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Abstract

The shift from hunting and gathering to agriculture, some 10,000 years ago, triggered the

�rst demographic explosion in history. Along with population, working time increased, while

food consumption remained at the subsistence level. For that reason, most anthropologists

regard the adoption of agriculture as an economical puzzle.

I show, using a neoclassical economic model, that there is nothing puzzling about the

adoption of agriculture. Agriculture brings four technological changes: an increase in total

factor productivity, a stabilization of total factor productivity, less interference of children on

production, and the possibility of food storage. In my model, each of those changes induces free,

rational and self-interested hunter-gatherers to adopt agriculture. As a result, working time

increases while consumption remains at the subsistence level, and population begins to grow

until diminishing returns to labor bring it to a halt. Welfare, which depends on consumption,

leisure, and fertility, rises at �rst; but after a few generations it falls below its initial level. Still,

the adoption of agriculture is irreversible. The latter generations choose to remain farmers

because, at their current levels of population, reverting to hunting and gathering would reduce

their welfare.

Key words: Paleoeconomics; economic anthropology; Neolithic Revolution; hunter-gatherers; agri-

culture; original a­uent society.
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1 Introduction

The shift from hunting and gathering to agriculture, usually termed the Neolithic Revolution (10,000

to 5,000 B.P.), triggered the �rst demographic explosion in the history of humankind (Bocquet-

Appel 2002). In the course of few centuries, typical communities grew from about 30 individuals

to 300 or more, and population densities increased from less than one hunter-gatherer per square

mile, to 20 or more farmers on the same surface (Johnson and Earle 2000, 43, 125, 246).

Population was not the only thing that expanded during the Neolithic Revolution. Working

time expanded as well. Ethnographical studies indicate that hunter-gatherers worked less that

six hours per day, whereas primitive horticulturists worked seven hours on average, and intensive

agriculturalists worked nine (Sackett 1996, 338�42). The increase in working time was, however,

not accompanied by an increase in food consumption. If anything, food consumption fell a bit

(Armelagos et al. 1991; Cohen and Armelagos 1984), though certainly not much, as hunter-gatherers

were already chronically undernourished and constantly threatened by famine (Kaplan 2000). The

lost of leisure without an increase in food consumption has convinced most anthropologists that

the Neolithic Revolution reduced welfare. For that reason, they regard our ancestors� decision to

farm as a puzzle in need of explanation.

I will show, using a neoclassical economic model, that there is nothing puzzling about the facts

of the Neolithic Revolution. In my model, rational and self-interested hunter-gatherers freely adopt

agriculture. The adoption of agriculture increases working time while consumption remains at the

subsistence level, and the initially stable population begins to grow until diminishing returns to

labor bring it to a halt. Welfare, which depends on consumption, leisure, and fertility, rises at �rst;

but after few generations it falls below its initial level. Still, the shift from hunting and gathering to

agriculture is irreversible. The latter generations choose to remain farmers because, at their current

levels of population, reverting to hunting and gathering would reduce their welfare. Many hands

make hard work, but there is nothing the hands can do about it.

The adoption of agriculture brings four technological changes: an increase in total factor pro-

ductivity, a stabilization of total factor productivity, less interference of children on productive

activities, and the possibility of food storage. In my model, each technological change reproduces,

by itself, the facts of the Neolithic Revolution. Hence, not only are the facts of the Neolithic

Revolution not puzzling: from an economist�s perspective, they were inevitable.

Most models of the Neolithic Revolution assume that the total factor productivity of agriculture

is larger than that of hunting and gathering, at least when the revolution takes place (Weisdorf

2005). Since that assumption is common, I will not discuss it here. The other three technological

changes, on the other hand, have been (to my knowledge) disregarded by modelers, and thus merit

some attention.
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The instability of total factor productivity is probably the main problem of contemporary hunter-

gatherers (Kaplan 2000; Johnson and Earle 2000, 57). Their resources increase and decrease pe-

riodically (daily for hunters, yearly for gatherers), and every once in a while they fail altogether.

Domestication of plants and animals alleviates the problem, by smoothing (though not completely)

the yield of the land (Johnson and Earle 2000, 127).

Instability is further alleviated by the possibility of storing food. Most hunter-gatherers are

nomads, and carrying food around is too costly a burden for them. The alternative would be to

settle down; but as they quickly deplete local resources, the trade-o¤ is solved in favor of moving

(Sahlins 1998). Early farmers, on the contrary, led sedentary lives, and produced starchy crops

suitable for storing (Johnson and Earle 2000, 33).

Sedentism also reduces the cost of children, mainly because caring for them interferes with food

gathering tasks requiring a high degree of mobility (Kramer and Boone 2002).

Related literature

The theories of agriculture adoption have been extensively surveyed elsewhere (Weisdorf 2005).

Hence, I will limit the discussion to the two models that share with mine the inclusion of leisure in

the utility function; an essential feature, if one is to assess the welfare e¤ects of expanding working

time. Those models are Marceau and Myers� (2006) and Weisdorf�s (2004).

