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Abstract

Starting from inhomogeneous time scaling and linear decorrelation between successive price re-

turns, Baldovin and Stella recently devised a model describing the time evolution of a financial

index. We first make it fully explicit by using Student distributions instead of power law-truncated

Lévy distributions; we also show that the analytic tractability of the model extends to the larger

class of symmetric generalized hyperbolic distributions and provide a full computation of their mul-

tivariate characteristic functions. The Baldovin and Stella model, while mimicking well volatility

relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the

leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this

process in order to reproduce real data more accurately.
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I. HOW SCALING AND EFFICIENCY CONSTRAINS RETURN DISTRIBU-

TION

Finding a faithful stochastic model of price time series is still an open problem. Not

only should it replicate in a unified way all the empirical statistical regularities, often called

stylized facts, (cf e.g. Bouchaud and Potters [13], Cont [17]), but also easy to calibrate

and analytically tractable, so as to make easier its application to derivative pricing and

financial risk assessment. Up to now none of the proposed models has been able to meet all

these requirements despite their variety. Recent attempts include ARCH family (Bollerslev

et al. [8], Tsay [42] and references therein), stochastic volatility (Musiela and Rutkowski [35]

and references therein), multifractal models (Bacry et al. [1], Borland et al. [11], Eisler and

Kertész [22], Mandelbrot et al. [33] and references therein), multi-timescale models (Borland

and Bouchaud [10], Zumbach [45], Zumbach et al. [47]), Lévy processes (Cont and Tankov

[18] and references therein).

Recently Baldovin and Stella (B-S thereafter) proposed a new way of addressing the

question. We advise the reader to refer to the original papers Baldovin and Stella [4, 5, 6]

for a full description of the model as we shall only give a brief account of its main underlying

principles. Using their notation let S(t) be the value of the asset under consideration at time

t, the logarithmic return over the interval [t, t+ δt] is given by rt,δt = lnS(t+ δt)− lnS(t);

the elementary time unit is a day, i.e., t = 0, 1, . . . and δt = 1, 2, . . . days. In order to

accommodate for non-stationary features, the distribution of rt,δt is denoted by Pt,δt(r)

which contains an explicit dependence on t. The most impressive achievement of B-S is to

build the multivariate distribution P
(n)
0,1 (r0,1, . . . , rn,1) of n consecutive daily returns starting

from the univariate distribution of a single day provided that the following conditions hold:

1. No trivial arbitrage: the returns are linearly independent, i.e. E(ri,1, rj,1) = 0 for

i 6= j, with the standard condition E(ri,1) = 0.

2. Possibly anomalous scaling of the return distribution with respect to the time interval

δt, with exponent D: P0,δt(r) = 1
δtD
P0,1(

r
δtD

).

3. Identical form of the unconditional distributions of the daily returns up to a possible

dependence of the variance on the time t, i.e. Pt,1(r) = 1
at
P0,1(

r
at

).
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As shown in the addendum of Baldovin and Stella [5] these conditions admit the solution

f
(n)
0,1 (k1, . . . , kn) = g̃(

√

a2D1 k
2
1 + · · ·+ a2Dn k2

n), (1)

where f
(n)
0,1 is the characteristic function of P

(n)
0,1 , g̃ the characteristic function of P0,1, and

a2Di = i2D − (i − 1)2D. In this way the full process is entirely determined by the choice of

the scaling exponent D and the distribution P0,1. Therefore the characteristic function of

Pt,δt(r) is

ft,T (k) = f
(n)
0,1 (0, . . . , 0

︸ ︷︷ ︸

t terms

, k, . . . , k
︸ ︷︷ ︸

δt terms

, 0, . . . , 0) = g̃(k
√

(t+ δt)2D − t2D),

i.e.

Pt,δt(r) =
1

√

(t+ δt)2D − t2D
P0,1




r

√

(t+ δt)2D − t2D



 .

The square root in g̃ in Eq. (1)introduces a dependency between the unconditional

marginal distributions of the daily returns by the means of a generalized multiplication ⊗
in the space of characteristic functions, i.e.,

f
(n)
0,1 (k1, . . . , kn) = g̃(aD1 k1)⊗g̃ · · · ⊗g̃ g̃(aDn kn),

with ⊗g̃ defined by

x⊗g̃ y = g̃(
√

[g̃−1(x)]2 + [g̃−1(y)]2. (2)

At first sight this last equation may seem a trivial identity, but it does hide a powerful

statement. Suppose indeed that instead of starting with the probability distribution g̃, one

takes a general distribution with finite variance σ2 = 2 and characteristic function p̃1, then

Baldovin and Stella [4] show that

lim
N→∞
p̃1

(

k√
N

)

⊗g̃ · · · ⊗g̃ p̃1
(

k√
N

)

︸ ︷︷ ︸

N terms

= g̃(k).

