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Abstract The common-property problem results in excessive mining, hunting, and
extraction of oil and water. The same phenomenon is also responsible for exces-
sive investment in R&D and excessive outlays in rent-seeking contests. We propose
a “Partnership Solution” to eliminate or at least mitigate these excesses. Each of
N players joins a partnership in the first stage and chooses his effort in the sec-
ond stage. Under the rules of a partnership, each member must pay his own cost
of effort but receives an equal share of the partnership’s revenue. The incentive to
free-ride created by such partnerships turns out to be beneficial since it naturally
offsets the excessive effort inherent in such problems. In our two-stage game, this
institutional arrangement can, under specified circumstances, induce the social op-
timum in a subgame-perfect equilibrium: no one has a unilateral incentive (1) to
switch to another partnership (or create a new partnership) in the first stage or (2) to
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Dan Silverman, an anonymous referee, and participants in numerous seminars in-
cluding the Erb Institute Colloquium and the Montreal Workshop in Resource and
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deviate from socially optimal actions in the second stage. The game may have other
subgame-perfect equilibria, but the one associated with the “Partnership Solution”
is strictly preferred by every player. We also propose a modification of the first stage
which generates a unique subgame-perfect equilibrium. Antitrust authorities should
recognize that partnerships can have a less benign use. By organizing as competing
partnerships, an industry can reduce the “excessive” output of Cournot oligopoly to
the monopoly level. Since no partner has any incentive to overproduce in the current
period, there is no need to deter cheating with threats of future punishments.



1 Introduction

In some fisheries in Japan, fishermen from several vessels share their catch. Their

pooled output is sold through a common outlet and members of each partnership di-

vide equally the resulting gross revenue, no matter how little someone has contributed.

Such egalitarian catch-sharing among vessels is a prescription for free-riding. Multiple

partnerships compete for the catch, or the induced free-riding would be even greater.

Received economic theory cannot account for such partnerships. They do not

appear to be a response to uncertainty or asymmetric information. Catch-sharing

partnerships must have some advantage, however, since as of the census of 1988, 147

different fishing groups in Japan were engaging in such income pooling. To understand

why such partnerships arise, Platteau and Seki (2000) interviewed skippers in the

glass-shrimp industry in Japan and, when feasible, used more objective measures to

validate their responses. They concluded that “The most prominent result emerging

from this exercise is certainly the fact that stabilization of incomes was not mentioned

a single time.” Instead, the main motive appeared to be the reduction of congestion:

“The desire to avoid the various costs of crowding while operating in attractive fishing

spots appears as the main reason stated by Japanese fishermen for adopting pooling

arrangements.”1

1A similar arrangement seems to have been adopted by some groups of New Jersey

fishermen as well, as discussed in Feeny et al. (1990). A more traditional society

in Tonga, as described by Bender, Kägi, and Mohr (2002) also has features of the

partnership arrangement we explore here.
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These Japanese fishermen appear to have rediscovered an ancient solution to the

common-property problem. According to anthropologists, hunter-gatherer cultures

that have survived to the modern era typically share their kill and work short hours;

moreover, they consume enough quantity and variety to be characterized by one dis-

tinguished anthropologist as the “Original Affluent Society” (Sahlins, 1972). Kägi

(2001) was the first to point out that these phenomena, which have been studied

extensively but separately, may be connected: those hunter-gatherer cultures surviv-

ing to modern times owe their success to their practice of sharing the fish and game

caught by groups of hunters since extensive sharing dulls hunting effort sufficiently to

protect common property from over-exploitation.2

At the opposite end of the technological spectrum, individuals who form research

joint ventures to share revenue from their discoveries may have hit upon the same

solution. Without joint ventures, individuals vying for a patent awarded to the best

innovation will invest too much (Baye and Hoppe, 2003) even taking account of the

fact that the expected value of the winning patent grows with aggregate investment.

Baye and Hoppe also demonstrate that such innovation tournaments are strategically

equivalent to rent-seeking contests where the value of the prize increases with the

2“The literature on traditional hunter-gatherers provides ample evidence that work

effort is extremely low in traditional societies and that natural resources are not

overexploited but rather under-exploited” (Kägi, 2001, p.45). “We do not know

whether traditional societies have introduced sharing consciously. . . Once introduced

(or chosen by accident), however, it appears to be a stable means to regulate resource

use.” (Kägi, 2001, p.67).
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total outlay. So, in the absence of prize-sharing within interest groups, rent-seeking

outlays are also excessive (Chung, 1996).3

3In an important contribution, Nitzan (1991) analyzed a contest for a fixed prize

among rent-seeking individuals exogenously allocated to partnerships and found that

aggregate rent-seeking outlays decline because of free-riding. Each partnership was

assumed to use the same exogenous sharing rule of which our egalitarian rule is a

special case. In other cases, his rule partially rewards an individual for making larger

effort relative to other members of his group, which implicitly requires that group

members costlessly monitor each other’s efforts. We extend this original insight and

show its implications for the common property and cartel problems. The case we

examine is isomorphic to a rent-seeking contest where the prize is a strictly increasing

function of aggregate outlays and where groups form endogenously (see footnote 6).

Since the prize in Nitzan’s contest is fixed, the partition generating the highest social

welfare occurs when every player is in a single group. In our variable-prize case,

putting every player in one group induces too little extraction effort and the social

optimum instead occurs at an “interior” solution with the correct number groups.

In Section 5, we show how our Partnership Solution easily generalizes when groups

share according to Nitzan’s rule provided the weight on relative effort is not excessive.

Baik and Lee (2001) extend Nitzan’s original model of group rent-seeking with a fixed

prize by endogenizing group formation and the choice of the sharing rule. However,

our analyses are quite different because there is no variable prize (the counterpart to

our production) in their application. Consequently, it is efficient for everyone to join

a single group, make no rent-seeking outlay, and share the fixed prize; in our context,
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Common property extraction provides a particularly relevant illustration of the

same strategic considerations. In the absence of sharing, fishing effort is excessive

(Gordon, 1954) even when account is taken of the fact that aggregate catch grows

with aggregate effort. Sharing arrangements promote free-riding and, when effort

would otherwise be excessive, this constitutes a social improvement. We investigate

the circumstances when sharing agreements can be used to restore the social optimum

in extraction from common properties. As we make clear, however, our conclusions

apply equally to (1) innovation tournaments and (2) rent-seeking contests.4

Besides these beneficial uses, partnerships can also be used for a more sinister

purpose. In the absence of partnership agreements, service providers in an industry

can be expected to reap at most oligopoly profits. But if they can organize themselves

into a collection of competing revenue-sharing partnerships (a common organizational

form in some service industries), they can potentially reap monopoly profits.5 There is

no need for interactions to be ongoing so that the prospect of a price war in the future

deters the current temptation to expand output. The revenue-sharing inherent in a

partnership structure eliminates the current temptation to expand output. Antitrust

authorities should be aware that in industries where partnerships predominate, prices

may approach monopoly levels even though competition among these partnerships is

the “prize” (production) would completely vanish in the absence of outlays (effort).