Marceau and Myers model the adoption of agriculture as a common resource problem. At low

levels of technology, the whole population forms a unique band of hunter-gatherers. The members of

this band coordinate to prevent the overexploitation of a common resource. As technology improves,

the prospect of leaving the band to be a farmer gets more and more attractive. When technology

surpasses a certain threshold, the lure of agriculture becomes irresistible and the band breaks apart

into a myriad of small communities of farmers. The farmers don�t cooperate to preserve the common

resource and, as a result, consumption falls while working time increases.

I sustain Marceau and Myers� model fails to provide a good account of the Neolithic Revolution,

for two reasons. First, the model predicts that farmers will live in smaller groups than hunter-

gatherers, while the opposite is true. Second, the model builds on the unsound assumption that

hunter-gatherers coordinate to prevent overexploitation, whereas farmers do not. There is mounting

evidence that contemporary hunter-gatherers use individually optimal foraging strategies. They

are perfectly willing to exhaust their resources, and when they fail to do so, it is due to their low

population densities and ine¢cient technologies (Penn 2003). Farmers, on the other hand, organize

themselves hierarchically, and their leaders often take measures that mitigate the tragedy of the

commons. For example, they may regulate the fallow cycle to maximize the yield of the land, or

manage the use of pastures to prevent overgrazing (Johnson and Earle 2000, 271, 299, 310, 311,

318, 327, 328, 388).
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InWeisdorf �s model, early farmers give away leisure in exchange for other goods produced by an

emerging class of non-food specialists (e.g., craftsmen, chiefs, bureaucrats, and priests). Weisdorf�s

hypothesis is compelling because non-food specialists were needed to develop the innovations that

followed agriculture (e.g., writing, metallurgy), and that characterize civilization. Although I will

show that the demand for non-food specialists is not necessary to explain agriculture, the relevance

of Weisdorf�s explanation relative to my neoclassical account will have to be settled on empirical

grounds.

Marceau and Myers, and also Weisdorf, assume population is constant during the transition

to agriculture. That is a serious limitation, as the possibility of raising more children probably

played a crucial role in our ancestors� decision to become farmers. The population explosion that

took place during the Neolithic Revolution clearly points in that direction. My model addresses the

issue by assuming reproduction to be a personal decision. A realistic assumption, as it is known

that contemporary hunter-gatherers do control population, using such mechanisms as abortion,

infanticide, prolonged lactation, and postpartum sex taboos (Cashdan 1985).

Finally, my model is also linked to the family of endogenous fertility models, pioneered by Razin

and Ben-Zion (1975). In particular, it is closely related to those models in which the diminishing

returns to labor operate as a Malthusian population check; for example, Boldrin and Jones (2002),

Eckstein et al. (1988), and Nerlove et al. (1986).
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2 A model of agriculture adoption

2.1 Model setup

Time is divided in t = 1; 2; 3; : : : periods. Each period has two seasons, indexed by j 2 f1; 2g.

During period t, a tribe has Nt > 0 identical adult members or tribesmen. Their lives last exactly

one period. Generations do not overlap.

At the beginning of the �rst season, each tribesman decides how many children to have. Denote

by nt > 0 the number of children of a typical tribesman. In the next period, the size of the tribe

will thus be Nt+1 = ntNt.

To survive, a tribesman must eat at least �c > 0 units of food during each season. Denote by

ctj � �c his food consumption during season j. He must also provide �c units of food per season to

each of his children.

Tribesmen work to earn their food. Let wtj � 0 be a typical tribesman�s working time during

season j. He will produce Atjwtj units of food during that season; Atj > 0 being the typical

tribesman�s productivity, which he takes as given. A part of production will be lost due to children

interference: � units of food per child, where � is high if the tribe is nomadic, and low if it is

sedentary.

If the tribe is sedentary, a tribesman may store some food at the end of season one, for future

consumption during season two. Denote by st � 0 a tribesman�s food savings, and let � = N if the

tribe is nomadic and � = S if it is sedentary. The tribesman is subject to the following food budget

constraints:

At1wt1 � �nt = ct1 + �cnt + st;

At2wt2 � �nt
| {z }

Income

= ct2 + �cnt
| {z }
Expenses

� st1S (�)| {z }
Savings

;

where 1S (�) is an indicator function that takes value 1 when � = S, and otherwise takes value 0.

Eating food and having children make a tribesman happy, whereas work makes him unhappy.

The utility function of a period t tribesman is given by

u (ct1; ct2; wt1; wt2; nt) = v (ct1) + v (ct2)�



�+ 1
w1+�t1 �




�+ 1
w1+�t2 + �nt:

Parameter � > 0 implies that children are valued, whereas 
 > 0 implies tribesmen dislike

work. Parameter � > 0 indicates that, everything else being equal, a tribesman will want to spread

his workload evenly between the two seasons. The utility of consumption is strictly increasing

and concave: v0 > 0 and v00 < 0. Function u is an instance of Becker�s (1992) Malthusian utility

function, which doesn�t include the quality of children as an argument. As Becker points out, before
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the Industrial Revolution there were virtually no opportunities to invest on the quality of children;

medical care, education, and training were just too rudimentary. Hence, for our purposes, omitting

the quality of children from the tribesman utility function is harmless.

