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Abstract 

 

 This paper utilizes the bootstrap to construct tests using the measures for 

goodness-of-fit for nonnested regression models.  The bootstrap enables us to compute the 

statistical significance of the differences in the measures and to formally test on nonnested 

regression models.  The bootstrap tests that this paper proposes are expected to show better 

finite sample properties since they do not have accumulated errors in the computation process.  

Moreover, the bootstrap tests remove the possibility of inconsistent test results that the previous 

tests suffer from.  Because the bootstrap tests only evaluate if a model has a significantly higher 

explanatory power than the other model, there is no possibility for inconsistent results.  This 

study presents Monte Carlo simulation results to compare the finite sample properties of the 

proposed tests with the previous tests such as Cox test and J-test. 

 

 

 

Keywords: nonnested regression models, bootstrap, goodness-of-fit measures 

 

JEL Classification: C12, C14, C15 

 

Acknowledgements: I am grateful for the helpful comments from Tae-Hwan Kim, Tae-Kyu 

Park and the participants of Yonsei Economic Research Institute seminar.  I am also grateful for 

the excellent research assistance by So Yeon Park, Sung Sam Chung and Byunguk Kang.  This 

work was supported by Korea Research Foundation Grant (KRF-2002-041-B00055). 

 

 

 

Correspondences: Professor Jinook Jeong 

Department of Economics 

Yonsei University 

Seoul, Korea 120-749 

(02) 2123-2493 / Fax: (02) 313-5331 

email: jinook@yonsei.ac.kr 

     



 2

1. Introduction 

 When a researcher chooses from nonnested regression models, it is difficult to apply the 

usual F-test because there do not exist testable common restrictions.
1
  There have been 

proposed several tests for nonnested hypotheses in the literature.  Cox test has been originally 

proposed by Cox (1961, 1962) and further developed by Pesaran (1974) and Pesaran and 

Deaton (1978) for nonnested regression models.  Cox test is a likelihood ratio test comparing 

the likelihood under model 1 (H1) to the one under model 2 (H2).  Cox test has some 

shortcomings.  It is computationally burdensome and is not robust to distributional assumption.  

Also, the consistency in its test result is not guaranteed: it may favor H1 over H2, and at the same 

time favor H2 over H1.  Third, as the test is based on an asymptotic distribution, the power in 

finite samples is questionable. 

 Davidson and MacKinnon (1981) suggest J-test for nonnested regression models.  J-test 

is a two-step test based on ‘artificial nesting.’  Though J-test is easier and more practical than 

Cox test, it still has the problem of inconsistent test results as Cox test.  Also, as it is based on an 

asymptotic distribution, the small sample performance of J-test is not satisfactory.  Godfrey 

(1998), Fan and Li (1995), and Davidson and MacKinnon (2002) apply bootstrap procedures 

for J-test and succeed to improve its power in finite samples.  However, the possibility of 

inconsistent test results still remains. 

 Another approach to nonnested models is the tests based on ‘encompassing principle.’  

All the above tests assume that the true conditional distribution of the data is either H1 or H2.  

However, in practice, there always exists the third possibility.  Mizon and Richard (1986) 

among others criticize the assumption and propose Encompassing test which include J-test as a 

special case. 

 There are many other test procedures for nonnested regression model in the literature.  

                                            
1 When there exist two alternative regression models and the explanatory variable set of neither model is a subset 

of the other, those regression models are said to be ‘nonnested regression models.’ 
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However, all the previous tests have two common problems.  First, the possibility of 

inconsistent test results prevails.  Second, the test power in finite samples is not satisfactory.  

The low power can be explained in two ways.  One, most tests use asymptotic distributions 

which is not accurate enough in small samples.  Two, as most previous tests involve complex 

computation, they may suffer from some distortion of information in the process of 

computation.  For example, J-test uses the predicted values from the first stage regression in the 

second stage.  As a result, the estimation error in the first stage regression is carried over to the 

second stage and reduces the accuracy of the second stage results as Pagan (1984, 1986) points 

out. 

 This paper suggests a simple new test procedure for nonnested regression models.  

When we consider two competing regression models, the first comparison we usually do is the 

coefficient of determination (R
2
) of the models.  R

2
 is probably the simplest and most intuitive 

measure for the fit of a regression model, although there exist a number of alternative measures 

such as adjusted R
2
 ( 2R ), Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), Predicted Residual Sum of Squares (PRESS), and Hocking’s Sp, among others.  

However, it has not been possible to construct a test with such measures for model selection, 

since none of the exact distributions of the measures or of the difference (or ratio) of the 

measures is known.  Comparison of the goodness-of-fit measures is limited only to eyeball 

inspection and intuitive benchmarking.   

 This paper utilizes a computation-oriented nonparametric method, the bootstrap, to 

construct tests using the goodness-of-fit measures for nonnested regression models.  The 

bootstrap enables us to compute the statistical significance of the differences in those measures 

and to formally test about nonnested regression models.  It is not new to apply bootstrap 

procedures for nonnested regression models.  As mentioned above, bootstrap has been applied 

to J-test to improve its small sample property.  However, the advantage of bootstrapping has not 
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been maximized as J-test has the problem of accumulated errors from its two-step procedure.  

Bootstrap tests that this paper proposes are expected to show better finite sample properties 

since they do not have such accumulated errors in the computation process.  Moreover, the 

bootstrap tests using goodness-of-fit measures have another important advantage: there is no 

possibility of inconsistent test results.  Because the bootstrap tests only evaluate if a model has 

a significantly higher explanatory power than the other model, inconsistent results cannot 

happen.  We present Monte Carlo simulation results to compare the finite sample properties of 

the proposed tests with the previous tests such as Cox test and J-test.   