This means that in this framework the return distribution at large scales is independent

from the distribution of the returns at microscopic scales: it is completely determined by

the correlation introduced by the multiplication ⊗g̃, with fixed point g̃. Note that if g̃ is

the characteristic function of the Gaussian distribution, then ⊗g̃ reduces to the standard

multiplication and one recovers the standard Central Theorem Limit.
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As the volatility of the model shrinks in an inexorable way, Baldovin and Stella propose

to restart the whole shrinking process after a critical time τc long enough for the volatility

autocorrelation to fall to the noise level. In this way one recovers a sort of stationarity for

time series whose length is much greater than τc. In this case one expects that the empirical

distribution of the return P̄δt(r) over a time horizon δt≪ τc, evaluated with a sliding window

satisfies

P̄δt(r) =
1

τc

τc−1∑

t=0

Pt,δt(r). (3)

In the original papers no market mechanism is proposed for modeling the restart of the

process; it is simply stated that the length of different runs and the starting points of the

processes could be stochastic variables. In their simulations the length of the processes was

fixed to τ = 500, which corresponds to slightly more than two years of daily data.

II. A FULLY EXPLICIT THEORY WITH STUDENT DISTRIBUTIONS

Baldovin and Stella [5] chose a power law truncated Lévy distribution to describe the

returns

g̃(k) = exp

(

−Bk2

1 + Cαk2−α

)

.

Sokolov et al. [41] show that this expression is indeed the characteristic function of a proba-

bility density with power law tails whose exponent is exponent 5− α. However, this choice

is problematic in two respects: its inverse Fourier cannot be computed explicitly, which pre-

vents a fully explicit theory. In addition, for equation (1) to be consistent, g̃(
√

k2
1 + · · ·+ k2

n)

must be the characteristic function of a multivariate probability density for all n. Baldovin

and Stella [5] rely on numerical evaluation, as no other proof can be given. But as dis-

cussed in Bouchaud and Potters [13] both truncated Lévy and Student distributions yield

acceptable fits of the returns on medium and small time scales. In the present context, the

Student distribution, sometimes referred to as q-Gaussian in the case of non-integer degrees

of freedom, is a better choice; it provides analytic tractability while fitting equally well real

stock market prices, as reported by Osorio et al. [38]. The fit of the daily returns of the

S&P 500 index in the period with a Student distribution

g1(x) =
Γ(ν

2
+ 1

2
)

π1/2λΓ(ν
2
)

1

(1 + x2

λ2 )
ν
2

+ 1

2
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Figure 1: Centered distribution of the 14716 daily returns of the S&P 500 index (January, 3th

1950 - June, 30th 2008), and the corresponding fitting with Student (ν = 3.22, λ = 0.0107) and

Gaussian distribution (σ = 0.0088).

is reported in Fig. 1[48].

The characteristic function of the Student density is

g̃(k) =
21− ν

2

Γ(ν
2
)
k
ν
2K ν

2
(k), (4)

whereKα is the modified Bessel function of third kind. As demonstrated in the appendix, the

inverse Fourier transform of g̃(
√

k2
1 + · · ·+ k2

n) for any integer n is simply the multivariate

Student distribution (see also Vignat and Plastino [43]). The general form of this distribution

can be written as

g(ν)n (x,Λ) =
Γ(ν

2
+ n

2
)

πn/2(det Λ)1/2Γ(ν
2
)

1

(1 + xtΛ−1x)
ν
2

+n
2

, (5)

where ν > 1 is the exponent of the power law of the tails, P(r > R) ∝ 1/Rν and Λ is a

positive definite symmetric matrix governing the variance-covariance matrix E(xi, xj) = Λij
ν−2

,

which does exist provided that ν > 2.

