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Abstract

The paper presents an application of the chaos theory to tourism, a

sector in which operators’ choices are particularly elaborate and complex.

The dynamics of the tourist industry are, in fact, the result of close inter-

actions between units of production, tourist flows, local authorities and

natural resources. These interactions do not necessarily lead to a regular

trend in the development of the tourist industry as proposed by Butler; on

the contrary, irregularities of various types are very possible. The model

microfounds rigorously on both the demand and the supply side. Firms

and tourists operate under the hypothesis of limited rationality, the former

in an oligopolistic context, the latter on the basis of mechanisms of evolu-

tionary selection. Although not exhaustive, the model forms a theoretical

platform that can be easily adapted to hypotheses and situations that

differ from those originally hypothesized. As a consequence, this paper

presents a series of numerical simulations. The results show the chaotic

nature of a tourist flow, which limits the practicability of measures intro-

duced to stabilise the system. In their place, measures are needed that

stimulate a continuous reshaping of the system in relation to the factors

that tend to change it. JEL classification: C73, L10, L83, Q01

Keywords: sustainable tourism, chaos, evolutionary games

1 Introduction

The theory of the life cycle of tourist destinations proposed by Butler (1980)
is still at the centre of intense scientific debate today. Even though it is recog-
nised by scholars as the reference framework for the study of the dynamics of
the tourist industry, Butler’s approach does not account for the frequent differ-
ences to be found between the time series of tourist flows and their theoretical
forecasts. The life cycle follows a regular succession of five stages, exploration,
involvement, development, consolidation and stagnation (Figure 1), followed by
a stage of decline or rejuvenation. The first four stages imply the growth of
the system, whilst the stage of stagnation occurs once the maximum sustain-
able tourist flow has been reached. Without economic policy measures aimed
at requalifying the tourist area, stagnation will lead to inevitable decline. How-
ever, empirical evidence shows the dynamics of this situation to be much more
complex and characterised, for example, by phases of uniform growth followed
by more or less marked (Christaller, 1963; Plog, 1973; Lundtorp-Wanhill, 2001)
or even chaotic (Russell-Faulkner, 2004) cyclical trends. The main anomalies
are to be found in the last phases of the cycle, so much so that some scholars
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believe that the theory of the post-stagnation stages needs to be revised (Agar-
wal, 1997; Priestley-Mundet, 1998; Aguilò-Alegre-Sard, 2005).
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Figure 1: Butler’s cycle - 1) Exploration 2) Involvement 3) Development 4)Consolidation 5)
Stagnation.

The general view that emerges from the numerous empirical tests carried out
is that Butler’s model has to be considered primarily as descriptive rather than
normative (Haywood, 1986; Cooper-Jackson, 1989; Ioannides, 1992; Opperman,
1995, Hovinen, 1981, 2002). Certainly there are some studies that reveal a signif-
icant correlation between time series and the theoretical model (see for example
Meyer-Arendt, 1985; Douglas, 1997), but they are to be considered as one of
the many possible manifestations of the development of a tourist locality. One
of the main limitations of the model is that it does not explicitly consider the
effects of factors, both external and internal to the system, on the evolutionary
dynamics of the tourist industry under examination: variations in the number
of firms working in the sector, the preferences of tourists, competition or the
quality of the environment can generate substantial changes in the normal de-
velopment of a tourist destination. For example, Lundtorp-Wanhill (2001) show
how, when assessing the nature of tourist flows from the habitual to the occa-
sional, substantial changes can be seen in the regularity of the cycle as proposed
by Butler, so much so as to make the authors define it as a ”caricature” of the
real situation.

The belief that there are many more complex aspects behind the evolution-
ary dynamics of the tourist industry than Butler’s theory would suggest has led
scholars to reconsider their theoretical paradigms. Tourism begins to be seen
as operating as a non deterministic and non linear system, characterised by a
complex network of relations between a large number of elements, each one of
which is subject to continuous changes and stimuli (McKercher, 1999). From
this point of view the chaos theory can form a paradigm on which a new the-
ory of tourist development can be built. Butterfly effects, bifurcations, strange
attractors and chaos can provide valid explanations for the anomalies observed
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during the long life cycle of many tourist localities (Russell, Faulkner, 1999;
Prideaux, 2000; Hovinen, 2002; Zahra, Ryan, 2007), but this requires a com-
plete re-conceptualisation of the theory that integrates research on tourism with
other scientific sectors, such as environmental economics, ecology and the theory
of complexity (Farrel, Twining-Ward, 2004). An interesting theoretical model
that has moved in this direction is the one proposed by Casagrandi-Rinaldi
(2002). Their description of a tourist system is based on the interaction of three
fundamental elements, tourist flow, environment and capital, described by a
system of differential equations. A study of the system reveals the presence of
points of bifurcation at which significant changes in the behaviour of the system
can be observed with minimal variations in the reference parameters 1. Al-
though this model provides interesting suggestions for analysis, it nevertheless
lacks a rigorous microfoundation of the equations that describe the system: in
particular, it does not explain the mechanisms that regulate the decision-making
processes of a tourist. The same fault can be found in the model proposed by
Hernandez-Leon (2007), which is very similar to the one that has just been
described. Once again the fundamental equations of the system, even though
they are able to reproduce the dynamics of Butler’s cycle, are not the result of
a rigorous formalization of the behaviour of the agents involved.

The model presented in this paper starts from these points and attempts to
describe the evolutionary dynamics of a hypothetical tourist industry through
the interaction of demand (tourist flow), supply (oligopolistic firms) and natural
environment, but also introduces some new aspects that can be summarised in
four points:

1. the tourist industry is assumed to be made up of a certain number of
local firms (destinations), each one organised in a Cournot framework of
symmetrical oligopoly. The formal situation of oligopoly means that the
quantity of services produced and the price charged can be calculated for
each locality in each period. The choice of an oligopolistic form of the
market is logical if we consider that there is a limited number of firms in a
local industry, that entry is expensive and that there exists a high degree
of substitutability between the tourist services offered by the firms. This
last point justifies the symmetry of oligopoly. Two levels of competition
are considered in the model: the first concerns firms in the same locality
and therefore in competition with each other, whilst the second involves
different localities competing to gain an ever larger share of the tourist
population;

2. the tourist flow towards a locality is regulated by the level of surplus
obtained on average by the tourist that decides to visit it: this surplus
depends on both the level of the services in the industry and the quality of
the environment. The mathematical law that formalises the dynamics of a
tourist flow draws on the replicator theory (Taylor-Jonker, 1978; Weibull,
1998), which can often be found in evolutionary game theory. In sum-
marising the decision-making processes of a tourist, it takes into account
not only the surplus that can be obtained in the different localities, but
also factors such as popularity and congestion, all in a non deterministic

1A similar analysis applied to the interaction between collective actions and the use of
natural resources can be found in Anderies (2000).
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context. Choice will also depend on the probability of acquiring informa-
tion about the localities. This information is acquired through random
exchanges about the experiences of single tourists. The use of the evolu-
tionary approach makes it possible to implicitly consider a more realistic
and limited rationality of tourists; in fact, in a world characterised by
scarce information a tourist will not necessarily choose the destination
that guarantees the greatest surplus.
Papatheodorou (2005) formalises a tourist’s choice as if he were perfectly
rational, informed and maximising his own utility function. Although it is
a well-established approach and can be easily applied, we have preferred
to adopt what, in our opinion, is a more realistic selection model, in which
the tourist has little information about the different tourist destinations
and limited rationality, in the sense that he can continue to prefer localities
that guarantee lower levels of surplus;

3. the mathematical law that describes the dynamics of a tourist flow is
unknown to firms, which therefore find that they have to optimize their
profits period by period, as they cannot plan a path for the efficient de-
velopment of production and tourism in advance. We believe that this
approach to be truer to the real situation and in any case closer to the
spirit of the model developed here, which aims to investigate the chaotic
aspects of the system rather than define the deterministic laws that are
valid in the long run;

4. the model has been developed in discrete time. The time unit chosen
refers to the time necessary for the tourist industry to significantly change
its production apparatus and therefore the quantity of services produced.
The assumption is that the tourist industry changes its capacity slowly;
even if individual firms can change their production of tourist services
within a short period of time, we believe that the overall impact on the
system is negligible and only after a fairly long period can a relevant
change be observed. Furthermore, this choice of method is essential, given
the fact that, unlike differential equations, difference equations obtained
in a model with discrete time can generate chaotic dynamics if they take
on specific mathematical forms2.

In addition to productive activities and the movement of tourists, the model
also tries to highlight the deterioration and recovery of the quality of the environ-
ment which characterises the development phases of the tourist locality, in order
to assess environmental sustainability. The structure of the model provides for
the tourist flow to be distributed among different localities (oligopolies), thus
affecting the quality of the environment in each one, both directly through the
pollution produced by each tourist and indirectly by stimulating the production
of services. The levels of production and the quality of the environment, in turn,
condition the dynamics of the tourist flow by changing its distribution.