The tribe chooses between two production technologies: hunting and gathering, and agriculture.

In order to draw a clear �before and after� picture of agriculture adoption, assume all members of

the tribe must use the same technology. Which of the two alternatives, they must agree by vote.

The equality of all tribesmen entails the election of technology will always be unanimous.

The e¢ciency of hunting and gathering declines the more people engage on it (Johnson and

Earle 2000, 54). Everyday, the tribesmen must venture a little farther from camp in order to obtain

food. Eventually, the value of the remaining food falls short of the costs of obtaining it, plus the

opportunity cost of lifting the camp and moving somewhere else. A large tribe of hunter-gatherers

consumes the �cheaper� food sources near camp faster than a smaller tribe, and also has to incur

in the costs of relocating more often. In that spirit, de�ne the productivity of a hunter-gatherer

during season j as follows:

Atj = aj (Ntwtj)
��
; (1)

where aj > 0 is season j total factor productivity, and 0 < � < 1. This condition guarantees that to-

tal production increases when the tribe�s total work e¤ort increases (i.e. NtwtjAtj = aj (Ntwtj)
1��

is increasing in Ntwtj).

Just as hunting and gathering, agriculture is subject to diminishing returns. Early farmers were

mostly slash-and-burners. When population increased, they were forced to speed up the fallow cycle,

reducing the productivity of land (Boserup 1965). Therefore, we will also model the productivity

of farmers using the formulation in (1), changing the values of a1 and a2.

For future use, de�ne average working time ( �w), average total factor productivity (�), and the

instability of total factor productivity (�), as follows:

�w =
wt1 + wt2

2
;

� =
a1 + a2
2

;

� =

����
a1 � a2
2

���� :

Table 1 (page 15) summarizes the notation.
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2.2 The tribesman problem

Before solving the tribesman problem, two assumptions are in order. First, assume a1 > a2, so

an abundant season precedes a scarce season. As a result, At1 will always be larger than At2 in

equilibrium, and tribesmen will want to store some food at the end of season one, even if storing

turns out to be impossible (we will con�rm that At1 > At2 in Section 2.3). Second, assume

�

�c+ �
>

(

1 +

�
a1
a2

� 1+�
1��

)

v0 (�c) ; (2)

which implies that a tribesman will use any income over �c to have children. Before the Industrial

Revolution, any raise in income induced an increase in population, while consumption remained close

to the subsistence level. Inequality 2 guarantees the model will produce a reasonable approximation

to the dynamics of consumption before the Industrial Revolution, while letting us focus our attention

on the interaction between work and fertility. The inequality will hold if children are cheap enough

(�c+ � is su¢ciently low).

A tribesman solves

max
fc1;c2;w1;w2;n;sg

u = v (c1) + v (c2)�


�+1w

�+1
1 � 


�+1w
�+1
2 + �n;

s.t. A1w1 = c1 + (�c+ �)n+ s;

A2w2 = c2 + (�c+ �)n� s1S (�) ;

c1; c2 � �c;

w1; w2; n; s � 0;

where the t subscripts have been dropped to simplify the expressions. Table 2 (page 16) displays

the solution to the tribesman problem, for the cases without and with storage (i.e. for � = N and

� = S).

2.3 Short-run equilibrium

In the short-run, population is �xed at N� (the empty dot indicates the short-run value of a

variable). Equilibrium requires labor productivity to satisfy equation (1). Using that equation,

together with the tribesman optimal choices (table 2), we can solve for the short-run equilibrium

values of all variables. Table 3 (page 17) displays the short-round results, for the cases without and

with storage.

Inspecting table 2, and recalling that a1 > a2 and 0 < � < 1, we con�rm that labor productivity

is always larger during the abundant season (A�1 > A�2). Also, when storing is unfeasible, the
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tribesmen work more during the scarce season (w�1 < w�2), while if storing is feasible, they work

more during the abundant season (w�1 > w
�
2).

2.4 Long-run equilibrium

In the long-run, diminishing returns to labor operate as a Malthusian check. As population grows,

labor productivity declines, until the optimal tribesman�s choice is to bear exactly one child: n� = 1

(the full dot indicates the long-run value of a variable). From then onwards, population will remain

constant.

Imposing the one child condition on the short-run results (table 3), we can compute the long-run

equilibrium values of all variables. Table 4 (page 18) displays the long-run results, for the cases

without and with storage.

Proposition 1 (Stability of the long-run equilibrium.) The long-run equilibrium is stable,

meaning that a small deviation from the equilibrium population level (N�) will always be reversed.