In passing, the same properties are shared by multivariate symmetric generalized hyper-

bolic distributions introduced in finance by Eberlein and Keller [21](see also Bingham and
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Kiesel [7]). The general case is obtained by an affine change of variable, but for sake of

clarity let us restrict to

f(x) =
α
n
2

(2π)
n
2K ν

2
(α)

1

(1 + r2)
ν
4

+n
4

K ν
2

+n
2
(α
√

1 + r2)

for x ∈ R
n and r the usual euclidean norm of x. Student distributions are recovered in the

limit α→ 0+. As shown in the appendix, its characteristic function is given for any n by

f̃n(k) =
K ν

2
(
√
α2 + k2)

K ν
2
(α)

(α2 + k2)
ν
4

α
ν
2

with k =
√
∑n
i=1 k

2
i .

In the following we restrict the discussion to the Student distributions. Hence we assume

that the distribution of the return is given by Eq. (5) with characteristic function given by

Eq. (4), where Λ is a diagonal matrix

k =
√

ktΛk = λ
√

k2
0 + (22D − 1)k2

1 + · · ·+ (n2D − (n− 1)2D)k2
n−1

and λ2 governs the variance of the returns on the time scale chosen as a reference. Thanks

to the fact that the diagonal elements of Λ forms a telescoping series the process is indeed

consistent for any number of discrete steps and can be generalized to the continuous time

by setting, in the same consistent way,

P(r0,∆t0 , rt1,∆t1 , . . . , rtn−1,∆tn−1
)

= g(ν)n (r0,∆t0 , rt1,∆t1 , . . . , rtn−1,∆tn−1
,Λ = diag(t2D1 , t

2D
2 − t2D1 , . . . , t2Dn − t2Dn−1)), (6)

where tj =
∑j−1
i=0 ∆ti, j ≥ 1 and now Λ = diag(t2D1 , t

2D
2 − t2D1 , . . . , t2Dn − t2Dn−1). The existence

of the continuum process is then guaranteed by the Kolmogorov extension theorem. This

process is not weakly stationary, as its variance is explicitly time-dependent. A stationary

process is recovered with the choice D = 1/2. Starting from this expression a wider class

of processes can be generated by suitable transformations of the time, i.e., by substituting

the function ti → t2Di for any monotonically increasing continuous function ti → T (ti).he

process followed by the price x(t) = lnS(t) is a Student process too, with same exponent

ν and non diagonal matrix Λij = (−1)i+jT (tmin(i,j)). It is worth to mention that a similar

process has been already used in Borland [9] for option pricing. A detailed study of the

this process, along with its relation with the work Heyde and Leonenko [24], is deferred to

a separate paper.
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Figure 2: Student copula density with ν = 3 and trivial correlation matrix.

The Student setting makes easier to interpret the correlations induced by the point-wise

non-standard product of (2) in the characteristic function space. If we consider two variables

x1 and x2 distributed according to g1(x), the joint probability function will be g2(x1, x2).

The variables Xi = G(xi) =
✁ xi
−∞
dx g1(x) are distributed uniformly on the interval [0, 1]; by

definition,the copula function c(X1, X2) (cf. e.g. Nelsen [37] for a general theory) is

c(X1, X2) = g2(G
−1(X1), G

−1(X2))
dx1

dX1

dx2

dX2

=
g2(G

−1(X1), G
−1(X2))

g(G−1(X1)) g(G−1(X2))
.

In our case c is nothing else but the Student copula function, generally applied in finance for

describing the correlation among asset prices (Cherubini et al. [16], Malevergne and Sornette

[32]). A picture of this copula density with ν = 3 and Λ the identity matrix is given in

Fig. 2. Although Student and generalized hyperbolic distributions are usually adopted for

modeling returns of several assets over the same time intervals, the framework proposed by

Baldovin and Stella allow them to model the returns of a single asset over different time

intervals.
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III. APPLICABILITY OF THIS FRAMEWORK TO REAL MARKETS

The axiomatic nature of the derivation of Baldovin and Stella is elegant and powerful:

its ability to build mathematically multivariate price return distributions from a univariate

distribution using only a few reasonable assumptions is impressive. Nevertheless, as stated

in the introduction, a model of price dynamics must meet many requirements in order to be

both relevant and useful. In this section, we examine its dynamics thoroughly.

A. Volatility dynamics

In Fig. 3.a we report the results of 3 simulations of the return process, each one of

500 steps and with parameters ν = 3.2 and D = 0.20. In each run the volatility decays

ineluctably. Indeed by fixing the time interval δti = 1, we see from (6) that the unconditional

volatility of the rt,1 returns is proportional to
√

(t+ 1)2D − t2D, i.e., to tD−1/2 for t ≫
1: the unconditional volatility decreases if D < 1/2 and increases if D > 1/2, in both

cases according to a power law. This appears quite clearly in Fig. 3.b, where we have

computed the mean volatility decay, measured as the absolute values of the return, over

10000 process simulations. The parameters of the distributions have been chosen close to

the ones representing real returns (see below).