 

2. Model 

 Consider the following two regression models. 

  H1: y = Xβ + u          (1) 

  H2: y = Zγ + v          (2) 

where y is the (n×1) vector of the dependent variable, X and Z are (n×k1) and (n×k2) matrices of 

regressors, and u and v are (n×1) vectors of errors.  We assume that E(u) = E(v) = 0 and var(u) 

= I2

1σ  and var(v) = I2

2σ .  We also assume the two alternative sets of regressors, X and Z, may 

have some common variables, but neither is a subset of the other.  The problem here is to decide 

which is a better model. 

 Cox (1961, 1962) developed a variant of likelihood ratio test for nonnested hypotheses.  

Pesaran (1974), Pesaran and Deaton (1978), and McAleer (1984) have derived various versions 

of Cox test for the regression cases.  For our hypotheses (1) and (2), the Cox statistic for testing 

that H1 is correct and H2 is not is, 
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The test statistic of Cox test is as follows.   
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where 'X)X'X(XIM 1

X

−−= .  Cox has shown that the test statistic in (4) is asymptotically 

distributed as a standard normal variable under H1.  A significantly larger value of the statistic 

from zero is evidence against H1. 

 The J test proposed by Davidson and MacKinnon (1981) is a linearized version of the 

Cox test.  It uses the following ‘artificially nested’ model. 

  y = (1−λ)Xβ + λZγ + e        (5) 

In this model, if the hypothesis H1 is true, then λ = 0.  The problem is that λ is not identified in 

the estimation of equation (5). Davidson and MacKinnon (1981) suggest a two-step procedure: 

γ is estimated by least squares from equation (2), and the estimator, γ̂ , is replaced for the 

unknown γ in equation (5) to separately estimate λ.  Thus in the second stage, the following 

equation is estimated by least squares. 

  y = (1−λ)Xβ + λ(Z γ̂ ) + e        (6) 

As Pesaran (1982) shows, if H1 is true, the test statistic becomes: 
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where 2

1s  is the estimated error variance of regression in (6).  J1 is asymptotically distributed as 

a standard normal variable.  A large value of J1 is evidence against H1. 

Similarly, the test statistic J2 can be derived for a test of H2 against H1 in the following 

model.   

  y = θX β̂  + (1−θ)Zγ + ε        (8) 
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where 2

2s  is the estimated error variance of regression in (8).  As discussed in the introduction, 

the result of the J1 test and the J2 test may not be consistent.  It is possible that the tests reject 

both, neither, or either one of the hypotheses H1 and H2.   

There are a number of alternative versions of the J tests by using different estimates of γ 

in equation (6) and β in equation (8).  The alternative tests are summarized in Davidson and 

MacKinnon (2004). 

 

3. Bootstrapping the difference in Goodness-of-Fit Measures 

 First, the coefficient of determination, R
2
, of a regression model y = Xβ + u is defined as 

follows.
2
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where β−= ˆXyû  and β̂  is the least squares estimator of β.  The distribution of R
2
 for normally 

distributed errors has been derived by Cramer (1987) among others.  Assuming u ~ N(0, σ2
I), 

the dimension of y is (n×1), the dimension of X is (n×k), and the first column in X is a vector of 

ones, the density function of R
2
, with argument r, is: 
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 For two competing regression models with normally distributed errors, e.g. (1) y = Xβ + 

u and (2) y = Zγ + v, Schmidt (1973) suggests a numerical method for calculating 

                                            
2 For simplicity in deriving the distribution of R2, we assume that the explanatory variables in X are measured as 

deviations from their sample means. 
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)RR(P 2
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2

Xy >  when model (1) is true.  Ebbeler (1975) extends Schmidt’s work to the adjusted 

R
2
 (i.e. 2R ) comparison.  Though their works allow us to estimate the probability of correct 

model selections based on R
2
 (or 2R ) under normality assumption, it is still an open question 

how to compute the statistical significance of an observed difference in two R
2
’s. 

 The advantages of bootstrapping the difference in R
2
’s (and in the other measures of 

goodness-of-fit) are as follows.  First, it allows us to compute the significance of an observed 

difference in two R
2
’s using the empirical (bootstrap) distribution of the difference.  

Accordingly, one can perform a test on alternative models with the computed significance level.  

Second, bootstrap method is robust to the distributional assumption.  Even though the 

distribution of error terms is not normal, bootstrap can still compute the statistical significance 

of the observed difference in R
2
’s.   

It should be noted that the R
2
’s are not pivotal, and the standard bootstrap confidence 

interval may not work well.  In this paper, two alternative bootstrap procedures are employed.  

First, the standard simple bootstrap confidence interval is applied to ‘transformed’ R
2
’s to 

overcome the range-restrictiveness.
3
  Second, a double bootstrapped confidence interval is 

employed for the transformed R
2
’s (and other goodness-of-fit measures).  The double bootstrap 

procedure is:  (a) draw the bootstrap sample, (b) estimate the standard error of the statistic of 

interest θ̂ , sB, by a ‘nested’ bootstrap procedure, (c) using the formula 
B

0

s

ˆ
t

θ−θ
= , a 

‘prepivoted’ root t is constructed, and (d) determine the critical values for the test from the 

‘outer’ bootstrap empirical distribution of the root t by repeating (a) through (c).
4
   

Similar standard and double bootstrap procedures are applied to the alternative 

                                            

3 The 
2

2

R1

R

−
 transfrormation has been used.  Actually, the results with the original form of R2 and the results with 

the transformed R2 are not much different.  The detailed results are available from the author upon request. 
4 For a general review of the bootstrap methods in econometrics, see Jeong and Maddala (1993). 
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measures for goodness-of-fit: 2R , AIC, BIC, PRESS, and Hocking’s Sp.
5
  The definitions of 

the measures are as follows.
6
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û'û
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 diagonal element of X)X'X(X 1− .  The results are compared 

along with the Cox test and J test in the nest section.  