Another key difference arises because we consider the role of team production.

4We clarify the strategic equivalence of these three applications in footnote 8 after

introducing notation.

5Law firms, medical firms, and consultancies are some examples.
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vigorous.

We consider a two-stage game where individuals choose their partnerships at the

first stage and their effort levels at the second stage. If every individual chooses

in the first stage to work in a different partnership as its sole “partner,” aggregate

effort in the second-stage equilibrium will exceed the social optimum. At the other

extreme, if every player joins the same grand partnership, aggregate effort in the

second stage will be inadequate due to rampant free-riding. As we show, aggregate

effort is a strictly increasing function of the number of partnerships formed at the

first stage.6 Socially optimal effort can, therefore, be induced (or approximated if

there are integer problems) if the N players partition themselves into an intermediate

number of partnerships in such a way that each agent’s tendency to work too hard

is exactly offset by his tendency to free ride. We refer to this as the “Partnership

Solution.”

In reality, of course, the Partnership Solution is viable if and only if each per-

son in a given partnership has no incentive to switch to some other partnership

(pre-existing or new). We refer to such partnerships as “stable.” We refer to each

partition of players into partnerships in the first stage of our game as a “partnership

structure.” Whether a partnership structure is stable (formally, whether it is part

of a subgame-perfect Nash equilibrium) turns out to depend on the disadvantages of

solo production relative to team production. This follows since the principal source

of first-stage instability is going into business for oneself (deviating unilaterally to a

new partnership).

6For experimental confirmation of this prediction, see Schott et. al., 2007 .
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There are typically multiple subgame-perfect equilibria in the game. In the equi-

librium associated with the Partnership Solution, however, every individual receives

the largest expected payoff. This suggests two ways the game can be modified to

select this “payoff-dominant” equilibrium. Before the agents select the partnerships,

an outside mediator, with the power neither to monitor nor enforce compliance with

his suggestion, can recommend this number of partnerships. His only function is to

focus the expectations of the players on the payoff-dominant equilibrium. Alterna-

tively, each agent can record the number of partnerships he prefers and the proposal

of one agent, selected randomly, would be implemented. Either of these modified

game forms should result in the implementation of the Partnership Solution.

It is natural to ask what advantages the Partnership Solution has over Pigouvian

taxes or auctioned quotas. While taxes or quotas could induce the same extraction ef-

fort as the Partnership Solution, resource users would receive larger aggregate surplus

under the Partnership Solution as long as any of the revenue collected under these

two alternative policies was diverted to general coffers rather than being redistributed

to the N players.

We proceed as follows. In the next section, we introduce our notation, define

socially optimal effort, and show that this level of aggregate effort arises in the second-

stage subgames if and only if a requisite number of partnerships forms at the first

stage. In Section 3, we determine conditions sufficient for this Partnership Solution to

be stable and discuss two mechanisms which can be used to select this equilibrium.

Section 4 generalizes the analysis while maintaining the assumption of egalitarian

sharing within partnerships. Section 5 discusses justifications for our assumption of
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equal sharing and then generalizes the Partnership Solution when sharing ceases to

be purely egalitarian but instead takes some account of relative effort. Section 6

concludes the paper.

2 Decentralization in a Two-Stage Partnership Game

Suppose N individuals expend effort to extract a common resource and consider two

extremes.7 On the one hand, suppose everyone pays his own effort cost and acts

independently; then, as is well known, aggregate effort will be excessive because of

congestion externalities. On the other hand, suppose everyone must share the fruits

of his labor equally with the other N − 1 individuals while paying his own cost of

effort; then aggregate effort will be insufficient because of free-riding. Each of these

two extremes is a special case of the following arrangement: players partitioned into

competing partnerships simultaneously choose effort levels, with each partnership’s

share of aggregate revenue equal to its share of aggregate effort and every member

of each partnership required to pay his own effort cost but to share equally with his

colleagues the gross revenue he brings in. In the first of the extremes above, there

are N “solo” partnerships while in the second, there is 1 “grand” partnership to

which all N individuals belong. We show below that aggregate effort is a strictly

7In assuming that N is exogenous, we are abstracting from the entry of outsiders.

In reality, partnerships have also been effective in protecting their own territories from

outsiders. For an interesting analysis of how this has been accomplished see Acheson

and Gardner’s (2005) discussion of the Maine lobster fishery.
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increasing function of the number of partnerships and hence socially optimal effort

can be achieved as a Nash equilibrium if a particular number of partnerships forms at

the first stage. To begin, we define the following notation that will be used throughout

the paper.

mi = number of members of group i

xik= effort level of agent k in group i

Y −k
i = aggregate effort level of members of group i other than agent k

X−i= aggregate effort of other groups

X = total effort level (sum of all agents’ efforts)

F(X) = aggregate production function

c = constant marginal cost of effort

n = number of groups

N = total number of agents

A(·) = F (X)
X

= average product

x̄i =
(xik+Y −k

i )
mi

= mean effort level in group i

β = effort advantage of team production compared to solo production

Until Section 4, we make the assumption standard in the common-property literature

that the price of output, p̄, is a constant (normalized to unity). In addition, we

assume that (1) A(X) is bounded, strictly positive, strictly decreasing, and twice

continuously differentiable; (2) A(0) − c > 0; and (3) that A′(X) + XA′′(X) < 0,

holds for all X ≥ 0 (the Novshek condition).

Socially optimal effort maximizes total net benefit (X∗ = argmax p̄X(A(X)−c)).
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Since p̄ is normalized to one, socially optimal effort must therefore satisfy the following

first-order condition:

A(X∗) + X∗A′(X∗) − c = 0. (1)

Since the Novshek condition holds, X∗ is unique. This aggregate effort level is the

goal we seek to achieve by decentralization through our Partnership Solution.

Let n ≤ N denote the number of distinct partnerships formed at the first stage

and index these groups i = 1, . . . , n. Then, in the second stage, agents simulta-

neously choose their effort after observing each agent’s choice of group. To verify

that the partnership solution is subgame-perfect, we must show that it forms a Nash

equilibrium in every subgame. We demonstrate this through backwards induction,

considering the problem of effort choice first.

2.1 Equilibrium Effort Choice in Second-Stage Subgames

Consider second-period subgames in which individuals grouped into partnerships si-

multaneously choose their effort levels.