The conditional volatility can be easily computed: the distribution of the return rn,1

conditioned to the previous return realizations r0,1, . . . , rn−1,1 is again a Student distribution

with exponent ν′ = ν + n and conditional variance

[(n+ 1)2D − n2D]

(

1 +
n−1∑

i=0

r2i,1
(i+ 1)2D − i2D

)

.

From this expression it is clear that volatility spikes in a given realisation of the process

tend to be persistent (see Fig. 3.a); this is the main reason why fluctuation patterns differ

much from one run to an other.

B. Decreasing volatility and restarts

The very first model introduced by B-S has constant volatility, which correspond to Λ

being a multiple of the identity matrix. This unfortunate feature is the main reason behind

the introduction of weights, whose effect is akin to an algebraic stretching of the time, or, as

8



0 500 1000 1500

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0
0
.1

5
Process simulation

t

r t
, 1

(a) 3 simulation, each 500 steps long.

1 2 5 10 20 50 100 200 500

0
.0

1
0
.0

2
0
.0

5

Volatility decay

t
<

|r
t, 

1
|>

t
(D−1 2)

(b) Decay of the volatility: average over 10000

simulation, each 500 steps long. The dashed line

represents the analytic prediction.

Figure 3: Process simulation with ν = 3.2, D = 0.20, and λ = 0.107.

put forward by B-S, to a time renormalization. This in turn causes a deterministic algebraic

decrease of the expectation of the volatility, as explained above and depicted in Fig. 3.b;

hence the need for restarts, each attributed to an external cause.

Although this dynamics may seem quite peculiar, such restarts are found at market

crashes, which are followed by periods of algebraic decaying volatility. This leads to an

analogous of the Omori law for the earthquakes, as reported in Lillo and Mantegna [30]

and Weber et al. [44]. The B-S model, by construction, is able to reproduce this effect

in a faithfully way. In Fig. 4 the cumulative number of times the absolute value of the

returns N(t) exceeds a given thresholds is depicted, for a single simulation of the process

and three different value of the threshold. The fit with the prediction of the Omori law

N(t) = K(t+ t0)
α −Ktα0 is evident.

Crashes are good restart candidates: they provide clearly defined events that synchronize

all the treader’s actions. In that view, they provide an other indirect way to measure the

distribution of timescales of traders, which are known to be power-law distributed (Lillo
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Figure 4: Omori law for a single run of the process, withD = 0.20, ν = 0.32. N(t) is the cumulative

number the absolute value of the return exceeds a given thresholds. Three different values of the

threshold l have been chosen, measured with respect to the standard deviation σ of the data. The

dashed lines represents the fit with the Omori law N(t) = K(t+ t0)α −Ktα0 .

[29]).

Another example of algebraically decreasing volatility was recently reported by McCauley

et al. [34] in foreign exchange markets in which trading is performed around the clock. Under-

standably, when a given market zone (Asia, Europe, America) opens, an increase of activity

is seen, and vice-versa. Specifically, this work fits the decrease of activity corresponding to

the afternoon trading session in the USA with a power-law and finds an algebraic decay with

exponent η = 0.35; this is exactly the same behavior as the one of B-S model between two

restarts, with D = 1−2η = 0.3. No explanation of why the trading activity should result in

this specific type of decay has been put forward in our knowledge. In this case the starting

time of the volatility decay corresponds to the maximum of activity of US markets.
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All the simulations have been done with the same parameters: 30 runs of 500 steps, with ν = 3.2,

D = 0.220

C. Apparent multifractality

The Baldovin and Stella model is able to reproduce the apparent multifractal character-

istics of the real returns, i.e. the shape of ζ(q) where 〈rδt〉 = δtζ(q).

The expectation is evaluated according the distribution (3), i.e. taking the mean over

independent runs of the process. Hence the expectation of the qth moment in this model is

〈|r|q〉P̄δt =
〈|r|q〉Pt=0,δt=1

τc

τc−1∑

t=0

[(t+ δt)2D − t2D]q/2 (7)

(see the addendum to Baldovin and Stella [5]). The exponents ζ(q) are evaluated as the

slops of the linear fitting of ln(〈|r|q〉P̄δt) with respect to ln(δt). Hence in our case they are

determined by the expression ln
∑τc−1
t=0 [(t+ δt)2D− t2D]q/2, and depend only on D and τc. In

Fig. 5.a is depicted the fitting of the S&P 500 exponents with the model (7). The best fit is

obtained with D = 0.212 and τc = 5376. Unfortunately a value of τc that large is difficult to

justify, as in the case of S&P 500 we have only 14716 daily returns, i.e. less than 3 runs of a
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process with such a length. The other fit is obtained by first fixing τc = 500, as in Baldovin

and Stella [5] and yields D = 0.220.

