limiting distribution is intractable.

A similar problem is encountered by Bai (1997b) in his analysis of the break points in models

estimated by OLS. However, he circumvented this problem by restricting attention to strictly

stationary processes.7 We impose the same restriction here.

Assumption 6 The process {zt, ut, vt}∞t=−∞ is strictly stationary.

To facilitate the presentation of the limiting distribution of k̂, we introduce a stochastic process

R∗(m) on the set of integers that is defined as follows:

R∗(m) =























R1(m) : m < 0

0 : m = 0

R2(m) : m > 0

with

R1(m) = −θ0′

Υ′
0

0
∑

t=m+1

ztz
′
tΥ0θ

0 + 2θ0′

Υ′
0

(

0
∑

t=m+1

ztut +

0
∑

t=m+1

ztv
′
tβ

0
x,1

)

for m = −1,−2, · · ·

R2(m) = −θ0′

Υ′
0

m
∑

t=1

ztz
′
tΥ0θ

0 − 2θ0′

Υ′
0

(

m
∑

t=1

ztut +

m
∑

t=1

ztv
′
tβ

0
x,2

)

for m = 1, 2, · · ·

We note that if (zt, ut, vt) is independent over t then the process R∗(m) is a two-sided random

walk with stochastic drifts.

It is necessary to impose a restriction on the random variables that drive R∗(m).

Assumption 7 −(z′tΥ0θ
0)2 ± 2θ0′

Υ′
0(ztut + ztv

′
tβ

0
x,i) has a continuous distribution for i = 1, 2.

We now present the main result of this section.

Theorem 1 Under Assumptions 1-7, we have

k̂ − k0 −→d arg max
m

R∗(m)

7This approach is also pursued by Bhattacharya (1987), Picard (1985) and Yao (1987).
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Remark 1: To derive the probability function of the limiting distribution, it is necessary to know

both β0 and the distribution of (z′t, ut, v
′
t).

Remark 2: It is interesting to contrast our Proposition 2 with Bai’s (1997b)[Proposition 2] in

which the limiting distribution of k̂ is presented for the case in which xt and ut are uncorre-

lated and (1) is estimated via OLS. In the latter case, Bai (1997b) shows that k̂ − k0 −→d

arg maxm W ∗(m) where W ∗(m) has the same structure as R∗(m) but its behaviour is driven by

b(xt, ut) = θ0′x′
txtθ

0 ± 2xtut.

In contrast, the limiting distribution in Proposition 2 is driven by b(z′tΥ0, ut + v′tβ
0
x,i). There-

fore the limiting distribution in Proposition 2 is the same as would be obtained from Bai’s

(1997b)[Proposition 2] if yt is regressed on E[xt|zt] and z1,t using OLS.

In view of Remark 1, the limiting distribution in Proposition 2 is not useful for inference in

general because of its dependence on unknowns. To circumvent this problem, we consider an

alternative asymptotic approximation that is derived under the assumption that the magnitude

of the parameter shift is shrinking with the sample size. This is the topic of the next section.

4 Shrinking magnitude of shift in the regression parame-

ters

In this section, we derive the limiting distribution for k̂ under the assumption that the magnitude

of the parameter change shrinks as the sample size increases. Our analysis follows the same

approach as Bai (1997b) used in his derivation of the analogous results for the case where xt and

ut are uncorrelated and the model is estimated via OLS.

The data generation process is the same as in the previous section with the one exception

that the parameter vector in the second regime is now dependent on T and so is denoted by β0
2,T .

We similarly index the magnitude of the change in parameters by T , and write θ0
T ≡ β0

2,T − β0
1 .

It is assumed that θ0
T behaves as follows.

Assumption 8 As T → ∞, θ0
T −→ 0 and T 1/2−αθ0

T −→ ∞ for some α ∈ (0, 1/2).

Note that under this assumption, θ0
T converges to zero at slower rate than T−1/2.
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Lemma 1 provides the convergence rate of k̂ under the assumption that magnitude of the

parameter change is fixed and so does not apply in our setting here. Therefore, we begin by

deriving the companion result when the magnitude of change is shrinking.

It is once again convenient to work with the definition of k̂ in (11). Note that (12) is still

valid but with the following redefinitions of GT (k) and HT (k),

GT (k) =
θ0′

T [W ′
0MW W0 − W ′

0MW W2(W
′
2MW W2)

−1W ′
2MW W0]θ

0
T

|k0 − k| for k 6= k0 (18)

GT (k) = θ0′

T θ0
T for k = k0 (19)

and

HT (k) = 2θ0′

T (W ′
0MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

T (W ′
0MW Ũ )

+ Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ

− Ũ ′MW W0(W
′
0MW W0)

−1W ′
0MW Ũ (20)

To establish the convergence rate, it suffices to consider break points within the set K(C) =

{k : |k − k0| > C‖θ0
T‖−2 and Tη ≤ k ≤ (1 − η)T} for a small number η > 0. The following

proposition establishes a property of GT (k) that is useful in our subsequent analysis.

Proposition 3 Under Assumptions 2, 3 and 5, there exists a γ > 0 such that for every ǫ > 0

there exists C < ∞ such that

inf
k∈K(C)

GT (k) ≥ γ||θ0
T ||2

with probability at least 1 − ǫ.

We also impose the following assumption.

Assumption 9 For some real number r > 2 and constant Ar < ∞

E

∥

∥

∥

∥

∥

j
∑

t=i

wtũt

∥

∥

∥

∥

∥

r

≤ Ar(j − i)r/2 for all 1 ≤ i ≤ j ≤ T

Assumption 9 facilitates the derivation of a bound on P
(

supk≥m k−1
∥

∥

∥

∑k
t=1 wtũt

∥

∥

∥ > ζ
)

, for

every ζ > 0, that plays a crucial role in establishing the following convergence result.

Theorem 2 Under the Assumptions 1-5, 8 and 9, we have: k̂ = k0 + Op(||θ0
T ||−2)

11



Remark 3: Theorem 2 states that the break point estimator converges to the true break point at

a rate equal to the inverse of the square of the rate at which the difference between the regimes

disappears. Note that this is the same rate of convergence as is exhibited by the corresponding

statistic in the case where xt and ut are uncorrelated and the model is estimated by OLS; see

Bai (1997b)[Proposition 1].

We now turn to the issue of characterizing the limiting distribution of k̂. This distribution is

deduced in three steps. The first step is to identify the functions of the data that determine the

large sample behaviour of VT (k) − VT (k0); see Proposition 4 below. The second step is to use

these dominant terms to characterize the limit behaviour of VT (k) − VT (k0). The third step is

apply the continuous mapping theorem for the argmax functional to the local weak convergence

limit of VT (k) − VT (k0) in order to deduce the limiting distribution of k̂. The last two steps are

combined in Theorem 3 below.

Since Theorem 2 states that P (|k̂−k0| > C‖θ0
T‖−2) < η for every η > 0, it suffices to consider

the behaviour of VT (k) − VT (k0) only over D(C) ≡ {k : |k − k0| ≤ C‖θ0
T‖−2}. The following

result identifies the terms that determine the large sample behaviour of VT (k) − VT (k0) over

D(C).

Proposition 4 Under Assumptions 1-5, and 8

VT (k) − VT (k0) = −θ0′

T W ′
△W△θ0

T + 2θ0′

T W ′
△Ũ · Ξ + op(1)

for all k ∈ D(C).

To derive the limit behaviour of VT (k) − VT (k0), we impose the following assumptions on the

second moments of the data.

Assumption 10 {zt} is second-order stationary within each regime such that Eztz
′
t = Q1 for

t ≤ k0 and Eztz
′
t = Q2 for t > k0.

Assumption 11 For regime i, i = 1, 2, the errors {ut, vt} satisfy

V ar













ut

vt






|zt






= Ωi =







σ2
i γ′

i

γi Σi







where Ωi is a constant, positive definite matrix. σ2
i is a scalar and Σi is p1 × p1 matrix.

12



It is also useful to define Ω
1/2
i and Q

1/2
i to be the symmetric matrices satisfying Ωi = Ω

1/2
i Ω

1/2
i

and Qi = Q
1/2
i Q

1/2
i . Notice that Ω

1/2
i can be decomposed as

Ω
1/2
i =







N i′

1

N i′

2







where N i′

1 is a 1× (p1 + 1) vector and N i′

2 is p1 × (p1 + 1), and that, since Ω
1/2
i is symmetric, we

have

Ωi =







N i′

1 N i
1 N i′

1 N i
2

N i′

2 N i
1 N i′

2 N i
2






=







σ2
i γ′

i

γi Σi






.

We also assume that a functional central limit theorem applies to relevant functions of the

data.

Assumption 12 k
−1/2
0

∑[rk0 ]
t=1 {(ut, vt

′)′}⊗zt =⇒ B̃1(r) and (T−k0)
−1/2

∑k0+[r(T−k0)]
t=1 {(ut, vt

′)′}⊗

zt =⇒ B̃2(r) where B̃i(r) is a q(p1+1)×1 and Gaussian process for i = 1, 2 and E[B̃i(r)B̃i(s)
′] =

min(r, s)Vi where Vi is positive definite for i = 1, 2.

If we define V
1/2

i to be the symmetric matrix such that V
1/2

i V
1/2
i = Vi then it follows from

Assumptions 10 and 11 that Vi = Ωi ⊗Qi and V
1/2

i = Ω
1/2
i ⊗Q

1/2
i where Q

1/2
i is the symmetric

matrix such that Q
1/2
i Q

1/2
i = Qi.

It is also convenient to reparameterize the shrinking magnitude of parameter change as follows.

Assumption 13 θ0
T = θ0υT , where υT is a positive number such that υT →0 and T (1/2)−αυT →

∞ for some α ∈ (0, 1/2) and θ0 6= 0.

We now present the limiting distribution of the break point estimator.

Theorem 3 Under Assumptions 1-5 and 9-12

(θ0′

T Υ′
0Q1Υ0θ

0
T )2

θ0′

T Υ′
0Φ1Υ0θ0

T

(k̂ − k0)
d→ arg max

s
Z(s)

13



where

ξ =
θ′0Υ

′
0Q2Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

φ =
θ′0Υ

′
0Φ2Υ0θ0

θ′0Υ
′
0Φ1Υ0θ0

Φi = [(N i
1 + N i

2β
0
x,i)

′ ⊗ Q
1/2
i ][(N i

1 + N i
2β

0
x,i)

′ ⊗ Q
1/2
i ]′ for i = 1, 2

Z(s) =











W1(−s) − |s|/2 : s ≤ 0

√
φW2(s) − ξs/2 : s > 0

and Wi(s), i = 1, 2 be two independent Brownian motion processes defined on [0,∞), starting at

the origin when s = 0.

Remark 4: It is interesting to compare Theorem 3 with Bai’s (1997b) Propostion 3 in which

corresponding distribution for the case in which xt and ut are uncorrelated and the model

is estimated by OLS. The two limiting distributions have the same generic structure but the

definitions of ξ, φ, and Φi are different as is the scaling factor of k̂ − k0. Inspection reveals that

the result in Theorem 3 is equivalent to what would be obtained from applying Bai’s (1997b)

result to the case in which yt is regressed on E[xt|zt] and z1,t with error ut + v′tβ
0
x,i.