An individual in group i would choose his own effort level (xik) taking as given

the aggregate effort level of his colleagues in partnership i (Y −k
i =

∑

l 6=k xil) as well as

the aggregate effort levels of the other partnerships (X−i). Hence, he would maximize

πik = Max
xik

{

1

mi

[

xik + Y −k
i

X

]

· F (X) − cxik

}

,

11



where X = xik + Y −k
i + X−i and mi is the number of partners in his group.8 This is

8We can now formally show the connection between the common-property prob-

lem and the two other applications discussed in the introduction. Let xik denote the

rent-seeking outlay of player k in group i, Y −k
i denote the outlays of his partners, X

denote the total outlay of all contestants, and F (X) denote the prize. Then, assuming

the probability that a group wins the prize is proportional to its rent-seeking outlays

and the prize is divided evenly among members of the winning group, the foregoing

objective function of player k is simply his expected payoff from an outlay of xik. Sim-

ilarly, consider an innovation tournament in which player k in group i makes research

effort xik. Following Baye and Hoppe (2003), conceive of each researcher’s discovery

effort as his drawing ideas worth $y if awarded a patent (y ∈ [0, U ], where U is an ex-

ogenous highest conceivable value) from a differentiable probability distribution G(y).

Let xik denote the integer number of times ideas are drawn with replacement from

the distribution. If each draw costs the researcher c, then researcher k’s cost would

be cxik. Moreover, if the prize goes to the partnership with the highest realized draw,

then the probability that partnership i wins equals its aggregate number of draws as a

percentage of the total number of draws of all players in the tournament (the factor in

square brackets). It remains to show that—whoever wins—the expected value of the

prize is a strictly increasing, strictly concave function of the total number of draws.

This is both intuitive and straightforward to show (see Theorem 1 of Baye and Hoppe,

2003):
∫ U

y=0
yXGX−1(y)G′(y)dy = 1 −

∫ U

0
GX(y)dy = F (X), where the first integral

is the expected value of the prize when there are X draws from distribution G(·) and

the largest of them is designated y. It is straightforward to verify by differentiating
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equivalent to maximizing:

miπik =
(

xik + Y −k
i

)

· A
(

xik + Y −k
i + X−i

)

− micxik. (2)

To find the best response of member k in partnership i, we differentiate the objective

function (2) with respect to xik and substitute X = xik + Y −k
i + X−i to arrive at the

following N first-order conditions:

A (X) +
(

xik + Y −k
i

)

· A′ (X) = mic for i = 1, . . . , n and k = 1, . . . ,mi. (3)

Each of the N first-order conditions in (3) clarifies why player i reduces his effort in

a multiperson partnership compared to his effort operating solo, for unchanged effort

of the other N − 1 players. There are two effects, each of which leads him to reduce

his effort: the “internalization effect” and the “diversion-of-benefits effect.” First,

since in a multiperson partnership, player i receives a share of the receipts generated

by his partners, he would refrain from imposing as large a negative externality on

them as he would if he operated solo. That is, the first factor in the second term

is larger by Y −k
i than it would be if he operated solo. This “internalization effect”

would induce him to reduce his effort in a multiperson partnership even if c = 0 but

the effect would disappear if under the rules of the partnership he received nothing

that the resulting expected value of the winning prize (F (X)) is a strictly increasing

and concave function of the aggregate research effort as our analysis assumes.
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from his partners. Second, since in a multiperson partnership, player i relinquishes a

share of the benefits of his effort but pays the full cost of generating them, he would

reduce his effort. That is, the right-hand side of the equation is mi > 1 times as large

as it would be if he were operating solo. This “diversion-of-benefits effect” would

persist even if he received nothing from his partners but nonetheless had to give them

a portion of his catch. This effect would disappear if c = 0.

Consider any solution to the N equations in (3) and the 2 equations defining X

and Y −k
i . Notice that if the efforts within any partnership are rearranged without

altering their sum than each of these N +2 equations still holds. Formally, therefore,

there are multiple Nash equilibria in the final stage of our game, with the payoff to

player k lower in those equilibria in which he undertakes a larger effort. We regard

the multiplicity of equilibria in the second stage of our game as an artifact of our

assumptions since introducing even the slightest convexity in the effort cost functions

or the slightest weight on relative effort in the sharing rule would eliminate all of the

asymmetric equilibria, leaving only the symmetric one. We therefore focus on the

symmetric equilibrium by assuming as a “refinement” that agents anticipate at the

first stage that efforts will be shared equally in any partnership they join.9

9In exactly these circumstances, Benoit and Krishna (1985) have shown that many

first-stage configurations can be supported as subgame perfect equilibria. To clarify

what we are ignoring, suppose anyone deviating to a different partnership at the first

stage anticipated that, as “hazing” reserved for new members, his new colleagues

would undertake no effort and would make him carry the entire effort burden of the

partnership by himself. The anticipated situation would deter his deviation and is
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2.2 Partnership Effects on Effort Choice

Since the first-order conditions in (3) depend only on the aggregate effort of partner-

ship i and not on the efforts of its individual members, we can re-write the conditions

in terms of the mean effort in partnership i (x̄i). Rewriting the first factor of the

second term gives us:

A (X) + mix̄i · A
′ (X) − cmi = 0, for i = 1, . . . , n. (4)

These n equations plus the equation X =
∑n

i=1 mix̄i uniquely determine the n mean

effort levels {x̄i}
n
i=1 and X. We can solve (4) for x̄i, the mean effort level in group i:

x̄i =

(

1

−A′(X)

) (

A(X)

mi

− c

)

. (5)

If partnerships of different sizes form at the first stage, then their mean effort

levels will differ at the second stage. In particular,

Proposition 1 In any equilibrium, strictly larger groups have strictly smaller mean

effort levels.

Proof: As (5) reflects, the strictly positive mean effort level at the ith partnership
can be represented as the product of two positive factors. The second factor will be
smaller at a partnership with a larger number of members (mi) while the first factor

technically “credible” since it is a Nash equilibrium. While exploiting this aspect of

our problem would allow us to show that the Partnership Solution is stable in a wider

set of circumstances, we refrain from doing so.
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will be the same for all the partnerships. Hence, the larger the partnership the smaller
the mean effort.�

Intuitively, the larger the group, the more free-riding occurs within it.

Next we verify that aggregate effort in the second-stage depends only on the num-

ber (n) of groups formed at the first stage and not on the distribution of agents among

the different groups:

Proposition 2 Aggregate effort (X) in the second stage depends only on the number

of groups formed in the first stage and not on the size of those groups.

Proof: Adding together the n first-order conditions in (4), we obtain the following
condition:10

nA(X) + XA′(X) − cN = 0. (6)

Thus aggregate effort (X) induced in the Nash equilibria of second-stage subgames
depends only on the number of groups formed at the first stage and not on the specific
partition. �

A monotonic relationship exists between the number of partnerships formed at

the first stage and the aggregate effort expended at the second stage.