2.5 The adoption of agriculture

Consider a tribe of hunter-gatherers that has reached the long-run equilibrium: each tribesman

bears one child (n� = 1) and population is at its long-run equilibrium level (N� = N�). One good

day, the tribe stumbles upon a new technology: agriculture. Suppose the tribe decides to adopt

this new technology (later we will prove that was the rational decision). Agriculture brings four

technological changes: an increase in average total factor productivity (4+�), a stabilization of total

factor productivity (4��), less interference of children on production (4��), and the possibility of

food storage (a change from � = N to � = S).

Proposition 2 (Short-run e¤ects of agriculture.) Each technological change of agriculture pro-

duces a short-run increase in fertility (4+n�), average working time (4+ �w�), and utility (4+u�).

In sum:
@n�

@�
> 0;

@ �w�

@�
> 0;

@u�

@�
> 0;

@n�

@�
< 0;

@ �w�

@�
< 0;

@u�

@�
< 0;

@n�

@�
< 0;

@ �w�

@�
< 0;

@u�

@�
< 0;

n�[N] < n�[S] ; �w�[N] < �w�[S] ; u�[N] < u�[S] :

The generation that adopts agriculture suddenly �nds children to be more a¤ordable: feeding

one child requires less work when productivity is higher (4+�; 4��); a more stable productivity

(4��) implies the required work will be a bit more tiring during the abundant season, but much
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less strenuous during the scarce one; the possibility of storing food (� = S) allows tribesmen to use

�rst season abundance to provide for the times of scarcity. As one would expect, cheaper children

translate into increased fertility (4+n�). The e¤ect of cheaper children on working time, on the

other hand, is not as clear cut. Each tribesman could work less hours and still a¤ord more than one

children. In our case, the substitution of children for leisure dominates the income e¤ect, so working

time increases (4+ �w�). Finally, as working time increases, labor productivity falls, reducing the

e¢ciency gains of agriculture. The loss in e¢ciency attenuates the surge in fertility and work, but

does not change the direction of the e¤ects.

From proposition 2 we learn that the generation that adopts agriculture is be happy with the

changes. In other words, a tribe of sel�sh, utility-maximizing people will freely abandon hunting

and gathering to become farmers. Working time will expand, but the additional toil will be more

than compensated by the larger families the tribesmen will be able to a¤ord.

As a consequence of increased fertility, population will start to grow. Eventually, it will stabilize

at a new equilibrium with higher population.

Proposition 3 (Long-run e¤ects of agriculture.) In the long-run, fertility converges to n� =

1. The four changes of agriculture produce a long-run increase in population (4+N�). Working

time will be longer (4+ �w�) as a result of the increase in average total factor productivity (4+�),

the stabilization of total factor productivity (4��), and the reduction of the interference of children

on production (4��). The possibility of food storage (� = S) has an ambiguous e¤ect on working

time, which may increase or decrease. Only a reduction of the interference of children on production

will have a long-run e¤ect on utility, which will fall below its pre-agriculture level (4�u�). In sum:

@N�

@�
> 0;

@ �w�

@�
> 0;

@u�

@�
= 0;

@N�

@�
< 0;

@ �w�

@�
< 0;

@u�

@�
= 0;

@N�

@�
< 0;

@ �w�

@�
< 0;

@u�

@�
> 0;

N�[N] < N�[S] ; �w�[N] ? �w�[S] ; u�[N] = u�[S] :

Proposition 3 tells us that the descendants from the original farmers will be worse o¤ than

their hunter-gatherer ancestors. In spite of that, the transition to agriculture is irreversible. From

proposition 2 we infer that, once the new long-run equilibrium has been reached, reverting to

hunting and gathering will reduce the utility of the current generation. Hence, they will choose to

remain farmers.

Proposition 4 (Long-run e¤ect of food storage on working time.) In the long-run, the pos-

sibility of food storage (� = S) will increase working time (4+ �w�) if 2� + � > 1:
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In other words, if the returns to labor fall quickly enough (� is high), or if the tribesmen are

su¢ciently averse to workload instability (� is high), then the possibility of food storage will end up

increasing working time. When storage is feasible, ��1 is the uncompensated labor supply elasticity.

The overwhelming majority of estimations locate that elasticity between 0 and 1 (Blundell and

MaCurdy 1999). Hence, reasonable values of � should be larger than 1. That dispels the ambiguity

from proposition 4. If food storage becomes possible, working time will eventually increase (4+ �w�).

In the long-run, all tribesmen eat the minimum amount and can only a¤ord to have one child.

But in the long-run the tribe is larger and, everything else being equal, that means labor productivity

is lower than before. As a result, each tribesmen must work more than his ancestors just to feed

himself and his child... unless the tribesman has the chance to store some food. Storing allows

the tribesman to substitute a large amount of e¤ort in the scarce season by a smaller amount in

the abundant season, when he is more e¢cient. But even with storage things can get nasty if the

returns to labor fall too fast (� is high): all the additional work during the abundant season could

reduce the yield of the land so much that everybody ends up working more than before the adoption

of agriculture. Also, if the tribesmen are too inclined to smooth their labor supply through time (�

is high), they will refuse to work much harder during the abundant season than during the scarce

season. If that is the case, working time will increase even if storage is feasible.