Remark 5: The density of arg maxs Z(s) is characterized by Bai (1997b) and he notes that it is

not symmetric if ξ 6= 1 or φ 6= 1. It is possible to identify one special case in which ξ = φ = 1,

that is where Ω1 = Ω2 = Ω, Q1 = Q2 = Q and β0
x,1 = β0

x,2. Notice that this scenario includes the

restriction that the parameters on the endogenous regressors do not change across regimes. The

latter represents an important difference between the 2SLS case and the limiting distribution

theory of the break fraction in the OLS model with exogenous regressors. For in the latter case,

the restrictions for symmetry do not involve the constancy across regimes of any of the regression

parameters.8

Remark 6: Although Theorem 3 is stated and proved for the one break model, it is easily

extended to the multiple break model. Assumption 1 imposes a martingale difference structure

on the errors, which is enough to ensure that the sample segments are asymptotically distinct,

hence allowing for the analysis of the limiting distribution of the break-dates to be similar to the

one break case. Specifically, with appropriate modification of the assumptions to fit the multiple

break model, it can be shown that the distributional result in Theorem 3 holds for the nth break

8See Bai (1997b)[pp. 554-555].
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point, k̂, only with quantities pertaining to the first and second regimes in the statement of

theorem replaced by the analogous quantities in the nth and (n + 1)th regimes respectively.

The distributional result in Theorem 3 can be used to construct confidence intervals for

k0 as follows. To this end, we introduce the following definitions: θ̂ = θ̂(k̂), β̂1 = β̂1(k̂),

β̂2 = β̂1 + θ̂, Q̂1 = k̂−1
∑k̂

t=1 ztz
′
t, Q̂2 = (T − k̂)−1

∑T
t=k̂+1 ztz

′
t, Ω̂1 = k̂−1

∑k̂
t=1 b̂tb̂

′
t, Ω̂2 =

(T − k̂)−1
∑T

t=k̂+1 b̂tb̂
′
t, b̂t = [ût, v̂

′
t]
′, ût = yt − w′

tβ̂1, for t ≤ k̂ and ût = yt − w′
tβ̂2, for t > k̂,

v̂t = (xt − ∆̂′
Tzt), Ω̂

1/2
i is the symmetric matrix such that Ω̂i = Ω̂

1/2
i Ω̂

1/2
i ,

Ω̂
1/2
i =







N̂ i′

1

N̂ i′

2







where Ω̂
1/2
i is partitioned conformably with Ω

1/2
i ,

ξ̂ =
θ̂′Υ̂′

T Q̂2Υ̂T θ̂

θ̂′Υ̂′
T Q̂1Υ̂T θ̂

,

φ̂ =
θ̂′Υ̂′

T Φ̂2Υ̂T θ̂

θ̂′Υ̂′
T Φ̂1Υ̂T θ̂

,

Φ̂1 = [(N̂1
1 + N̂1

2 β̂x,1)
′ ⊗ Q̂

1/2
1 ][(N1

1 + N1
2 β̂x,1)

′ ⊗ Q̂
1/2
1 ]′

Φ̂2 = [(N̂2
1 + N̂2

2 β̂x,2)
′ ⊗ Q̂

1/2
2 ][(N2

1 + N2
2 β̂x,2)

′ ⊗ Q̂
1/2
2 ]′,

and Υ̂T = [∆̂T , Π].

It then follows that
(

k̂ −
[

c2

Ĥ

]

− 1, k̂ −
[

c1

Ĥ

]

+ 1

)

(21)

is a 100(1 − α) percent confidence interval for k0 where [ · ] denotes the integer part of the term

in the brackets,

Ĥ =
(θ̂′Υ̂′

T Q̂1Υ̂T θ̂)2

θ̂′Υ̂′
T Φ̂1Υ̂T θ̂

and c1 and c2 are respectively the α/2th and (1 − α/2)th quantiles for arg maxs Z(s) which can

be calculated using equations (B.2) and (B.3) in Bai (1997b).

We conclude this section by reporting the results of a small simulation study that is designed

to prove some insight into the accuracy of the limiting distribution in Theorem 3 as an approxi-

mation to the finite sample of the break fraction estimator. We consider designs with one break

and two breaks.
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In the single break case, the data generating process for the structural equation is:

yt = [1, xt]
′β0

1 + ut, for t = 1, . . . , [T/2]

= [1, xt]
′β0

2 + ut, for t = [T/2] + 1, . . . , T
(22)

The reduced form equation for the scalar variable xt is:

xt = [1, zt]
′δ + vt, for t = 1, . . . , T (23)

where δ is q×1. The errors are generated as follows: (ut, vt)
′ ∼ IN (02×1, Ω) where the diagonal

elements of Ω are equal to one and the off-diagonal elements are equal to 0.5. The instrumental

variables, zt are generated via: zt ∼ i.i.d N (0(q−1)×1, Iq−1). The specific parameter values are

as follows: (i) T = 60, 120, 240, 480; (ii) (β0
1 , β0

2) = ([c, 0.1]′, [−c,−0.1]′ ), for c = 0.3, 0.5, 1; (iii)

q − 1 = 2, 4, 8; (iv) δ is chosen to yield the population R2 = 0.5 for the regression in (23).9 For

each configuration, 1000 simulations are performed.

Tables 1-3 report the empirical coverage of the 90%, 95% and 99% confidence intervals based

on (21). It can be seen that the magnitude of c impacts on the quality of the approximation. If

c = 0.3 then the confidence intervals are undersized at all samples sizes, although the empirical

coverage is close to the nominal level at the largest sample for which T = 480; if c = 0.5 then the

confidence intervals are undersized for T = 60, 120 but close to nominal level for T = 240, 480;

if c = 1 then the empirical coverage exceeds the nominal level for the 90% and 95% nominal

intervals for T ≥ 60. For the c = 1 case, closer inspection of the empirical distribution of the

break-point reveals that most of its probability mass is either at the true break-point or one

observation off (only very rarely two or three data points off). Since, by construction, the break-

point confidence intervals contains at least three points, if the break-point estimator is one data

point off its true value, the confidence interval will necessarily contain the true value. Hence,

over-coverage is unavoidable. Finally we note that the number of instruments has no discernable

impact on the empirical coverage.

9For this model, δj =
√

R2/[(q− 1)(1−×R2)], with δj denoting the jth element of δ, j = 1, . . . , q; see Hahn

and Inoue (2002).
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For the two break case, the data generation process for the structural equation is:

yt = [1, xt]
′β0

1 + ut, for t = 1, . . . , [T/3]

= [1, xt]
′β0

2 + ut, for t = [T/3] + 1, . . . , [2T/3]

= [1, xt]
′β0

3 + ut, for t = [2T/3] + 1, . . . , T

Three choices for β0 are considered: (β0
1 , β0

2, β
0
3) = ( [c, 0.1]′, [−c, −0.1]′, [c, 0.1]′ ) where c =

0.3, 0.5, 1. All other aspects of the design are the same as the one break model.

The results are reported in Tables 4-6. It can be seen that the pattern of results is the same as

in the single break case, although it is important to remember in making a comparison between

the two models that in the two-break model the sub-samples are inevitably smaller. For c = 0.3,

the empirical coverage tends to be too low - but tends towards the nominal level as the sample

size increases, and is very close to the nominal levels at the largest sample size; for c = 0.5,

the empirical coverage is approximately equal to the nominal level at T ≥ 240; for c = 1, the

empirical coverage exceeds the nominal level for the 90% and 95% intervals. For c = 1, closer

inspection of the empirical distribution of the break point shows similar patterns as for the one

break-case: a heavier mass than the nominal coverage at the true break-point or one observation

off. Since the confidence intervals are again of at least three data points, over-coverage is not

surprising.

Taken together, the two sets of simulation results suggest that the limiting distribution theory

based on a shrinking amount of parameter change can provide a reasonable approximation for

the designs for which the amount of change is smallest but not in the design with the largest

amount of parameter variation. It would be interesting to develop a better understanding of the

scenarios for which these intervals are appropriate but this is left to future research.

5 Empirical application

In this section, we assess the stability of the New Keynesian Phillips curve (NKPC), as formulated

in Zhang, Osborn, and Kim (2007). The data is from the US, quarterly spanning 1981.1-2005.4.

The definitions of the variables are the same as theirs: inft is the annualized quarterly growth

rate of the GDP deflator, ogt is obtained from the estimates of potential GDP published by

the Congressional Budget Office, and infe
t+1|t is taken from the Michigan inflation expectations
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survey.10 With this notation, the structural equation of interest is:

inft = c0 + αf infe
t+1|t + αbinft−1 + αogogt +

3
∑

i=1

αi∆inft−i + ut (24)

where inft is inflation in (time) period t, infe
t+1|t denotes expected inflation in period t+1 given

information available in period t, ogt is the output gap in period t, ut is an unobserved error

term and θ = (c0, αf , αb, αog, α1, α2, α3)
′ are unknown parameters. The variables infe

t+1|t and

ogt are anticipated to be correlated with the error ut, and so (24) is commonly estimated via

IV; e.g. see Zhang, Osborn, and Kim (2007) and the references therein.

Suitable instruments must be both uncorrelated with ut and correlated with infe
t+1|t and ogt.

In this context, the instrument vector zt commonly includes such variables as lagged values of

expected inflation, the output gap, the short-term interest rate, unemployment, money growth

rate and inflation. Hence, the reduced forms are:

infe
t+1|t = z′tδ1 + v1,t (25)

ogt = z′tδ2 + v2,t (26)

where:

z′t = [1, inft−1, ∆inft−1, ∆inft−2, ∆inft−3, infe
t|t−1, ogt−1, rt−1, µt−1, ut−1]

with µt, rt and ut denoting respectively the M2 growth rate, the three-month Treasury Bill rate

and the unemployment rate at time t.

Our sample comprises T = 100 observations.11 Table 7 reports the instability tests for the

structural equation, with a cut-off of ǫ = 0.1512. The tests indicate evidence of a break at

2000:4, even though the BIC tends to favor the no break model. The parameter estimates for

the structural equation are reported below, with standard errors in parentheses.

for 1981.1-2000.4:

inft = −1.84
(0.89)

+ 0.76
(0.11)

infe
t+1|t − 0.48

(0.03)
inft−1 + 0.13

(0.00)
ogt − 0.42

(0.02)
∆inft−1 − 0.36

(0.01)
∆inft−2

− 0.36
(0.01)

∆inft−3

10While Zhang, Osborn, and Kim (2007) consider inflation expectations from different surveys as well, we focus

for brevity on the Michigan survey only.
11We could have used more observations, but there is evidence of instability in the reduced forms before 1981.1

- see Zhang, Osborn, and Kim (2007).
12Different cut-offs yield similar results, indicating that the tests most likely do not suffer from end-of-sample

problems.
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for 2001.1-2005.4:

inft = −0.69
(4.21)

+ 1.08
(0.46)

infe
t+1|t − 0.68

(0.29)
inft−1 + 0.16

(0.04)
ogt + 0.44

(0.15)
∆inft−1 + 0.13

(0.08)
∆inft−2

+ 0.01
(0.04)

∆inft−3

The 99%, 95% and 90% confidence intervals for the break dates are: [1998.1, 2001,4],[1999.1,

2001.2] and [1999.3, 2001.2], indicating a break around 1999-2001. These results are in line with

Zhang, Osborn, and Kim’s (2007) findings of a break around 2000−2001. Using a more heuristical

approach for estimating change-points, they find strong evidence for a break at 2000.4, location

that coincides with ours. However, due to small sample issues, the parameter estimates in the

second sub-sample should be interpreted with care.

6 Concluding remarks

In this paper, we present a limiting distribution theory for the break point estimator in a linear

regression model estimated via Two Stage Least Squares under two different scenarios regarding

the magnitude of the parameter change between regimes. First, we consider the case where

the parameter change is of fixed magnitude; in this case the resulting distribution depends on

distribution of the data and is not of much practical use for inference. Second, we consider the

case where the magnitude of the parameter change shrinks with the sample size; in this case, the

resulting distribution can be used to construct approximate large sample confidence intervals for

the break point. These intervals are illustrated via an application to the New Keynesian Phillips

curve.

