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Abstract 

We present an experimental game in the p-beauty framework. Building on the definitions of 

boundary and interior equilibria, we distinguish between ‘speed of convergence towards the game-

theoretic equilibrium’ and ‘deviations of the guesses from the game-theoretic equilibrium’. In 

contrast to earlier findings (Güth et al., 2002), we show, under a different game parameterisation, 

that (i) interior equilibria initially produce smaller deviation of the guesses from the game-theoretic 

equilibrium compared to boundary equilibria; (ii) interior and boundary equilibria do not differ in 

the timeframe needed for convergence; (iii) the speed of convergence is higher in the boundary 

equilibrium. 
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1. Introduction 

The p-beauty contest game is a well known and extremely simple game (Keynes, 1936; 

Nagel, 1995; Duffy and Nagel, 1997; Canerer et al., 1998; Weber, 2003) where n players 

are asked to choose a number from a closed interval [L, H]. The winning player will be the 

one that gets closer to a target number G. Such target number is defined as the average of 

all guesses plus a constant (d), multiplied by a real number (p) known to all players. 

Formally, we have: �
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1
. In its simplest form the game parameterisation is 

set as follows: 10 <≤ p , d is equal to 0 and subject i’s guess is [ ] ⊂∈ 100,0ig R.  

Under such definition of G the game-theoretic solution is a unique Nash equilibrium where 

all players choose 0. In fact, playing 0 is the only strategy that survives the procedure of 

iterated elimination of dominated strategies (IEDS). Moreover, under such a standard 

parameterisation the game converges to the same value, and within the same number of 

iterations, if players follow Nagel’s iterative naïve best replies (INBR) strategy.
1
 

The game becomes more complicated if we set 0≠d ; in this case the game might well 

exhibit an interior equilibrium (i.e. different from 0 or 100) and for specific values of p, the 

solution of the game obtained using the two different strategies (IEDS and INBR) involves 

different numbers of iterations needed to reach the equilibrium. 

Güth et al. (2002) proposed a game where d was initially set equal to 0 and subsequently 

equal to 50. This allowed them to analyse the p-beauty contest from a different perspective, 

comparing, among other things, interior and boundary equilibria. They showed that the 

convergence toward the equilibrium is faster when the equilibrium is interior. 

In this paper we shall confute Güth et al. (2002) finding showing that the speed of 

convergence is actually not necessarily faster for interior equilibria. We will loo at both the 

‘speed of convergence towards the game-theoretic equilibrium’ and the ‘timeframe 

required for convergence’ (i.e. the number of iterations). These two concepts are indeed 

different as they crucially depend on the initial distance of a system from its equilibrium 

level. In the p-beauty contest game, such distance is captured by the initial ‘deviations of 

the guesses from the game-theoretic equilibrium’. We will prove that, for specific game’s 

                                                 
1
 See Morone and Morone (2008) for a description of both strategies. 
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parameterisations, the speed of convergence can be slower in interior equilibria than in 

boundary equilibria.  

The paper is structured as follows: in section 2 we present the experimental game and pose 

our research hypothesis. In section 3 we present the design of the experiment and in section 

4 our findings. We conclude the paper in section 5. 

 

2. Aim and setting of the experiment  

The aim of our experiment is testing the validity of Güth et al. (2002) finding that interior 

equilibria (e.g. d=50) yield smaller deviations of the guesses from the game-theoretic 

equilibrium when compared to boundary equilibria;
2
 this finding leads the authors to 

conclude that “swifter convergence to the equilibrium [is found] when the equilibrium is 

interior” (2002: 225). 

Schematically, we can summarise Güth et al. experiment’s parameterisations and equilibria 

(s*), in the following table: 

IEDS INBR

p =1/2, d =0 s* =0

 (boundery equilibrium)

p =1/2, d =50 s* =50

(interior equilibrium)
Treatment 2 50 27 1

Treatment 1 50 � �

Parametrisation Game-Theoretic euilibrium Slient point à la Schelling
Number of iterations required for convergence

[ ]�����∈�

[ ]�����∈�  

Table 1: Güth et al. (2002) summary of parameters and results  

 

As we can see, the authors presented two comparable cases and showed how the treatment 

where the game-theoretic equilibrium is interior, requires less iterations for convergence. 

However, we can observe that for the interior equilibrium case there is the simultaneous 

coincidence, around the game-theoretic equilibrium, of two possible focal points: the d 

value as well as the salient point à la Schelling.
3
 Moreover, in the case of d=50, if we 

believe that subjects follow Nagel’s iterative naïve best replies strategy, they would 

converge towards the equilibrium after one iteration.  

                                                 
2
 A plausible explanation of this finding is that experimental subjects often try to avoid extreme choices (see, 

for instance, Rubinstein et al., 1997). 
3
 Nagel (1995) suggested that the salient point à la Schelling would be 50 (i.e. the middle of the interval). 