As we were unable to trace the general properties of the model to test
whether the model structured in this way is capable of reproducing both reg-
ular Butler-type dynamics and chaotic trajectories, and thus to explain the

2It is well known in the literature how the logistic equation xt+1 = axt(1−xt) can generate
cyclical and chaotic dynamics according to variations in parameter a. For greater detail, see
Elaydi (1999).
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complexity of the evolutionary processes observed in many tourist localities, we
preferred to use the method of numerical simulations and limit the study to only
two competing tourist localities. We assumed the system is in an initial state
of equilibrium, in which only one of the two destinations is fully developed. We
then concentrated our attention on the less developed locality and studied the
processes of growth in relation to changes in the parameters of the model.

Even though it is not exhaustive, the picture that emerges from the study
of the bifurcation diagrams enables us to make some important observations
about the complexity of the evolutionary dynamics of the tourist industry and
the role of policy measures3. In particular, the scenarios that emerge from the
simulations suggest the following observations:

1. Significant changes in the state of the system can be induced by variations
that concern one or more of the following factors: elasticity of demand,
tourist preferences, costs of production, number of firms and the environ-
mental impact of the tourist industry;

2. As McKercher (1999) maintained, both linear and non linear processes are
active in tourist systems; the prevalence of one or the other depends on the
phase in which the system is at a certain moment. The tourist flow can
therefore appear stable, or at least evolve in a regular and predictable way,
for long periods and then suddenly become chaotic. The simulations have
in fact reproduced this type of behaviour of tourist flows fairly consistently,
thus showing how the initial Butler-type phases of development can be
followed by markedly unstable, typically cyclical or chaotic dynamics;

3. The more or less stable nature of the dynamics is strongly influenced by factors
that can be traced back mainly to consumer tastes, sensibility to price and,
to a certain extent, unforeseeable events such as environmental disasters and
political instability. The model focuses mainly on the first two factors, leaving
to one side the role played by catastrophic events4

Although the model proposed here does not consider all the factors that play
a role in the development of a tourist industry (for example, it does not consider
transport costs), it nevertheless forms a valid theoretical platform. Further
extensions and elaborations may be introduced, with particular reference to the
mechanisms of interaction between the industrial organisation of the production
system and the decision-making of the tourist.

3We were guided in our choice of analysis techniques by an interesting article by Currie-
Kubin (2006), in which the use of bifurcation diagrams helped to highlight the chaotic nature
of the dynamics generated in Core-Periphery models, thus seriously questioning all the basic
assumptions of ’New Economic Geography’.

4The inclusion of catastrophic factors would have meant considering some stochastic dis-
turbance; this approach, however, would go against the basic idea of the model which is to
reproduce endogenously chaotic dynamics without the intervention of exogenous shocks. For
a discussion of the management of catastrophic events in the tourist industry, see Ritchie
(2004). In particular the inconstancy of tourists can produce significant changes in both the
level of demand elasticity and the criteria followed in the selection of the localities to visit,
thus generating strong and unforeseeable fluctuations in tourist flows;

4. Some important observations about the role of economic policy can be drawn from the in-
herent instability of tourist flows. Development cannot be controlled directly, because it is
determined by factors that cannot be directly managed by authorities (see above). Authorities
can influence the direction of growth, but the measures adopted may, as well as increasing the
size of the flows of visitors, also determine the instability of the flow itself.
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The paper is structured in three parts: in the first, the mathematical struc-
ture of the model is developed to obtain the basic equation that describes the
dynamics of a tourist flow; the second part presents the results of the numer-
ical simulations and the analysis of the bifurcation diagrams; the third part
concludes by discussing the possible developments and extensions of the model.

2 The Model

2.1 Tourists

The tourist flow towards a given locality is generally regulated by its popularity
and by the average level of satisfaction obtained by those who choose to visit it.
The positive assessment attributed to the locality by a tourist will be communi-
cated to other potential tourists who, with a certain degree of probability, will
then decide to spend their holidays at that destination. The level of probability
tends to increase, the greater the popularity of the tourist destination and the
degree of satisfaction reached by the visitors, whereas it decreases as the level
of popularity and satisfaction of other competing localities increases.

Consider a set i ∈ D of tourist localities competing to attract ever greater
shares of tourists by attracting them away from other competing localities. The
potential population of tourists is exogenous and equal to Mmax, whilst mi,t in-
dicates the share of tourists that at time t chooses destination i, for a total num-
ber of tourists equal to Mi,t = mi,tMmax. The vector mt =

{

m1,t, ...,mi,t, ...
}

describes, therefore, the state of the tourist population at time t.
A tourist compares his experience at time t with that of another tourist cho-

sen at random from the population. The exchange of information can force him,
with a certain probability, to review his preferences and choose a different local-
ity for the following period. If both tourists have had the same experience, that
is, at time t they visited the same locality, they will not obtain any additional
information and so they have no incentive to change tourist destination.

The only element that distinguishes one tourist from another, therefore, is
the different experiences they have acquired by visiting different localities in the
same period. We rule out the possibility that the two tourists can have different
opinions about the same locality they have visited 5.

Given the constancy of the tourist population, it is assumed implicitly that
the tourist has an infinite life or that, once information is obtained, he is sub-
stituted by a perfect copy of himself (descendent), to whom all the information
acquired will be transferred (which means, for the purposes of the results, ex-
actly the same thing). It will be the descendent at that point to decide whether
to return to the old destination or go to a new one6. From this moment onwards,
for the sake of simplicity, we assume that the tourist lives eternally and therefore

5Further extensions of the model could take into account a certain heterogeneity in the
assessments of tourists who have had the same experiences, by distinguishing, for example,
mass tourism from ecotourism. This hypothesis, however, would require a subdivision of the
tourist population into at least two subpopulations and the identification of an evolutionary
mechanism that explains the prevalence of one type of tourism over the other, thus making
the model much more complex.

6The model also allows for the fact that a tourist can acquire information from other
sources, such as Internet or specialised agencies. We assume, however, that before he takes a
decision he will try to get confirmation from tourists with the experience necessary to provide
a more objective assessment.
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there will be no need to continuously distinguish between the descendent and
the parent.

It is well to point out that the experience of a tourist is limited to the
knowledge of the characteristics of the two localities: the one visited at time t
and the one that he decides to visit at time t + 1. The experiences before time
t have therefore been forgotten.

Let Pt (Vi → Vj |Tk) with i, j, k ∈ D be the probability that a tourist, visiting
locality i at time t decides to visit locality j in the following period, on the basis
of the information received at time t by a tourist in locality k.

Having assumed that a tourist considers the possibility of changing desti-
nation from i to j, only after having exchanged opinions with someone who
has already visited the other locality, we can write that Pt (Vi → Vj |Tk) = 1 if
i = j = k and Pt (Vi → Vj |Tk) = 0 if k = i 6= j or k 6= i, k 6= j, i 6= j. If the
comparison was made with someone with the same experience, the tourist (or
likewise his direct descendent) will return to the old destination with probability
equal to 1; similarly, the probability that he decides to visit a different locality
without having had information from a tourist who has already been there is
zero.

In other cases in which i 6= k, j = k or i = j 6= k, the law of conditional
probability Pt (Vi → Vj |Tk) = Pt (Vi → Vj , Tk) /Pt (Tk) > 0 stands.

If we consider locality i we can determine its net tourist flow by finding the
difference between the number of tourists arriving and leaving in a certain pe-
riod of time. On the basis of the assumed imitative process, the flow of tourists
arriving is equal to

∑

k∈D,k 6=i mk,tMmaxPt (Vk → Vi, Ti) whilst those leaving is
∑

k∈D,k 6=i mi,tMmaxPt (Vi → Vk, Tk), from which we obtain the dynamic equa-
tion for the tourist flow:

mi,t+1 − mi,t =
∑

k∈D,k 6=i

mk,tPt (Vk → Vi |Ti) Pt (Ti) +

−mi,tPt (Vi → Vk |Tk) Pt (Tk) (1)

where Pt (Th) = mh,t ∀h ∈ D.
The exchange of information between tourists mainly concerns their level of

satisfaction and the popularity of the destination they visited. And therefore it
is reasonable to suppose that the conditional probability, that is, the probability
of changing destination once the information has been obtained from another
tourist, will depend exactly on these factors, that is:

Pt (Vk → Vi |Ti) = fk (Sck,t, Sci,t,mi,t,mk,t) ,
Pt (Vk → Vk |Ti) = 1 − fk (Sck,t, Sci,t,mi,t,mk,t)

with ∂fk/∂Sck,t < 0, ∂fk/∂Sci,t > 0, ∂fk/∂mk,t > 0, ∂fk/∂mi,t < 0,
0 ≤ fk ≤ 1, ∀k 6= i ∈ D.