Our results add to the literature on break point distributions. Previous contributions have

concentrated on level shifts in univariate time series models or on parameter shits in linear

regression models estimated via OLS in which the regressors are uncorrelated with the errors.

Within our framework, the regressors of the linear regression model are allowed to be correlated

with the error.

One limitation of our framework is that the parameters of the reduced form are assumed to

remain constant throughout the sample. While this scenario is viable in block recursive systems

of equations such as triangular systems of linear equations, it would be interesting to extend

our results to the case in which the coefficients of the reduced form are also allowed to change.
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Hall, Han, and Boldea (2007) consider inference in this more general setting. They propose a

methodology in which the structural stability of the reduced form is assessed and its break points

(if any) estimated first. The estimation of the reduced form then incorporates the information

on the estimated break points. Their results assume the estimated break points in the reduced

form exhibit similar convergence properties to those established here for the break points in

the structural equation of interest. We therefore conjecture that the estimation of the break

points in the reduced form would contaminate the limiting distribution of the break points in

the structural equation. The verification or contradiction of this conjecture is beyond the scope

of the current paper but is a topic of current research.

20



Mathematical Appendix

Proof of Proposition 1:

The argument is similar to Bai’s (1997b) derivation of his equation (5). To show part (i),

let S̄ denote the sum of squared residuals by regressing Y on W alone. Then we obtain the

identity13

S̄ − ST (k) = θ̂(k)′(W ′
2MW W2)θ̂(k) (27)

The quasi-Wald statistic can be written as

ξW (k) =

(

T − 2p

p

)(

S̄ − ST (k)

ST (k)

)

Because S̄ does not depend on k and the Wald statistic is a strictly decreasing transformation

of ST (k), it follows immediately

k̂ = arg min
k

ST (k) = arg max
k

ξW (k) (28)

Part (ii) follows from (28) and (27). ⋄

Derivation of (12):

The LS estimator θ̂(k) can be expressed as

θ̂(k) = (W ′
2MW W2)

−1W ′
2MW Y

= (W ′
2MW W2)

−1W ′
2MW [Wβ0

1 + W0θ
0 + Ũ ]

= (W ′
2MW W2)

−1W ′
2MW Wβ0

1 + (W ′
2MW W2)

−1W ′
2MW W0θ

0

+ (W ′
2MW W2)

−1W ′
2MW Ũ

= (W ′
2MW W2)

−1W ′
2MW W0θ

0 + (W ′
2MW W2)

−1W ′
2MW Ũ

13See Amemiya (1985)[pp.31-33].
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Similarly, we have

θ̂(k0) = (W ′
0MW W0)

−1W ′
0MW Y

= (W ′
0MW W0)

−1W ′
0MW [Wβ0

1 + W0θ
0 + Ũ ]

= (W ′
0MW W0)

−1W ′
0MW W0θ

0 + (W ′
0MW W0)

−1W ′
0MW Ũ

= θ0 + (W ′
0MW W0)

−1W ′
0MW Ũ .

Thus, it follows that

VT (k) = θ̂(k)′(W ′
2MW W2)θ̂(k)

= [(W ′
2MW W2)

−1W ′
2MW W0θ

0 + (W ′
2MW W2)

−1W ′
2MW Ũ ]′(W ′

2MW W2)

× [(W ′
2MW W2)

−1W ′
2MW W0θ

0 + (W ′
2MW W2)

−1W ′
2MW Ũ ]

= θ0′

(W ′
0MW W2)(W

′
2MW W2)

−1(W ′
2MW W2)(W

′
2MW W2)

−1W ′
2MW W0θ

0

+ θ0′

(W ′
0MW W2)(W

′
2MW W2)

−1(W ′
2MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ

+ Ũ ′MW W2(W
′
2MW W2)

−1(W ′
2MW W2)(W

′
2MW W2)

−1W ′
2MW W0θ

0

+ Ũ ′MW W2(W
′
2MW W2)

−1(W ′
2MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ

= θ0′

(W ′
0MW W2)(W

′
2MW W2)

−1(W ′
2MW W0)θ

0 + 2θ0′

(W ′
0MW W2)(W

′
2MW W2)

−1

× (W ′
2MW Ũ ) + (Ũ ′MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ

and

VT (k0) = θ0′

(W ′
0MW W0)(W

′
0MW W0)

−1(W ′
0MW W0)θ

0

+ 2θ0′

(W ′
0MW W0)(W

′
0MW W0)

−1(W ′
0MW Ũ ) + (Ũ ′MW W0)(W

′
0MW W0)

−1

× W ′
0MW Ũ

= θ0′

(W ′
0MW W0)θ

0 + 2θ0′

(W ′
0MW Ũ ) + (Ũ ′MW W0)(W

′
0MW W0)

−1W ′
0MW Ũ

Therefore, we have

VT (k) − VT (k0) = θ0′

[W ′
0MW W2(W

′
2MW W2)

−1W ′
2MW W0 − W ′

0MW W0]θ
0

+ 2θ0′

(W ′
0MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

(W ′
0MW Ũ )

+ Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW W0(W

′
0MW W0)

−1

× W ′
0MW Ũ

= GT (k) + HT (k) ⋄ .

22



Proof of Proposition 2:

Before we investigate the convergence of |k0 − k|GT (k), we let Ξ = sgn(k0 − k) for notational

simplicity.

|k0 − k|GT (k) = θ0′

[W ′
0MW W0 − W ′

0MW W2(W
′
2MW W2)

−1W ′
2MW W0]θ

0

= θ0′

[(W2 − ΞW△)′MW (W2 − ΞW△) − (W2 − ΞW△)′MW W2

× (W ′
2MW W2)

−1W ′
2MW (W2 − ΞW△)]θ0

= θ0′

[W ′
2MW W2 − W ′

2MW W△Ξ − ΞW ′
△MW W2 + ΞW ′

△MW W△Ξ

− (W ′
2MW W2 − ΞW ′

△MW W2)(W
′
2MW W2)

−1(W ′
2MW W2

− W ′
2MW W△Ξ)]θ0

= θ0′

[W ′
2MW W2 − W ′

2MW W△Ξ − ΞW ′
△MW W2 + ΞW ′

△MW W△Ξ

− W ′
2MW W2 + W ′

2MW W△Ξ + ΞW ′
△MW W2 − ΞW ′

△MW W2

× (W ′
2MW W2)

−1W ′
2MW W△]θ0

= θ0′

[W ′
△MW W△ − W ′

△MW W2(W
′
2MW W2)

−1W ′
2MW W△]θ0 (29)

Now, we investigate (29) term by term. It is most convenient to begin with the second term on

the right hand side of (29). Define D(C) = {k : |k− k0| ≤ C}. From Lemma 1(ii), it is sufficient

to investigate the behaviour of VT (k) − VT (k0) over D(C) for the establishment of the limiting

distribution of the break point estimators. Over the set D(C), W ′
△MW W2 consists of a sum of

finite terms. Thus, it is clear that

||W ′
△MW W2|| = |k0 − k|Op(1) = Op(1).

Since ||W ′
2MW W2|| = Op(T ), the second term on the right hand side of (29) is bounded by

Op(1) · Op(T
−1) · Op(1) = op(1).

Next, consider the first term on the right hand side of (29). We have

W ′
△MW W△ = W ′

△W△ + W ′
△W (W ′W )−1W ′W△.

Under our assumptions, we have

W ′
△W (W ′W )−1W ′W△ = |k0−k|Op(1)·Op(T

−1)·|k0−k|Op(1) = Op(1)·Op(T
−1)·Op(1) = op(1).

Thus, combining these results, it follows from (29) that

|k0 − k|GT (k) = θ′0W
′
△W△θ0 + op(1) (30)
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Next, consider HT (k). We write

HT (k) = H
(1)
T (k) + H

(2)
T (k) (31)

where

H
(1)
T (k) = 2θ0′

(W ′
0MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

(W ′
0MW Ũ )

H
(2)
T (k) = Ũ ′MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW W0(W

′
0MW W0)

−1W ′
0MW Ũ

First consider H
(1)
T (k). We have

H
(1)
T (k) = 2θ0′

(W2 − W△Ξ)′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

W ′
0MW Ũ

= 2θ0′

(W ′
2MW Ũ − ΞW ′

△MW W2(W
′
2MW W2)

−1W ′
2MW Ũ ) − 2θ0′

W ′
0MW Ũ

= 2θ0′

W ′
2MW Ũ − 2Ξθ0′

W ′
△MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

W ′
0MW Ũ

= 2θ0′

(W2 − W0)
′MW Ũ − 2Ξθ0′

W ′
△MW W2(W

′
2MW W2)

−1W ′
2MW Ũ

= Ξ[2θ0′

W ′
△MW Ũ − 2θ0W ′

△MW W2(W
′
2MW W2)

−1W ′
2MW Ũ ] (32)

We now investigate the convergence of each term on the right hand side of (32) in turn. Since

W ′
△W = Op(1) over D(C) and

(W ′W )−1W ′Ũ = (1/
√

T ) · (W ′W/T )−1W ′Ũ/
√

T = T−1/2Op(1),

it follows that

W ′
△MW Ũ = W△Ũ − W ′

△W (W ′W )−1W ′Ũ

= W△Ũ − Op(1) · T−1/2Op(1)

= W△Ũ + op(1) over D(C)

Similarly, we observe that

W ′
△MW W2 = W ′

△W2 − W ′
△W (W ′W )−1W ′W2

= Op(1) − Op(1) · Op(T
−1) · Op(T )

= Op(1) over D(C)

and

(W ′
2MW W2)

−1W ′
2MW Ũ = Op(T

−1) · Op(T
1/2) = Op(T

−1/2)
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Thus, the second term on the right hand side of (32) can be written as

W ′
△MW W2 · (W ′

2MW W2)
−1W ′

2MW Ũ = Op(1) ·Op(T
−1/2) = op(1) over D(C)

Thus, we have

H
(1)
T (k) = Ξ[2θ0′

W ′
△MW Ũ − 2θ0W ′

△MW W2(W
′
2MW W2)

−1W ′
2MW Ũ ]

= 2Ξθ0′

W ′
△Ũ + op(1)

Now consider H
(2)
T (k). We have

H
(2)
T (k) = Ũ ′MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW W0(W

′
0MW W0)

−1W ′
0MW Ũ

= Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW (W2 − W△Ξ) ·

· [(W2 − W△Ξ)′MW (W2 − W△Ξ)]−1(W2 − W△Ξ)′MW Ũ

≡ M − N (33)

where

M ≡ Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ

N ≡ Ũ ′MW (W2 − W△Ξ)[(W2 − W△Ξ)′MW (W2 − W△Ξ)]−1(W2 − W△Ξ)′MW Ũ

To investigate the limiting behavior of H
(2)
T (k) over the set D(C), it turns out to be most

convenient to check the limit behavior of N first. Using the relationship W0 = W2 − W△Ξ, N

can be written as

N = {Ũ ′MW (W2 − W△Ξ)/
√

T}[(W2 − W△Ξ)′MW (W2 − W△Ξ)/T ]−1

× {(W2 − W△Ξ)′MW Ũ/
√

T} (34)

We now consider the limit behaviour of the first term on the right hand side of (34). We have

Ũ ′MW (W2 − W△Ξ)/
√

T = Ũ ′MW W2/
√

T − Ũ ′MW W△Ξ/
√

T

Since Ũ ′MW W△Ξ is the sum of |k − k0| terms and the total number of the added terms is
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bounded over D(C) = {k : |k − k0| ≤ C}, it follows that

Ũ ′MW W△ = Ũ ′(I − W (W ′W )−1W ′)W△

= Ũ ′W△ − Ũ ′W (W ′W )−1W ′W△

= Op(1)
√

|k − k0| − Op(T
1/2)Op(T

−1)Op(1)|k − k0|

= Op(1) − Op(T
−1/2)

= Op(1) over D(C)

and so

Ũ ′MW W△ = Ũ ′MW W2/
√

T + op(1).