 

4. Finite Sample Performance of Alternative Tests for Nonnested Regression Models 

 To compare the finite sample performances of the alternative tests for nonnested 

regression models, we adopt the Monte Carlo design of Godfrey (1998) for equation (1) and (2).  

The elements xij of X are N(0,2
2
) variables that are independent over i and j, i = 1, 2, …, n and j 

= 1, 2, …, k1.  The elements zij of Z are generated as follows. 

  ijijij exz +α=   j = 1, 2, …, min(k1, k2)    (17) 

  ijij ez =   j = k1+1, k1+2, …, k2  (if k1 < k2)   (18) 

We assume that eij are independent random picks from N(0,2
2
), and that the error terms of (1) 

and (2), ui and vi , are independent random picks from normal distributions with zero means and 

                                            
5 Mallows’ Cp  is another widely-used measure for goodness-of-fit.  I use Hocking’s Sp rather than Mallows’ Cp for 

two reasons.  First, Mallows’ Cp requires the knowledge of the error variance.  Second, it has been shown by Kinal 

and Lahiri (1984) that the stochastic version of Mallows’ Cp is identical to Hocking’s Sp.  
  

6 There exists more than one version of AIC and BIC in the literature. 
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variances of 2

uσ  and 2

vσ , respectively.
7
  Without loss of generality, we set every element of β 

and γ is one.  To maintain a constant R
2
 in a simulation, 2

uσ  and 2

vσ  are set as follows.
8
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The value of α is determined by the correlation between xij and zij.  With the correlation 

coefficient ρ between xij and zij, 
21 ρ−

ρ
=α .   

 Table 1 and Table 2 present the performances of alternative tests when the numbers of 

regressors (k1 and k2) are symmetric.  The tests compared in the simulations are: Cox test 

(‘Cox’ in the Tables), J-test (‘J’ in the Tables), R
2
, 2R , AIC, BIC, PRESS, and Sp.   All the 

goodness-of-fit measures (R
2
, 2R , AIC, BIC, PRESS, and Sp) are bootstrapped through two 

alternative procedures, as explained in section 3: standard bootstrap (‘SB’ in the Tables) and 

double bootstrap (‘DB’ in the Tables).  Thus, we compare all 14 alternative test procedures as in 

Tables 1 and 2.   

For these 14 alternative tests, Tables 1 and 2 show the rejection rates of H1: y = Xβ + u 

when H2: y = Zγ + v is the true model.  The rejection rates are reported for various values of ρ, 

the correlation coefficients between xij and zij.  When ρ is low, it should be easy for any test to 

distinguish the true model (H2 here) from the wrong model (H1).   As ρ becomes higher, it must 

be more difficult for any test to reject the wrong model against the true model.  When ρ=1, both 

                                            
7 As the relative advantage of bootstrap is usually higher with non-normal distributions, alternative distributions 

could also be employed in the simulation to emphasize the benefit of bootstrapping.  However, if the bootstrap tests 

perform better than the traditional tests with a normal distribution, they will of course be better with non-normal 
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the models become identical and the test should reject the wrong model only for the nominal 

size. In the simulations, because α is not defined when ρ=1, the rejection rates of H1 when 

ρ=0.9999 instead are computed.  Thus, the rejection rates reported in the far-right column of 

ρ=0.9999 represent the ‘empirical sizes’ of the tests.  To capture the finite sample performances 

of the alternative tests, four different sample sizes are employed in the Monte Carlo simulation: 

20, 50, 100, and 200.  The frequency of resampling in the process of bootstrap is set to 500.  The 

simulation is done 1000 times.
9
 

Table 1 shows the rejection rates of the 14 alternative tests when each model (H1 and 

H2) has two regressors, i.e. k1=2 and k2=2.  It is clear from Table 1 that the bootstrap tests 

outperform Cox test and J-test.  First of all, the empirical sizes of the bootstrap tests are more 

accurate than Cox test or J-test.  For all the sample sizes, the empirical sizes of Cox test and 

J-test are much smaller than the nominal size of 0.05.  For example, when the sample size is 50, 

the empirical size of Cox test is 0.002 and the empirical size of J-test is 0.001.  The empirical 

sizes of bootstrap tests are much closer to the nominal level.  For the same case of sample size 

of 50, the empirical size of standard bootstrap test using R
2
 is 0.053.  All the other measures 

show similar empirical sizes ranging from 0.051 to 0.087 for n = 50.  Regardless of the error 

distribution or the sample size, the bootstrap tests show reasonably better size than Cox test or 

J-test.
10

 

It is also obvious from Table 1 that the bootstrap tests have higher power than Cox test 

or J-test.  For the whole range (0.00 to 0.95) of ρ, the standard bootstrap test and double 

bootstrap test produce consistently higher empirical power that Cox test or J-test.  For example, 

let us look at the case when the sample size is 100 and ρ equals 0.75.  The empirical power of 

                                                                                                                                        
distributions.   
8 If β or γ is not a vector of ones, these expressions would become a bit more complex. 
9 For the double bootstrap procedures, to reduce the computational burden, the nested bootstrap repetition is 

reduced to 100 times, the outer bootstrap repetition is reduced to 200 times, and the simulation is done 300 times.  
10 To conserve space, only the results from normally distributed errors are reported here.  Even when we assume a 

flat distribution of the errors, the results are not qualitatively different from the ones reported here.  The detailed 
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Cox test is 0.953 and the empirical power of J-test is 0.951 while the empirical powers of the 

bootstrap tests are all 1.000.  For all the sample sizes and all the values of ρ, the bootstrap tests 

show better power than Cox test or J-test.  