Proposition 3 If the number of groups formed at the first stage is strictly larger, the

aggregate effort level at the second stage is strictly larger.

10Our proposition reinterprets the result in Bergstrom and Varian (1985) that, in

an interior equilibrium of a Cournot oligopoly model with constant marginal costs,

aggregate output depends only on the sum of the marginal costs.
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Proof: Differentiating (6) implicitly, we obtain:

dX

dn
=

A(X)

−[(n + 1)A′(X) + XA′′(X)]
> 0,

where the inequality follows from A(X) > 0, A′(X) < 0, and the Novshek condition.�

Since aggregate effort in our game is a continuous, strictly increasing function of the

number of groups formed at the first stage and since n = 1 induces too little aggregate

effort and n = N generates too much, some unique intermediate number of groups

will (if we provisionally ignore integer constraints) induce the socially optimal level

of effort at the second stage. We can find this number by plugging X∗ into (6) and

then solving for n∗.

Proposition 4 If n∗ = c(N−1)
A(X∗)

+ 1 groups form at the first stage, then the aggregate

effort chosen in the Nash equilibrium of the second stage will be socially optimal.

Proof: Substitute n∗ = c(N−1)
A(X∗)

+ 1 and X∗ into (6). This gives us:

(

c(N − 1)

A(X∗)
+ 1

)

A(X∗) + X∗A′(X∗) − cN = 0.

Simplifying, we obtain:

A(X∗) + X∗A′(X∗) − c = 0

which is the same as (1), the condition defining X∗.�

Proposition 4 implies that whenever c = 0, the social optimum is achieved by

putting everyone into a single partnership (n = 1), while for c > 0, the optimum is

achieved by dividing them among several partnerships. To understand these results,

suppose each of the N players joins a single partnership and everyone’s effort equals

1/N th of the aggregate profit-maximizing level. If costs are zero, aggregate revenue

17



would also be maximized so that if someone marginally reduced his effort unilaterally,

total revenue would not change nor would his share of it. Since deviating is unprof-

itable, the social optimum is achieved as a Nash equilibrium. On the other hand, if

everyone is assembled into a single partnership and asked to undertake 1/N th of the

socially optimal effort when c > 0, there is an incentive to reduce effort. In this case,

such a reduction does not affect aggregate profit because aggregate gross revenue and

aggregate costs fall by equal amounts. However, since all of the cost savings accrue

to the deviator while only 1/N th of the aggregate revenue loss is borne by him, he

has a strict incentive to reduce his effort and it is no longer possible to achieve the

social optimum with a single partnership.

When c > 0, therefore, the Partnership Solution requires dividing the N players

among several partnerships. Suppose again, each player undertakes 1/N th of the

socially optimal effort. If someone marginally reduced his effort unilaterally, he would

save the same costs as before but now would incur a larger loss in revenue both because

his partnership’s losses are larger and because he bears a larger share of those losses.

In the Partnership Solution (n = n∗), the social optimum is achieved as a Nash

equilibrium because each person fully anticipates the social consequences of his devia-

tion. If anyone increased his effort, he would incur the entire cost increase. Moreover,

since the gross revenue of his colleagues would expand by exactly as much as the gross

revenue of noncolleagues would contract, the deviator’s share of his partnership’s in-

creased revenue would just equal the aggregate gain in revenue from his deviation.11

11More precisely, since at the social optimum the planner equates to marginal cost

the marginal revenue from additional effort while in the Partnership Solution each
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2.3 Partnerships and Pigouvian Taxes

We conclude this section by clarifying the relationship between partnerships and

Pigouvian taxes. Partition the N players in any way into n partnerships and compute

the Nash equilibrium in the simultaneous-move effort game. We could dissolve one

or more of these partnerships and instead tax the effort of each of its members at

the group-specific, constant rate τi = (1 − 1
mi

)A(X). In response to the taxes, each

member of a group would choose x̂i to maximize x̂iA(x̂i +X−i)− (c+ τi)x̂i by solving

A(X)+ x̂iA
′(X) = c+(1− 1

mi

)A(X) or A(X)+mix̂iA
′(X) = mic where

∑n
i=1 mix̂i =

X. But this is precisely the same first-order condition as before and hence the effort

x̂i = x̄i: taxing the groups in this way induces the same effort as before—when every

group was a partnership. Notice that whereas before effort declined with partnership

size because of free-riding, now it declines with tax-group size because larger groups

are subjected to higher tax rates.

Although, dissolving a partnership and instead subjecting each of its former mem-

bers to such taxes would not alter equilibrium effort levels, it would alter equilibrium

player equates to that same marginal cost the increase in gross revenue he would

receive through the partnership agreement if he marginally increased his effort, the

following equality must hold:[A+XA′] = 1
mi

[A+(X −X−i)A
′]. But this is equivalent

to the following: mi−1
mi

[A+(X−X−i)A
′]+X−iA

′ = 0. The first term can be interpreted

as the aggregate increase in gross revenue of the deviator’s colleagues and the second

term can be interpreted as the exactly offsetting aggregate decrease in the gross

revenue of players outside the partnership.
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payoffs. In particular, every member of group i would earn τix̄i less when taxed

than as a member of a partnership. Hence, unless all of the tax revenues are re-

bated, participants would strictly prefer the Partnership Solution to the Pigouvian

tax scheme.

3 Partnership Choice in the First Stage: Equilib-

ria and Selection

In the first stage, N players simultaneously choose partnerships, resulting in the for-

mation of between 1 and N groups. We now investigate whether any agent would have

an incentive to deviate from the chosen partnership structure. When no such incentive

exists, the partnership structure will be part of a subgame-perfect Nash equilibrium.

We first discuss the requirements for this equilibrium. We derive conditions when the

Partnership Solution will be stable and show that under these circumstances other

equilibria may exist as well. We conclude the section by discussing selection of the

Partnership Solution from among the equilibria.

3.1 Equilibrium in the First Stage

Deviations at the first stage fall into two categories: (1) an agent can abandon the

colleagues in his prescribed group for the members of some other group or (2) he can

abandon his prescribed group to go into business for himself. The following proposi-

tion allows us to eliminate as potential subgame-perfect equilibria most partnership

structures which could form at the first stage.
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Proposition 5 A necessary condition for a partnership structure to be part of a

subgame-perfect Nash equilibrium is that no partnerships differ in size by more than

one member.

