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Abstract

Consider an electricity market populated by competitive agents using thermal
generating units. Such generation involves the emission of pollutants, on which a
regulator might impose constraints. Transmission capacities for sending energy may
naturally be restricted by the grid facilities. Both pollution standards and trans-
mission capacities can impose several constraints upon the joint strategy space of
the agents. We propose a coupled constraints equilibrium as a solution to the reg-
ulator’s problem of avoiding both congestion and excessive pollution. Using the
coupled constraints’ Lagrange multipliers as taxation coefficients the regulator can
compel the agents to obey the multiple constraints. However, for this modification
of the players’ payoffs to induce the required behaviour a coupled constraints equi-
librium needs to exist and must also be unique. A three-node market example with
a dc model of the transmission line constraints described in [8] and [2] possesses
these properties. We extend it here to utilise a two-period load duration curve
and, in result, obtain a two-period game. The implications of the game solutions
obtained for several weights, which the regulator can use to vary the level of gener-
ators’ responsibilities for the constraints’ satisfaction, for consumer and producer
surpluses will be discussed.

Keywords: Coupled constraints; generalised Nash equilibrium; electricity produc-
tion; electricity transmission
JEL: C6, C7, D7

1 Introduction

The aim of this paper is to examine the impact of pollution standards on electricity
generators already subjected to grid facility restrictions.1 We consider an electricity
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market populated by competitive agents using thermal generating units. Such
generation emits pollutants, on which a regulator might wish to impose constraints.
Transmission capacity for sending energy may naturally be restricted by the grid
facilities. Both pollution standards and transmission capacity can be defined as
constraints upon the joint strategy space of the agents.

We notice that the setup of the problem in this paper is similar to that discussed
in [3]. Here, however, we utilise a two-period load duration curve and allow for
imposition of the environmental constraints on the two-period joint emissions, while
the analysis in [3] was confined to one period. We also make explicit in this paper the
relationship between a solution to the problem and the weights, which the regulator
may use to distribute the responsibility for the joint constraints’ satisfaction, among
the generators and/or periods, see Definition 3.1.

We follow [19], [13], [2], [10], and also [3], and use a coupled constraints equilib-
rium as a solution concept for the discussed problem. Under this solution concept
the regulator can compute (for sufficiently concave games) the generators’ outputs
that are both unilaterally non-improvable (Nash) and which satisfy the constraints
imposed on the joint strategy space.

If the regulator can impose penalties on the generators for violation of the
joint constraints then the game becomes “decoupled”, once the players incorporate
the penalties in their payoff functions. If so, the players implement the coupled
constraints equilibrium to avoid fines associated with both congestion and excessive
pollution. These penalties that prevent excessive generation are computed using
the coupled constraints Lagrange multipliers. However, for this modification of the
players’ payoffs to induce the required behaviour, a coupled constraints equilibrium
needs to exist and be unique for a given distribution of the responsibilities for
the joint constraints satisfaction, among the generators and periods. A three-
node bilateral market example with a dc model of the transmission line constraints
(described in [2]) possesses these properties and will be used in this paper to discuss
and explain the behaviour of agents subjected to coupled constraints.

The analysis conducted in this paper should be particularly useful to regional
governments interested in assessing the impact of environmental regulation on elec-
tricity generation. The case study considered shows significant market distortion
and re-allocation of surplus as a result of the imposition of a pollution constraint.
We also show that by altering the degrees of responsibility for the joint constraints
satisfaction, among the generators and periods, the regulator may help to “save”
the consumer surplus.

For the results we use NIRA, which is a piece of software designed to min-
maximise the Nikaido-Isoda function and thus compute a coupled constraints equi-
librium (see [14]). We also notice that a coupled constraints equilibrium could be
obtained2 as a solution to a quasi-variational inequality3 (see [9], [17]) or gradient
pseudo-norm minimisation (see [19], [5], [6]).

2We refer to [11] for a review on numerical solutions to coupled-constraint equilibria.
3Some comparisons between NIRA and a method suitable for quasi-variational problems, which

consists of a sequence of solutions of linear complementarity problems, are provided in [15]. While
both methods deliver the same solution, NIRA performs less efficiently on the chosen (linear)
example. As was observed in [22], NIRA is general being suitable for non-smooth games and can
be outperformed when games are “smooth”.
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What follows is a brief outline of what this paper contains. In section 2 a model
of a bilateral electricity market game is presented. Section 3 briefly explains the
idea of a coupled constraints equilibrium and the algorithm that will be used to
find it. Sections 4, 5 and 6 present the parameters of the case study and the results
of our analysis. In section 7 an economic interpretation is given to the results. The
concluding remarks summarise our findings.