Let us indicate with Sci,t and Sck,t the utility (surplus) obtained on average
in time t from tourists in localities i and k, whose popularity is measured by
the share of the tourist population, mi,t and mk,t respectively.
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As suggested by Weibull (1998), it is assumed that the conditional probabil-
ity to reach a locality in the following period is proportional to the popularity of
that locality and that the factor of proportionality is positively correlated with
the present surplus that can be obtained in the same locality. By indicating
with ωk (Sci,t) > 0 the factor of proportionality that the tourist in k associates
with locality i, we can write

Pt (Vk → Vi |Ti)=
ωk(Sci,t)mi,t

ωk(Sci,t)mi,t+ωk(Sck,t)mk,t

Pt (Vk → Vk |Ti)=
ωk(Sck,t)mk,t

ωk(Sci,t)mi,t+ωk(Sck,t)mk,t

with ∂ωk/∂Sci,t > 0 ∀i, k ∈ D.

By substituting in [1] we obtain the basic equation of the model

mi,t+1 = mi,t +
∑

k∈D,k 6=i

mk,t
ωk (Sci,t)mi,t

ωk (Sci,t)mi,t + ωk (Sck,t)mk,t
mi,t +

−mi,t
ωi (Sck,t)mk,t

ωi (Sci,t) mi,t + ωi (Sck,t) mk,t
mk,t (2)

from which it only remains to specify the exact form of the factors of propor-
tionality ω and its surplus, which are given in paragraphs 3 and 2.2 respectively.

2.2 Firms

Each locality of set D represents a tourist industry which is assumed to be
structured as a Cournot-type oligopoly with homogeneous firms7. The term ’in-
dustry’ should not be understood as the whole tourist system in a country, but
the set of firms in a certain locality whose organisation, geographical position
and environmental resources can be considered a system in itself and which has
certain characteristics that distinguish it from other tourist localities (indus-
tries) (the classic example is an island that attracts tourists during the summer
period)8. The group of firms belonging to each of the tourist destinations is
considered exogenous and is indicated by N = {Nd}d∈D.

Each firm belonging to locality d chooses at time t the quantity of tourist
services to be produced and supplied, in order to maximise the following profit
function in that period:

Πd,i,t = P
(

∑Nd

j=1 qd,j,t,Md,t, Ed,t

)

qd,i,t − cdqd,i,t,

7The hypothesis that the tourist industry is organised along the lines of oligopolistic com-
petition has been analysed by Davies (1999) and Baum-Mudambi (1995). For a review, see
Davies and Dawnward (2005).

8It is necessary to point out that the dynamics of a tourist industry are not neutral in
relation to the scale chosen for the analysis. Development trajectories can undergo marked
changes if the analysis moves from a single tourist locality to the whole tourist industry in
the geographical area.
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with ∀i = (1, ..., Nd) ,∀d ∈ D where P (.) indicates the inverse demand function
that depends on the total quantity of services produced by the tourist industry
∑Nd

j=1 qd,j,t, on the flow of tourists arriving Md,t and on the level of environmen-
tal quality Ed,t, whilst cd is the same marginal cost for all the firms in the same
industry 9.

The greater the flow of tourists and the better the quality of the environ-
ment, the higher the price per unit of tourist service, that is ∂P/∂Md,t > 0
and ∂P/∂Ed,t > 0. If we assume that the inverse demand function is pt =
(

Md,t (Ed,t + 1) /
∑Nd

j=1 qd,j,t

)ǫd

, with 1/ǫd > 1 to indicate the (constant) price

elasticity of demand, and consider the symmetrical nature of oligopoly, we ob-
tain the quantity of tourist services produced by firm i at time t

q∗d,i,t = q∗d,t =
Md,t (Ed,t + 1)

Nd

(

Nd − ǫd

cdNd

)1/ǫd

,

with Nd > ǫd ∀d ∈ D.

If we substitute the equilibrium quantity in the inverse demand function we

obtain the equilibrium price p∗ =
(

Nd−ǫd

cdNd

)−1

which depends entirely on the

structural parameters of the local industry. A fixed factor, equal to 1, is added
to the value of the quality of the environment in order to avoid the cessation of
all productive activities, if it is annulled. It is correct, in fact, to assume that
a tourist locality can continue to exist even in the presence of a very degraded
natural environment, as in the case of mass tourism which is very often attracted
to the wide range of entertainment facilities on offer rather than to the natural
beauty of a place.

By integrating the demand function, the average surplus Scd,t obtained by
a tourist who visits locality d at time t is:

Scd,t =
1

Md,t

∫ ∞

p∗

Md,t (Ed,t + 1)

p
1/ǫd

d,t

dp = (Ed,t + 1)
ǫd

1 − ǫd

(

Nd − ǫd

cdNd

)

1−ǫd
ǫd

.

Given that a tourist flow towards a certain locality is also affected by the
surplus obtained in other localities, the model presents two types of strategic
interaction: one between firms in the same locality and the other between com-
peting tourist destinations. But, whereas in the first the quantity of tourist
services produced by firms in the same industry acts as an element of reciprocal
conditioning, the second works through variations in the surplus and therefore
in the flows of tourists that go to the different localities10.

9Firms act under the assumption of bounded rationality as they do not know the law of
motion of tourist flow (2). This hypothesis, as well as being realistic, also simplifies somewhat
the calculations. If this had not been so, we would, in fact, have had to solve the complex
problem of inter-temporal optimization in a differential game (oligopoly). For an application
of this type, see Candela-Cellini (2004).

10A possible extension of the model could be that the profits of firms in a certain lo-
cality were also dependent on the quantity of services produced in other competing des-
tinations, thus introducing a further factor of strategic interaction between local tourist
industries. In this case the demand function would assume the following form: pt =
“

Md,t

`

Ed,t + 1
´

/
“

PNd
j=1 qd,j,t +

P

g∈D,g 6=d

PNg

i=1 qj,i,t

””ǫd
.
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2.3 The natural environment

The production of services and the flow of tourists have an immediate impact
on the quality of the environment. By indicating the maximum possible level
for the quality of the environment in locality d with Êd , that is, the level that
would be reached in the absence of a tourist industry, the quality of the envi-
ronment at time t is expressed by the following expression:

Ed,t = max
{

Êd − αMd,t − βNdq
∗
d,t , 0

}

,

with α > 0 and β > 0 to indicate the impact of tourist flows and the production
of tourist services on the environment respectively. Once the quality of the
environment has been lost, it can only be recovered by reducing production or
the number of tourists. Natural resources used by the industry are not renewable
so long as the source of pollution persists in the territory: therefore, once the
quality of the environment has been destroyed, it can be recovered only by
reducing the number of tourists and production.

The natural environment is considered as a fixed stock of environmental re-
sources localised in a specific territory. This can be left in its original state,
by guaranteeing the natural wealth that is present, or it can be allocated to
an economic use, by establishing infrastructures for tourism with a consequent
reduction in its quality. By substituting in q∗d,t and solving the equation for Ed,t

we obtain

Ed,t = max















Êd − Md,t

[

α + β
(

Nd−ǫd

cdNd

)1/ǫd

]

1 + βMd,t

(

Nd−ǫd

cdNd

)1/ǫd
, 0















,

from which the maximum limit of sustainable tourism can be calculated, that
is, the share of the tourist population which corresponds to quality zero of the
environment:

m̂d =
Êd

Mmax ·

[

α + β
(

Nd−ǫd

cdNd

)1/ǫd

] ,

with Ed,t = 0 ∀md,t > m̂d.

The limit m̂d is therefore a specific factor of a locality which is determined by
the combination of environmental factors (Êd, α, β), structural components of
the industry (Nd, cd) and elements connected with the psychology of the tourist
(ǫd).

At this point a tourist industry can be defined as sustainable if it combines
a positive level of environmental quality with a positive flow of visitors, that is,
if it is capable of satisfying both the following conditions md,t > 0 and Ed,t > 0
∀t, d ∈ D at the same time. Given that the trajectories of a tourist flow can
vary and converge on a stationary, cyclical or even chaotic state, it is necessary
to specify the stability conditions for each of these cases:
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1. if the orbit of the tourist flow converges on the fixed point m∗ the industry
is sustainable on condition that 0 < m∗ < m̂.

2. if the orbit attractor is a P cycle in period n, P ≡ {mj , mj+1, . . . , mj+n−1:
g(mj+n−1) = mj}, then the industry is perfectly sustainable on condition
that Ed,t > 0 ∀md,t ∈ P . There may also be cycles that alternate phases
of total environmental exploitation with phases of a partial recovery of the
quality of the environment in a general alternation between environmental
sustainability and unsustainability. The same can be said about the orbits
which have a chaotic character, but are limited to an interval of values
(mmin,mmax) ; in this case the industry is perfectly sustainable in terms
of the environment if m̂d > mmax, unsustainable if m̂d < mmin, whilst
if m̂d ∈ (mmin,mmax) there will be periods of sustainability followed by
phases of total exploitation of the environment.

The possible alternation between environmental sustainability and unsus-
tainability can be explained by the fact that a single period of time, taken as
the temporal unit of reference in the model, is not completed in a single tourist
season, but is considered to be sufficiently long (that is, a number of tourist
seasons) to allow an appropriate adaptation of both the quantity of services
supplied made by the firms and the recovery of part of the natural environment
that has been destroyed11.