Proof: First note that, from Proposition 2, a deviation which maintains the number
of groups formed at the first stage will not alter aggregate effort (X∗) exerted at the
second stage. Second, each player in group i anticipates a payoff of (πi):

12

πi = x̄i(A(X∗) − c). (7)

This is strictly increasing in x̄i since A(X∗) − c > 0. Each member’s payoff is
larger in groups with a larger mean level of effort. Proposition 1 tells us that a group
with a smaller number of members will have a larger mean effort since its smaller size
will discourage free-riding. Hence, any player can strictly improve his payoff if he can
switch to a partnership which will be smaller (even after he joins it) than his existing
partnership. Hence, profitable defections are always possible when two partnerships
differ in size by two or more members but never possible when every partnership
differs in size by at most one member.�

Proposition 5 rules out as part of a subgame-perfect equilibrium any partnership

structure formed at the first stage in which two partnerships differ in size by two or

more members.

There remain N partnerships structures to consider as potential subgame-perfect

Nash equilibria. In particular, for any n (= 1, . . . , N) there will be a unique partner-

ship structure where sizes differ by at most one member. To visualize this, imagine

that the N players are being dealt sequentially like cards in a card game to the n

partnerships arranged around a table. When all of the players have been dealt out

12To see this, begin with the objective function (2) and see that, if player k makes

effort xik in a group with mean effort x̄i when aggregate effort is X, then his payoff

is: πik = x̄iA(X) − cxik.
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(assigned to partnerships) some of the partnerships may have one fewer player than

rest. The Partnership Solution with its n∗ groups is among these potential equilibria.

Any of these partnership structures will be subgame-perfect if, in addition, no

agent can strictly improve his expected payoff by forming a new, singleton, group.

Whether this is profitable or not depends upon the disadvantage of solo production

compared to team production. The literature on the theory of the firm emphasizes

that multi-agent firms are rife with incentive problems to which single-agent firms are

immune. But, since multi-agent firms abound, there must be a countervailing advan-

tage to such arrangements—individuals working in teams must be able to produce

more output per man-hour than those working alone.13 Following the literature on

team production, therefore, we consider the possibility that a team can produce more

than an individual working by himself the same number of man-hours; in extreme

cases, a team may be necessary in order to produce at all.14

13Alchian and Demsetz (1972) were the first to emphasize the importance of team

production in the theory of the multi-person firm and their insights have now perco-

lated down to undergraduate treatments of that theory. For an extensive discussion,

consult the textbooks by Eaton et. al (Chapter 19, 2002) and Campbell (Chapter

2.5, 1995).

14An alternative interpretation could be that there are subjective “social benefits”

to remaining in a team. This is the approach of Osés-Eraso and Viladrich-Grau in

a standard common-property setting. They, however, fail to recognize the further

benefit of sharing in reducing aggregate effort.
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Suppose that to duplicate the efforts of 1 man-hour of team effort, a single indi-

vidual must work 1/β hours, for β ∈ [0, 1]. Then, if we continue to express effort in

man-hours of team effort, the marginal cost of effort for an individual working alone

would be 1
β
c.

Partition the N players into n groups in such a way that no two groups differ in

size by more than 1 member. Recall that for any n there is a unique partition that

satisfies this restriction. In the case where some partnerships are one member larger

than others, these larger partnerships will generate more free-riding in the equilibrium

of the second stage (Proposition 1). Anticipating lower payoffs in the second stage,

every member of a larger partnership would have a stronger incentive to deviate to

a solo partnership at the first stage. Let g(n, β) denote the gain a member of a

larger partnership would achieve by setting up his own partnership. If g(n, β) ≤ 0

then he has no incentive to deviate and a fortiori neither does any member of a

smaller partnership; hence the partition under consideration is stable. If, however,

g(n, β) > 0 then he has an incentive to deviate and the partition under consideration

is unstable. By analyzing properties of the g(·, ·) function, we show below that for

any n, including n∗, there is a unique β(n) ∈ (0, 1] such that the Partnership Solution

is stable for all β ≤ β(n).

3.1.1 Team Production is Essential (β = 0)

In many applications, “it takes two workers to perform a given task” (Holmstrom and

Tirole, p. 67). That is, solo production is infeasible. For example, no matter how

hard a person works he/she cannot catch a whale by himself; nor can he/she stay
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awake every day and night of his medical career to help patients with their medical

emergencies. In other applications deviating to solo groups may be illegal since many

partnership agreements contain ‘non-compete’ clauses which prevent an individual,

when leaving a partnership, from competing in the same market as the group he is

leaving.15

Whenever solo production is infeasible, g(n, 0) < 0 and we can conclude:

Proposition 6 When solo production is infeasible, the Partnership Solution is sub-

game perfect and solves the common-property problem.

Proof: As we have verified, no unilateral deviation to an existing partnership is
strictly advantageous to any agent. Moreover, since g(n, 0) < 0, no deviation to a
solo partnership is profitable for any n, including n∗. �

If solo production is infeasible, however, there will be other subgame-perfect equilibria

as well. At the end of the section, we will discuss two mechanisms for selecting from

the set of subgame-perfect equilibria the equilibrium inducing socially optimal effort.

3.1.2 Solo Production Is Feasible (β ∈ (0, 1])

If solo partnerships are legal and feasible, we must investigate further. If β < 1, then

social welfare can never be maximized as long as any solo partnership is involved.

For, if there are any solo partnerships, then even if in equilibrium optimal effort (X∗)

results, the cost of achieving it will strictly exceed cX∗, which a planner could achieve

15Various courts have upheld such clauses, including the Georgia Supreme Court

in Rash v. Toccoa Clinic Med. Assoc., 253 Ga. 322, 320 S.E.2d 170 (1984).
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just by assembling a team of all N players and commanding that level of effort.

So we assume that n = 1, 2, . . . , ⌊N/2⌋ partnerships, where ⌊Z⌋ denotes the great-

est integer less than or equal to Z. For example, if N = 15, there are at most

⌊15/2⌋ = 7 partnerships: six with two members and one with three members.

Equation (6) implicitly defines the aggregate effort which would result from n

partnerships, each of which has two or more members. Denote the aggregate effort

implicitly defined by this equation as X(n). If X(⌊N/2⌋) ≥ X∗, then the Partnership

Solution can potentially achieve the first best by generating more free riding and

thereby bringing effort down toward X∗.