Table 2 repeats the same findings for the case of four regressors in each model (k1=4 

and k2=4).  Although the performances of the four tests are a bit worse than Table 1 (k1=2 and 

k2=2 case) due to the reduction in the degrees of freedom, the simulation results basically tell us 

that the bootstrap tests have more accurate size and higher power.  The reason why Cox test and 

J-test under-reject the null hypothesis should be related to the problems explained in section 2.  

Especially, the inconsistency in the test results of Cox test and J-test may have weakened the 

performance of the tests.  It is possible for the two tests show inconsistent results, because Cox 

test and J-test evaluate the hypothesis twice: once test H1 against H2, and then test H2 against H1.    

Table 3 presents how frequently Cox test and J-test produce inconsistent test results.  As seen in 

the Table, in all the cases considered in the simulation, Cox test and J-test show considerable 

rates of the inconsistent results.  These inconsistent results have lowered the power of Cox test 

and J-test.  Besides, as explained in section 2, the complexity of computation in Cox test and the 

two-step estimation process in J-test may have created distortions.  

 It has been argued that the finite sample properties of J-test may become problematic 

when the two competing models have asymmetric numbers of regressors.  Davidson and 

MacKinnon (2002, 2004) give a good summary of the asymmetric regressor problem in J-test.
11

  

Unfortunately, because R
2
 is not robust to the number of regressors, it is also reasonable to 

expect that the performance of any test using R
2
 would not be ideal for asymmetric regressor 

cases.  However, as the other measures of goodness-of-fit are robust to the number of regressors, 

their performances may not be affected by the asymmetry of the models.  To see the effects of 

asymmetric regressors, Tables 4 – 5 report the rejection rates of the fourteen tests in various 

                                                                                                                                        
results are available from the author upon request. 
11 See Davidson and MacKinnon (2002) or Davidson and MacKinnon (2004) Ch.15.3 and the references therein. 
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combinations of asymmetric regressor cases. 

Table 4 shows the rejection rates of the alternative tests when the X-model (H1) has 2 

regressors and the Z-model (H2) has 4 regressors, that is, k1=2 and k2=4.  Since the true data 

generation process in the simulation is Z-model, the situation is that the true model has more 

regressors than the wrong model.  As expected, the finite sample performances of the bootstrap 

tests using R
2
’s, as well as Cox test or J-test, are far from perfect.  All the four tests over-reject 

the true model.
12

  The magnitude of such over-rejection is highest with standard bootstrap test 

using R
2
, and lowest with J-test.  Overall, however, none of the four tests is acceptable in terms 

of empirical size.   

It is not surprising that the tests using R
2
 do not perform well.  It is well known that R

2
 

does not provide any penalty for adding irrelevant regressors.  To remedy the limitation of R
2
, 

the alternative measures have been proposed such as 2R , AIC, BIC, PRESS, and Sp.  The 

bootstrap tests using these measures show much better performance.  For example, when n = 20, 

the empirical size of standard bootstrap test using 2R  is 0.059 and the empirical size of double 

bootstrap test using 2R  is 0.053 respectively, which are pretty close to the nominal size of 

0.050.  The tests using AIC, BIC, PRESS or Sp somewhat under-rejects the true model, but their 

rejection rates are much closer to the nominal size than Cox test, J-test, and the bootstrap tests 

using R
2
. 

 Tables 5 shows the effects of regressor asymmetry in the opposite way: the X-model 

(H1) has more regressors than the Z-model.  Thus, the wrong model now has more regressors 

than the true model.  Table 5 presents the rejection rates of X-model for the alternative tests 

when k1=4 and k2=2.  In this case, J-test shows the most accurate size, and all the other tests 

show the tendency of under-rejection when the null hypothesis is true.  In terms of power, 

however, J-test does not show as high power as the bootstrap tests using R
2
, 2R , AIC, BIC, 

                                            
12 This confirms the observation of Davidson and MacKinnon (2004), p.668. 
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PRESS or Sp except when n = 20.  One interesting phenomenon about BIC is that the empirical 

size of bootstrapped BIC test tends to increase as the sample size grows.  For example, the 

empirical size of the standard bootstrap test using BIC is 0.008 when n = 20, 0.214 when n = 50, 

0.432 when n = 100, and as high as 0.600 when n = 200.  The empirical sizes of double 

bootstrap test using BIC have weaker tendency of escalating but still increases as the sample 

size becomes larger: 0.000 when n = 20, 0.037 when n = 50, 0.220 when n = 100, and as high as 

0.400 when n = 200.  This is probably due to the definition of BIC.  As shown in (14), BIC 

penalizes the inclusion of more explanatory variables with a factor of log(n).  Due to such 

definition, the penalty for including more explanatory variables depends on the number of 

samples (n).  In short, BIC gives too much penalty for inclusion of new explanatory variables, 

and the over-penalization escalates with the sample size. 