3 The Simulations

A simulation of the model requires an explicit formalization of the factors of
proportionality used in the definition of conditional probability.

As in Weibull (1998), let us suppose that ωk (Sci,t) = exp (σ · Sci,t) with
σ ≥ 0. This specification is sufficiently general, because different choice models
can be adopted by the tourist according to the value of the parameter σ:

1. if σ → 0, tourists tend to prefer the most popular tourist locality inde-
pendently of the real benefits that can be obtained;

2. if σ → ∞, tourists tend to choose the tourist locality that guarantees a
higher level of surplus independently of its popularity.

As in fact

Pt (Vk → Vi |Ti)=
exp(σ·Sci,t)mi,t

exp(σ·Sci,t)mi,t+exp(σ·Sck,t)mk,t
,

we have

limσ→0Pt (Vk → Vi |Ti)=
mi,t

mi,t+mk,t

11On the other hand, the existence of cyclical dynamics in natural capital has been widely
noted and discussed in studies of ecology and sustainable development; see the literature on
dynamic models developed by Anderies (1998, 2000) and Brander-Taylor (1998).
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limσ→∞Pt (Vk → Vi |Ti)=

{

0 if Sck,t > Sci,t

1 if Sck,t < Sci,t

Similar specifications about the probability of a tourist’s choice can be found
in Papathodorou (2005) and Morley (1994).

Let us assume that there are two localities, that is D = {A,B}, in order to
make the study of the model simpler without compromising the purpose of the
analysis, which is to identify the chaotic behaviours of a tourist flow in a system
of interacting tourist industries 12. This does not prevent us from considering
industry A as a single industry, whilst B is the set of tourist industries in
competition with it, that is to say B = {B1, ...., Bn}. On the basis of this
specification the conditional probabilities are

Pt (VA → VB |TB) = fA =
eσ·ScB,t (1−mA,t)

eσ·ScB,t (1−mA,t)+eσ·ScA,t mA,t

Pt (VB → VA |TA) = fB =
eσ·ScA,t mA,t

eσ·ScB,t (1−mA,t)+eσ·ScA,t mA,t

Pt (VA → VA |TB) = 1 − fA

Pt (VB → VB |TA) = 1 − fA

which, substituted in [2], make it possible to obtain the basic equation of the
model in an explicit form in relation to the tourist flow that concerns destina-
tion A:

mA,t+1 = mA,t + mA,t(1 − mA,t)

{

eσ·ScA,tmA,t − eσ·ScB,t(1 − mA,t)

eσ·ScA,tmA,t + eσ·ScB,t(1 − mA,t)

}

(3)

where for mA,t ∈ [0, 1] also mA,t+1 = g(mA,t) ∈ [0, 1], that is g : [0, 1] → [0, 1].

The reduction to two tourist industries makes it possible to limit the analysis
to the study of the dynamics of the tourist flow of just one industry since, the
dynamics of destination B is determined by the residue, as mB,t = 1 − mA,t.

Given the initial state mA,0, the orbit of the system is unequivocally defined.
The first iteration is mA,1 = g(mA,0), the second mA,2 = g(mA,1) = g(g(mA,0))

12Remember that, in addition to competition between industries which determines the dis-
tribution of a tourist flow in the different localities, there is competition between firms inside
each industry which conditions the quantity of tourist services produced in each period. The
two levels of competition are, however, strictly intertwined: whilst the surplus obtainable by
a visiting tourist can be determined by the competition between firms in the same locality,
this surplus then enters the basic equation of the model [3] as a reference parameter in the
choice of the tourist, thus in turn conditioning the dynamics of the tourist flow that underlie
competition between destinations.
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and so on. By indicating the n-th iteration by g[n](mA,0) we can represent the
orbit by the vector (mA,0, g(mA,0), g[2](mA,0), g[3](mA,0), . . . , g[n](mA,0), . . . ),
which in a more compact form becomes

{

g[n](mA,0) : n ≥ 0
}

with g[0](mA,0) =
mA,0. If g(m∗) = m∗ then the system is in stationary equilibrium and m∗ is a
fixed point. In the same way, if g[k](m̂) = m̂ then m̂ is a periodic point and the
orbit

{

g[n](m̂) : n ≥ 0
}

is periodic in period k. An orbit is defined as chaotic if it
is limited, not periodic and shows a marked sensitivity to the initial conditions,
in the sense that, following arbitrarily small variations in these conditions, there
are significant changes in the course of the orbit itself.

The function g(mA,t) has the following fixed points: mA,t = 0, mA,t = 1
and ∀mA,t ∈ (0, 1) so that eσ·ScA,tmA,t = eσ·ScB,t(1 − mA,t). In general there
is no guarantee that a solution mA,t exists that satisfies this condition. In
the particular case of perfect structural homogeneity among tourist localities,
which occurs when two destinations have the same parameter values but not
necessarily similar levels of development, the system has at least three fixed
points: m∗

A = 0, m∗
A = 1 and m∗

A = 0.5. Furthermore, in this case if a fixed
point m̄A ∈ (0, 1) exists with m̄A 6= 0.5, then 1− m̄A is also a fixed point in the
system.

If, in fact, eσ·ScA(m̄A)m̄A − eσ·ScB(1−m̄A)(1 − m̄A) = 0, from the hypothe-
sis of structural homogeneity we have that ScA(1 − m̄A) = ScB(1 − m̄A) and
ScA(m̄A) = ScB(m̄A), and therefore also eσ·ScA(1−m̄A)(1−m̄A)−eσ·ScB(m̄A)m̄A =
0.

Independently of the degree of structural similarity between the tourist local-
ities, the fixed internal points cannot be analytically determined because mA,t

cannot be made explicit from the condition eσ·ScA,tmA,t = eσ·ScB,t(1 − mA,t).
It is therefore necessary to proceed with the study of the model through numer-
ical simulations on the computer13. They do not provide a detailed study of
the general properties of the model, but highlight how, even in a deterministic
context, significant changes in the dynamics of a tourist flow can be generated
after minimal variations in the parameters. These changes make it very diffi-
cult to predict the trend of a tourist flow and limits the practicability of any
policy measure aimed at stabilising the system. The emergence of irregular and
unstable fluctuations is endogenous to the model and is in no way generated by
the interference of stochastic shocks.

Each of the simulations starts with the system in equilibrium and with
two tourist localities, which, though structurally homogeneous, are at differ-
ent stages of development. More precisely, it is assumed that locality A is still
in an initial stage of development, whilst destination B has already reached the
stage of consolidation. If we assign the values in Table 1 to the parameters, we
have a situation as described above and shown in Figure 2.
In this case the system presents three internal equilibrium points, m∗

1 ≈ 0.01,
m∗

2 = 1 − m∗
1 ≈ 0.99 and m∗

3 = 0.5 as well as two fixed points m∗
4 = 0 and

m∗
5 = 1. In view of the perfect structural homogeneity of the tourist localities

and since |g′(m∗
1)| = 0.6734 < 1, the equilibriums m∗

1 and m∗
2 are locally stable.

Equilibrium m∗
3 is instead unstable, as |g′(m∗

3)| = 1.44982 > 1. At time zero,
therefore, locality A is positioned at point mA,0 = m∗

1 whilst, by symmetry,
locality B absorbs almost all the tourist flow available and positions itself at
1 − mA,0 = m∗

2.

13The Mathematica software was used for the simulations.
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Table 1: base values for the numerical simulation of 

the model. 

Starting from the basic case with the parameter values shown in Table 1, one
of the parameters will be varied each time in conditions of ceteris paribus. In
order to assess the effect produced by economic policies, the parameters that can
be conditioned by public intervention are kept distinct from those that cannot
be directly influenced by policy measures.

mt

mt+1

 

 

 

 

 

0.01 0.5 0.99 

Figure 2: Initial state of the system. Locality A is in a stable equilibrium position m ≈ 0.01,
whilst locality B is in stable equilibrium m ≈ 0.99. The point of equilibrium m = 0.5 is
unstable.

The following parameters belong to the first category:

a. Parameters α and β for environmental impact (of tourists and firms re-
spectively), which the policy maker can change with measures aimed at
reducing emissions per tourist (for example, by encouraging recycling or
limiting the use of private means of transport) and favouring use of pro-
ductive processes and materials that pollute less;
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b. The number of firms working in the industry (Nd), which can be modified
by adopting appropriate industrial policies to favour or reduce competi-
tion;

c. Costs (cd), which can be affected by subsidies for the production of tourist
services and incentives for the use of efficient technologies and tax conces-
sions.