Denote the payoff of a potential deviator, prior to his deviation, as πC and his

payoff after going solo as πD. πC is independent of β. A partner who deviates,

therefore, gains g(n, β) = πD − πC . His gain from going solo, his effort, everyone

else’s effort, and aggregate effort, will depend on the parameter β. Define β such that

for any β > β, the deviator going solo would make strictly positive effort while for

any smaller β he would make zero effort. When β ∈ [0, β], the deviator would receive

a zero payoff (πD = 0) following his deviation. Hence, g(n, β) = g(n, 0) = −πC < 0

for any β ∈ [0, β]. When β ∈ (β, 1] the consequences of one agent’s going solo are

described by the four variables πD, X, X−1, and x̄1 which are defined by equations

(8)-(11) below, where for simplicity we assign the index “1” to the deviator’s solo

partnership (and therefore denote his effort as x̄1 and the aggregate effort of all

others after observing his first-stage deviation as X−1):
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πD = x̄1(A(X) −
c

β
) (8)

A(X) + x̄1A
′(X) −

c

β
= 0 (9)

nA(X) + X−1A
′(X) − (N − 1)c = 0 (10)

x̄1 + X−1 = X. (11)

Equation (10) is obtained by adding up the first-order conditions of the n original

partnerships (that is, excluding from the sum the solo partnership) after effort levels

in the following stage have adjusted in response to the deviation.

Proposition 7 g(n, β) is a differentiable function of β in the neighborhood of any β

in (β, 1].

Proof: Since πC is independent of β, it is sufficient to show that πD is differentiable in
β. Use (11) to eliminate X from (8)-(10). Equation (10) does not involve β. Given the
Novshek condition, (n + 1)A′ + X−1A

′′ 6= 0; therefore, the implicit function theorem
insures that, in a neighborhood of any solution (x̄1, X−1, X) induced by β ∈ (β, 1] we
can write (10) as X−1 = f(x̄1) where f(·) is a continuous function with derivative f ′ =

− nA′+X−1A′′

(n+1)A′+X−1A′′
∈ (−1, 0). Equation (9) does involve β. Replace X−1 in this equation

by f(x̄1). Given the Novshek condition and A′ < 0, (1 + f ′)(A′ + x̄1A
′′) + A′ 6= 0;

therefore, the implicit function theorem insures that we can write (9) locally as x̄1 =

h(β) for some continuous function h(·) with derivative h′ = − c/β2

A′+(1+f ′)(A′+x1A′′)
> 0.

Substituting both of these differentiable functions into (8), we obtain:

πD(β) = h(β) [A (h(β) + f(h(β))) − c/β] .

Since A(·) is differentiable and since sums, products, and compositions of differen-
tiable functions are differentiable, πD is a differentiable function of β in a neigh-
borhood of any solution (πD, x̄1, X−1, X, β). Given this conclusion, there can be no
β ∈ (β, 1] where πD is non-differentiable. It follows that g(n, β) is differentiable in
the neighborhood of any β in the interval (β, 1]. �
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Since g(n, β) = πD(β) − πC , we can differentiate to obtain the partial derivative,

gβ(n, β).

Proposition 8 gβ(n, β) > 0 for any β in (β, 1].

Proof: Since x̄1 > 0 for any β in (β, 1], h(β) > 0. Recall that A′ < 0. Differentiating
our expression for g(n, β) and using (9) to simplify (an application of the envelope
theorem) we conclude that:

gβ(n, β) = h′[A + hA′ − c/β] + h[A′f ′h′ + c/β2] = h[A′f ′h′ + c/β2] > 0

for any β in (β, 1].�

We have shown that g(n, β) is differentiable and strictly increasing in β in the

interval (β, 1] and g(n, β) = −πC for β ∈ [0, β]. The following lemma establishes that

there is no discontinuity at the boundary β = β.

Lemma 1 The function g(n, β) is continuous in β at the point β.

Proof: Since g(n, β) = −πC for β ∈ [0, β], it suffices to verify that limβ→β g(n, β) =

limβ→β(πD − πC) = −πC . But this follows from (8) since limβ→β x̄1 = 0 and A is
bounded. �

We can therefore, conclude:

Proposition 9 If the partition indexed by n is stable for some β, then it is stable for

all smaller β.

Proof: This follows from Proposition 8. �

We now use the results above to prove the existence and uniqueness of a ‘threshold’

β(n) which separates stable from unstable partitions.
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Proposition 10 For any n ≤ ⌊N/2⌋, there exists a unique β(n) ∈ (β, 1] such that

for any β < β(n), the partition indexed by n can be supported as a subgame-perfect

equilibrium, while for β > β(n) the partition can never be supported.

Proof: For any given n, suppose that at β = 1, g ≤ 0. Then that partition can be
supported as an subgame-perfect equilibrium for any β ∈ (0, 1] and we can define
β(n) = 1. Now suppose that at β = 1, g > 0. Then by continuity (Proposition 7),
there will exist one or more roots, β ∈ (0, 1), such that g(n, β) = 0. Denote any root
as β(n). Uniqueness of β(n) then follows since g is strictly increasing (Proposition
8).�

This makes precise the intuitive notion that the socially optimal partnership parti-

tion is stable if solo production is “sufficiently disadvantageous”: solo production need

not be infeasible (β = 0) but β can not be strictly larger than β(n∗). Alternatively, for

any given β, β(n) also defines partnership partitions which are stable:{n : β(n) > β}.

Is the Partnership Solution always stable even when team production confers no

advantage whatsoever (β = 1)? A single counterexample suffices to eliminate this

possibility. Recall the example introduced at the outset where N = 12 producers

in an industry, each with constant marginal cost of c = 3, face an inverse demand

curve of P = 19−X and attempt to achieve monopoly profits by dividing into n = 4

partnerships of equal size. It is easily verified that for any β ≤ .39, full monopoly

profits ($64) can be achieved, but for β > .39 the configuration of four partnerships

is unstable.
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3.2 Selection of the Partnership Solution from the Set of

Equilibria

When the Partnership Solution is among the subgame-perfect equilibria, several al-

ternative methods can be used to select it, of which we focus on two. Both methods

designate the formation of a specific number of partnerships and implicitly assume

that players will be assigned to these partnerships at random and in such a way that

sizes differ by at most one member (recall the card-dealing analogy).

The first method of selecting the Partnership Solution from the set of equilibria

is a coordination device first proposed by Schelling (1960, p. 63 and p. 302). An

outside “mediator” could recommend publicly to all the players the establishment

of n∗ partnerships. By assumption, this mediator could neither monitor nor enforce

compliance with his suggestion. His only function would be to focus the expectations

of the players on the payoff-dominant equilibrium.16 In two-player experiments, Van

Huyck et. al. (1992) have shown that subjects disregard such recommendations if

they are not Nash or are Nash but not payoff-dominant; however, subjects follow

the recommendations which are Nash and payoff-dominant 98% of the time. Brandts

and MacLeod (1995) extend this experimental work to two-stage games and find that

the mediator is equally influential in the selection of subgame-perfect equilibria.17

16In certain settings, one could imagine a regulatory authority having the further

ability to enforce the Partnership Solution, say in a fishery. In this case, there is no

need for the partnership solution to be ‘stable’ in the sense described above.