Similarly, for the second term on the right hand side of (34) we have

(W2 − W△Ξ)′MW (W2 − W△Ξ)/T = W ′
2MW W2/T − (1/T ){W ′

2MW W△Ξ

+ ΞW ′
△MW W2 − W ′

△MW W△}

= W ′
2MW W2/T + op(1)

Thus, it follows from (34) that

N =
(

Ũ ′MW W2/
√

T + op(1)
)

(W ′
2MW W2/T + op(1))

−1
(

W ′
2MW Ũ/

√
T + op(1)

)

(35)

Therefore, it follows from (33) and (35) that

H
(2)
T (k) = M − N

= Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ −

(

Ũ ′MW W2/
√

T + op(1)
)

× (W ′
2MW W2/T + op(1))

−1
(

W ′
2MW Ũ/

√
T + op(1)

)

=
(

Ũ ′MW W2/
√

T
)

(W ′
2MW W2/T )

−1
(

W ′
2MW Ũ/

√
T
)

−
(

Ũ ′MW W2/
√

T + op(1)
)

(W ′
2MW W2/T + op(1))

−1
(

W ′
2MW Ũ/

√
T + op(1)

)

= op(1)

Thus, we have

HT (k) = H
(1)
T (k) + H

(2)
T (k)

= 2Ξθ0′

W ′
△Ũ + op(1) (36)
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Finally, it follows from (12), (30) and (36) that

VT (k) − VT (k0) = −θ0′

W ′
△W△θ0 + 2Ξθ0′

W ′
△Ũ + op(1) ⋄ .

Proof of Theorem 1

First, we consider the case of k < k0. Multiplying out, we obtain

−θ0′

W ′
△W△θ0 + 2θ0′

W ′
△Ũ · Ξ = −θ0′

W ′
△W△θ0 + 2θ0′

W ′
△Ũ

= −θ0′

k0
∑

t=k+1

wtw
′
t + 2θ0′

k0
∑

t=k+1

wtũt

= −θ0′

k0
∑

t=k+1

Υ̂′
T ztz

′
tΥ̂T θ0 + 2θ0′

k0
∑

t=k+1

Υ̂′
T ztũt

(37)

where Υ̂T = [∆̂T , Π]. By substituting ũt = ut +v′tβ
0
x,1−z′t[(Z

′Z)−1Z′V ]β0
x,1 into (37), we obtain

−θ0′

W ′
△W△θ0 + 2θ0′

W ′
△Ũ ·Ξ = −θ0′

Υ̂′
T

k0
∑

t=k+1

ztz
′
tΥ̂T θ0 + 2θ0′

Υ̂′
T (

k0
∑

t=k+1

ztut

+

k0
∑

t=k+1

ztv
′
tβ

0
x,1) + 2θ0′

Υ̂′
T

k0
∑

t=k+1

ztz
′
t(Z

′Z)−1Z′V β0
x,1

= −θ0′

Υ′
0

k0
∑

t=k+1

ztz
′
tΥ0θ

0 + 2θ0′

Υ′
0(

k0
∑

t=k+1

ztut

+

k0
∑

t=k+1

ztv
′
tβ

0
x,1) + op(1) over D(C) (38)

where the last equality comes from the following convergence result over D(C)

k0
∑

t=k+1

ztz
′
t(Z

′Z)−1Z′V = |k0 − k|Op(1) ·Op(T
−1) · Op(T

1/2) = Op(T
−1/2) = op(1).

From Assumption 6 it follows that {zt, ut, vt}k0

t=k+1 and {zt, ut, vt}0
t=k−k0+1 have the same joint

distribution. Therefore, (38) has the same distribution as R1(k − k0) over D(C).

Similarly, for k > k0

−θ0′

W ′
△W△θ0 + 2θ0′

W ′
△Ũ · Ξ = −θ0′

W ′
△W△θ0 − 2θ0′

W ′
△Ũ

= −θ0′

Υ′
0

k
∑

t=k0+1

ztz
′
tΥ0θ

0 − 2θ0′

Υ′
0(

k
∑

t=k0+1

ztut

+

k
∑

t=k0+1

ztv
′
tβ

0
x,2) + op(1)
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which has the same distribution as R2(k − k0) over D(C).

Thus, Proposition 2 implies that VT (k)−VT (k0) converges in distribution to R∗(k−k0) over the

bounded set D(C). Let k̂C = arg max|k−k0|≤C VT (k) − VT (k0) and m∗
C = arg max|m|≤C R∗(m).

The uniform convergence of VT (k) − VT (k0) to R∗(k − k0) on any bounded set of integers (i.e.

the difference |k − k0| is bounded) implies that k̂C − k0 −→d m∗
C , and so,

|P (k̂C − k0 = j) − P (m∗
C = j)| < ǫ, for all large T and all |j| ≤ C. (39)

To complete the proof, we must show that this convergence in distribution holds for the whole

range and not just the bounded set D(C). This is established as follows.

From Assumption 7, it follows that the limit distribution R∗(m) is continuous. Thus, the process

R∗(m) has a unique maximum with probability one because P (R∗(m) = R∗(m′)) = 0 for m 6=

m′. Now define m∗ = arg maxm R∗(m). Since θ0′

Υ′
0

∑0
t=m+1 ztz

′
tΥ0θ

0 = Op(m), it dominates

θ0′

Υ′
0

∑0
t=m+1 ztut +

∑0
t=m+1 ztv

′
tβ

0
x,i = Op(m

1/2). Similarly θ0′

Υ′
0

∑m
t=1 ztz

′
tΥ0θ

0 = Op(m)

dominates θ0′

Υ′
0

∑m
t=1 ztut +

∑m
t=1 ztv

′
tβ

0
x,i = Op(m

1/2). Therefore, we have R∗(m) −→ −∞

with probability tending to 1 as |m| −→ ∞. Thus, m∗ is Op(1). Therefore, we have that for

every ǫ > 0, there exists C1 < ∞ such that

P (|m∗| > C1) < ǫ, for all large T. (40)

From Lemma 1(ii), it follows that

P (|k̂ − k0| > C2) < ǫ, for all large T. (41)

Now, if |k̂ − k0| ≤ C where C = max{C1, C2}, then k̂ = k̂C and if |m∗| ≤ C then m∗ = m∗
C .

For the next step in the argument, it is convenient to define three events, the union of which

covers the whole sample space: these events are {|k̂ − k0| ≤ C and |m∗| ≤ C}, {|k̂ − k0| > C}

and {|m∗| > C}. Notice that the first event {|k̂ − k0| ≤ C and |m∗| ≤ C} is equivalent to the

event {k̂ = k̂C and m∗ = m∗
C} by the definition of k̂C and m∗

C . Thus, when this event happens,

we have the equality P (k̂ − k0 = j) − P (m∗ = j) = P (k̂C − k0 = j) − P (m∗
C = j). Since the
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union of other two events is the complement of the first event, it follows that

|P (k̂ − k0 = j) − P (m∗ = j)| ≤ |P (k̂C − k0 = j) − P (m∗
C = j)|

+ P (|k̂ − k0| > C) + P (|m∗| > C)

< 3ǫ

To complete the proof, note that ǫ can be arbitrarily small and C can be arbitrarily large. ⋄

To prove Proposition 3, we need the following lemma.

Lemma A.1 The following two inequalities hold:

W ′
0MW W0 − W ′

0MW W2(W
′
2MW W2)

−1W ′
2MW W0

≥ W ′
△W△(W ′

2W2)
−1W ′

0W0 for k < k0 (42)

W ′
0MW W0 − W ′

0MW W2(W
′
2MW W2)

−1W ′
2MW W0

≥ W ′
△W△(W ′W − W ′

2W2)
−1(W ′W − W ′

0W0) for k ≥ k0 (43)

Proof of Lemma A.1:

Let H = (W ′
2W2)

−1 − (W ′W )−1. First consider the case in which k ≤ k0. Since

W ′
0MW W2 = W ′

0(I − W (W ′W )−1W ′)W2

= W ′
0W2 − W ′

0W (W ′W )−1W ′W2 = W ′
0W0 − W ′

0W0(W
′W )−1W ′

2W2

= W ′
0W0(W

′
2W2)

−1W ′
2W2 − W ′

0W0(W
′W )−1W ′

2W2

= W ′
0W0[(W

′
2W2)

−1 − (W ′W )−1]W ′
2W2 = W ′

0W0HW ′
2W2

and

W ′
2MW W2 = W ′

2(I − W (W ′W )−1W ′)W2

= W ′
2W2 − W ′

2W (W ′W )−1W ′W2 = W ′
2W2 − W ′

2W2(W
′W )−1W ′

2W2

= W ′
2W2(W

′
2W2)

−1W ′
2W2 − W ′

2W2(W
′W )−1W ′

2W2

= W ′
2W2[(W

′
2W2)

−1 − (W ′W )−1]W ′
2W2 = W ′

2W2HW ′
2W2,
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it follows that

W ′
0MW W2(W

′
2MW W2)

−1W ′
2MW W0 = W ′

0W0HW ′
2W2(W

′
2W2HW ′

2W2)
−1

× W ′
2W2HW ′

0W0 (44)

Define A = H1/2W ′
2W2. Since I−A(A′A)−1A′ is a projection matrix, we have I−A(A′A)−1A′ ≥

0. Therefore, putting C = (W ′
0W0)H

1/2(I − A(A′A)−1A′)H1/2(W ′
0W0), we have

C = W ′
0W0HW ′

0W0 − W ′
0W0H

1/2H1/2W ′
2W2(W

′
2W2H

1/2H1/2W ′
2W2)

−1W ′
2W2H

1/2

× H1/2W ′
0W0

= W ′
0W0HW ′

0W0 − W ′
0W0HW ′

2W2(W
′
2W2HW ′

2W2)
−1W ′

2W2HW ′
0W0 (45)

≥ 0 (46)

Since the second term in (45) is identical to (44), it suffices to show

W ′
0MW W0 − W ′

0W0HW ′
0W0 ≥ W ′

△W△(W ′
2W2)

−1W ′
0W0 (47)

in order to establish (42). In fact, the equality holds in (47) because the left hand side of (47) is

W ′
0MW W0 − W ′

0W0HW ′
0W0 = W ′

0(I − W (W ′W )−1W ′)W0 − W ′
0W0HW ′

0W0

= W ′
0W0 − W ′

0W (W ′W )−1W ′W0 − W ′
0W0HW ′

0W0

= W ′
0W0 − W ′

0W0(W
′W )−1W ′

0W0 − W ′
0W0HW ′

0W0

= W ′
0W0(W

′
0W0)

−1W ′
0W0 − W ′

0W0(W
′W )−1W ′

0W0

− W ′
0W0HW ′

0W0

= W ′
0W0[(W

′
0W0)

−1 − (W ′W )−1 − H]W ′
0W0

= W ′
0W0[(W

′
0W0)

−1 − (W ′
2W2)

−1]W ′
0W0, (48)

and so, since W ′
2W2 = W ′

0W0 + W ′
△W△, we have

W ′
0MW W0 − W ′

0W0HW ′
0W0 = (W ′

2W2 − W ′
△W△)[(W ′

0W0)
−1 − (W ′

2W2)
−1]W ′

0W0

= [W ′
2W2(W

′
0W0)

−1 − W ′
2W2(W

′
2W2)

−1 − W ′
△W△(W ′

0W0)
−1

+ W ′
△W△(W ′

2W2)
−1]W ′

0W0

= (W ′
2W2 − W ′

0W0 − W ′
△W△) + W ′

△W△(W ′
2W2)

−1W ′
0W0

= W ′
△W△(W ′

2W2)
−1W ′

0W0
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Now consider the case with k ≥ k0. Define W ∗
2 = (w1, w2, · · · , wk, 0, · · · , 0)′, W ∗