The second type includes the parameters σ and ǫd which describe the tastes
and price sensibility of tourists and therefore are beyond the direct control of
public authorities. The parameter σ is an indicator of the criterion followed by
a tourist in his choice of the locality to be visited: an increase means greater
sensibility to the real benefits obtained by visiting a certain locality rather than
its reputation; its value will depend therefore on factors linked to lifestyle and
fashion. ǫd represents the perception that the tourist has of the service that
he is offered: the closer the value is to 1 (rigid demand), the more the service
is perceived as a luxury good; in the same way, a low value of ǫd implies high
elasticity of demand and therefore an increased sensibility to price associated
with mass tourism 14.

In each of the simulations, the key element is the bifurcation diagram which,
given a certain initial state, describes the long term behaviour of the system in
relation to variations in a parameter. The chosen parameter is made to vary
within a specific interval in 500 steps; the orbit is calculated for at least 400
periods for each value of the parameter considered in the specified interval.
However, in order to highlight the long term behaviour, the diagram shows only
the last 150 repetitions; that is, for each value of the parameter, the bifurcation
diagram represents g[t](mA,0) for 250 ≤ t ≤ τ with τ ≥ 400.

3.1 Changes in demand elasticity - ǫ

Let us analyse the case in which, starting from a situation of equilibrium as
described in Figure 2, a change in demand elasticity takes place for locality
A. Although the two localities under consideration are supposed to be struc-
turally identical, it is possible that at a later stage differences in their level of
development change the tourist’s sensibility to price according to the locality
visited. For example, given the negative effects of congestion and productive
activities on the environment, the tourist may develop a greater sensibility to
price with a consequent increase in demand elasticity for the destination with a
larger number of visitors. On the other hand, the less developed locality is still
able to offer a high level of environmental quality, thus encouraging the tourist
to accept a higher price for the same service. The opposite situation may also
occur, where the less developed locality ends up with a higher demand elasticity
as the tourist is more sensitive to the reputation of a destination rather than
its quality. These considerations persuade us that variations in parameter ǫA

are possible in all directions. In general, a tightening of demand (increase in
ǫA ) leads to an improvement in the quality of the environment and a conse-
quent increase in the surplus ScA. It is more likely, therefore, that condition

14We assume that the two localities can present different levels of demand elasticity. This
hypothesis presumes that the tourist can perceive the nature of the service that is offered to
him in a different way, depending on who is supplying it.
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eσ·ScA,0mA,0 > eσ·ScB,0(1 − mA,0) prevails with the tourist flow beginning to
move from B to A. On the other hand, an increase in elasticity can start an
inverse mechanism and lead to the decline of destination A, even before this
locality begins to attract a significant share of the tourists. Figure 3 shows the
bifurcation diagram where we indicate the interval of the values for ǫA with
I = (0, 1) to facilitate the reading of the diagram, before subdividing it into
three subintervals I = {I1, I2, I3} to identify the different parts of the diagram
which show the behaviour of the system to be basically homogeneous:

1. ǫA ∈ I1 = (0, ǫ1 ≈ 0.35): locality A experiences a gradual loss of visitors
to the competing locality. In the long term all the tourists settle in B;

2. ǫA ∈ I2 = [ǫ1, ǫ2 ≈ 0.88): locality A manages to keep a small share of the
potential tourists who continue to prefer alternative destinations;

3. ǫA ∈ I3 = [ǫ2, 0.999): there is a radical change in the dynamics of the
development of destination A which, given the low elasticity of demand
and the consequent increase in the surplus of a tourist, is now able to
attract a substantial share of tourists.
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0.6
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1

Figure 3: Bifurcation diagrams in relation to ǫA with the initial state m0 ≈ 0.01. x axis:
ǫA; y axis: mA.

A first reading of the diagram therefore seems to suggest general stability
in the system in relation to variations in ǫA. A more detailed examination,

16



however, reveals elements of a more complex nature. Figure 4 shows two details
of the bifurcation diagram in which the long term dynamics do not seem to
converge to a fixed value, but instead become cyclical, confirmed by the presence
of bifurcations, or chaotic. The existence of cycles of any order and chaotic
trajectories is confirmed by the presence of a cycle in period 3 (Li-Yorke theorem,
1975)15, which is very evident in the central part of the detail on the right.

0.98 0.98250.9850.9875 0.99 0.99250.9950.9975

0.99

0.992

0.994

0.996

0.998

1

0.995 0.996 0.997 0.998 0.999

0.992

0.994

0.996

0.998

1

Figure 4: Details of the bifurcation diagram shown in Figure 3. For the values of ǫA close
to 1 the dynamics in the long run take on chaotic or cyclical trends. x axis: ǫA; y axis: mA.

15On the basis of the Li-Yorke theorem (1975):
Given a continuous function mt+1 = g(mt) at interval J → J ⊂ ℜ and supposing that point

m ∈ J exists such that

g[3](m) ≤ m < g(m) < g[2](m)

then

i for each n = 1, 2, 3.... there exists a trajectory of period n in J ;

ii g is chaotic in a non-enumerable set S ⊂ J .
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Even if these observations are not particularly significant as they are located
in an interval with limited values16, they do, however, show an important prop-
erty of the model, namely, it generates endogenously complex dynamics in the
development of a tourist locality. These complexities will become evident in
later simulations. Another important aspect emerges when the trajectories of
the tourist flow with specific values of ǫA are simulated. As the graphs in Figure
5 show, the dynamics of the tourist flow follow the type of trend theorised by
Butler. The interesting point is the difference in the behaviour of the cycle in
the post-consolidation phase. In the first simulated case (ǫA = 0.88) the cycle
tends to become stable following the period of consolidation with a phase of
stagnation; in other cases, growth picks up again with a new Butler-type cycle
(ǫA = 0.888) and an infinite series of chaotic oscillations begins (ǫA = 0.998).

On the basis of the values assigned to the parameters, the maximum sustain-
able tourist flow is positively correlated with the elasticity of demand 1/ǫd, that
is ∂m̂d/∂ǫd < 0 and, given that in the case we analysed high values of ǫA are
combined with a significant growth in the tourist flow towards destination A, it
is possible that, at those values, there emerges a condition in the industry that
was environmentally unsustainable, that is mA,t > m̂A. For example, in the case
analysed above in which ǫA = 0.998, the maximum limit of sustainable tourism
becomes m̂A = 0.835, well below the values of the tourist flow which, even with
an irregular trend, is always more than 99% of the total tourist population, as
seen in the details in Figure 5.
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Figure 5: Time series of the tourist flow towards destination A with different values of ǫA.
In the first two cases the flow converges towards a stationary state and in the third towards
a seemingly stable phase, but it is in fact characterised by chaotic irregularities. x axis: t; y
axis: mA,t.

16Although it follows chaotic trajectories, the tourist flow is always close to 99.5% of the
population of potential tourists.
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Following the same reasoning, environmental unsustainability can be shown
in the case in which ǫA = 0.888 with m̂A = 0.871 and sustainability for ǫA = 0.88
with m̂A = 0.873. In general, development appears sustainable so long as
ǫA < ǫ2 ≈ 0.88 whilst for higher values the number of visitors grows so much
that it exceeds the maximum sustainable limit.

3.2 Changes in the criterion for the choice of locality - σ

Parameter σ is an indicator of the criterion followed by the tourist in his choice of
locality17: if it increases, it means less attention is being paid to the reputation
of a certain tourist locality and more to the real benefit that can be obtained;
if σ is low, the tourists tend to stay in B, given that the rival locality is not
sufficiently attractive since it is still in the initial phases of development.

At time zero the system is in equilibrium, that is eσ·ScA,0mA,0 = eσ·ScB,0(1−
mA,0) with mA,0 ≈ 0.01041. This condition can be rewritten as σ·(ScA,0 − ScB,0) =

ln
(

1−mA,0

mA,0

)

with, given perfect structural homogeneity and as ∂Scd

∂md
< 0 ∀d,

ScA,0 > ScB,0 if mA,0 < 0.5. Following variations in σ, therefore, the system is
going to be in disequilibrium with the result that there will be a flow of tourists
towards locality A if σ increases and away from it if it decreases.

The bifurcation diagram in Figure 6 shows this trend and highlights the
increasing complexity of the dynamics as σ increases.

When the choice of a tourist destination is guided by fashion and evidence of
a greater number of visitors (low level of σ ), the tourist flow tends to be stable in
so far as it is difficult for the new tourist localities to attract tourists away from
well-established destinations. If the choice is taken in a more rational way, that
is, privileging those localities that guarantee a higher level of well-being, it is
likely that the tourist flow will begin to move towards the less visited localities,
before starting to fluctuate cyclically or chaotically from one locality to another,
following the continuous oscillations in the levels of surplus that can be obtained
in each one of them.

The simulation was limited to an interval with the values σ ∈ [0, 10], without
substantial changes in the behaviour of the system for wider intervals.

The study of the dynamics in the long term is made, as above, by dividing
the interval into three specific subintervals:

1. σ ∈ [0, σ1 ≈ 0.1): the flow of tourists tends to abandon locality A with
values of σ close to zero and to reach a stationary level for σ → σ1 ≈ 0.1;

2. σ ∈ [σ1, σ2 ≈ 0.5): the tourist flow tends to settle equally at both tourist
destinations;

3. σ ∈ [σ2, 10): the long term trajectories of the tourist flow have mostly
cyclical or chaotic behaviours, showing evident fluctuations in a wide in-
terval that goes from 30% to 70% of the total tourist population.