However, we believe there are other possible focal points; for instance d could be perceived as such by 

experimental subjects. 
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The picture changes when we look at the boundary equilibrium treatment. Now, the salient 

point à la Schelling and the d value differ, as the salient point is always set in the middle of 

the interval [0,100]. Moreover, both theoretical strategies (i.e. IEDS and INBR) predict an 

infinite number of iteration for complete convergence to the equilibrium.
4
 

Departing from these observations we intend to test whether the short timeframe required 

for convergence is an actual property of interior equilibria or whether it is just arising from 

the ad hoc specification chosen by Güth et al. (2002). We do so considering a new set of 

problems’ characterisation defined by different parameterisations of the game. Specifically, 

we shall compare the original parameterisation adopted by Güth et al. with a similar setting 

where we vary the value of p (set equal to 1/3) and the value of d (set equal to 0, 33 and 

50). It is worth noting that, like in the original experimental setting, these new 

parameterisations produce both interior and boundary equilibria.  

If Güth et al.’s result is robust to different model parameterisations, we will always observe 

a shorter timeframe required for convergence in the games with interior equilibrium; 

otherwise, we shall confute the validity of their results for problems’ parameterisations 

different from those originally selected by the authors. 

 

3. The design of the experiment  

In each treatment of the experiment there are n = 32 subjects divided into 8 groups, each of 

4 subjects. In each group subjects have to guess a number in the real interval [L, H]. The 

closer their guess is to the target, the higher is the pay-off. The general form of the pay-off 

function is: ( ) �
�
�

�
�
�
�

�
+−−= �

=

dg
n

pgcCgu
n

j

jii

1

1
. 

The experiments were run in May 2008 at ESSE (Economia Sperimentale al Sud d’Europa) 

at the University of Bari. The software of the computerised experiment was developed in z-

Tree (Fischbacher, 1998). Groups were formed randomly at the beginning of the 

experiment and were kept invariant over the whole experiment (i.e. 10 periods). 

 

 

 

                                                 
4
 Please see table A1 in the annex where we report the converging patterns generated by IEDS and INBR. 
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4. Results 

In this section we will analyse the results obtained in our experiments. However, before 

moving to our new findings we shall present the results obtained when running the 

experiment using exactly the same parameterisation adopted by Güth et al. (2002). This 

will serve to cast away any doubt on the presence of any source of difference between our 

experimental design and the one adopted by Güth et al.  

In figure 1 we report the average values of treatments 1 and 2;
5
 the converging patterns 

obtained in our preliminary set of experiments replicate exactly those obtained by Güth et 

al., as it shows smaller deviations of the guesses from the game-theoretic equilibrium and a 

shorter time frame for convergence in the treatment with boundary equilibrium.
6
 In figure 2 

we report two further treatments where p is kept equal to 1/2 and d is set first equal to 33 

and, subsequently, to 100. These two treatments produce very similar results to those 

reported in figure 1. Again, the system converges within a smaller number of iterations to 

the interior equilibrium, consistently displaying a smaller deviation of the guesses from the 

game-theoretic equilibrium.
7
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5
 As mentioned earlier, each treatment was repeated 10 times. Hence, all values reported in figures 1 and 2 are 

averages of 10 rounds.   
6
 Deviation from the equilibrium are significantly smaller in treatment 2 than in treatment 1. P < 0.01 for 

rounds 1-10 and 1-5, p < 0.1 for rounds 6-10 (U-test, two-sided). 
7
 Deviation from the equilibrium are significantly smaller in treatment 3 than in treatment 4. P < 0.01 for 

rounds 1-10, 1-5, and 6-10 (U-test, two-sided). 
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Figure 1. Treatment averages (p=1/2; d=0 and d=50) 
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Figure 2. Treatment averages (p=1/2; d=33 and d=100) 

 

We summarise the parameterisation and the results of these two last treatments in table 2. 

As we can see, in this case the boundary equilibrium does not present the simultaneous 

coincidence of the two focal points around the equilibrium value (i.e. d and the salient point 

à la Schelling are different). 

 

IEDS INBR

p =1/2, d =33 s* =33

 (boundery equilibrium)

p =1/2, d =100 s* =100

(interior equilibrium)
Treatment 4 50 1 27

Treatment 3 50 27 26

Parametrisation Game-Theoretic euilibrium Slient point à la Schelling
Number of iterations required for convergence

[ ]�����∈�

[ ]�����∈�  

Table 2: Summary of parameters and results
9
  

 

These first four treatments seem to confirm Güth et al. findings. We shall now move on to 

consider three other treatments where p is now set equal to 1/3 and d is set equal to 0, 33 

and 50, respectively.
8
 We report a summary of these new treatments’ parameterisation and 

results in table 3. 