In sum, each of the four technological changes is enough to explain the consequences of shift-

ing from hunting and gathering to agriculture: the increased population and working time, while

consumption remains at subsistence level. Thus, from an economist�s perspective, not only do the

facts of the Neolithic Revolution make perfect sense: they were inevitable.

Figure 1 (page 19) illustrates the result of the four changes of agriculture happening together.

The �gure summarizes 20 periods in the (simulated) history of a tribe. During the �rst ten periods,

the tribesmen make a living out of hunting and gathering. Population stays at its long-run equi-

librium level; working time and utility are also constant. At the beginning of period 11, the tribe

discovers agriculture. Population increases at �rst, but after a few generations it stabilizes at a

new, higher equilibrium. Working time and utility both soar in period 11. After that, they decline

over time. Working time stabilizes above its pre-agriculture level; the utility of the last generations

falls below the utility of their hunter-gatherer ancestors. All the while, consumption remains at the

subsistence level. Yet the tribesmen of periods 12 and after will not revert to hunting and gathering,

as �gure 1B evidences. The �shadow� utility of hunting and gathering runs beneath the utility of

agriculture. Things get bad for farmers, but their alternative gets even worse.
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3 Concluding remarks

�What needs explanation is why in contemporary contexts hunter-gatherers often

demonstrate unlimited, rather than limited, material wants. Why is it that at Momega

and, according to the literature, elsewhere modern hunter-gatherers have apparently

insatiable demands for shotguns, ri�es, motor vehicles, cassette recorders, CD players,

televisions, and VCRs?� Jon Altman (1992)

Economics studies how people allocate scarce means to their unlimited wants. As essential

as the principle of scarcity is to the economist�s way of thinking, it is strongly rejected by other

social scientists. Émile Durkheim, a founding father of both sociology and anthropology, believed

people learn from their social world what and how much to desire (1953, 95). To Durkheim, the

unlimitedness of wants is not part of human nature, but a product of modern Western society: an

evil product that fuels the war of all against all (Durkheim 1961, 45; 1969). Max Weber, the famous

sociologist and �political economist,� also deemed unlimited wants extrinsic, a capitalistic creation.

He provided as evidence the behavior of traditional peasants. According to Weber, peasants do not

crave for more and more, but are content to live the way they are accustomed. As soon as they

satisfy their very limited wants, they stop working. It follows, Weber reasons, that an employer

who wants to extract more e¤ort from peasants should lower their wages instead of raising them

(Weber 1958, 59�62). Although Weber�s characterization of peasant mentality has been debunked

countless times (see, for example, James Scott 1985), many of those who reject his evidence as false

still embrace his ideas about the cultural origin of our greediness.

When in the 1960s it was established that hunter-gatherers� work very little compared to modern

standards, anthropologists thought they had found indisputable proof for Durkheim and Weber�s

most radical ideas. Professor Emeritus Marshall Sahlins, the dominant voice of contemporary

economic anthropology, declared hunter-gatherers the �original a­uent society.� They are a­uent,

he argued, not because their means are abundant, but because their wants are few. If the behavior

of hunter-gatherers obeys any laws at all, it is the laws of Zen economics (Sahlins 1968, 1998). The

principles of neoclassical economics, and in particular the idea of unlimited wants, are nothing but

the �origin myth of capitalist society.� Economic theory, Sahlins denounced, is merely the rhetoric

used by capitalism to justify and perpetuate itself (Sahlins 1976, 53, 205�207).

The a­uence of hunter-gatherers turns the adoption of agriculture into a conundrum (if a parent,

forced to kill the children he can�t feed, can be seriously called a­uent). As Hardy (1992) famously

put it: �Why farm? Why give up the 20-hour work week and the fun of hunting in order to toil

in the sun?� The decision of our ancestors supplied non-economists with ammunition to attack

another favorite of economic principles: rationality.

In these pages I have argued that, if read properly, the facts of the Neolithic Revolution bear

no evidence against the principles of unlimited wants and rationality. At least from that trench,
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nothing emerges that obliges us to delete the word max from our microeconomic textbooks, or

demote nonsatiation from its rank of axiom. Neoclassical economics is perfectly able to explain

the behavior of hunter-gatherers: why they work so few hours, why given the chance they become

farmers, and why, when exposed to modern life, they demand DVD players, televisions, and iPods.
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TABLE 1

Notation summary

Variable Sym. Parameter Sym.