0 = (w1, w2, · · · , wk0
, 0, · · · , 0)′

and N = (W ∗′

2 W ∗
2 )−1 − (W ′W )−1. It then follows that

W ′
0MW W2 = W ′

0W2 − W ′
0W (W ′W )−1W ′W2

= W ′
2W2 − W ′

0W0(W
′W )−1W ′

2W2

= W ′W − W ∗′

2 W ∗
2 − (W ′W − W ∗′

0 W ∗
0 )(W ′W )−1(W ′W − W ∗′

2 W ∗
2 )

= W ′W − W ∗′

2 W ∗
2 − W ′W + W ∗′

2 W ∗
2 + W ∗′

0 W ∗
0 − W ∗′

0 W ∗
0 (W ′W )−1W ∗′

2 W ∗
2

= W ∗′

0 W ∗
0 − W ∗′

0 W ∗
0 (W ′W )−1W ∗′

2 W ∗
2

= W ∗′

0 W ∗
0 (W ∗′

2 W ∗
2 )−1W ∗′

2 W ∗
2 − W ∗′

0 W ∗
0 (W ′W )−1W ∗′

2 W ∗
2

= W ∗′

0 W ∗
0 [(W ∗′

2 W ∗
2 )−1 − (W ′W )−1]W ∗′

2 W ∗
2

= W ∗′

0 W ∗
0 NW ∗′

2 W ∗
2

and

W ′
2MW W2 = W ′

2W2 − W ′
2W (W ′W )−1W ′W2

= W ′
2W2 − W ′

2W2(W
′W )−1W ′

2W2

= (W ′W − W ∗′

2 W ∗
2 ) − (W ′W − W ∗′

2 W ∗
2 )(W ′W )−1(W ′W − W ∗′

2 W ∗
2 )

= W ′W − W ∗′

2 W ∗
2 − W ′W + W ∗′

2 W ∗
2 + W ∗′

2 W ∗
2 − W ∗′

2 W ∗
2 (W ′W )−1W ∗′

2 W ∗
2

= W ∗′

2 W ∗
2 − W ∗′

2 W ∗
2 (W ′W )−1W ∗′

2 W ∗
2

= W ∗′

2 W ∗
2 [(W ∗′

2 W ∗
2 )−1 − (W ′W )−1]W ∗′

2 W ∗
2

= W ∗′

2 W ∗
2 NW ∗′

2 W ∗
2 .

Thus, we have

W ′
0MW W2(W

′
2MW W2)

−1W ′
2MW W0 = W ∗′

0 W ∗
0 NW ∗′

2 W ∗
2 (W ∗′

2 W ∗
2 NW ∗′

2 W ∗
2 )−1

× W ∗′

2 W ∗
2 NW ∗′

0 W ∗
0

Let B = N1/2W ∗′

2 W ∗
2 . Using the fact, I−B(B′B)−1B′ ≥ 0, we have that D = (W ∗′

0 W ∗
0 )N1/2(I−
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B(B′B)−1B′)N1/2(W ∗′

0 W ∗
0 ) satisfies

D = W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0 − W ∗′

0 W ∗
0 N1/2N1/2W ∗′

2 W ∗
2 (W ∗′

2 W ∗
2 N1/2N1/2W ∗′

2 W ∗
2 )−1

× W ∗′

2 W ∗
2 N1/2N1/2W ∗′

0 W ∗
0

= W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0 − W ∗′

0 W ∗
0 NW ∗′

2 W ∗
2 (W ∗′

2 W ∗
2 NW ∗′

2 W ∗
2 )−1W ∗′

2 W ∗
2 NW ∗′

0 W ∗
0

≥ 0

For the proof of (43), it suffices to show

W ′
0MW W0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0 ≥ W ′

△W△(W ′W − W ′
2W2)

−1

× (W ′W − W ′
0W0) (49)

In fact, the equality holds in (49) because the left hand side of (49) is

W ′
0MW W0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0 = W ′

0(I − W (W ′W )−1W ′)W0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0

= W ′
0W0 − W ′

0W (W ′W )−1W ′W0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0

= W ′
0W0 − W ′

0W0(W
′W )−1W ′

0W0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0

= (W ′W − W ∗′

0 W ∗
0 ) − (W ′W − W ∗′

0 W ∗
0 )(W ′W )−1

× (W ′W − W ∗′

0 W ∗
0 ) − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0

= W ′W − W ∗′

0 W ∗
0 − W ′W + W ∗′

0 W ∗
0 + W ∗′

0 W ∗
0 (50)

− W ∗′

0 W ∗
0 (W ′W )−1W ∗′

0 W ∗
0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0

= W ∗′

0 W ∗
0 − W ∗′

0 W ∗
0 (W ′W )−1W ∗′

0 W ∗
0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0

= W ∗′

0 W ∗
0 [(W ∗′

0 W ∗
0 )−1 − (W ′W )−1 − N ]W ∗′

0 W ∗
0

= W ∗′

0 W ∗
0 [(W ∗′

0 W ∗
0 )−1 − (W ∗′

2 W ∗
2 )−1]W ∗′

0 W ∗
0 (51)
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and so, since W ∗′

2 W ∗
2 = W ∗′

0 W ∗
0 + W ′

△W△, it follows that

W ′
0MW W0 − W ∗′

0 W ∗
0 NW ∗′

0 W ∗
0 = (W ∗′

2 W ∗
2 − W ′

△W△)[(W ∗′

0 W ∗
0 )−1 − (W ∗′

2 W ∗
2 )−1]W ∗′

0 W ∗
0

= [W ∗′

2 W ∗
2 (W ∗′

0 W ∗
0 )−1 − W ∗′

2 W ∗
2 (W ∗′

2 W ∗
2 )−1

− W ′
△W△(W ∗′

0 W ∗
0 )−1 + W ′

△W△(W ∗′

2 W ∗
2 )−1]W ∗′

0 W ∗
0

= (W ∗′

2 W ∗
2 − W ∗′

0 W ∗
0 − W ′

△W△) + W ′
△W△(W ∗′

2 W ∗
2 )−1

× W ∗′

0 W ∗
0

= W ′
△W△(W ∗′

2 W ∗
2 )−1W ∗′

0 W ∗
0

= W ′
△W△(W ′W − W ′

2W2)
−1(W ′W − W ′

0W0) ⋄ .

Proof of Proposition 3:

Suppose k ≤ k0. First notice that if W ′
△W△ is invertible then the matrix

A(k) = (k0 − k)−1W ′
△W△(W ′

2W2)
−1W ′

0W0 is symmetric and positive definite because

A(k) = (k0 − k)−1W ′
△W△(W ′

△W△ + W ′
0W0)

−1W ′
0W0

= (k0 − k)−1W ′
△W△

{

(W ′
△W△)−1[(W ′

△W△)−1 + (W ′
0W0)

−1]−1(W ′
0W0)

−1
}

W ′
0W0

= (k0 − k)−1[(W ′
△W△)−1 + (W ′

0W0)
−1]−1

From the symmetry of A(k) and Lemma A.1, it follows that

GT (k) ≥ θ0′

T A(k)θ0
T ≥ γT (k)||θT ||2 (52)

where γT (k) is the minimum eigenvalue of A(k). Therefore, the desired result can be established

by showing that, with probability tending to one, γT (k) is bounded away from zero as k0 − k

increases.

To this end, note that Assumption 3 implies that, for large k0−k, W ′
△W△ =

∑k0

t=k+1 wtw
′
t =

Υ̂′
T

∑k0

t=k+1 ztz
′
tΥ̂T is positive definite with large probability and so A(k) is invertible with large

probability for large k0 − k. Therefore, we can consider A(k)−1. Since

A(k)−1 = (W ′
0W0)

−1W ′
2W2[(k0 − k)−1W ′

△W△]−1,

it follows that

||A(k)−1|| ≤ ||(W ′
0W0)

−1W ′
2W2|| · ||[(k0 − k)−1W ′

△W△]−1||
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Furthermore, we have

||(W ′
0W0)

−1W ′
2W2|| ≤ ||(W ′

0W0)
−1W ′W ||

≤ ||(W ′
0W0)

−1|| · ||W ′W ||

= ||(Υ̂′
TZ′

0Z0Υ̂T )−1|| · ||Υ̂′
T Z′ZΥ̂T || (53)

where Z0 = (0, · · · , 0, zk0+1, ..., zT)′ and Z = (z1, ..., zT)′ defined. It follows from (53) and As-

sumptions 2, 3 and 5 that ||(W ′
0W0)

−1W ′
2W2|| is bounded. In addition, the minimum eigenvalue

of (k0 − k)−1W ′
△W△ is bounded away from zero by Assumption 3 with large probability and

so, ||[(k0 − k)−1W ′
△W△]−1|| is bounded with large probability for all large k0 − k. Therefore,

it follows that ||A(k)−1|| is bounded with large probability for all large k0 − k and hence that

γT (k) is bounded away from zero for all large k0 − k with large probability.

Suppose now that k > k0. Let

B(k) = (k0 − k)−1W ′
△W△(W ′W − W ′

2W2)
−1(W ′W − W ′

0W0)

= (k0 − k)−1W ′
△W△(W ∗′

2 W ∗
2 )−1W ∗′

0 W ∗
0

By similar arguments to A(k), it follows that B(k) is symmetric and is positive definite when

W ′
△W△ is invertible.

Using Lemma A.1, it follows that

GT (k) ≥ θ0′

T B(k)θ0
T ≥ γ∗

T (k)||θT ||2

where γ∗
T (k) is the minimum eigenvalue of B(k). It remains to establish that, with probability

tending to one, γ∗
T (k) is bounded away from zero as k0 − k increases.

For large k0 − k, W ′
△W△ =

∑k0

t=k+1 wtw
′
t = Υ̂′

T

∑k0

t=k+1 ztz
′
tΥ̂T will be positive definite with

large probability by Assumption 3. Also we have,

B(k)−1 = (W ∗′

0 W ∗
0 )−1W ∗′

2 W ∗
2 [(k0 − k)−1W ′

△W△]−1

||B(k)−1|| ≤ ||(W ∗′

0 W ∗
0 )−1W ∗′

2 W ∗
2 || · ||[(k0 − k)−1W ′

△W△]−1||

and

||(W ∗′

0 W ∗
0 )−1W ∗′

2 W ∗
2 || ≤ ||(W ∗′

0 W ∗
0 )−1W ′W ||

≤ ||(W ∗′

0 W ∗
0 )−1|| · ||W ′W ||

= ||(Υ̂′
T Z∗′

0 Z∗
0 Υ̂T )−1|| · ||Υ̂′

T Z′ZΥ̂T || (54)
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where Z∗
0 = (z1, · · · , zk0

, 0, · · · , 0)′. It follows from (54) and Assumptions 2 and 3 that

||(W ∗′

0 W ∗
0 )−1W ∗′

2 W ∗
2 || is bounded. In addition, Assumption 3 implies the minimum eigenvalue

of (k0 − k)−1W ′
△W△ is bounded away from zero with large probability. Therefore, γ∗

T (k), is

bounded away from zero as k0 − k increases with large probability. ⋄

To prove Theorem 2, we need the following lemma.