 

                                                 
8
 Note that we do not consider the treatment with p=1/3 and d=100 as it converges to an interior equilibrium 

(s*=50) and, therefore, is not comparable with p=1/2 and d=100. 
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IEDS INBR

p =1/3, d =0 s* =0

 (boundery equilibrium)

p =1/3, d =33 s* =16.5

 (interior equilibrium)

p =1/3, d =50 s* =25

(interior equilibrium)

Treatment 4

50 17 16Treatment 5

1750 16

Treatment 3 50 � �

Parametrisation Game-Theoretic euilibrium Slient point à la Schelling
Number of iterations required for convergence

[ ]�����∈�

[ ]�����∈�

[ ]�����∈�

 

Table 3: Summary of parameters and results
9
  

 

The picture emerging from these new treatments is rather different from what we obtained 

so far. First and foremost, we do not observe any significant difference in the timeframe of 

convergence towards the equilibrium across treatments: in fact, in all cases (i.e. one 

boundary and two internal) it takes for the system approximately the same number of 

rounds (about 6) to converge.
10
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Figure 3. Treatment averages (p=1/3; d=0, d=33 and d=50) 

 

However, we can easily observe that the initial deviation of the guesses from the game-

theoretic equilibrium is smaller in the two treatments that converge towards interior 

                                                 
9
 Please see table A2 in the annex where we report the converging patterns generated by IEDS and INBR. 

10
 Comparing treatment 5 and treatment 6, treatment 5 and treatment 7, treatment 6 and treatment 7 we can 

always reject the hypothesis that deviation from the equilibrium is statistically significantly smaller in interior 

equilibrium treatments, for rounds 1–10. We can also reject the same hypothesis for rounds 5–10; however, 

we cannot reject it for rounds 1–5. These confirm that that initially deviation from the equilibrium is smaller 

in interior equilibrium treatments and that the number of rounds required for convergence is, nonetheless, 

similar in the both interior and boundary equilibria treatments. Hence, these tests conform the finding that 

speed of convergence is higher in the boundary equilibrium treatment.  
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equilibria. This finding suggests that the conclusions obtained by Güth et al. are only 

partially confirmed. While interior equilibria treatments initially produce smaller deviation, 

the speed of convergence is higher in the boundary equilibrium treatment. In fact, as 

observed above, all three treatments converge towards their theoretical equilibria in the 

same time frame; therefore, the treatment which starts converging from a further point (i.e. 

the one which displays a higher deviation from the game-theoretic equilibrium) must 

converge faster, as it clearly emerges from figure 3.  

Hence, we can conclude that the initial deviation from the game theoretic equilibrium is 

always greater in boundary equilibria, independently from the initial parameterisation of 

the experiment. We share Güth et al.’s view that this finding might depend on the tendency 

to choose interior instead of extreme, boundary strategies. However, along this finding we 

also observe that under the new experiment parameterisation the timeframe required for 

convergence is the same for boundary and interior equilibria and, consequently, the speed 

of convergence is higher in boundary equilibria. In fact, if two runners reach the same 

target in the same timeframe, the one starting from further away must run faster in order to 

cover a larger distance in the same time. 

 

5. Conclusions 

The experiment presented in this paper follows quite closely Güth et al., 2002 as we 

attempt to investigate differences in the speed of convergence towards boundary and 

interior equilibria in the p-beauty contest game. In doing so, we consider both ‘speed of 

convergence towards the game-theoretic equilibrium’ and ‘timeframe required for 

convergence’. These two concepts crucially depend upon the initial ‘deviations of the 

guesses from the game-theoretic equilibrium’. In contrast to earlier findings (Güth et al., 

2002), we obtain, with a different parameterisation of the game, the following results: (i) 

interior equilibria treatments initially produce smaller deviation compared to boundary 

equilibria treatments; (ii) interior and boundary equilibria treatments do not differ in the 

timeframe needed for convergence; (iii) the speed of convergence is higher in the boundary 

equilibrium treatment. 

These leads us to conclude that Güth et al. findings hold only for a very specific game 

parameterisation and, therefore, cannot be generalised. 
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Annex 