Population size N Subsistence consumption �c

Season j labor productivity Aj Cost of children interference �

Season j consumption per tribesman cj Aversion to workload instability �

Season j working time per tribesman wj Weight of work in utility �


Average working time �w Weight of children in utility �

Number of children per tribesman n Season j total factor productivity aj

Utility function u Average total factor productivity �

Instability of total factor productivity �

Degree of decreasing returns to labor �

Food storage is unfeasible (the tribe is nomadic) � = N

Food storage is feasible (the tribe is sedentary) � = S
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TABLE 2

Solution to the tribesman problem

Var. Without storage With storage

cj �c �c

wj

�
�=

�c+�

1

A
�(�+1)
1 +A

�(�+1)
2

� 1
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A�1j
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i 1
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�
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TABLE 3

Short-run equilibrium

Var. Without storage With storage

A�j
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TABLE 4

Long-run equilibrium

Var. Without storage With storage
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Figure 1: From periods 1 to 10 the tribesmen hunt and gather (� = 5:2, � = 2:25, � = 1, � = N). At the beginning of period 11
they adopt agriculture (� = 5:89, � = 0, � = 0:5, � = S). Simulation parameters: �c = 1, � = 10, 
 = 0:42; � = 1:26, � = 0:31,
N1 = 30:6.

19



A Appendix

A.1 Preliminary results

Three functions that will be useful later:

Kp (x1; x2) =
xp1 + x

p
2

xp�11 � xp�12

;

Lp (x1; x2) =
xp1 + x

p
2

xp�11 + xp�12

; (Lehmer mean)

Mp (x1; x2) =

�
1

2
xp1 +

1

2
xp2

� 1
p

. (Generalized mean)

Lemma 5 If p < q and x1 > x2, then Kp (x1; x2) > Kq (x1; x2) :

Proof. From x1 > x2, it follows that

@Kp (x1; x2)

@p
= � (lnx1 � lnx2)

xp1x
p�1
2 + xp�11 xp2h

xp�11 � xp�12

i2 < 0:

Lemma 6 (Lehmer mean inequality) If p < q and x1 6= x2, then Lp (x1; x2) < Lq (x1; x2) :

Lemma 7 (Generalized mean inequality) If p < q and x1 6= x2, thenMp (x1; x2) < Mq (x1; x2) :
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A.2 Proof of proposition 1

For the dynamic system Nt+1 = ntNt to be stable, the following condition is su¢cient:

�2 < N� @n
�

@N�

����
N�=N�

< 0: (3)

Condition 3 guarantees that if Nt is close to N�, then Nt+1 will be even closer.

A.2.1 Case 1: Storage is unfeasible

If storage is unfeasible, we have that

N� @n
�

@N�
= �

� (�+ 1)

� + �
(N�)

�
�(�+1)
�+�

"
(�=
)

1��

(�c+ �)
�+1

# 1
�+� �

a
� �+1
1��

1 + a
� �+1
1��

2

�� 1��
�+�

:

Plugging N� into the previous expression we get

N� @n
�

@N�

����
N�=N�

= �
� (�+ 1)

� + �| {z }
�1

�
2�

�

�c+ �

�

| {z }
�2

:

From 0 < � < 1 and � > 1, it follows that 0 < �1 < 1. From �c; � > 0, it follows that 0 < �2 < 2.

As a result, �2 < (N�@n�=@N�)jN�=N� < 0.

A.2.2 Case 2: Storage is feasible

If storage is feasible, we have that

N� @n
�

@N�
= �

� (�+ 1)

� + �
(N�)

�
�(�+1)
�+�

"
(�=
)

1��

(�c+ �)
�+1

# 1
�+� �ha1

2

i �+1
�+�

+
ha2
2

i �+1
�+�

�
:

Plugging N� into the previous expression we get

N� @n
�

@N�

����
N�=N�

= �
� (�+ 1)

� + �

�
2�

�

�c+ �

�
:

So again �2 < N� (@n�=@N�)jN�=N� < 0. �
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A.3 Proof of proposition 2

The following proofs build on the short-run equilibrium results of table 3. Recall that a1 > a2 > 0,

0 < � < 1, and �; 
; �; �c; �;N > 0.

� @n�=@� > 0.

Proof.

@n�

@�
=
�+ 1

� + �

8
><

>:

(�=
)
1��

h
(N�)

�
(�c+ �)

i�+1

9
>=

>;

1
�+� �

a
� �+1
1��

1 + a
� �+1
1��

2

�� �+1
�+�

�
a
�
�+1
1��

�1

1 + a
� �+1
1���1

2

�
> 0:

�

� @n�=@� < 0.

Proof.

@n�

@�
=
�+ 1

� + �

8
><

>:

(�=
)
1��

h
(N�)

�
(�c+ �)

i�+1

9
>=

>;

1
�+� �

a
� �+1
1��

1 + a
� �+1
1��

2

�� �+1
�+�

�
a
�
�+1
1��

�1

1 � a
� �+1
1���1

2

�

| {z }
�

:

The sign of @n�=@� depends on � . Since a1 > a2, term � is negative. Hence, @n�=@� < 0. �

� @n�=@� < 0.

Proof.