17A useful discussion of these two papers is contained in Camerer (2003, 362-5).
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Alternatively, each agent could simply record the number of partnerships he prefers

and the proposal of one agent, selected randomly, would be implemented. Since the

socially optimal number of partnerships is also privately optimal for each agent, and

the selection mechanism makes each agent pivotal with positive probability, each

agent should choose to record n∗.

4 Generalizations Using the Same Sharing Rule

Until now, we have assumed that (1) no costs were shared within a partnership and

(2) no individual or partnership had the power to change the price of output. Even in

the case of the Japanese fishermen, however, neither of these simplifications is entirely

realistic. According to Platteau and Seki, some costs are shared among the members

of each partnership. Moreover, although the primary reason why Japanese fisherman

partition themselves into partnerships is to reduce congestion, a secondary reason is

to raise prices: “Fishermen believe that by limiting effort they can cause fish prices

to rise.” Platteau and Seki’s statistical analysis of price data confirmed this effect.

To relax these two maintained assumptions, we need only reinterpret our previous

analysis. In addition, we show how partnerships can be valuable as a way to increase

Further evidence that pre-play communication can secure the payoff-dominant pro-

file is provided by “cheap talk” experiments (Cooper et. al., 1992) where the players

themselves communicate prior to play without benefit of a mediator. These cheap-talk

experiments suggest that a cartel could coordinate on the payoff-dominant Partner-

ship Solution even without a mediator.
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payoffs even when the first-best is unattainable.

Suppose we partition N homogeneous agents into n payoff-sharing groups indexed

by i, each playing a simultaneous-move game. Assume agent k in group i chooses

xik to maximize 1
mi

[

xik + Y −k
i

]

· G(xik + Y −k
i + X−i) − cxik. If we make the same as-

sumptions about G(X) that we made about A(X) then we will get the corresponding

results. So assume that (1) G(X) is strictly positive, strictly decreasing, and twice

continuously differentiable; (2) G(0) − c > 0; and (3) the Novshek (1985) condition,

G′(X)+XG′′(X) < 0, holds for all X ≥ 0. These assumptions are sufficient to insure

the existence of a pure-strategy Nash equilibrium in the simultaneous-move game. Be-

cause G(·) is downward-sloping, there is a negative externality: agent k is adversely

affected by increases in X−i. We have derived conditions sufficient for the aggregate

payoff, X(G(X) − c), to be maximized: provided n∗ ≤ ⌊N/2⌋ and β < β(n∗), the

optimum can be achieved by setting up n∗ partnerships differing in size by at most

one member.

Suppose G(X) = A(X) − K, where K denotes cost per unit effort for those costs

shared within the partnership. Then the Partnership Solution maximizes producer

surplus. Since price is constant, this maximizes social welfare as well.

Next suppose G(X) = P (F (X))A(X)−K, where P (·) is the industry price when

aggregate output F (X) is put on the market. This generalization fits the case of the

Japanese fishermen, who share some but not all costs and who use their partnerships

not merely to curb congestion but to raise price. Again, the Partnership Solution

maximizes producer surplus.

Finally, suppose G(X) = P (X) − K, where X is now interpreted as output and
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K (respectively, c) as the cost per unit output rather than effort, which is shared

(respectively, not shared) within the partnership. In this case, there is no congestion

externality and hence no common property problem. The Partnership Solution can

be used to curb excessive output and permits a cartel to maximize profits without

any need for supergame strategies. An outside observer would simply see an industry

with a collection of firms organized as partnerships in competition with one another.

In cases where β > β(n∗), the advantages of team production are insufficient to

achieve the first-best using the Partnership Solution. In such cases, a generalization

of the Partnership Solution can nonetheless lead to a second-best equilibrium with

a large increase in the aggregate payoff. To illustrate, recall the example where

N = 12, c = 3, and G(X) = 19 − X. In that case n∗ = 4 and β = .39. Suppose that

β = .56 > .39. Then dividing the agents into four partnerships of equal size is not

feasible since each member would have an incentive to go solo. However, if the 12

agents are divided into six partnerships of equal size, then industry profit is $54.12—

not the first-best level of $64 but approximately triple the result in the oligopoly (or

common property) solution.

5 Generalizing the Sharing Rule

In any game, one must specify the feasible strategies of each player and the payoff

each receives for any strategy profile. In each second-stage subgame, we assume that

each member of a partnership anticipated that he would receive an equal share of

the gross revenue accruing to the partnership, and that there is no opportunity for

players to deviate from this sharing rule ex post. This can, most easily, be justified
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by assuming that the sharing rule is contracted at the time of group formation, in

which case agents are legally obligated to comply.18 We now generalize our analysis

to other sharing rules.

In the rent-seeking game of Nitzan (1991), the group winning the fixed prize

divides it using a sharing function Sik which is an exogenous weighted average of our

egalitarian rule and a rule rewarding relative effort:

Sik = (1 − a)
1

mi

+ a
xik

(xik + Y −k
i )

, (12)

where a ∈ [0, 1].19 We have so far restricted attention to the egalitarian case (a = 0)

because it is simpler and does not require that members perfectly and costlessly

monitor each other’s efforts. When such monitoring is possible, however, we can

show that our results generalize. For any a ∈ (0, 1], it is straightforward to verify

that any partition of players into groups generates a Nash equilibrium in the second

stage in which every member of a larger group makes smaller effort and receives a

smaller payoff. Therefore, as in our model, the groups formed at the first stage will

differ in size by at most one member.20

18Another possible justification is that even if one of the partners were able to seize

the entire allocation of the group, each partner would be equally likely to be the thief,

and each would, in expectation, get an equal share of the total.

19Sen (1966) previously used this weighted-average rule when discussing sharing

within cooperatives.

20As with the egalitarian rule, there will also be an incentive to deviate by going
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If member k of group i makes effort xik, his payoff is Sik(xik + Y −k
i )A(X) − cxik.

Summing each player’s best reply,21 we obtain an equation linking effort to the number

of groups and the weight on the relative effort component of the sharing rule:

KA(X) + XA′(X) − Nc = 0, (13)

where K = aN + (1 − a)n. If sharing is purely egalitarian (a = 0), this reduces to

equation (6). As before, aggregate effort is strictly increasing in the number of groups

and independent of the distribution of players among these groups. However, with

this more general sharing rule, decreasing the weight (a) on relative effort provides a

second channel through which to stimulate free riding and reduce aggregate effort.

Using our egalitarian sharing rule (a = 0), we previously found that aggregate

effort could be reduced to the socially optimal level (X∗) by reducing the number of

groups from N to n∗ defined in Proposition 4. Equation (13) can be used to generalize

the Partnership Solution when the sharing rule puts more weight on relative effort.

Since n∗ groups would generate socially optimal effort (X∗) when a = 0, the number

solo unless solo production is either impossible or sufficiently costly compared to

production with teams of two or more players.