Lemma A.2 Under Assumption 9, there exists a B < ∞ such that for every ζ > 0 and m > 0

P

(

sup
k≥m

1

k

∥

∥

∥

∥

∥

k
∑

t=1

wtũt

∥

∥

∥

∥

∥

> ζ

)

≤ B

ζ4m2

Proof of Lemma A.2: This follows from Serfling (1970)[Theorem 5.1]. This theorem states that

under Assumption 8, for each ζ > 0 there exists a constant Cζ < ∞ (depending on Ar and Kr)

such that

P

(

sup
k≥m

∥

∥

∥

∥

Sk

k

∥

∥

∥

∥

> ζ

)

≤ Cζ ·m−r/2 for all m ≥ 1

where Cζ = (Ar + Kr)(
ζ
2 )−r(1 − 2−r/2)−1

Thus,

P

(

sup
k≥m

1

k

∥

∥

∥

∥

∥

k
∑

t=1

wtũt

∥

∥

∥

∥

∥

> ζ

)

≤ Cζ · m−r/2

By letting r = 4, B = (Ar + Kr)(1/2)−r(1 − 2−r/2)−1, we get the desired maximal inequality

P

(

sup
k≥m

1

k

∥

∥

∥

∥

∥

k
∑

t=1

wtũt

∥

∥

∥

∥

∥

> ζ

)

≤ B

ζ4m2

Proof of Theorem 2:

By definition, k̂ = arg maxk VT (k). Thus, VT (k̂) ≥ VT (k0). Therefore, it suffices to show that

for each ǫ > 0, there exists C > 0 such that

P ( sup
k∈K(C)

VT (k) ≥ VT (k0)) < ǫ (55)

From (12), it follows that VT (k) ≥ VT (k0) is equivalent to

(HT (k)/|k0 − k|) ≥ GT (k)

and so by Proposition 3, it suffices to prove that

P

(

sup
k∈K(C)

∣

∣

∣

∣

HT (k)

k0 − k

∣

∣

∣

∣

≥ γ||θ0
T ||2

)

< ǫ. (56)
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From (20), HT (k) can be decomposed into two parts as follows

HT (k) = H
(1)
T (k) + H

(2)
T (k)

where H
(1)
T (k) and H

(2)
T (k) are (re)defined as

H
(1)
T (k) = 2θ0′

T W ′
0MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

T W ′
0MW Ũ

and

H
(2)
T (k) = Ũ ′MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW W0(W

′
0MW W0)

−1W ′
0MW Ũ

First consider the expression H
(1)
T (k). Recalling the definition W0 = W2 − W△Ξ from (16),

H
(1)
T (k) can be transformed into

H
(1)
T (k) = Ξ[2θ0′

T W ′
△MW Ũ − 2θ0

T W ′
△MW W2(W

′
2MW W2)

−1W ′
2MW Ũ ] (57)

by similar logic to the derivation of (32) (except with θ0 replaced by θ0
T ). The first term in the

square brackets in (57) can be written as

W ′
△MW Ũ = W ′

△Ũ − W ′
△W (W ′W )−1W ′Ũ

It is clear that W ′
△W = |k0 − k|Op(1) and (W ′W )−1W ′Ũ = (1/

√
T )(W ′W/T )−1W ′Ũ/

√
T =

T−1/2Op(1). Thus, the first term at (57) can be written as

θ0′

T W ′
△MW Ũ = θ0′

T W ′
△Ũ − ||θ0

T || · |k0 − k|Op(1) · T−1/2Op(1)

= θ0′

T W ′
△Ũ − |k0 − k|T−1/2||θ0

T ||Op(1) (58)

Now, we consider each factor in the second term within the square bracket in (57). We have

W ′
△MW W2 = W ′

△W2 − W ′
△W (W ′W )−1W ′W2

= |k0 − k|Op(1) − |k0 − k|Op(1) · Op(T
−1) · Op(T )

= |k0 − k|Op(1)

and

(W ′
2MW W2)

−1W ′
2MW Ũ = Op(T

−1) · Op(T
1/2) = Op(T

−1/2)

Thus, the second term in (57) can be written satisfies

2Ξθ0′

T W ′
△MW W2(W

′
2MW W2)

−1W ′
2MW Ũ = 2||θ0

T || · |k0 − k|Op(1) ·Op(T
−1/2)Ξ (59)
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Therefore, combining the results in (58) and (59) over the set K(C)

H
(1)
T (k) = Ξ

(

2θ0′

T W ′
△Ũ − 2|k0 − k|T−1/2||θ0

T ||Op(1) − 2|k0 − k|T−1/2||θ0
T ||Op(1)

)

= 2θ0′

T W ′
△ŨΞ + |k0 − k|T−1/2||θ0

T ||Op(1)Ξ (60)

Now, consider the expression

H
(2)
T (k) = Ũ ′MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW (W2 − W△Ξ)

× [(W2 − W△Ξ)′MW (W2 − W△Ξ)]−1(W2 − W△Ξ)′MW Ũ

The first term of H
(2)
T (k) is easily seen to be bounded as

Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ = Op(T

1/2) · Op(T
−1) · Op(T

1/2)

= Op(1) (61)

The second term of H
(2)
T (k) can be expanded further as follows

Ũ ′MW (W2 − W△Ξ) · [(W2 − W△Ξ)′MW (W2 − W△Ξ)]−1(W2 − W△Ξ)′MW Ũ

=
(

Ũ ′MW W2 − Ũ ′MW W△Ξ
)

[W ′
2MW W2 − W ′

2MW W△Ξ − ΞW ′
△MW W2

+ W ′
△MW W△]−1

(

W ′
2MW Ũ − W ′

△MW ŨΞ
)

(62)

Investigating the limit behavior of each term on the right hand side of (62) over the set K(C),

we have the following convergence results:

Ũ ′MW W2 = Op(T
1/2)

Ũ ′MW W△ = Ũ ′W△ − Ũ ′W (W ′W )−1W ′W△

=
√

|k0 − k| ·Op(1) − Op(T
1/2) ·Op(T

−1) · |k0 − k|Op(1)

=
√

|k0 − k|Op(1) − |k0 − k|Op(T
−1/2)

= Op(T
1/2)Op(1) − Op(T )Op(T

−1/2)

= Op(T
1/2) − Op(T

1/2) = Op(T
1/2)

W ′
2MW W△ = Op(1) · |k0 − k| = Op(T )

W ′
2MW W2 = Op(T )
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and

W ′
△MW W△ = W ′

△W△ − W ′
△W (W ′W )−1W ′W△

= |k0 − k|Op(1) − |k0 − k|Op(1) · Op(T
−1) · |k0 − k|Op(1)

= |k0 − k|Op(1) − |k0 − k|2Op(T
−1)

= Op(T )Op(1) − Op(T
2)Op(T

−1)

= Op(T ) − Op(T ) = Op(T )

Thus, the second term of H
(2)
T (k) is

(

Op(T
1/2) − Op(T

1/2)
)

[Op(T ) − Op(T ) − Op(T ) + Op(T )]
−1
(

Op(T
1/2) − Op(T

1/2)
)

= Op(T
1/2)Op(T

−1)Op(T
1/2)

= Op(1) (63)

Finally, combining (31), (60), and (61), we obtain

HT (k) =
(

2θ0′

T W ′
△ŨΞ + |k0 − k|T−1/2||θ0

T ||Op(1)Ξ
)

+ (Op(1) + Op(1))

=
(

2θ0′

T W ′
△ŨΞ + |k0 − k|T−1/2||θ0

T ||Op(1)Ξ
)

+ Op(1)

Thus, over the set K(C), we have

HT (k)

|k0 − k| =
2

|k0 − k|θ
0′

T W ′
△ŨΞ + T−1/2||θ0

T ||Op(1) +
Op(1)

|k0 − k| (64)

We now show that (56) follows from (64). This is proved by investigating the probability limit

behavior of the supremum of each term in (64) over K(C) and then using the Triangle inequality

to establish (56).

By the symmetry of the argument, it suffices to consider only the case for k < k0. Now consider

each term on the right hand side of (64) in turn.

(i) Consider 2
k0−k θ0′

T W ′
△Ũ . We have:

P

(

sup
k∈K(C)

∣

∣

∣

∣

2

k0 − k
θ0′

T W ′
△Ũ

∣

∣

∣

∣

>
γ||θ0

T ||2
3

)

≤ P

(

sup
k≤k0−C||θ0

T
||−2

∣

∣

∣

∣

∣

1

k0 − k

k0
∑

t=k+1

wtũt

∣

∣

∣

∣

∣

>
γ||θ0

T ||
6

)

Using Lemma A.2 with ζ = γ||θ0
T ||/6 and m = C||θ0

T ||−2, the right-hand side above is

bounded by

B
64

γ4||θ0
T ||4

· 1

C2||θ0
T ||−4

= B
1296

γ4C2
<

ǫ

3

for large C.
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(ii) Consider T−1/2||θ0
T ||Op(1). We have:

P

(

∣

∣

∣
T−1/2||θ0

T ||Op(1)
∣

∣

∣
>

γ||θ0
T ||2
3

)

= P

( |Op(1)|
T 1/2||θ0

T ||
>

γ

3

)

<
ǫ

3

because (T 1/2||θ0
T ||)−1 −→ 0.

(iii) By imposing the restriction k < k0 to the set K(C), we get k ≤ k0 − C||θ0
T ||−2 which

implies
∣

∣

∣

∣

1

k0 − k

∣

∣

∣

∣

≤ 1

C
||θ0

T ||2

Thus, for k < k0

P

(

sup
k∈K(C)

∣

∣

∣

∣

Op(1)

k0 − k

∣

∣

∣

∣

>
γ||θ0

T ||2
3

)

< P

(

sup
k∈K(C)

‖θ0
T‖2

∣

∣

∣

∣

Op(1)

C

∣

∣

∣

∣

>
γ||θ0

T ||2
3

)

= P

(∣

∣

∣

∣

Op(1)

C

∣

∣

∣

∣

>
θ

3

)

<
ǫ

3
for large C.

Combining (i)-(iii), we obtain:

P

(

sup
k∈K(C)

∣

∣

∣

∣

HT (k)

k0 − k

∣

∣

∣

∣

> γ||θ0
T ||2

)

≤ P

(

sup
k∈K(C)

| 2

k0 − k
θ0′

T W ′
△Ũ | >

γ||θ0
T ||2
3

)

+ P

(

∣

∣

∣T−1/2||θ0
T ||Op(1)

∣

∣

∣ >
γ||θ0

T ||2
3

)

+ P

(

sup
k∈K(C)

∣

∣

∣

∣

Op(1)

k0 − k

∣

∣

∣

∣

>
γ||θ0

T ||2
3

)

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ. ⋄ .

Proof of Proposition 4:

First consider |k0 − k|GT (k). We have

|k0 − k|GT (k) = θ0′

T [W ′
0MW W0 − W ′

0MW W2(W
′
2MW W2)

−1W ′
2MW W0]θ

0
T

= θ0′

T [(W2 − ΞW△)′MW (W2 − ΞW△) − (W2 − ΞW△)′MW W2

× (W ′
2MW W2)

−1W ′
2MW (W2 − ΞW△)]θ0

T

= θ0′

T [W ′
△MW W△ − W ′

△MW W2(W
′
2MW W2)

−1W ′
2MW W△]θ0

T (65)

First, consider the second term on the right hand side of (65). Since ‖W ′
△MW W2‖ = Op(1)‖θ0

T ‖−2

and ‖(W ′
2MW W2)

−1‖ = Op(T
−1) over the set D(C), we have under Assumption 8 that

‖θ0′

T W ′
△MW W2(W

′
2MW W2)

−1W ′
2MW W△θ0

T ‖ ≤ ‖θ0
T ‖2 · Op(1)‖θ0

T‖−2 · Op(T
−1) · Op(1)‖θ0

T ‖−2

= op(1). (66)
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Next, consider the first term on the right hand side of in (65), θ0′

T W ′
△MW W△θ0

T . Since

θ0
T W ′

△W (W ′W )−1W ′W△θ0
T = ‖θ0

T ‖2 · Op(1)‖θ0
T‖−2 · Op(T

−1) ·Op(1)‖θ0
T ‖−2 = op(1)

under Assumption 8, we have

θ0′

T W ′
△MW W△θ0

T = W ′
△W△θ0

T + op(1) (67)

From (66)-(67), it follows that

|k0 − k|GT (k) = θ0′

T W△′W△θ0
T + op(1) (68)

Next, consider HT (k). We have

HT (k) = 2θ0′

T (W ′
0MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

T (W ′
0MW Ũ)

+ Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW W0(W

′
0MW W0)

−1W ′
0MW Ũ

= H
(1)
T (k) + H

(2)
T (k) (69)

where H
(i)
T (k) are (re)defined as

H
(1)
T (k) = 2θ0′

T (W ′
0MW W2)(W

′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

T (W ′
0MW Ũ )

H
(2)
T (k) = Ũ ′MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW W0(W

′
0MW W0)

−1W ′
0MW Ũ

In the following derivation, we show that H
(2)
T (k) = op(1) and so the limit behaviour of

HT (k) over D(C) is dominated by the limit behavior of H
(1)
T (k).