@n�

@�
= �

�+ 1

� + �
(�c+ �)

� �+1
�+��1

"
(�=
)

1��

(N�)
�(�+1)

# 1
�+� �

a
� �+1
1��

1 + a
� �+1
1��

2

�
< 0:

�

� n�[N] < n�[S].

Proof.

n�[S]� n
�[N] =

8
><

>:

(�=
)
1��

h
(N�)

�
(�c+ �)

i�+1

9
>=

>;

1
�+�

2�
1��
�+�

�
M� 1

1��

�
a�+11 ; a�+12

� 1
�+�

�M 1
�+�

�
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�+�

�
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The sign of n�[S]� n�[N] depends on � , which will be positive if

M� 1
1��

�
a�+11 ; a�+12

�
< M 1

�+�

�
a�+11 ; a�+12

�
:

But

�
1

1� �
<

1

� + �
:

Thus, from the generalized mean inequality, we conclude � > 0, so n�[N] < n�[S]. �

� @ �w�=@� > 0.

Proof. Instead of @ �w�=@�, consider @ ln �w�=@�, which has the same sign as @ �w�=@�.

@ ln �w�

@�
=

1

1� �

�
�+ 1

� + �
L� �+1

1��
(a1; a2)

�1
� L� 1

1��
(a1; a2)

�1

�

| {z }
�

:

The sign of @ ln �w�=@� depends on � . But

�+ 1

� + �
> 1;

L� �+1
1��

(a1; a2) > 0;

L� 1
1��

(a1; a2) > 0:

Therefore,

� > L� �+1
1��

(a1; a2)
�1
� L� 1

1��
(a1; a2)

�1
:

On the other hand,

�
�+ 1

1� �
< �

1

1� �
:

Thus, from the Lehmer mean inequality it follows that

L� �+1
1��

(a1; a2) < L� 1
1��

(a1; a2) ;

or equivalently

L� �+1
1��

(a1; a2)
�1
� L� 1

1��
(a1; a2)

�1
> 0:

That implies � > 0, so @ ln �w�=@� > 0 and @ �w�=@� > 0. �
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� @ �w�=@� < 0:

Proof. Instead of @ �w�=@�, consider @ ln �w�=@�, which has the same sign as @ �w�=@�.

@ ln �w�

@�
=

1

1� �

�
�+ 1

� + �
K� �+1
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�K� 1
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:

The sign of @ ln �w�=@� depends on � . But

�+ 1

� + �
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K� �+1
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(a1; a2) < 0;

K� 1
1��

(a1; a2) < 0:

Therefore,
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�K� 1

1��
(a1; a2)

�1
:

On the other hand,

�
�+ 1

1� �
< �

1

1� �
:

Thus, from lemma 5 it follows that

K� �+1
1��

(a1; a2) > K� 1
1��

(a1; a2) ;

or equivalently

K� �+1
1��

(a1; a2)
�1
�K� 1

1��
(a1; a2)

�1
< 0:

That implies � < 0, so @ ln �w�=@� < 0 and @ �w�=@� < 0. �

� @ �w�=@� < 0:

Proof.

@ �w�
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�
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� �w�[N] < �w�[S].

Proof.

�w�[S]� �w�[N] =

(
�=


2 (N�)
�
(�c+ �)

) 1
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M 1
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:

The sign of �w�[S]� �w�[N] depends on � . But
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> �
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1� �
;

and thus, from the generalized mean inequality,

M 1
�+�
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1

�+� > M� �+1
1��

(a1; a2)
1

�+� > 0:

Also, 1 < �+ 1. So again, from the generalized mean inequality,
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a
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�1=(1��)
2

� < 1:

Therefore, � > 0, and that implies �w�[S]� �w�[N] > 0. �

� @u�=@� > 0.

Proof.
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Proof.
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a
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� �+1
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1 � a
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| {z }
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< 0:

The sign of @u�=@� depends on � . Since a1 > a2, term � is negative. Hence, @u�=@� < 0. �
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� @u�=@� < 0.

Proof.

@u�

@�
= �

�

� + �
(�c+ �)

� �+1
�+��1

"
�=


(N�)
�

# �+1
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a
� �+1
1��

1 + a
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1��

2
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�+�

< 0:

�

� In the short run u�[N] < u�[S].

Proof.

u�[S]� u
�[N] =

�

1 + �

"
�=


(N�)
�
(�c+ �)

# �
�+�

(n [S]� n [N]) :

But n�[N] < n�[S], and thus, u�[N] < u�[S]. �
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A.4 Proof of proposition 3

The following proofs build on the long-run equilibrium results of table 4. Recall that a1 > a2 > 0,

0 < � < 1, and �; 
; �; �c; � > 0:

� @N�=@� > 0.

Proof.

@N�
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=
1

�

(
1
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Proof.
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�
a
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1���1

2

�

| {z }
�

:

The sign of @N�=@� depends on � . Since a1 > a2, term � is negative. Hence, @N�=@� < 0. �

� @N�=@� < 0.

Proof.