The statistical significance of this approach seems anyway questionable. In Fig. 5.b we

compare the theoretical expectation of the exponents with simulations. We choose the

parameters τc = 500, D = 0.220 both for simulations and analytic model, with ν = 3.22.

The number of restarts in the simulation is 30, in order to have a number of data points

similar to the S&P 500. It is evident that the exponents evaluated from the simulated data

have a really large variance.

The problem is that if the tail exponent ν = 3.22, from an analytic perspective the mo-

ments with q > 3.22 are infinite, hence, should not be taken into account in the multifractal

analysis (for an analytic treatment of multifractal analysis see Jaffard [26, 27], Riedi [40]).

The situation is somehow different in the case of multifractal models of asset returns (Bacry

et al. [2], Mandelbrot et al. [33]), where the theoretical prediction of the tail exponents of the

return distribution is relatively high (see the review of Borland et al. [11]), and the moments

usually empirically measured do exist even from the analytic point of view. For attempts to

reconcile the theoretical predictions of the multifractal models with the real data see Bacry

et al. [3] and Muzy et al. [36].

It is worth remembering that the anomalous scaling of the empirical return moments

does not imply that the return series has to be described by a multifractal model, as already

pointed out some time ago in Bouchaud [12] and Bouchaud et al. [14]: the long memory of

the volatility is responsible at least in part for the deviation from trivial scaling. A more

detailed analysis of the real data reported in Jiang and Zhou [28] seems indeed to exclude

evident multifractal properties of the price series.

IV. MISSING FEATURES

Since in this model the volatility is bound to decrease unless a restart occurs, it is quite

clear that it does not contain all the richness of financial market price dynamics. Restarting

the whole process is not entirely satisfactory, as in reality the increase of volatility is not

always due to an external shock. Volatility does often gradually build up through a feedback

loop that is absent from B-S mechanism. Thus, large events can also have a endogenous

cause, e.g. due to the influence of traders that base their decisions on previous prices or
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volatility, such as technical analysts or hedgers. This effect is completely missing from the

original mechanism.

Volatility build-ups can be simulated with D > 1/2. In the particular case of foreign

exchange intraday volatility patterns, the fit of an increasing part of volatility to a possibly

arbitrary power-law, as performed in McCauley et al. [34] (η = 0.22), corresponds indeed

to chose D = 0.56. It should be noted that no equivalent of the Omori law has ever been

reported for volatility build-ups: it seems that the increase of volatility either does not

follow a particular and systematic law (or perhaps has not yet been the object of a thorough

study).

Because of the symmetric nature of all the distributions derived above, all the odd mo-

ments are zero, hence, the skewness of real prices cannot be reproduced. This is shows up

well in Fig. 3 of Baldovin and Stella [6]. Another consequence is that it is impossible to

replicate the leverage effect, i.e. the negative correlation between past returns and future

volatility, carefully analyzed in Bouchaud et al. [15].

In any case, the decrease of the fluctuations in the B-S process is put by hand and results

in a strong temporal asymmetry of the corresponding time series. But quite remarkably

it misses the time-reversal asymmetry reported in Lynch and Zumbach [31] and Zumbach

[46]. Indeed the real financial time series are not symmetric with respect to time reversal

with respect to even-order moments. For instance, there is no leverage effect in foreign

exchange rates, and their time series are not as skewed as indices, but they do have a

time arrow. One of the indicators proposed in Lynch and Zumbach [31] is the correlation

between historical volatility σ
(h)
δth

(t) and realized volatility σ
(r)
δtr

(t). The historical volatility

series σ
(h)
δth

(t) represents the volatility computed using the data in the past interval [t−δth, t],
and σ

(r)
δtr

(t) represents the volatility computed using the data in the future interval [t, t+δtr];

the correlation between the two series is then analyzed as a function of both δtr and δth.

Real financial time series present an asymmetric graph with respect the change δth ↔ δts,
with a strong indication that historical volatility at a given time scale δth is more likely

correlated to realized volatility with time scale δtr < δth, with peaks of correlation at time

scales related to human activities. The asymmetry characteristic is absent in the Baldovin

and Stella model, as showed in Fig. 6.