2 The model

2.1 A game with constraints

An electricity market is a system for effecting the purchase and sale of electricity,
where the interaction between supply and demand sets the market price. Transac-
tions are typically cleared and settled by the market operator or by a special-purpose
independent entity charged exclusively with that function. If the offers by the gen-
erators and the demand bids are matched bilaterally then the market is known as
bilateral. We focus on this type of electricity market in this paper.

Transmission systems connect generators and consumer loads in an electricity
network and they are operated to allow for continuity of supply. Transmission
networks can experience bottlenecks; in addition, the authorities usually establish
pollution limits on the generators’ emissions. These constraints limit the production
of the generators and, consequently, their profits. In the following subsections we
explain how the generators optimise their production and how the network and
environmental constraints affect their profits in a coupled constraints game.

2.2 Generator’s problem

We assume no arbitrage (existence of marketers that can buy and sell power from
producers and consumers) and a linear dc representation of the network.4

Each generator is maximising the sum of payoffs over a horizon T divided into
periods of length ∆t. The period length corresponds to the time within which the
demand for electricity is considered constant according to the load duration curve5.

Each company f = 1, . . . , F owns several generating units g = 1, . . . , G dis-
tributed throughout the network composed of nodes i, j = 1, . . . , N . The cost of
running unit g that belongs to company f , placed at node i for period ∆t and
whose power in this period is P t

fgi MW, is C(P t
fgi)∆

t. The maximum capacity of

generator is P fgi.
Consumers buy qt

i MWh of energy at node i in period t. At each node, linear

demand functions are assumed to be of the form pt
i(σ

t
i) = at

i −
at

i

bt
i

σt
i where σt

i is the

hourly demand in period t defined as σt
i = qt

i/∆t measured in MW (we will later

4See [4] for technical details.
5The load duration curve is a curve of loads, plotted in a descending order of magnitude,

against the time intervals for a specified period. Load duration curves are profiles of system
demand that can be drawn for specified periods of time (e.g., daily, monthly, yearly)
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refer to σt
i as demand for power). Price pt

i(σ
t
i) is expressed in $/MWh and at

i and bt
i

are the price and power intercepts for (inverse) demand law at node i, respectively.
Energy st

fj MWh is sold by company f to consumers at node j in period t.
Market clearing is such that the condition

∑

f st
fj = qt

j holds. Also, an energy
balance per period is imposed on each company:

∑

i,g P t
fgi∆

t =
∑

j st
fj . Given that

(and remembering that demand is constant within ∆t), each company f chooses
generation P t

fgi and sales st
fi to maximise profit ($), which is equal to revenue minus

generation costs:

max
∑

j,t

[

at
j −

at
j

bt
j

(

σt
fj +

∑

k �=f

σt
kj

)]

st
fj −

∑

i,g,t

C(P t
fgi)∆

t (1)

subject to:

0 ≤ P t
fgi ≤ P fgi, ∀ nodes i, generators g, periods t

∑

j st
fj =

∑

i,g P t
fgi∆

t, for each firm f, ∀ periods t
∑

f st
fj = qt

j, for each node j, ∀ periods t

⎫

⎬

⎭

(2)

We are interested in a non-cooperative solution to the game at hand. This means
that we are looking for a distribution of generation and corresponding payoffs such
that no player can improve his own payoff by a unilateral action. Bearing in mind
that the solution is required to satisfy constraints, it will need to be understood
as a “generalised” Nash-Cournot equilibrium as it is called in [17], or a coupled
constraints equilibrium as we call it. We explain this concept in section 3.

Notice that problem (1), (2) is time-decomposable because the generators cannot
accumulate power across the periods. However, a generator problem would not
enjoy this feature if an inter-temporal constraint were imposed.

2.3 Transmission constraints

The generating units and the nodes are connected by transmission lines, forming a
network. The lines provide a path to transmit the power produced by the generators
to the nodes for consumption. The power flowing through the lines is subject to
thermal line limits. These limits are set in both directions of the flow in a line,
which is why the absolute value is used in equation (3) below. To represent the
topology of the network in this game it is necessary to select a node as the reference
node. This is called the “slack” node or “swing” node (see [4] for details). The
following equation expresses the flow going through the lines in period t as a linear
function of the power injected at the nodes; this is called the dc approximation of
the power flow:

Pt
i→j ≡

[

Bd · A
T · B−1

]

· Pt, with |Pt
i→j| ≤ Pi→j,

6 (3)

where the variables and parameters are as follows:

6Note that, throughout this paper, we use the notation |Pt
i→j | to denote a matrix with each

element being the absolute value of the corresponding element of Pt
i→j . It is not intended to

represent the norm of a vector.
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Pt
i→j is a column vector whose number of rows is equal to the number of lines

of the network. Each element represents the flow through the line i − j in
period t, measured in MW.