 

6. Conclusion 

 This paper suggests a simple new test procedure for nonnested regression models.  It 

utilizes a computation-oriented nonparametric method, the bootstrap, to construct a test using 

various measures for goodness-of-fit such as R
2
 , 2R , AIC, BIC, PRESS, and Sp for nonnested 

regression models.  The bootstrap enables us to compute the statistical significance of the 

differences in those measures and to formally test to choose the best model among nonnested 

regression models.  The bootstrap tests that this paper proposes have an obvious strength over 

the existing ones: they never show inconsistent test results.  Because the bootstrap tests only 

evaluate if a model has a significantly higher explanatory power than the other model, there is 

no possibility for inconsistent results.   

The Monte Carlo simulation results to compare the finite sample properties of the 

proposed tests with the previous tests such as Cox test and J-test show that the proposed 

bootstrap tests show more accurate empirical sizes and higher empirical powers than the 
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previous tests when the number of regressors are symmetric.  In the cases of asymmetric 

regressor cases, however, the finite sample performances of the suggested bootstrap tests show 

some mixed results.  Overall, the bootstrap tests using 2R show the best finite sample 

performance among the measures, although there exist some exceptions 
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<Table 1> Rejection Rates of H1: y = Xβ + u  (k1=2, k2=2) 

True Model: H2, True Rzy
2
 = 0.9, Nominal Size = 0.05. 

ρ 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 

Cox 0.907 0.912 0.930 0.920 0.926 0.913 0.923 0.931 0.924 0.005

J 0.919 0.912 0.922 0.925 0.918 0.908 0.928 0.936 0.918 0.008

SB (R2) 1 1 1 1 1 1 0.999 0.999 0.959 0.065

DB (R2) 1 1 1 1 1 1 1 1 0.970 0.067

SB ( 2R ) 1 1 1 1 1 1 0.999 0.999 0.959 0.065

DB ( 2R ) 1 1 1 1 1 1 1 1 0.970 0.063

SB (AIC) 1 1 1 1 1 1 0.999 0.999 0.959 0.065

DB (AIC) 1 1 1 1 1 1 1 1 0.970 0.060

SB (BIC) 1 1 1 1 1 1 0.999 0.999 0.959 0.065

DB (BIC) 1 1 1 1 1 1 1 1 0.970 0.060

SB (PRESS) 1 1 1 1 1 1 1 0.999 0.955 0.068

DB (PRESS) 1 1 1 1 1 1 1 1 0.967 0.073

SB (Sp) 1 1 1 1 1 1 0.999 0.999 0.959 0.065

DB (Sp) 1 1 1 1 1 1 1 1 0.967 0.067

            

n=50 

Cox 0.921 0.946 0.929 0.937 0.946 0.945 0.937 0.944 0.939 0.002

J 0.932 0.940 0.923 0.933 0.950 0.940 0.934 0.952 0.949 0.001

SB (R2) 1 1 1 1 1 1 1 1 1 0.053

DB (R2) 1 1 1 1 1 1 1 1 1 0.083

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.053

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.083

SB (AIC) 1 1 1 1 1 1 1 1 1 0.053

DB (AIC) 1 1 1 1 1 1 1 1 1 0.073

SB (BIC) 1 1 1 1 1 1 1 1 1 0.053

DB (BIC) 1 1 1 1 1 1 1 1 1 0.073

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.051

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.087

SB (Sp) 1 1 1 1 1 1 1 1 1 0.053

DB (Sp) 1 1 1 1 1 1 1 1 1 0.087

            

n=100 

Cox 0.923 0.940 0.943 0.942 0.953 0.950 0.946 0.947 0.937 0.006

J 0.936 0.942 0.950 0.943 0.951 0.948 0.948 0.950 0.942 0.006

SB (R2) 1 1 1 1 1 1 1 1 1 0.065

DB (R2) 1 1 1 1 1 1 1 1 1 0.067

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.065

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.067

SB (AIC) 1 1 1 1 1 1 1 1 1 0.065

DB (AIC) 1 1 1 1 1 1 1 1 1 0.060

SB (BIC) 1 1 1 1 1 1 1 1 1 0.065

DB (BIC) 1 1 1 1 1 1 1 1 1 0.060

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.065

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.070

SB (Sp) 1 1 1 1 1 1 1 1 1 0.065

DB (Sp) 1 1 1 1 1 1 1 1 1 0.067
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n=200 

Cox 0.935 0.946 0.942 0.958 0.945 0.939 0.948 0.954 0.954 0.011

J 0.942 0.948 0.940 0.951 0.945 0.941 0.945 0.954 0.953 0.010

SB (R2) 1 1 1 1 1 1 1 1 1 0.079

DB (R2) 1 1 1 1 1 1 1 1 1 0.043

SB (
2R ) 1 1 1 1 1 1 1 1 1 0.079

DB (
2R ) 1 1 1 1 1 1 1 1 1 0.043

SB (AIC) 1 1 1 1 1 1 1 1 1 0.079

DB (AIC) 1 1 1 1 1 1 1 1 1 0.040

SB (BIC) 1 1 1 1 1 1 1 1 1 0.079

DB (BIC) 1 1 1 1 1 1 1 1 1 0.040

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.079

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.050

SB (Sp) 1 1 1 1 1 1 1 1 1 0.079

DB (Sp) 1 1 1 1 1 1 1 1 1 0.050
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<Table 2> Rejection Rates of H1: y = Xβ + u  (k1=4, k2=4) 

True Model: H2, True Rzy
2
 = 0.9, Nominal Size = 0.05. 