Figure 7 shows three possible developments of the tourist flow, which corre-
spond to the same number of values for parameter σ. Cycles, chaos and asymp-
totic convergence are possible future developments of a tourist destination, but

17Given the values in Table 1 and that σ does not directly condition tourists’ surplus, the
two localities remain structurally homogeneous, independently of the value of this parameter.
The set of fixed points in the system therefore also includes m∗

A = 0.5.
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Figure 6: Bifurcation diagram with respect to parameter σ with an initial state mA,0 ≈ 0.01.
x axis: σ; y axis: mA.
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Figure 7: Time series of the tourist flow and the corresponding Staircase Diagram for the
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the element which is common to each one of the scenarios is the Butler-type
initial growth phase. In all three cases, the stagnant, chaotic or cyclical phase
emerges only after a first phase of marked development that takes more than
50% of potential tourists to locality A.

With reference to the sustainability of the environment, variations in σ do
not change the maximum level of sustainable tourism, which therefore remains
constant. As m̂A = 0.98 and observing how the share of tourist population
never exceeds 80%, we can conclude that the condition of sustainability is always
satisfied with each value of σ in the interval considered.

3.3 Changes in the number of firms (N) and marginal cost
(c)

Considering Ωd = Nd−ǫd

cdNd
we can rewrite the expression of surplus as

Scd =
Êd − αMd + 1

1 + βMdΩ
1/ǫd

d

·
ǫd

1 − ǫd
· Ω

1−ǫd
ǫd

d if Ed,t > 0

Scd = ǫd

1−ǫd
· Ω

1−ǫd
ǫd

d if Ed,t ≤ 0.

Surplus and therefore the dynamic equation of the model depend on the
number of firms Nd ∈ ℵ and production costs cd > 0 by means of the factor Ωd;
we can then study the effect produced by variations in one or both parameters
through variations in that factor. If EA,t > 0 and for a given value of a tourist
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Figure 8: Surplus function of the tourist who visits locality A at time t = 0. For ΩA < Ω̄A

the function takes on the form of a parabola with a maximum in Ω∗
A. If ΩA > Ω̄A the function

is linear and growing.

flow mA,t ∈ (0, 1), surplus is first a growing function of ΩA , before falling once

the maximum point has been reached Ω∗
A =

(

1−ǫA

ǫAβMA

)ǫA

. This means that the

attractiveness of a locality is not generally correlated directly with the number
of firms or the efficiency of the productive processes. In fact, if these parameters
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become too high, the locality can undergo a sudden reduction in size because
of excessive environmental costs. Nevertheless, there is also a second effect on
surplus, this time connected with variations to the maximum limit of sustainable
tourism m̂A caused by ΩA. This limit tends to decrease as ΩA grows, thus there
will be a Ω̄A such that the maximum limit of sustainable tourism is lower than
the actual level of tourism, m̂A < mA,t, for all ΩA > Ω̄A so that the tourist
industry is no longer sustainable in terms of the environment (Ed,t = 0), and
surplus becomes a growing monotone function of ΩA.

Given the initial equilibrium condition (mA,0 ≈ 0.01041) and the values as-

signed to the parameters, we obtain Ω̂ ≈ 0.0048, Ω∗
A ≈ 0.0219, Ω̄A ≈ 6.89,

Ω̃ ≈ 455.5 and Ωeq
A = 0.0995 where Ωeq

A indicates the value of the parameter
in the initial equilibrium state. The situation before the variation in ΩA is de-
scribed in Figure 8 and on that basis we could expect, in relation to the starting
point, a fall in the tourist flow for ΩA < Ω̂ and Ωeq

A < ΩA < Ω̃, an increase for

Ω̂ < ΩA < Ωeq
A and ΩA > Ω̃, with ScA

(

Ω̂
)

= ScA (Ωeq
A ) = ScA

(

Ω̃
)

, as the

bifurcation diagrams confirm in Figure 9.
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Figure 9: Bifurcation diagram with respect to ΩA in the initial condition mA,0 ≈ 0.01. x
axis: ΩA; y axis: mA.

Peaks of tourist flows can be observed for ΩA ∈ (Ω1 ≈ 0.005) , Ω2 ≈ 0.01173
and ΩA > Ω3 ≈ 455.53. In this last case, however, the detail in the diagram
for interval 500 < ΩA < 600 , shows how the final phase of development in
the tourist industry presents unstable or cyclical trends, even if they are on
the whole insignificant, because they are within a very small interval of values
given that the tourist flow is always higher than 99% of the total population of
tourists. In Figure 10 three possible paths of development are shown for locality
A. In the first case, ΩA = 0.012, development follows the typical phases of the
Butler cycle before stabilizing around 20% of the total tourist population; in the
second case, ΩA = 0.01, growth follows a double Butler-type cycle that remains
around 99% of the total tourist population; in the third case, ΩA = 520, growth
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consists in a single Butler cycle culminating in an apparently stable phase, but
in fact, it is marked by continuous chaotic fluctuations, as shown for the 60
periods that go from t = 15 to t = 75.

The results of the simulation lead to some important considerations. The
fact that development can be made by either increasing or reducing ΩA leaves
industrial policy ample room for manoeuvre. The two types of intervention,
however, present substantial differences both in terms of practicability and en-
vironmental sustainability. If tourist development is to be started by increasing
ΩA, the measures will have to be such that ΩA > Ω3, which requires a substan-
tial increase in the number of firms together with a significant reduction in the
costs of production, but this is not always practicable.

On the other hand, decreases in ΩA can generate development, but only for
values included in a limited interval. If the reduction is excessive, the industry
will lose all chance of growth, whereas development will have a limited effect on
small shares of the tourist population if the decrease is not sufficiently strong. As
a consequence, policy errors can compromise the future development of tourist
destinations or at least reduce its impact.

The first type of intervention therefore seems preferable, since it allows both
the full development of the locality, even where ΩA increases excessively, and a
reduction in the level of prices, as p∗d = 1/Ωd. This reasoning, however, does
not give enough attention to the environmental implications of the two different
industrial policies. Increases in ΩA, in fact, reduce the maximum limit of sus-
tainable tourism, thus making this policy unadvisable from an environmental
point of view. More specifically, as m̂A ≈ 0 ∀ΩA > Ω3, no value of ΩA higher
than Ω3 is capable of guaranteeing sustainable development, which would be
possible if ΩA were reduced, so that we obtained ΩA ∈ (Ω1,Ω2) given that in
this case we would have m̂A ≈ 1.
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Figure 10: Time series of tourist flows in A for different values of ΩA.

The fact that the state of chaos (or cyclicity) in the long term occurs with
very high values of ΩA but does not bring about significant fluctuations to
the number of visitors depends entirely on the basic values assigned to the
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parameters. Therefore, a very different picture emerges if, for example, the
simulation is repeated hypothesizing that at time zero parameter σ moves from
0.01 to 1.
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Figure 11: Bifurcation diagrams for ΩA with σ = 1 and an initial state mA,0 ≈ 0.01. x
axis: ΩA; y axis: mA.

As Figure 6 shows, this structural variation would start a flow of tourists
away from B to A, until the flow stabilized in a cycle in period 2 18. Faced with
the prospect of growth, local institutions could decide to adopt expansionary
policies to attract a greater number of firms and to reduce the price of tourist
services or, at the same time, make the entry of new firms conditional upon
specific investments capable of guaranteeing a high standard of services, with
a consequent increase in the marginal costs of production and the equilibrium
price. Given that ∂ΩA/∂NA > 0 and ∂ΩA/∂cA < 0, the final effect of this
manoeuvre cannot be unequivocally determined, as it could lead to either an
increase in ΩA if the positive effect of the proliferation of firms prevailed, or a
reduction, if the negative impact of production costs prevailed.

It is evident from the bifurcation diagrams in Figure 11 that the chaotic
nature of the paths of development emerges for both low and higher values of ΩA.
Furthermore, unlike the preceding case, the chaotic (or cyclical) fluctuations

18The tourist flow would fluctuate between 40% and 60% of the total population of tourists.
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are much bigger, which indicates that there can be important variations in the
number of visitors from one period to another.
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Figure 12: Time series of the tourist flow to A for different values of ΩA. The Staircase
Diagram is linked to each one of the time series that it generated starting from the initial
state mA,0, with σ = 1.