First, consider H
(1)
T (k).

H
(1)
T (k) = 2θ0′

T (W2 − W△Ξ)′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ − 2θ0′

T W ′
0MW Ũ

= 2θ0′

T (W ′
2MW Ũ − ΞW ′

△MW W2(W
′
2MW W2)

−1W ′
2MW Ũ ) − 2θ0′

T W ′
0MW Ũ

= Ξ[2θ0′

T W ′
△MW Ũ − 2θ0

T W ′
△MW W2(W

′
2MW W2)

−1W ′
2MW Ũ ] (70)

We now investigate the convergence of each term on the right hand side of (70) in turn. Noticing

that W ′
△W = Op(1)‖θ0

T ‖−2 over D(C) and (W ′W )−1W ′Ũ = (1/
√

T ) · (W ′W/T )−1W ′Ũ/
√

T =

T−1/2Op(1), the first term in (70) can be written as

θ0
T W ′

△MW Ũ = θ0
T W△Ũ − θ0′

T W ′
△W (W ′W )−1W ′Ũ

= θ0′

T W△Ũ − ‖θT‖ · Op(1)‖θ0
T‖−2 · T−1/2Op(1)

= θ0
T W△Ũ − Op(1)/(T 1/2‖θ0

T‖)

= θ0
T W△Ũ + op(1) over D(C) (71)
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Now consider the second term on the right hand side of (70). We observe that

W ′
△MW W2 = W ′

△W2 − W ′
△W (W ′W )−1W ′W2

= Op(1)‖θ0
T ‖−2 − Op(1)‖θ0

T‖−2 ·Op(T
−1) · Op(T )

= Op(1)‖θ0
T ‖−2 over D(C)

(W ′
2MW W2)

−1W ′
2MW Ũ = Op(T

−1) · Op(T
1/2) = Op(T

−1/2)

and so

θ0′

T W ′
△MW W2 · (W ′

2MW W2)
−1W ′

2MW Ũ = ‖θ0
T ‖ ·Op(1)‖θ0

T ‖−2 · Op(T
−1/2) (72)

= Op(1)/(T 1/2‖θ0
T ‖)

= op(1) over D(C) (73)

Thus, combining (71)-(73), we have

H
(1)
T (k) = Ξ[2θ0′

W ′
△MW Ũ − 2θ0W ′

△MW W2(W
′
2MW W2)

−1W ′
2MW Ũ ]

= 2Ξθ0′

W ′
△Ũ + op(1) (74)

Next, we prove that H
(2)
T (k) = op(1). We have

H
(2)
T (k) = Ũ ′MW W2(W

′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW W0(W

′
0MW W0)

−1W ′
0MW Ũ

= Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ − Ũ ′MW (W2 − W△Ξ)

× [(W2 − W△Ξ)′MW (W2 − W△Ξ)]−1(W2 − W△Ξ)′MW Ũ

≡ M − N

where M and N are (re)defined as

M ≡ Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ

N ≡ Ũ ′MW (W2 − W△Ξ)[(W2 − W△Ξ)′MW (W2 − W△Ξ)]−1(W2 − W△Ξ)′MW Ũ

To investigate the limiting behavior of H
(2)
T (k) over the set D(C), it turns out to be most

convenient to check the limit behavior of N first. Using the relationship W0 = W2 − W△Ξ, N

can be written as

N = {Ũ ′MW (W2 − W△Ξ)/
√

T} · [(W2 − W△Ξ)′MW (W2 − W△Ξ)/T ]−1

× {(W2 − W△Ξ)′MW Ũ/
√

T} (75)
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We now investigate the limiting behaviour of the terms on the right hand side of (75). Since

Ũ ′MW W△Ξ/
√

T = W△ŨΞ/
√

T + op(1)

= Op(1)
√

‖θT ‖−2/T + op(1)

= op(1) + op(1)

= op(1) over D(C) ≡ {k : |k − k0| ≤ C‖θ0
T‖−2},

it follows that

Ũ ′MW (W2 − W△Ξ)/
√

T = Ũ ′MW W2/
√

T − Ũ ′MW W△Ξ/
√

T

= Ũ ′MW W2/
√

T + op(1) (76)

Similarly, we have

(W2 − W△Ξ)′MW (W2 − W△Ξ)/T = W ′
2MW W2/T − (1/T ){W ′

2MW W△Ξ

+ ΞW ′
△MW W2 − W ′

△MW W△}

= W ′
2MW W2/T + op(1) (77)

Thus, combining (75)-(77), we have

N =
(

Ũ ′MW W2/
√

T + op(1)
)

(W ′
2MW W2/T + op(1))

−1
(

W ′
2MW Ũ/

√
T + op(1)

)

Therefore, we have

H
(2)
T (k) = M − N (78)

= Ũ ′MW W2(W
′
2MW W2)

−1W ′
2MW Ũ −

(

Ũ ′MW W2/
√

T + op(1)
)

× (W ′
2MW W2/T + op(1))

−1
(

W ′
2MW Ũ/

√
T + op(1)

)

=
(

Ũ ′MW W2/
√

T
)

(W ′
2MW W2/T )

−1
(

W ′
2MW Ũ/

√
T
)

−
(

Ũ ′MW W2/
√

T + op(1)
)

(W ′
2MW W2/T + op(1))

−1
(

W ′
2MW Ũ/

√
T + op(1)

)

= op(1) (79)

It follows from (69), (74) and (79) that

HT (k) = 2Ξθ0′

T W ′
△Ũ + op(1) (80)
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Finally, it follows from (12), (68) and (80) that

VT (k) − VT (k0) = −|k0 − k|GT (k) + HT (k)

=
(

−θ0′

T W ′
△W△θ0

T + op(1)
)

+
(

2Ξθ0′

T W ′
△Ũ + op(1)

)

= −θ0′

T W ′
△W△θ0

T + 2Ξθ0′

T W ′
△Ũ + op(1)

which is the desired result. ⋄.

Proof of Theorem 3:

Theorem 2 proved that k̂ = k0 + Op(‖θ0
T‖−2). Since θ0

T = θ0υT under Assumption 13, we

have k̂ = k0 + Op(υ
−2
T ). Therefore, it suffices to derive the limiting process of VT (k) − VT (k0)

for k = k0 + [sυ−2
T ] and s ∈ [−C, C].

We first consider s ≤ 0 (that is, k ≤ k0). From Proposition 4,

VT (k) − VT (k0) = −θ0′

T W ′
△W△θ0

T + 2θ0′

T W ′
△Ũ · Ξ + op(1)

= −θ′0(υ
2
T

k0
∑

t=k+1

wtw
′
t)θ0 + 2θ′0(υT

k0
∑

t=k+1

wtũt) + op(1)

= −θ′0Υ
′
0(υ

2
T

k0
∑

t=k+1

ztz
′
t)Υ0θ0 + 2θ′0Υ

′
0(υT

k0
∑

t=k+1

ztũt) + op(1) (81)

For the first term in (81) we know that it involves |[sυ−2
T ]|(the absolute value of [sυ−2

T ]) obser-

vations of zt. Thus, by Assumptions 2, 5 and 10,

υ2
T

k0
∑

t=k+1

ztz
′
t =⇒ |s|Q1 (82)

The second term in (81) can be further expanded as follows

υT

k0
∑

t=k+1

ztũt = υT

k0
∑

t=k+1

ztut + υT

k0
∑

t=k+1

ztv
′
tβ

0
x,1

− υT

k0
∑

t=k+1

ztz
′
t[(Z

′Z)−1Z′V ]β0
x,1 (83)

We investigate the limit behavior of each term on the right hand side of (83). To this end,

it is useful to introduce the following definitions. Let B̃i(r) = V 1/2Bi(r) where Bi(r) =

[B
(1)
i (r)′, B

(2)
i (r)′] is [q×(p1+1)]×1 standard Brownian motion corresponding to the ith regime,
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and B
(1)
i (r) is q × 1 and B

(2)
i (r) is qp1 × 1. Also define Bmat

i (r) is defined as vec{Bmat
i (r)} =

B
(2)
i (r).

We now consider υT

∑k0

t=k+1 ztut. By Assumption 12,

(−sυ−2
T )−1/2

k0
∑

t=k+1

ztut ⇒ (N1′

1 ⊗ Q
1/2
1 )B

(1)
i (1)

Denoting the rescaled version of this standard Brownian motion process by W1 ≡
√

tB
(1)
i (1), we

can rewrite the above convergence result as

υT

k0
∑

t=k+1

ztut ⇒
√
−s(N1′

1 ⊗ Q
1/2
1 )B1(1)

= (N1′

1 ⊗ Q
1/2
1 )W1(−s)

Similarly, the limit process of the second term of (83) can be shown to be

υT

k0
∑

t=k+1

ztv
′
t ⇒ Q

1/2
1 W mat

1 (−s)N2

where W mat
1 (−s) ≡

√
tBmat

1 (1). Finally, the last term of (83) behaves as follows,

υT

k0
∑

t=k+1

ztz
′
t[(Z

′Z)−1Z′V ]β0
x,1 = T−1/2υ−1

T s · (sυ−2
T )−1

k0
∑

t=k+1

ztz
′
t

× [(T−1Z′Z)−1T−1/2Z′V ]β0
x,1

= T−1/2υ−1
T Op(1) = op(1)

Thus, combining the results on (83), we obtain

υT

k0
∑

t=k+1

ztũt ⇒ (N1′

1 ⊗ Q
1/2
1 )W1(−s) + Q

1/2
1 W mat

1 (−s)N1
2 β0

x,1

Using vec(A1A2A3) = (A′
3 ⊗ A1)vec(A2), we have

Q
1/2
1 W mat

1 (−s)N1
2 β0

x,1 = vec(Q
1/2
1 W mat

1 (−s)N1
2 β0

x,1)

= (β0′

x,1N
1′

2 ⊗ Q
1/2
1 )vec(W mat

1 (−s))

= (β0′

x,1N
1′

2 ⊗ Q
1/2
1 )W1(−s)
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Therefore, we have

υT

k0
∑

t=k+1

ztũt =⇒
[

(N1′

1 ⊗ Q
1/2
1 ) + (β0′

x,1N
1′

2 ⊗ Q
1/2
1 )

]

W1(−s)

=
[

(N1′

1 + β0′

x,1N
1′

2 ) ⊗ Q
1/2
1 )

]

W1(−s)

=
[

(N1 + N1
2β0

x,1)
′ ⊗ Q

1/2
1

]

W1(−s) (84)

Then θ′0Υ
′
0(υT

∑k0

t=k+1 ztũt) has an asymptotic distribution of (θ′0Υ
′
0Φ1Υ0θ0)

1/2W1(−s) where

W1(·) is a rescaled Brownian motion process defined on [0,∞).