21The best reply (xik) solves the following equation: [(1 − a) 1
mi

+ a]A(X) + [(1 −

a) 1
mi

+ axik

xi

]xiA
′(X) − c = 0, where xi denotes aggregate effort in partnership i. For

any a > 0, this equation implies that in equilibrium every individual in the same

group makes the same effort. This explains why we assumed equal efforts when a = 0

even though in that polar case individual effort levels in a group are indeterminate.
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of groups (n(a)) which would achieve the social optimum when more weight is put

on relative effort is:

n(a) =
n∗ − aN

1 − a
. (14)

As a increases, n(a) decreases until, at a∗ = n∗−1
N−1

, a single group is required to achieve

X∗. Partnerships can solve the common property problem only if a ∈ [0, a∗].

6 Conclusion

In this paper, we showed how the free-riding induced in partnerships can be harnessed

to increase payoffs when aggregate effort or output would otherwise be excessive. We

showed how this idea can be applied to curb excessive extraction from common prop-

erties or excessive production from cartels. The same mechanism can achieve the

social optimum in innovation tournaments and rent-seeking contests with variable

prizes. Inducing limited free-riding may be beneficial in other contexts as well. For

example, tips in some restaurants are separately solicited by various team members

whose combined effort makes a dining experience pleasurable: the mâıtre d’, the

sommelier, the waiter, the musician, the coat-room provider, the parking valet, etc.

In such situations, aggregate effort per customer may be excessive and pooling tips

among subsets of these service providers (an increasingly common practice in restau-

rants) can be used to raise their net payoffs. Japanese fishermen who have formed

partnerships report that pooling revenues reduces congestion and raises price. As we

have seen, these are consequences to be expected from such partnerships.

As we have shown there is a temptation in the Partnership Solution to flee one’s
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free-riding partners by going solo. However, other forces often act as a counterbal-

ance. Going solo is sometimes infeasible for technological or legal reasons and, when

it is feasible, ceases to be attractive when there are sufficient benefits from team

production, fixed costs of setting up a solo practice, or social benefits to remaining

in existing groups. In such circumstances, the Partnership Solution can be used to

maximize or at least to raise significantly the aggregate payoff.

Throughout, we assumed that a partnership had to admit every applicant. It

might have been more realistic to assume that members of an existing partnership

could deny admission to anyone if opposition to him within the partnership was “suf-

ficiently widespread.” This change in assumption would in fact have increased the

scope of the Partnership Solution. For, every solution we identified as stable would

continue to be stable since no one in such solutions has any incentive to join an ex-

isting partnership even when assured of admission. But partitions we identified as

unstable under our old assumption would become stable under this new assumption.

To illustrate, suppose going solo was infeasible and we set up n∗ non-solo partner-

ships some of which differed by two or more members. Such an arrangement could not

achieve the first-best under our old assumption because every member of the largest

partnership would deviate unilaterally to a smaller partnership with less free-riding.

But this same arrangement would achieve the first-best under the new assumption

since admitting him would be blocked unanimously by existing members who antici-

pated that expanding the number of partners would stimulate free-riding and would

lower each of their payoffs.22 In assuming that no applicant could be rejected by

22Either the anticipation of rejection by one’s new colleagues or of having to carry
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existing members, therefore, we understated the usefulness of partnerships in solving

the common-property and cartel problems.

It is natural to ask if partnerships can ever solve or ameliorate the common prop-

erty problem when agents differ in their constant marginal costs. The answer, sur-

prisingly, is yes as the following example illustrates. Suppose N agents have marginal

cost c and are grouped into the socially optimal number of partnerships (n∗). Assume

these partnerships are of equal size. Suppose we now add σn∗ more agents (where

σ is a positive integer) and assume they have a very high common marginal cost

(ch >> c). Put σ of them in each of the n∗ partnerships so that each group has the

same composition. The social optimum is to have none of the new workers active

and to generate the unchanged aggregate effort, X∗, from the more efficient workers.

Suppose, for simplicity, that the common marginal cost of the additional agents is so

high that they never have an incentive to work in the decentralized solution. Even so,

their presence still has an effect. Because each more efficient worker now receives a

smaller share of the gross revenue of his partnership, he has an incentive to work less

hard. To enlarge aggregate effort, however, we could group individuals into a larger

number of partnerships, each with fewer people. In this way, it may be possible to

approximate the social optimum and, upon occasion, to duplicate it.23 Note that

a disproportionate share of the new partnership’s workload (see footnote 9) could

explain why the pools of Japanese fishermen persist even with sizes differing by more

than one member.

23It is straightforward to produce an example of a partnership equilibrium where

agents are heterogeneous, every agent is active, and the social optimum is approxi-
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since every partnership has the same composition, no agent would have any incentive

to switch unilaterally to another partnership.

The issue of defections to solo partnerships, which we examined in the homoge-

neous case, continues to arise unless the technology makes solo partnerships untenable.

As before, there may be more than one subgame-perfect equilibrium and the same

issue of selecting the best one arises. For simplicity, suppose one of these equilibria

replicates the social optimum. In the heterogeneous case, the two types of agents will

disagree. The free-loaders will strictly prefer to have more than the socially optimal

number of partnerships because that would generate more output; after all, someone

else is expending the effort to produce that output. But since social welfare weakly

declines when output expands, the low-cost workers would be made worse off with

more than the socially optimal number of partnerships; after all, it is they who must

work harder to expand the output. Hence, low-cost workers want fewer partnerships

than high-cost workers. This conflict between heterogeneous members of the partner-

ships is reminiscent of conflicts identified in the literature on heterogeneous cartels

and common properties although in contexts without sharing it is the higher cost

agents which prefer reduced output.24 A more complete analysis of partnerships with

mated. Simply reduce the higher marginal cost in our example until each freeloader

makes a slight effort. Admittedly, it is impossible to achieve the social optimum when

the high cost agents are active.

24In their classic paper, Johnson and Libecap (1982) argue that because of hetero-

geneity “limits on individual effort are extremely costly to agree to and enforce” in

common property environments, such as fisheries. Cave and Salant (Section III,B,
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heterogeneous agents must be left to future research.

1995), discuss how such cost differentials create similar tensions within cartels which

vote on their quotas. Finally, Tarui (2007) finds, in an overlapping-generations frame-

work relying upon punishment strategies, that heterogeneity in agent productivity re-

duces the ability of agents to achieve a sustainable harvest when harvests are shared

equally amongst agents. Sherstyuk (1998), in a special case of partnerships with het-

erogeneous agents and no effort choice, and thus no shirking, finds that partnerships

can be stable and efficient, but only when they are segregated by ‘ability,’ in contrast

to the results suggested here.
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