The strong correlation between returns guarantees the slow decay of the volatility but

induces some side effects. The distribution of the returns in the model is essentially the
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Figure 6: Correlation between historical and realized volatility of the simulated process, over

different time interval δt. The analyzed time series was composed by 1000 runs of the basic

process, each one with 200 steps, and parameter ν = 3.22, D = 0.20.

same with identical power law exponent for the tails. This happens independently of the

time interval δt over which the returns are evaluated, as long as δt ≪ τc, with τc of the

order of hundreds days. Hence the weekly returns are distributed as the daily returns, while

in the real data the tail exponent begins to increase in a remarkable way already at the

intraday level (Drozdz et al. [20]). The strong correlation also slows down the convergence

to the Gaussian distribution of the returns when measured on larger time scale. Even if

the kurtosis is not defined analytically in principle, it is possible to measure the empirical

kurtosis of the returns of a simulated time series and compare with the kurtosis of the real

data. In Fig. 7 we show the kurtosis of the return distribution among simulations and daily

return of the S&P 500 index; the kurtosis has been computed for the returns over different

interval δt, and the simulated processes had the same length (30 runs of 500 steps) of the

real series.
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Figure 7: Comparison of the kurtosis of the returns evaluated over a time interval δt. Each one of

the three simulations are composed by 30 runs, 500 steps long, in order to have a length comparable

with that of the S&P 500 returns. The parameters are ν = 3.2, D = 0.20, λ = 0.1.

V. SUGGESTED IMPROVEMENTS

The main limitations of the model proposed by Baldovin and Stella are the poor volatility

dynamics, the lack of skewness, some unwanted symmetry with respect to time, and the

extremely slow convergence to a Gaussian. In this final section we put forward briefly some

qualitative proposals of how these issues can be addressed.

The volatility dynamics can be improved by introducing an appropriate dynamics for

the exponent D, i.e. introducing a dynamic D(t) controlling the diffusive process. This is

equivalent to start with a model with constant volatility, i.e. with the Λ just proportional

to the identity matrix, and then introducing an appropriate evolution for the time t. This

technique is employed for instance in the Multifractal Random Walk model (Bacry et al.

[2]), where the time evolution is driven by a multifractal process.

The lack of skewness is a common problem of stochastic volatility models: one usually

writes the return at time t as rt,δt = ǫ(t)σ(t) where ǫ(t) is sign of the return and σ(t) its

amplitude, a symmetric setting if the distribution of ǫ(t) is even. One remedy found for
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instance in Eisler and Kertész [22] is to bias the sign probabilities while enforcing a zero

expectation; more precisely,

P

(

ǫ = ± 1/
√

2

1/2± ǫ

)

= 1/2± ǫ.

The convergence to a Gaussian, or better the decay of the tail exponent of the return

distribution, could be implemented by introducing different distributions for the returns at

a given time scale and for modeling the non-linear correlation among them. For instance a

suitable parameter νr can be chosen for the daily return, and a much larger one νc adopted

in the copula function needed for modeling the correlation.

The Zumbach mugshot is one of the most difficult stylized fact to reproduce. To our

knowledge the best results in that respect was achieved in Borland and Bouchaud [10],

where a specific realization of a quadratic GARCH model is introduced, motivated by the

different activity levels of the traders with different investment time horizon, which take

into account the return over a large spectrum of time scales. More specifically Borland and

Bouchaud use

σ2
i = σ2

0

[

1 +
∞∑

δt=1

g∆t

r2i,δt
σ2

0τδt

]

,

with τ fixing the time scale, rt,δT = lnS(t + δT ) − lnS(t), gδt measuring the impact on

the volatility by the traders with time horizon δt, and chosen by the authors gδt = g/(δt)α.

This expression is rewritten also in the form

σ2
i = σ2

0 +
∑

j<i,k<i

M(i, j, k)
rjrk
τ
,

with

M(i, j, k) =
∞∑

∆t=max(i−j,i−k)

gδt
δt
.

In the present framework this would correspond to use a highly non-trivial matrix Λ,

introducing linear correlation among returns at any time lag. This means that the B-S

process would not be a model of returns any more, but of stochastic volatility.

VI. CONCLUSION

Despite its current inability to reproduce all the needed stylized facts, the new framework

proposed by Baldovin and Stella is a conceptual breakthrough based on a few reasonable
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first principles. Once suitably modified, it promises to bring a faithful yet workable model

of financial price dynamics.