IEDS INBR IEDS INBR

50 25 75 50

25 12.5 62.5 50

12.5 6.25 56.25 50

6.25 3.125 53.125 50

3.125 1.5625 51.5625 50

1.5625 0.78125 50.78125 50

0.78125 0.390625 50.390625 50

0.390625 0.1953125 50.195313 50

0.1953125 0.09765625 50.097656 50

0.09765625 0.048828125 50.048828 50

0.048828125 0.024414063 50.024414 50

0.024414063 0.012207031 50.012207 50

0.012207031 0.006103516 50.006104 50

0.006103516 0.003051758 50.003052 50

0.003051758 0.001525879 50.001526 50

0.001525879 0.000762939 50.000763 50

0.000762939 0.00038147 50.000381 50

0.00038147 0.000190735 50.000191 50

0.000190735 9.53674E-05 50.000095 50

9.53674E-05 4.76837E-05 50.000048 50

4.76837E-05 2.38419E-05 50.000024 50

2.38419E-05 1.19209E-05 50.000012 50

1.19209E-05 5.96046E-06 50.000006 50

5.96046E-06 2.98023E-06 50.000003 50

2.98023E-06 1.49012E-06 50.000001 50

1.49012E-06 7.45058E-07 50.000001 50

7.45058E-07 3.72529E-07 50 50

3.72529E-07 1.86265E-07 50 50

1.86265E-07 9.31323E-08 50 50

9.31323E-08 4.65661E-08 50 50

4.65661E-08 2.32831E-08 50 50

2.32831E-08 1.16415E-08 50 50

Treatment 1 Treatment 2

 

Table A1: IEDS and INBR game theoretical solution for treatments 1 and 2 
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IEDS INBR IEDS INBR IEDS INBR IEDS INBR IEDS INBR

66.5 41.5 100 75 33.333333 16.666667 44.333333 27.666667 50 33.333333

49.75 37.25 100 87.5 11.111111 5.5555556 25.777778 20.222222 33.333333 27.777778

41.375 35.125 100 93.75 3.7037037 1.8518519 19.592593 17.740741 27.777778 25.925926

37.1875 34.0625 100 96.875 1.2345679 0.617284 17.530864 16.91358 25.925926 25.308642

35.09375 33.53125 100 98.4375 0.4115226 0.2057613 16.843621 16.63786 25.308642 25.102881

34.046875 33.265625 100 99.21875 0.1371742 0.0685871 16.61454 16.545953 25.102881 25.034294

33.523438 33.132813 100 99.609375 0.0457247 0.0228624 16.53818 16.515318 25.034294 25.011431

33.261719 33.066406 100 99.804688 0.0152416 0.0076208 16.512727 16.505106 25.011431 25.00381

33.130859 33.033203 100 99.902344 0.0050805 0.0025403 16.504242 16.501702 25.00381 25.00127

33.06543 33.016602 100 99.951172 0.0016935 0.0008468 16.501414 16.500567 25.00127 25.000423

33.032715 33.008301 100 99.975586 0.0005645 0.0002823 16.500471 16.500189 25.000423 25.000141

33.016357 33.00415 100 99.987793 0.0001882 9.408E-05 16.500157 16.500063 25.000141 25.000047

33.008179 33.002075 100 99.993896 6.272E-05 3.136E-05 16.500052 16.500021 25.000047 25.000016

33.004089 33.001038 100 99.996948 2.091E-05 1.045E-05 16.500017 16.500007 25.000016 25.000005

33.002045 33.000519 100 99.998474 6.969E-06 3.485E-06 16.500006 16.500002 25.000005 25.000002

33.001022 33.000259 100 99.999237 2.323E-06 1.162E-06 16.500002 16.500001 25.000002 25.000001

33.000511 33.00013 100 99.999619 7.744E-07 3.872E-07 16.500001 16.5 25.000001 25

33.000256 33.000065 100 99.999809 2.581E-07 1.291E-07 16.5 16.5 25 25

33.000128 33.000032 100 99.999905 8.604E-08 4.302E-08 16.5 16.5 25 25

33.000064 33.000016 100 99.999952 2.868E-08 1.434E-08 16.5 16.5 25 25

33.000032 33.000008 100 99.999976 9.56E-09 4.78E-09 16.5 16.5 25 25

33.000016 33.000004 100 99.999988 3.187E-09 1.593E-09 16.5 16.5 25 25

33.000008 33.000002 100 99.999994 1.062E-09 5.311E-10 16.5 16.5 25 25

33.000004 33.000001 100 99.999997 3.541E-10 1.77E-10 16.5 16.5 25 25

33.000002 33.000001 100 99.999999 1.18E-10 5.901E-11 16.5 16.5 25 25

33.000001 33 100 99.999999 3.934E-11 1.967E-11 16.5 16.5 25 25

33 33 100 100 1.311E-11 6.557E-12 16.5 16.5 25 25

33 33 100 100 4.371E-12 2.186E-12 16.5 16.5 25 25

33 33 100 100 1.457E-12 7.285E-13 16.5 16.5 25 25

33 33 100 100 4.857E-13 2.428E-13 16.5 16.5 25 25

33 33 100 100 1.619E-13 8.095E-14 16.5 16.5 25 25

33 33 100 100 5.397E-14 2.698E-14 16.5 16.5 25 25

Treatment 3 Treatment 4 Treatment 5 Treatment 6 Treatment 7

 

Table A2: IEDS and INBR game theoretical solution for treatments 3, 4, 5, 6 and 7 

 

 