ρ 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 

Cox 0.900 0.891 0.905 0.910 0.912 0.902 0.898 0.889 0.885 0.005

J 0.908 0.914 0.920 0.924 0.933 0.915 0.907 0.909 0.912 0.001

SB (R2) 1 1 1 1 1 0.999 0.995 0.991 0.928 0.052

DB (R2) 1 1 1 1 1 0.997 0.990 0.993 0.963 0.063

SB ( 2R ) 1 1 1 1 1 0.999 0.995 0.991 0.928 0.052

DB ( 2R ) 1 1 1 1 1 0.997 0.990 0.993 0.963 0.063

SB (AIC) 1 1 1 1 1 0.999 0.995 0.991 0.928 0.052

DB (AIC) 1 1 1 1 1 0.997 0.990 0.993 0.963 0.050

SB (BIC) 1 1 1 1 1 0.999 0.995 0.991 0.928 0.052

DB (BIC) 1 1 1 1 1 0.997 0.990 0.993 0.963 0.050

SB (PRESS) 1 1 1 1 1 0.999 0.995 0.990 0.924 0.039

DB (PRESS) 1 1 1 1 1 0.997 0.990 0.983 0.950 0.057

SB (Sp) 1 1 1 1 1 0.999 0.995 0.991 0.928 0.052

DB (Sp) 1 1 1 1 1 0.997 0.990 0.993 0.957 0.063

            

n=50 

Cox 0.923 0.929 0.944 0.947 0.937 0.930 0.945 0.924 0.933 0.005

J 0.925 0.934 0.945 0.952 0.939 0.935 0.947 0.934 0.941 0.005

SB (R2) 1 1 1 1 1 1 1 1 1 0.076

DB (R2) 1 1 1 1 1 1 1 1 1 0.083

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.076

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.083

SB (AIC) 1 1 1 1 1 1 1 1 1 0.076

DB (AIC) 1 1 1 1 1 1 1 1 1 0.080

SB (BIC) 1 1 1 1 1 1 1 1 1 0.076

DB (BIC) 1 1 1 1 1 1 1 1 1 0.080

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.070

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.087

SB (Sp) 1 1 1 1 1 1 1 1 1 0.076

DB (Sp) 1 1 1 1 1 1 1 1 1 0.087

            

n=100 

Cox 0.919 0.945 0.937 0.940 0.947 0.936 0.943 0.938 0.954 0.002

J 0.922 0.948 0.938 0.940 0.951 0.933 0.942 0.946 0.959 0.002

SB (R2) 1 1 1 1 1 1 1 1 1 0.057

DB (R2) 1 1 1 1 1 1 1 1 1 0.063

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.057

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.063

SB (AIC) 1 1 1 1 1 1 1 1 1 0.057

DB (AIC) 1 1 1 1 1 1 1 1 1 0.060

SB (BIC) 1 1 1 1 1 1 1 1 1 0.057

DB (BIC) 1 1 1 1 1 1 1 1 1 0.060

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.057

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.073

SB (Sp) 1 1 1 1 1 1 1 1 1 0.057

DB (Sp) 1 1 1 1 1 1 1 1 1 0.067
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n=200 

Cox 0.933 0.941 0.946 0.949 0.947 0.945 0.944 0.946 0.955 0.008

J 0.937 0.944 0.945 0.951 0.946 0.950 0.945 0.947 0.955 0.008

SB (R2) 1 1 1 1 1 1 1 1 1 0.060

DB (R2) 1 1 1 1 1 1 1 1 1 0.063

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.060

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.063

SB (AIC) 1 1 1 1 1 1 1 1 1 0.060

DB (AIC) 1 1 1 1 1 1 1 1 1 0.060

SB (BIC) 1 1 1 1 1 1 1 1 1 0.060

DB (BIC) 1 1 1 1 1 1 1 1 1 0.060

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.057

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.067

SB (Sp) 1 1 1 1 1 1 1 1 1 0.060

DB (Sp) 1 1 1 1 1 1 1 1 1 0.063



 21

<Table 3> Rates of Inconsistent Test Results 

Error Distribution: Normal (0,1), k1=2, k2=2 

　 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 
Cox 0.063 0.091 0.054 0.070 0.073 0.064 0.077 0.066 0.102 0.993

J 0.071 0.089 0.064 0.081 0.075 0.073 0.084 0.065 0.085 0.992

n=50 
Cox 0.082 0.071 0.058 0.056 0.062 0.056 0.070 0.063 0.040 0.995

J 0.065 0.072 0.059 0.057 0.067 0.050 0.070 0.059 0.039 0.996

n=100 
Cox 0.063 0.050 0.050 0.056 0.056 0.055 0.051 0.064 0.056 0.990

J 0.054 0.049 0.054 0.059 0.053 0.056 0.050 0.065 0.060 0.989

n=200 
Cox 0.069 0.059 0.051 0.068 0.057 0.050 0.047 0.046 0.047 0.990

J 0.057 0.054 0.049 0.066 0.057 0.049 0.048 0.045 0.050 0.989

Error Distribution: Uniform (0,1), k1=2, k2=2 

　 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 
Cox 0.101 0.082 0.063 0.063 0.074 0.060 0.081 0.073 0.086 0.995