Figure 12 shows three possible trajectories for development corresponding to
the same number of values of ΩA. As in the cases analysed above, the first phases
of development follow the typical trend of the Butler cycle, whilst the main
differences can be seen in the post-consolidation phase; in the first and third case
the dynamics become irregular and are probably chaotic, whereas in the second
they converge towards a stationary state. As far as environmental sustainability
is concerned, what was said above is true, as there are no variations in the limit
m̂A following a change in σ. As ∂m̂A/∂ΩA < 0, development tends to absorb
growing quotas of environmental resources the higher the value of ΩA. To be
more specific, environmental sustainability is present only in the first of the three
cases analysed in Figure 12 where the trajectories of the tourist flow, though
showing obvious fluctuations, remain lower than the maximum sustainable limit
that is m̂A ≈ 1 whereas in the other two cases the limit is exceeded by the
arrival of a larger tourist flow. To be more precise, for ΩA = 4.5 the locality
attracts about 50% of the tourist population when the maximum sustainable
limit is m̂A ≈ 0.024, whilst for ΩA = 14.5 the flow fluctuates chaotically between
approximately 60% and 80% of the tourist population, well above the limit of
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environmental sustainability equal to m̂A ≈ 0.0023.

3.4 Changes in the environmental impact of tourists (α)
and firms (β)

The other parameters sensitive to economic policy measures concern the conse-
quences of economic activities (β) and the tourist flow (α) on the environment.
We will limit the analysis to the study of the effects produced by variations in
the parameters of environmental impact on locality A, first with two simulations
for the variations in αA and βA, respectively, then with a third where the two
parameters are made to vary together. Certainly these three simulations do not
exhaust all the possible cases, but we believe that they are sufficient to test
whether, starting from a condition of stability in the long term, the economic
policies that change the environmental impact of productive activities and the
tourist flow have the capacity to destabilise the system19.

Changes in αA: the system is stable for the whole interval of values consid-
ered, αA ∈ (0, 10). Reductions in the environmental impact of the tourist flow
are not sufficient to guarantee the beginning of significant development in the
tourist locality, which continues to attract little more than 1% of the potential
tourist population for α < 1 (figure 13).

0 2 4 6 8 10

0.0094

0.0096

0.0098

0.01

0.0102

0.0104

Figure 13: Bifurcation diagram for αA with initial state mA,0 ≈ 0.01. x axis: αA; y axis:
mA.

We can define this situation as a lock-in, as the system is in fact blocked in
its initial position, even after a significant change in the environmental impact
of the tourist flow (Faulkner-Russel, 1997).

However, it is sufficient that, as in the previous simulation, an increase from
0.01 to 1 in parameter σ occurs at time zero for the behaviour of the system to
change radically.

The diagrams in Figure 14 show a marked complexity in the dynamics of
the tourist flow in this case. The popularity of a tourist destination plays a less

19Alternative scenarios could emerge if policy measures affecting the parameters of environ-
mental impact involving both tourist destinations were considered; in this case αA = αB and
βA = βB could continue to hold even after their variation.
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important role in the choice of tourists and locality A can therefore hope for a
greater flow of visitors.
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Figure 14: Bifurcation diagram for αA with initial mA,0 ≈ 0.01 and σ = 1. x axis: αA; y
axis: mA.

Development is all the greater, the lower the value of αA . However, if the
interval of values between α1 ≈ 0.5 and α2 ≈ 1.5, in which the trajectories
are periodic in period 2, is omitted, the tourist flow appears generally complex
with big cyclical or chaotic fluctuations. This complexity is not present in the
previous case with σ = 0.01. Figure 15 shows two possible developments for
αA = 0.05 and αA = 4; once again, what seems to be the first phase of Butler-
type development is followed by an indefinite series of apparently chaotic fluc-
tuations20.

If the environmental impact of tourist flows is reduced, the maximum level
of sustainable tourism can be increased. It can be immediately verified that, for
αA ≤ ᾱ ≈ 0.98, m̂d ≥ 1 is obtained, so that, whatever the level of the tourist
flow in a certain period, locality A will be able to grow without compromising
all its natural resources. On the other hand, growth is also possible for higher
values of αA, which are higher than they were at the beginning, although in
this case growth is more contained and there is a risk of using all the available
environmental resources. For αA = 4, for example, the maximum level of sus-

20Enlargements of the diagram in figure 14 (not shown in the text) reveal the presence of
cycles in period 3, thus confirming the hypotheses of Li-Yorke’s theorem and therefore the
existence of chaotic orbits.
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tainable tourism becomes m̂d ≈ 0.248 which, as shown in figure 15, is frequently
exceeded by much higher levels of tourists arriving.
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Figure 15: Time series of the tourist flow to A for different values of αA, σ = 1.

Changes in βA: even in the presence of a strong ’popularity effect’ generated
by a low value of σ, Figure 16 shows how the reductions of βA are, at least in this
case, more effective in favouring development in the tourist industry. It is, in
fact, possible to attract a larger share of visitors by reducing the environmental
impact of firms, even after starting with a small number of visitors, but in a
context in which reputation plays a central role in attracting them.
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Figure 16: Bifurcation diagram for βA with initial condition mA,0 ≈ 0.01. x axis: βA; y
axis: mA.

The details of the diagram shown in Figure 17 reveal that the trajectories
of the tourist flow tend towards a stationary state for β̄ ≈ 0.038 ≤ βA ≤ 2 and
to follow a cyclical or chaotic trend for 0 ≤ βA ≤ β̄.

An example is given in Figure 18 for βA = 0.001; in this case the first phase,
which would seem to be similar to the Butler cycle, is followed by a phase
with a noticeably irregular tourist flow, with values that fluctuate from about
30% to more than 70% of the total tourist population. Stable, but nevertheless
significant, growth can be realized for smaller reductions in the environmental
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Figure 17: Details of the bifurcation diagram shown in Figure 16. x axis: βA; y axis: mA.

30



impact. Figure 18 also shows the path of development for βA = 0.16; the flow
can be seen to become stationary around 50% of the total tourist population.
The differences between the previous case and this one, however, are not to be
found just in the different behaviour of the flow in the post-consolidation phase,
but also, and above all, in the time necessary to complete that phase. In the
first case, with a very low βA, 70% of the tourist population can be reached in
just 7 periods, after which the flow begins to fluctuate irregularly, whilst in the
second case growth is gradual, requiring more than 30 periods to reach half the
potential tourism.
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Figure 18: Time series of the tourist flow to A for different values of βA.

The development is sustainable in environmental terms, as it is for all values
of βA below 2, as ∂m̂A/∂βA < 0 and m̂A ≈ 0.98 for βA = 2.

Changes in αA, βA: as the analysis allows the study of only one parameter at
a time through the bifurcation diagram, we can hypothesise αA/βA will always
be constant and αA = (1 + h), βA = 2 (1 + h) with h ∈ [−1,∞). In this way
we can study the effect of variations in the two parameters of environmental
impact simply by observing what happens by varying parameter h.

The parameters of environmental impact are reduced with h < 0. In this
case, although the lower values of pollution substantially increase the number
of visitors to locality A (figura 19), the development that will start can follow
very different trends, depending on the size of the reduction. Figure 20 shows
different sections of the bifurcation diagram for h < 0. In the first interval of
values, h ∈ (h1 ≈ −0.978, 0], the system remains stable, with trajectories con-
verging towards a stationary state. Further reductions, with h ∈ (h2 ≈ −1, h1],
are instead associated with an increase in the complexity of the trajectories that
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Figure 19: Bifurcation diagram for h, with initial condition mA,0 ≈ 0.01. x axis: h; y axis:
mA.

have a cyclical or chaotic trend. At the limit, for h → −1, the system becomes
stable once again in the long term, because the tendency for the parameters
of environmental impact to go to zero generates a general move of the tourist
population away from B to A.

Two specific trajectories of development are shown in Figure 21. In the
first case Butler-type growth culminates in an unstable phase with continuous
fluctuations in the tourist flow between approximately 90% and 60% of the
tourist population, whilst in the second it follows the typical trend with a final
stage of stagnation. In this case locality A absorbs about 70% of the whole
tourist population, taking over the leadership from locality B.

As ∂m̂A/∂h < 0, m̂A ≈ 0.98 for h = 0 and m̂A = 1 for h ≈ −0.019, and
given what is shown in the bifurcation diagram, the development of locality A
can be said to be always sustainable for h ∈ [−1, 0].

It is easy to imagine that reductions in pollution will be followed by an in-
crease in the tourist flow, but not that these reductions can actually give rise to
irregular trends in the flow, leading to marked fluctuations without any obvious
explanation. The cause of these fluctuations can be found in the continuous
changes in the levels of surplus resulting, firstly, from the action taken on the
parameters for environmental impact and, later, from the continuous variations
in the number of visitors. In fact, the reduction in one or both the parameters
at time zero provokes an initial growth in the surplus, thus breaking the equi-
librium and generating a flow of tourists towards locality A21. At that point
the increase in the share of visitors once again reduces surplus because of the
growing congestion, so much so that the dynamics of the flow are inverted and
tourists begin to move back to locality B. The continuous fluctuations in surplus
caused by the mechanism described above could either diminish, thus allowing

21Remember that at time zero the system is in equilibrium and that, as mA,0 < 0.5 in a
situation of perfect structural homogeneity, there is also ScA,0 > ScB,0. Therefore, if there
is an increase in ScA, for example if the tourist industry has less impact on the environment,
there will be an increase, at least at first, in the tourist flow towards locality A.
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Figure 21: Time series and Staircase Diagram for different values of h.

the system to come to a stationary state, or continue indefinitely, in which case
the cyclical or chaotic trends would persist.