Appendix: some useful facts about Student and symmetric generalized hyperbolic

distributions

Characteristic function of Student distributions

The standard form of univariate Student distribution is

g1(x) =
Γ(ν

2
+ 1

2
)

π1/2Γ(ν
2
)

1

(1 + x2)
ν
2

+ 1

2

,

while the multivariate one is

gn(x) =
Γ(ν

2
+ n

2
)

πn/2Γ(ν
2
)

1

(1 + r2)
ν
2

+n
2

with r =
√
∑n
i=1 x

2
i and P(r > R) ∝ 1/Rv.

Using some standard relationships involving Bessel functions one can compute analyti-

cally the corresponding characteristic function

g̃1(k1) =

✂ +∞

−∞

dx1 e
ik1x1g1(x1)

=
2Γ(ν

2
+ 1

2
)

π1/2Γ(ν
2
)
kν

✂ +∞

0

dx (k2 + x2)−
ν
2
− 1

2 cos(x) =
21− ν

2

Γ(ν
2
)
k
ν
2K ν

2
(k),

with k = |k1|, Kα the modified Bessel function of third kind, and the identity 7.12.(27) of

Erdélyi [23]

Kν(z) =
(2z)ν

π1/2
Γ(ν +

1

2
)

✂ ∞
0

dt (t2 + z2)−ν−1/2 cos(t)

ℜ(ν) > −1

2
, | arg(z) |< π

2
.

For an alternative derivation we refer to Hurst [25] and to the discussion in Heyde and

Leonenko [24]. An alternative expression is found in Dreier and Kotz [19].

For general n we obtain again the same expression. Indeed
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g̃n(k) =

✂
Rn

dnx eik·xgn(x)

=
Γ(ν

2
+ n

2
)

πn/2Γ(ν
2
)

✂
dn−2Ω

✂ +∞

0

dr rn−1

✂ π
0

dφ sinn−2(φ)eikr cosφ(1 + r2)−
ν
2
−n

2

=
2n/2Γ(ν+n

2
)

Γ(ν
2
)
k1−n/2

✂ +∞

0

dr rn/2(1 + r2)−
ν
2
−n

2 Jn/2−1(kr)

=
21− ν

2

Γ(ν
2
)
k
ν
2K ν

2
(k),

with k =
√
∑n
i=1 k

2
i , d

n−2Ω the surface element of the sphere Sn−2, φ the angle between k

and x and we employed identities 7.12.(9)

Γ(ν +
1

2
)Jν(z) =

1

π1/2
(
z

2
)ν
✂ π

0

dφ eiz cosφ(sinφ)2ν

ℜ(ν) > −1

2
(8)

and 7.14.(51) of Erdélyi [23]
✂ ∞

0

dt Jµ(bt)(t
2 + z2)−νtµ+1 = (

b

2
)ν−1 z

1+µ−ν

Γ(ν)
Kν−µ−1(bz)

ℜ(2ν − 1

2
) > ℜ(µ) > −1, ℜ(z) > 0.

Eventually one finds

g̃n(k) = g̃1(
√

k2
1 + · · ·+ k2

2).

With the linear change of variables x→ C−1x, setting Λ−1 = (CT )−1C−1, i.e. Λ = CCT ,

one obtains the following generalizations

gn(x) =
Γ(ν

2
+ n

2
)

πn/2(det Λ)1/2Γ(ν
2
)

1

(1 + xtΛ−1x)
ν
2

+n
2

(9)

with characteristic function

g̃n(k) =
21− ν

2

Γ(ν
2
)
(ktΛk)

ν
4K ν

2
((ktΛk)1/2).

In the univariate case Λ is substituted by the scalar λ2 and the previous expressions

reduce to

g1(x) =
Γ(ν

2
+ 1

2
)

π1/2λΓ(ν
2
)

1

(1 + x2

λ2 )
ν
2

+ 1

2

(10)

and

g̃1(k) =
21− ν

2

Γ(ν
2
)
(λk)

ν
2K ν

2
(λk).
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Moments of Student distributions

Due to the symmetry under reflection all the odd moments vanish. For the second

moments we have, provided that ν > 2

E(xi, xj) =
Λij
ν − 2

.

The moments of order 2n exist provided that ν > 2n ; as it happens for Gaussian distribution,

they can be expressed in term of the second moments

E(xj1 , xj2 , . . . , xj2n) =
Γ(ν

2
− n)

2nΓ(ν
2
)

∏

all the pairings

Λji1ji2 · · ·Λji2n−1
ji2n
.