J 0.091 0.067 0.068 0.069 0.077 0.066 0.084 0.067 0.085 0.993

n=50 
Cox 0.069 0.049 0.059 0.055 0.064 0.053 0.057 0.046 0.053 0.992

J 0.057 0.053 0.064 0.057 0.065 0.058 0.051 0.049 0.052 0.992

n=100 
Cox 0.072 0.070 0.049 0.059 0.055 0.058 0.055 0.058 0.051 0.991

J 0.067 0.066 0.053 0.055 0.057 0.059 0.053 0.060 0.055 0.991

n=200 
Cox 0.075 0.061 0.052 0.056 0.051 0.059 0.062 0.062 0.046 0.983

J 0.061 0.065 0.054 0.048 0.056 0.061 0.060 0.059 0.046 0.983

Error Distribution: Normal (0,1), k1=4, k2=4 

　 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 
Cox 0.112 0.101 0.099 0.095 0.101 0.094 0.098 0.118 0.098 0.992

J 0.099 0.084 0.077 0.086 0.08 0.074 0.082 0.089 0.073 0.991

n=50 
Cox 0.074 0.063 0.068 0.061 0.064 0.060 0.074 0.071 0.066 0.988

J 0.065 0.059 0.069 0.060 0.054 0.059 0.070 0.066 0.060 0.988

n=100 
Cox 0.067 0.053 0.069 0.068 0.048 0.053 0.066 0.066 0.040 0.990

J 0.067 0.050 0.069 0.063 0.047 0.048 0.058 0.066 0.038 0.990

n=200 
Cox 0.059 0.049 0.050 0.066 0.053 0.052 0.046 0.052 0.046 0.988

J 0.056 0.046 0.047 0.067 0.050 0.052 0.045 0.056 0.045 0.989

Error Distribution: Uniform (0,1), k1=4, k2=4 

　 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 
Cox 0.086 0.088 0.097 0.107 0.102 0.099 0.082 0.111 0.095 0.988

J 0.072 0.079 0.086 0.091 0.089 0.086 0.062 0.084 0.075 0.993

n=50 
Cox 0.062 0.076 0.059 0.058 0.076 0.055 0.065 0.072 0.052 0.990

J 0.061 0.075 0.058 0.056 0.072 0.05 0.052 0.061 0.052 0.996

n=100 
Cox 0.067 0.055 0.039 0.063 0.068 0.044 0.064 0.067 0.057 0.993

J 0.064 0.051 0.039 0.049 0.068 0.041 0.060 0.060 0.059 0.993

n=200 
Cox 0.054 0.053 0.048 0.046 0.052 0.050 0.041 0.039 0.052 0.979

J 0.054 0.049 0.050 0.049 0.051 0.049 0.042 0.038 0.046 0.981
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<Table 4> Rejection Rates of H1: y = Xβ + u  (k1=2, k2=4) 

True Model: H2, Error Distribution: Normal, True Rzy
2
 = 0.9, Nominal Size = 0.05. 

ρ 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 

Cox 0.899 0.908 0.920 0.895 0.915 0.911 0.922 0.911 0.913 0.868

J 0.920 0.927 0.931 0.910 0.923 0.922 0.938 0.931 0.931 0.207

SB (R2) 1 1 1 1 1 1 1 1 1 0.970

DB (R2) 1 1 1 1 1 1 1 1 1 0.980

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.059

DB ( 2R ) 1 1 1 1 1 1 1 1 0.997 0.053

SB (AIC) 1 1 1 1 1 1 1 1 0.999 0.018

DB (AIC) 1 1 1 1 1 1 1 1 0.997 0.017

SB (BIC) 1 1 1 1 1 1 1 1 0.999 0.005

DB (BIC) 1 1 1 1 1 1 1 1 0.987 0.003

SB (PRESS) 1 1 1 1 1 1 1 1 0.999 0.004

DB (PRESS) 1 1 1 1 1 1 1 1 0.993 0.010

SB (Sp) 1 1 1 1 1 1 1 1 0.999 0.010

DB (Sp) 1 1 1 1 1 1 1 1 0.997 0.007

            

n=50 

Cox 0.921 0.938 0.938 0.936 0.929 0.943 0.947 0.932 0.938 0.864

J 0.933 0.948 0.949 0.943 0.936 0.945 0.947 0.941 0.948 0.158

SB (R2) 1 1 1 1 1 1 1 1 1 0.947

DB (R2) 1 1 1 1 1 1 1 1 1 0.917

SB (
2R ) 1 1 1 1 1 1 1 1 1 0.032

DB (
2R ) 1 1 1 1 1 1 1 1 1 0.040

SB (AIC) 1 1 1 1 1 1 1 1 1 0.005

DB (AIC) 1 1 1 1 1 1 1 1 1 0.010

SB (BIC) 1 1 1 1 1 1 1 1 1 0.000

DB (BIC) 1 1 1 1 1 1 1 1 1 0.000

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.008

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.010

SB (Sp) 1 1 1 1 1 1 1 1 1 0.004

DB (Sp) 1 1 1 1 1 1 1 1 1 0.007

            

n=100 

Cox 0.930 0.949 0.953 0.942 0.949 0.946 0.939 0.947 0.946 0.812

J 0.937 0.954 0.954 0.946 0.945 0.950 0.936 0.950 0.947 0.159

SB (R2) 1 1 1 1 1 1 1 1 1 0.874

DB (R2) 1 1 1 1 1 1 1 1 1 0.877

SB (
2R ) 1 1 1 1 1 1 1 1 1 0.028

DB (
2R ) 1 1 1 1 1 1 1 1 1 0.037

SB (AIC) 1 1 1 1 1 1 1 1 1 0.004

DB (AIC) 1 1 1 1 1 1 1 1 1 0.007

SB (BIC) 1 1 1 1 1 1 1 1 1 0.000

DB (BIC) 1 1 1 1 1 1 1 1 1 0.000

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.004

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.003

SB (Sp) 1 1 1 1 1 1 1 1 1 0.003

DB (Sp) 1 1 1 1 1 1 1 1 1 0.003
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n=200 