4 Conclusions

Our model produces some important theoretical results which can be summa-
rized as follows:

- As many scholars have pointed out (see, for example, Hovinen 2002), the
chaos theory provides a useful complement to Butler’s model and allows
a deeper understanding of the development process in the highly com-
plex context which results from the numerous interactions of the different
agents. In literature the traditional approach is based mainly on the for-
malization of particular areas in the system of the tourist industry: in
some cases the evolution of the tourist system is the result of intertempo-
ral choices in social planning (Kort et.al., 2002; Giannoni-Cellini, 2004),
in other cases it arises from the strategic interaction of oligopolistic firms
(Candela-Cellini, 2004). However, these models lack a rigorous formaliza-
tion of the dynamic mechanism that determines the choice of tourists. It
is, in fact, this very mechanism, once inserted in a standard context of
oligopoly, which allows our model not only to reproduce the dynamics of
the Butler cycle, which must be considered as one of the possible mani-
festations of the growth process, but also to account for the irregularity
of the tourist flow that is often observed in the post-consolidation phases
of the cycle itself.

- Usually the sudden and unpredictable changes in the dynamics of a system,
such as a tourist system, are explained by external factors or exogenous
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shocks. The application of the chaos theory means that these changes
need an endogenous explanation and it provides an appropriate method to
identify the factors that generate these changes. An example could be our
simulations based on the variations in the elasticity parameter ǫA. It has
been seen how, the tourist flow being constant, the tightening of demand
generally generates an increase in prices and an improvement in the quality
of the environment. In the case under consideration in the simulation it
is shown that ∂ScA/∂ǫA > 0 for ǫA ∈ (0, 1), thus there is an increase
in the surplus of the tourist as the elasticity of demand falls. Starting
from a situation of perfect structural homogeneity, as hypothesized at the
beginning, locality A experiences a gradual increase in the tourist flow
as ǫA increases. The development cycle follows the path theorized by
Butler up to the stage of consolidation. The nature of the dynamics of the
tourist flow then takes on characteristics that vary according to the value
of elasticity, as it can converge to a stationary state (stagnation) or a final
stage that can be defined as ”chaotic stability”, in which the tourist flow
fluctuates cyclically or chaotically in a limited interval of values.

- Tourists are changeable and inconstant, making the destination vulnerable
to changes in their tastes and preferences. One locality may experience
rapid growth and remain among the favourite destinations of tourists for
a long time thanks to its popularity, but then fall into an inexorable de-
cline if tourists change their selection criteria, preferring, for example, new
localities to the more popular ones. These changes may have little to do
with the effective quality and quantity of services provided. We analysed
this aspect by simulating the effects produced by variations in parameter
σ. As hypothesized in the model, a tourist could prefer one locality to
another purely for economic reasons (σ → ∞) or, more simply, following a
fashion, almost or totally independently of the real utility that he obtains
by visiting that place (σ → 0). In this case, it can become very difficult to
start the development of a tourist locality that does not have many visi-
tors, even if it succeeds in guaranteeing high levels of services and quality
of environment. On the other hand, greater attention paid by tourists
to the real benefits rather than fashion might favour an increase in the
tourist flow, but it can also increase the instability of the system. The
mobility of tourists is greater in those cases where they are attracted by
higher levels of surplus rather than the popularity of the destination. Af-
ter an initial period of Butler-type development a phase characterised by
marked cyclical or chaotic fluctuations can be expected, with the tourist
population moving from one locality to another in pursuit of higher levels
of surplus.

Our model seems to confirm some important empirical evidence. Of particular
relevance in this field is Lundtorp-Wanhill’s article (2001), in which the authors
examine the development trajectories of two tourist localities, the Isle of Man
and Bornholm, using the data of tourist flows from 1884 in the first case and
1910 in the second22. In both cases the first phases of growth seem to follow

22The scarcity of available data over a long period of time, as in the case of the growth
of a tourist locality, makes it difficult to estimate the empirical basis of a theory of tourist
development.
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what was proposed by Butler’s cycle, but the picture changes radically once
the consolidation phase has been reached. In the case of the Isle of Man the
tourist flow begins to fluctuate noticeably, taking on dynamics reminiscent of
the chaotic fluctuations found in the simulations. In the second case, however,
the cycle culminates in a stagnant phase lasting ten years, after which there
is a recovery in a kind of double Butler cycle. In the absence of more recent
data this case would also appear to be characterized by irregular fluctuations in
the final phase of the cycle that can be traced back to chaotic dynamics. The
authors explain these erratic trends by the increase in competition from rival
destinations.

As far as policy is concerned, the unpredictability of the tourist flow and
its innate tendency to follow irregular trends implies the need for a significant
change in the role of intervention. The simulations of the model confirm the
hypotheses already proposed by some scholars of the impossibility of directly
controlling the size of a tourist flow. Intervention on the structure of costs, the
size of the industry and environmental impact, even if it can guide the growth
of the industry, is not capable of guaranteeing either the desired levels or the
stability of the tourist flow, which instead proves to be very sensitive to factors
that cannot be directly influenced. The simulations of the model based on vari-
ations in the parameters that can be controlled by authorities (ΩA, α, β) have
produced the following results:

- Parameter ΩA): One type of intervention widely adopted by local insti-
tutions which aim to start the development of a tourist destination is to
guarantee firms free entry or to allow the lowering of production costs in
order to favour competition. Very often, however, it is not realized that
the same levels of development can be reached with diametrically opposed
policies, as, for example, those that limit the proliferation of firms and
aim at the protection of the environment. By simulating the effect pro-
duced by variations in ΩA it can be observed how a significant increase
in the tourist flow can be obtained even by reducing the number of firms
(as ∂ΩA/∂NA > 0) or by increasing production costs (as ∂ΩA/∂cA < 0 ).
The preference often shown for measures that can compromise the quality
of the environment can be explained by the fact that they are easier to
realize. In the model there is a very high probability that mistakes will
be made whilst trying to encourage development by reducing ΩA as it is
possible to reach this result only in a limited interval of values. An ex-
treme reduction, as seen above, would lead to the definitive abandonment
of the locality by tourists or growth below forecasts. There will also be
an obvious and significant destabilization in the system in the presence
of a higher value of parameter σ; the nature of the preferences made by
a tourist thus plays a central role in conditioning the final effects of the
economic policies.

- Parameters α, β): the general tendency is to increase the tourist flow as
the impact of the industry on the environment decreases. The nature of
the dynamics caused by these variations is, however, anything but regu-
lar. These manoeuvres can in fact be ineffective if, for example, popularity
carries weight in attracting tourists, or they can destabilize the system,
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thus giving rise to chaotic fluctuations.
A tourist industry is capable of developing even in the presence of a spoilt
natural environment. Once the environment has been destroyed, the sup-
ply of services can continue to attract tourism. This result matches per-
fectly with what has been observed in the development of some important
tourist destinations. The Balearic islands are an example of how a tourist
industry with high environmental costs can continue to prosper, contrary
to all the forecasts of scholars that foresaw a gradual decline (Aguilò-
Alegre-Sard, 2005).

As mentioned above, the model lends itself well to further adaptations and
changes in order to study aspects that have not been dealt with in depth in this
article. On the supply side, for example, the assumption about the homogeneity
of the product can be removed and a certain level of differentiation can be
introduced, with an element of heterogeneity both amongst the firms in one
locality and amongst different localities. A possible formulation of the model in
this sense can include transport costs and the hypothesis of spatially positioning
the tourist population in a kind of Hotelling (1929) logic, in which the tourist
decides on the basis of the distance that separates him from the tourist localities.
This formulation, in our opinion, would add a further element of instability,
because the changes that can affect transport costs are dependent on factors
beyond the control of local authorities, especially the cost of energy resources.

The reformulations of the model that can be made on the demand side are
much richer and more articulated. One possible hypothesis could be to pro-
vide for different types of tourists (for example ecotourism v mass tourism) and
therefore add the dynamic aspect of forming individual preferences for a partic-
ular type of tourism to the evolutionary mechanism of information transmission
already considered, thus including aspects that go from environmental ethics to
education23.

A second hypothesis could be to remove the assumption of a constant tourist
population, thus allowing it to grow or decrease as the specific parameters vary,
as for example, available income. This hypothesis can also be applied to the
population of firms, which was considered to be constant in the model: an
evolutionary mechanism could be assumed that favours the proliferation of firms
in those localities where profits are highest.

The increased complexity of analysis, together with the size of this paper,
have advised us against including these effects here.

23Interesting ideas in this sense can be found in the research of Bisin-Verdier (2001) and
Young (1998) on the mechanisms of the intergenerational transmission of culture and be-
haviour.
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