@N�

@�
= �

1� �

� (�+ 1)
(�c+ �)

� 1��
�(�+1)

�1

"
(�=
)

1��

(2�c+ �)
�+�

# 1
�(�+1) �

a
� �+1
1��

1 + a
� �+1
1��

2

�� 1��
�(�+1)

< 0:

�

� N�[N] < N�[S].

N�[S]�N
�[N] =

(
1

(2�c+ �)
�+�

�
�=


�c+ �

�1��) 1
�(�+1)

2�
1��

�(�+1)

h
M �+1

�+�
(a1; a2)

1
� �M� �+1

1��
(a1; a2)

1
�

i

| {z }
:

�
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The sign of N�[S]�N�[N] depends on � , and � will be positive if

M� �+1
1��

(a1; a2) < M �+1
�+�

(a1; a2) :

But

�
�+ 1

1� �
<
�+ 1

� + �
:

Thus, from the generalized mean inequality, we conclude � > 0, so N�[N] < N�[S].

� @ �w�=@� > 0

Proof. Instead of @ �w�=@�, consider @ ln �w�=@�, which has the same sign as @ �w�=@�.

@ ln �w�

@�
=

1

1� �

h
L� �+1

1��
(a1; a2)

�1
� L� 1

1��
(a1; a2)

�1
i

| {z }
�

:

The sign of @ ln �w�=@� depends on � . But

�
�+ 1

1� �
< �

1

1� �
:

Thus, from the Lehmer mean inequality it follows that

L� �+1
1��

(a1; a2) < L� 1
1��

(a1; a2) ;

or equivalently

L� �+1
1��

(a1; a2)
�1
� L� 1

1��
(a1; a2)

�1
> 0:

That implies � > 0, so @ ln �w�=@� > 0 and @ �w�=@� > 0. �

� @ �w�=@� > 0

Proof. Instead of @ �w�=@�, consider @ ln �w�=@�, which has the same sign as @ �w�=@�.

@ ln �w�

@�
=

1

1� �

h
K� �+1

1��
(a1; a2)

�1
�K� 1

1��
(a1; a2)

�1
i

| {z }
�

:

The sign of @ ln �w�=@� depends on � . But

�
�+ 1

1� �
< �

1

1� �
:
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Thus, from lemma 5 it follows that

K� �+1
1��

(a1; a2) > K� 1
1��

(a1; a2) ;

or equivalently

K� �+1
1��

(a1; a2)
�1
�K� 1

1��
(a1; a2)

�1
< 0:

That implies � < 0, so @ ln �w�=@� < 0 and @ �w�=@� < 0. �

� @ �w�=@� > 0

Proof.

@ �w�

@�
= �

1

�+ 1

c

(2c+ �)
�

�+1 (c+ �)
�+2
�+1

(�=
)
1

�+1

�
a
� �+1
1��

1 + a
� �+1
1��

2

�� 1
�+1

�
a
� 1
1��

1 + a
� 1
1��

2

�
< 0:

�

� @u�=@� > 0

Proof.
@ �w�

@�
=

c�=


(�+ 1) (c+ �)
2 > 0:

�
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A.5 Proof of proposition 4

�w�[S] > �w�[N] if and only if

� �w� (�; �) �
1

2

�
(2�c+ �)�=


�c+ �

� 1
1+�

(�
a
�+1
�+�

1 + a
�+1
�+�

2

�� 1
�+1

�
a

1
�+�

1 + a
1

�+�

2

�
�

�
a
� �+1
1��

1 + a
� �+1
1��

2

�� 1
�+1

�
a
� 1
1��

1 + a
� 1
1��

2

�)

> 0:

Function � �w� is continuous in � > 0 and 0 < � < 1. Also, provided that a1 > a2 > 0, it is

straightforward that � �w� takes value 0 if and only if �+ 2� = 1.

From continuity it follows that � �w� will have the same sign for all � and � in the set

A+ � f(�; �) : � > 0, 0 < � < 1, and �+ 2� > 1g :

One point in set A+ is (1; 1=2). Evaluating � �w� at that point we get.

� �w� (1; 1=2) =
1

2

�
(2�c+ �)�=


�c+ �

� 1
2 �
H2=3 (a1; a2)�H2 (a1; a2)

	

| {z }
�

;

where

Hp (a1; a2) =
ap1 + a

p
2�

a2p1 + a2p2

�1=2 :

But, for all p > 0 and a1 6= a2,

@Hp (a1; a2)

@p
= �ap1a

p
2 (ln a1 � ln a2)

ap1 � a
p
2�

a2p1 + a2p2

�3=2 < 0:

Hence H2=3 (a1; a2) > H2 (a1; a2), term � > 0, function � �w� (1; 1=2) > 0, and �nally � �w� (�; �) � 0

for all (�; �) 2 A+.

The proof that � �w� (�; �) � 0 for all (�; �) 2 A� � f(�; �) : � > 0, 0 < � < 1, and �+ 2� < 1g

is analogous, so I omit it. �
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