In the univariate case these formulas reduce to E(x2) = λ2

ν−2
and

E(x2n) =
(2n− 1)!!Γ(ν

2
− n)

2nΓ(ν
2
)

λ2n.

The kurtosis is then κ = 3ν−2
ν−4

, provided that ν > 4.

Simulation of multivariate Student distributions

The simulation is a standard application of the technique used in the case of rotational

invariance. From

gn(x)dnx =
Γ(ν

2
+ n

2
)

πn/2Γ(ν
2
)
rn−1(1 + r2)

1

1−q dn−1Ωdr,

with r ≥ 0, we see that the density of the angular variables is uniform, while setting y = r2

1+r2
,

with 1 > y ≥ 0 and r =
√

y/(1− y), the density of y is given by

1

B(n
2
, ν

2
)
y
n
2
−1(1− y) ν2−1dy,

i.e. by the beta distribution with parameters n
2

and ν
2
. Eventually we can simulate the

multivariate n dimensional distribution by

1. Simulating y according to Bx(
n
2
, ν

2
) and setting r =

√
y

1−y
.

2. Simulating n i.i.d. Gaussian variables ui and settings n = (u1, . . . , un)/
√

u2
1 + · · ·+ u2

n.

3. Returning xn.

The more general case (9) is simulated using the same algorithm and then returning Cx,

where Λ−1 = (CT )−1C−1, i.e. Λ = CCT .
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Characteristic function of symmetric generalized hyperbolic distributions

We start from the expression

fn(x) =
α
n
2

(2π)
n
2K ν

2
(α)

K ν
2

+n
2
(α
√

1 + r2)

(1 + r2)
ν
4

+n
4

,

with r =
√
∑n
i=1 x

2
i ; the general case is obtained simply with an affine transformation x →

µ+ δRx, with µ ∈ R
n, δ ≥ 0 a scale parameter, and R an orthogonal transformation in R

n.

The central expression we need is an integral of the Sonine Gegenbauer type, cf. identity

7.14.(46) of Erdélyi [23]
✂ ∞

0

dt Jµ(bt)Kν(a
√
t2 + z2)(t2 + z2)−

ν
2 tµ+1

= bµa−νzµ−ν+1(a2 + b2)
ν
2
−
µ
2
− 1

2Kν−µ−1(z
√
a2 + b2)

ℜ(µ) > −1, ℜ(z) > 0.

For n = 1, considering that J− 1

2

(x) =
√

2
πx

cos(x), we obtain

f̃1(k1) =

✂ +∞

−∞

dx1 e
ik1x1f1(x1) =

2α
1

2

(2π)
1

2K ν
2
(α)

✂ +∞

0

dx1

K ν
2

+ 1

2

(α
√

1 + x2
1)

(1 + x2
1)
ν
4

+ 1

4

cos(k1x1)

=
α

1

2k
1

2

1

K ν
2
(α)

✂ +∞

0

dx1J− 1

2

(k1x1)K ν
2

+ 1

2

(α
√

1 + x2
1)(1 + x2

1)
− ν

4
− 1

4x
1

2

1

=
K ν

2
(
√

α2 + k2
1)

K ν
2
(α)

(α2 + k2
1)
ν
4

α
ν
2

.

For alternative derivations in the univariate case see Hurst [25] and the references therein.

In our setting the computation is exactly the same for general n, with k =
√
∑n
i=1 k

2
i ,

dn−2Ω the surface element of the sphere Sn−2, φ the angle between k and x, using identity

(8)

f̃n(k) =

✂
Rn

dnx eik·xfn(x)

=
α
n
2

(2π)
n
2K ν

2
(α)

✂
dn−2Ω

✂ +∞

0

dr rn−1

✂ π
0

dφ sinn−2(φ)eikr cosφ
K ν

2
+n

2
(α
√

1 + r2)

(1 + r2)
ν
4

+n
4

=
k1−n

2α
n
2

K ν
2
(α)

✂ +∞

0

dr Jn
2
−1(kr)K ν

2
+n

2
(α
√

1 + r2)(1 + r2)−
ν
4
−n

4 r
n
2

=
K ν

2
(
√
α2 + k2)

K ν
2
(α)

(α2 + k2)
ν
4

α
ν
2

.

20



Hence the eventual result f̃n(k) = f̃1(k).
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