Cox 0.931 0.948 0.953 0.949 0.945 0.945 0.954 0.952 0.936 0.774

J 0.935 0.946 0.956 0.953 0.946 0.948 0.957 0.955 0.934 0.142

SB (R2) 1 1 1 1 1 1 1 1 1 0.807

DB (R2) 1 1 1 1 1 1 1 1 1 0.790

SB (
2R ) 1 1 1 1 1 1 1 1 1 0.028

DB (
2R ) 1 1 1 1 1 1 1 1 1 0.027

SB (AIC) 1 1 1 1 1 1 1 1 1 0.005

DB (AIC) 1 1 1 1 1 1 1 1 1 0.003

SB (BIC) 1 1 1 1 1 1 1 1 1 0.000

DB (BIC) 1 1 1 1 1 1 1 1 1 0.000

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.005

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.003

SB (Sp) 1 1 1 1 1 1 1 1 1 0.005

DB (Sp) 1 1 1 1 1 1 1 1 1 0.003
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<Table 5> Rejection Rates of H1: y = Xβ + u  (k1=4, k2=2) 

True Model: H2, Error Distribution: Normal, True Rzy
2
 = 0.9, Nominal Size = 0.05. 

ρ 0.00 0.30 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.9999

n=20 

Cox 0.939 0.923 0.932 0.922 0.938 0.907 0.915 0.912 0.886 0.006

J 0.930 0.921 0.928 0.921 0.934 0.910 0.919 0.912 0.900 0.062

SB (R2) 1 1 1 1 1 1 0.998 0.982 0.846 0.000

DB (R2) 1 1 1 1 1 1 0.997 0.977 0.830 0.000

SB ( 2R ) 1 1 1 1 1 1 0.998 0.989 0.894 0.000

DB ( 2R ) 1 1 1 1 1 1 0.997 0.983 0.900 0.000

SB (AIC) 1 1 1 1 1 1 0.999 0.991 0.918 0.000

DB (AIC) 1 1 1 1 1 1 0.997 0.983 0.923 0.000

SB (BIC) 1 1 1 1 1 1 0.999 0.997 0.944 0.008

DB (BIC) 1 1 1 1 1 1 0.997 0.997 0.937 0.000

SB (PRESS) 1 1 1 1 1 1 0.999 0.998 0.928 0.000

DB (PRESS) 1 1 1 1 1 1 1 0.993 0.940 0.000

SB (Sp) 1 1 1 1 1 1 0.999 0.994 0.932 0.001

DB (Sp) 1 1 1 1 0.997 1 0.987 0.963 0.770 0.000

            

n=50 

Cox 0.931 0.944 0.931 0.934 0.930 0.927 0.943 0.947 0.921 0.007

J 0.933 0.944 0.930 0.935 0.925 0.924 0.941 0.947 0.925 0.043

SB (R2) 1 1 1 1 1 1 1 1 1 0.000

DB (R2) 1 1 1 1 1 1 1 1 1 0.000

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.000

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.000

SB (AIC) 1 1 1 1 1 1 1 1 1 0.000

DB (AIC) 1 1 1 1 1 1 1 1 1 0.000

SB (BIC) 1 1 1 1 1 1 1 1 1 0.214

DB (BIC) 1 1 1 1 1 1 1 1 1 0.037

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.000

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.000

SB (Sp) 1 1 1 1 1 1 1 1 1 0.000

DB (Sp) 1 1 1 1 1 1 1 1 1 0.003

            

n=100 

Cox 0.939 0.938 0.943 0.953 0.947 0.942 0.946 0.940 0.930 0.006

J 0.940 0.945 0.942 0.945 0.942 0.943 0.947 0.942 0.939 0.038

SB (R2) 1 1 1 1 1 1 1 1 1 0.000

DB (R2) 1 1 1 1 1 1 1 1 1 0.000

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.000

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.000

SB (AIC) 1 1 1 1 1 1 1 1 1 0.000

DB (AIC) 1 1 1 1 1 1 1 1 1 0.000

SB (BIC) 1 1 1 1 1 1 1 1 1 0.432

DB (BIC) 1 1 1 1 1 1 1 1 1 0.220

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.000

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.000

SB (Sp) 1 1 1 1 1 1 1 1 1 0.000

DB (Sp) 1 1 1 1 1 1 1 1 1 0.003
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n=200 

Cox 0.930 0.956 0.945 0.955 0.957 0.942 0.944 0.958 0.944 0.015

J 0.936 0.956 0.943 0.952 0.955 0.942 0.946 0.959 0.944 0.031

SB (R2) 1 1 1 1 1 1 1 1 1 0.000

DB (R2) 1 1 1 1 1 1 1 1 1 0.000

SB ( 2R ) 1 1 1 1 1 1 1 1 1 0.000

DB ( 2R ) 1 1 1 1 1 1 1 1 1 0.000

SB (AIC) 1 1 1 1 1 1 1 1 1 0.000

DB (AIC) 1 1 1 1 1 1 1 1 1 0.000

SB (BIC) 1 1 1 1 1 1 1 1 1 0.600

DB (BIC) 1 1 1 1 1 1 1 1 1 0.400

SB (PRESS) 1 1 1 1 1 1 1 1 1 0.000

DB (PRESS) 1 1 1 1 1 1 1 1 1 0.000

SB (Sp) 1 1 1 1 1 1 1 1 1 0.000

DB (Sp) 1 1 1 1 1 1 1 1 1 0.000

 

 

 