Thus, it follows that for s ≤ 0,

VT (k) − VT (k0) = VT (k0 + [sυ−2
T ]) − VT (k0)

⇒ −|s|θ′0Υ′
0Q1Υ0θ0 + 2θ′0Υ

′
0

[

(N1
1 + N1

2 β0
x,1)

′ ⊗ Q
1/2
1

]

W1(−s)

= −|s|θ′0Υ′
0Q1Υ0θ0 + 2(θ′0Υ

′
0Φ1Υ0θ0)

1/2W1(−s)

Similarly, for s > 0

VT (k0 + [sυ−2
T ]) − VT (k0)

⇒ −|s|θ′0Υ′
0Q2Υ0θ0 + 2θ′0Υ

′
0

[

(N2
1 + N2

2 β0
x,2)

′ ⊗ Q
1/2
2

]

W2(−s)

= −|s|θ′0Υ′
0Q2Υ0θ0 + 2(θ′0Υ

′
0Φ2Υ0θ0)

1/2W2(−s)

where W2(·) is another Brownian motion process on [0,∞). The two processes W1 and W2 are

independent because they are the limiting processes corresponding to the asymptotically inde-

pendent regimes.

In summary,

VT (k0 + [sυ−2
T ]) − VT (k0) =⇒ G(s)

≡











−|s|θ′0Υ′
0Q1Υ0θ0 + 2(θ′0Υ

′
0Φ1Υ0θ0)

1/2W1(−s) : s ≤ 0

−|s|θ′0Υ′
0Q2Υ0θ0 + 2(θ′0Υ

′
0Φ2Υ0θ0)

1/2W2(−s) : s > 0

Now, we can invoke the continuous mapping theorem to conclude

υ2
T (k̂ − k0) −→d arg max

s
G(s) (85)
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We now show that (85) implies the desired result. By a change of variable s = bυ with

b =
θ′0Υ

′
0Φ1Υ0θ0

(θ′0Υ
′
0Q1Υ0θ0)2

it can be shown that

arg max
s

G(s) = b · arg max
υ

Z(υ) (86)

where Z(υ) is defined in equation (64). We now establish (86).

For s ≤ 0

G(s) = −|s|θ′0Υ′
0Q1Υ0θ0 + 2(θ′0Υ

′
0Φ1Υ0θ0)

1/2W1(−s)

= −|bυ| · θ′0Υ′
0Q1Υ0θ0 + 2(θ′0Υ

′
0Φ1Υ0θ0)

1/2W1(−bυ)

= −|υ|b · θ′0Υ′
0Q1Υ0θ0 + 2(θ′0Υ

′
0Φ1Υ0θ0)

1/2
√

b ·W1(−υ)

= −|υ| θ′0Υ
′
0Φ1Υ0θ0

(θ′0Υ
′
0Q1Υ0θ0)2

· θ′0Υ′
0Q1Υ0θ0 + 2(θ′0Υ

′
0Φ1Υ0θ0)

1/2 (θ′0Υ
′
0Φ1Υ0θ0)

1/2

θ′0Υ
′
0Q1Υ0θ0

W1(−υ)

= −|υ| θ
′
0Υ

′
0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

+ 2
θ′0Υ

′
0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

W1(−υ)

Thus,

arg max
s

G(s) = arg max
υ

{

−|υ| θ
′
0Υ

′
0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

+ 2
θ′0Υ

′
0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

W1(−υ)

}

= arg max
υ

{

−|υ|
2

+ W1(−υ)

}

θ′0Υ0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

= arg max
υ

{

−|υ|
2

+ W1(−υ)

}

Similarly, for s > 0

G(s) = −s · θ′0Υ′
0Q2Υ0θ0 + 2(θ′0Υ

′
0Ω2Υ0θ0)

1/2W2(s)

= −bυ · θ′0Υ′
0Q2Υ0θ0 + 2(θ′0Υ

′
0Ω2Υ0θ0)

1/2
√

bW2(υ)

= −υ
θ′0Υ

′
0Φ1Υ0θ0

(θ′0Υ
′
0Q1Υ0θ0)2

θ′0Υ
′
0Q2Υ0θ0 + 2(θ′0Υ

′
0Ω2Υ0θ0)

1/2 (θ′0Υ
′
0Φ1Υ0θ0)

1/2

θ′0Υ
′
0Q1Υ0θ0

W2(υ)

=
θ′0Υ

′
0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

[

−θ′0Υ
′
0Q2Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

υ + 2

(

θ′0Υ
′
0Ω2Υ0θ0

θ′0Υ
′
0Φ1Υ0θ0

)1/2

W2(υ)

]

=
θ′0Υ

′
0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

[

−ξυ + 2
√

φW2(υ)
]

Thus, we have

arg max
s

G(s) = arg max
υ

{

−ξυ

2
+
√

φW2(υ)

}

θ′0Υ
′
0Φ1Υ0θ0

θ′0Υ
′
0Q1Υ0θ0

= arg max
υ

{

−ξυ

2
+
√

φW2(υ)

}
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Finally, the statement in Theorem 3 can be established in the following way. Since VT (k0 +

[sυ−2
T ]) − VT (k0) ⇒ G(s) and arg maxs G(s) = b · arg maxυ Z(υ), we have

b−1υ2
T (k̂ − k0) −→d arg max

υ
Z(υ).

. Using Assumption 13, we have

b−1υ2
T =

(θ′0Υ
′
0Q1Υ0θ0)

2

θ′0Υ
′
0Φ1Υ0θ0

υ2
T

=
(υ−1

T θ0′

T Υ′
0Q1Υ0υ

−1
T θ0

T )2

υ−1
T θ0′

T Υ′
0Φ1Υ0υ

−1
T θ0

T

υ2
T

=
(θ0′

T Υ′
0Q1Υ0θ

0
T )2

θ0′

T Υ′
0Φ1Υ0θ

0
T

and thus, it follows that

b−1υ2
T (k̂ − k0) =

(θ0′

T Υ′
0Q1Υ0θ

0
T )2

θ0′

T Υ′
0Φ1Υ0θ0

T

(k̂ − k0) −→d arg max
s

Z(s), ⋄.
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Table 1: Empirical coverage of break point confidence intervals

one break model with (β0
1 ; β0

2)=(0.3,0.1,-0.3,-0.1)

Confidence Interval

q − 1 T
99 % 95 % 90 %

60 .90 .82 .75

120 .95 .89 .85

2
240 .97 .92 .87

480 .99 .94 .89

60 .90 .80 .74

120 .93 .86 .80

4
240 .96 .92 .87

480 .98 .94 .90

60 .91 .80 .74

120 .94 .86 .81

8
240 .97 .90 .86

480 .98 .93 .89

Notes: Here q−1 is the number of instruments (excluding the intercept), and the column headed

100a% gives the percentage of times (in 1000 simulations) the 100a% confidence intervals for the

break points contain the corresponding true values.
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Table 2: Empirical coverage of break point confidence intervals

one break model with (β0
1 ; β0

2)=(0.5,0.1,-0.5,-0.1)

Confidence Interval

q − 1 T
99 % 95 % 90 %

60 .95 .90 .86

120 .97 .93 .89

2
240 .98 .95 .92

480 .99 .97 .92

60 .94 .88 .83

120 .97 .93 .87

4
240 .99 .93 .90

480 .99 .95 .91

60 .94 .89 .85

120 .97 .93 .88

8
240 .98 .95 .91

480 .99 .96 .92

Notes: For definitions see Table 1.
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Table 3: Empirical coverage of break point confidence intervals

one break model with (β0
1 ; β0

2)=(1,0.1;-1,-0.1)

Confidence Interval

q − 1 T
99 % 95 % 90 %

60 .99 .97 .96

120 .99 .97 .96

2
240 1.00 .98 .97

480 1.00 .99 .98

60 .99 .98 .96

120 1.00 .98 .97

4
240 1.00 .98 .98

480 1.00 .99 .98

60 .99 .97 .96

120 .99 .98 .96

8
240 .99 .98 .96

480 .99 .98 .96

Notes: For definitions see Table 1.
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Table 4: Empirical coverage of break point confidence intervals

two break model with (β0
1 ; β0

2 , β0
3)=(0.3,0.1;-0.3,-0.1;0.3;0.1)

Confidence Interval

1st break 2nd break
k T

99 % 95 % 90 % 99 % 95 % 90 %

60 .91 .75 .66 .93 .81 .71

120 .94 .82 .76 .95 .86 .78

2
240 .97 .88 .81 .97 .92 .86

480 .98 .94 .88 .98 .93 .88

60 .92 .76 .68 .90 .78 .70

120 .94 .84 .76 .94 .86 .78

4
240 .95 .87 .82 .97 .88 .82

480 .98 .93 .88 .98 .93 .88

60 .92 .78 .70 .90 .79 .70

120 .95 .83 .75 .94 .84 .76

8
240 .96 .88 .81 .97 .88 .83

480 .97 .92 .86 .98 .92 .88

Notes: For definitions see Table 1.
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Table 5: Empirical coverage of break point confidence intervals

two break model with (β0
1 ; β0

2 , β0
3)=(0.5,0.1;-0.5,-0.1;0.5;0.1)

Confidence Interval

1st break 2nd break
q − 1 T

99 % 95 % 90 % 99 % 95 % 90 %

60 .94 .86 .79 .94 .87 .84

120 .96 .91 .89 .97 .92 .88

2
240 .98 .95 .91 .98 .94 .90

480 .99 .95 .92 .99 .96 .92

60 .94 .85 .78 .94 .87 .82

120 .97 .91 .86 .98 .92 .87

4
240 .98 .94 .90 .99 .94 .89

480 .99 .96 .92 .99 .95 .91

60 .95 .85 .78 .95 .88 .82

120 .97 .90 .86 .97 .91 .86

8
240 .98 .93 .89 .98 .94 .89

480 .99 .95 .92 .99 .97 .94

Notes: For definitions see Table 1.
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Table 6: Empirical coverage of break point confidence intervals

two break model with (β0
1 ; β0

2 , β0
3)=(1,0.1;-1,-0.1;1;0.1)

Confidence Interval

1st break 2nd break
k T

99 % 95 % 90 % 99 % 95 % 90 %

60 .98 .95 .94 .98 .96 .94

120 .99 .98 .96 .99 .98 .97

2
240 1.00 .98 .97 1.00 .99 .98

480 1.00 .98 .97 .99 .98 .97

60 .99 .96 .94 .99 .96 .94

120 .99 .97 .96 .99 .97 .96

4
240 .99 .97 .96 1.00 .99 .98

480 1.00 .98 .96 .99 .97 .96

60 .99 .96 .95 .99 .96 .93

120 1.00 .98 .96 .98 .97 .96

8
240 1.00 .98 .96 1.00 .98 .96

480 1.00 .98 .98 .99 .98 .97

Notes: For definitions see Table 1.
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Table 7: NKPC - stability statistics for structural equation

q-1 q× sup-F F(k+1:k) BIC

0 - - -0.020

1 13.76 10.29 -0.043

2 11.92 55.45 0.137

3 15.00 42.70 0.252

4 23.38 5.98 0.433

5 18.07 - 0.716

Notes: q× sup-F denotes the statistic for testing H0 : m = 0 vs. H1 : m = k, multiplied by q;

F(k+1:k) is the statistic for testing H0 : m = k vs. H1 : m = k + 1; BIC is the BIC criterion;

see Hall, Han, and Boldea (2007) for further details. The percentiles for the statistics are for

k = 1, 2, . . . respectively: (i) q× sup-F: (10%, 1%) significance level = (19.70, 26.71), (17.67,

21.87), (16.04, 19.42), (14.55, 17.44), (12.59,15.02); (ii) F(k+1:k): (10%, 1%) significance level

=(21.79, 28.36), (22.87, 29.30), (24.06,29.86), (24.68, 30.52).
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