Bd is the diagonal branch susceptance matrix, whose number of rows and
columns is equal to the number of lines in the network. The diagonal terms of
Bd are the susceptances of the lines (susceptance is the inverse of reactance).
The reactances are expressed in per-unit relative to the impedance base7

value.

A is the node-branch incidence matrix; its dimensions are the number of nodes
minus one (slack node) by the number of lines. The values of A are equal to
+1 if the line i − j starts at node i, and −1 if it ends at node j.8

B is the diagonal node-to-node susceptance matrix; its dimensions are equal
to the number of nodes minus one (slack node). The diagonal terms bii are
equal to the sum of the susceptances of the lines that are connected to node
i, and the terms bij are equal to the negative of the susceptances of the lines
that connect node i and node j.

Pt is a column vector whose dimension is equal to the number of nodes minus
one (the slack node). Its components are of the form (P t

fgi − qt
i/∆t), repre-

senting the power in MW injected (generation minus demand) in each of the
nodes in period t, except for the slack node.

Pi→j is a column vector whose number of rows is equal to the number of lines
of the network. Each of its elements represents the thermal limit (maximum
active power that can flow through a line) of a line in MW.

2.4 Pollution constraints

The thermal generation of electricity releases several contaminants into the atmo-
sphere. The overall goal of reducing the emission of pollutants has to be expressed
as a constraint for the overall production of all generating units. There are three
main types of emissions: CO2, SO2 and NOx. The general expression of the pollu-
tion constraint for emissions of type ℓ is (see [18]):

∑

h,t

∆t
[

αhℓ + βhℓPh + γhℓP
2
h

]

≤ Kℓ , ℓ = 1, . . . L (4)

where L can denote the number of noxious substances, for which restrictions are
to be enforced or it may refer to the number of locations at which substance limits
need to be observed. ∆t is the duration in hours of period t of the load duration
curve and Ph is the power output of generating unit h. The unit will be the g-
th generator of firm f located at node i. However, for pollution generation and
its constraint, the location of h relative to monitor ℓ is relevant. Coefficients αhℓ,

7The per − unit value of any quantity is defined as the ratio of the quantity to its base value,
expressed as a decimal. See [20] for details.

8The indices here refer to the nodes rather than the matrix elements.
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βhℓ, and γhℓ correspond to emissions discharged by unit h measured as pollution
at location ℓ (“type” ℓ). Amount Kℓ is the maximum allowed pollution of type ℓ
during all periods, usually measured in lb or Ton.

In (4), we have chosen to restrict the maximum allowed pollution of type ℓ
during all periods rather than per period, mainly to reflect the popular policy
of many governments to delimit the allowable pollution in annual i.e., all-period
terms. This introduces a dynamic aspect to the game: given a binding value of
Kℓ the firms will consider tradeoffs between generating power in one period against
generating it in another period so that the constraint is satisfied and their payoffs
are maximised.

Each term of the left hand side of expression (4) can be interpreted as a steady-
state solution to the partial differential equation describing the dispersion of pollu-
tion from a point source (see [1] for the integrated Gaussian puff diffusion model).
In this paper, the coefficients of (4) have been calibrated following [18]).

The above constraint reflects the regulator’s concern for substance ℓ concen-
tration at a selected (representative) location. More constraints of type (4) could
be added to the problem formulation for more locations, at which the regulator
would want to enforce compliance. If needed, the constraints can be defined as
limits per periods and/or per generator, should such limits be known and adequate
monitoring facilities exist.

3 Constrained equilibria

3.1 Coupled constraints equilibria

A coupled constraints equilibrium (CCE) is an extension of a standard Nash equi-
librium in which players’ strategy sets are allowed to depend upon other players’
strategies. Coupled constraints equilibria are also known as generalised Nash equi-
libria. The competition between electricity generating firms subject to constraints
described above in section 2 is an example of such a problem. Analytical solutions
to CCE problems are not normally possible so section 3.2 describes a numerical
method for solving some such problems.

Coupled constraints equilibria are particularly useful in a class of problems
where competing agents are subjected to regulation. Many electricity market and
environmental problems belong to this class. CCE allows modelling of a situation
in which the actions of one player condition how ‘big’ the actions of other players
can be. Constraints in which the actions of one player do not affect the action space
of another (as in Nash equilibrium problems) are called uncoupled.

In our problem there are two such sets of coupled constraints: the line con-
straints and the environmental constraints. In both cases a limit is placed on a
measurable variable — the flow of electricity through a particular line or the am-
bient pollution levels — and the actions of the players are constrained to jointly
satisfy these limits.

In these games the constraints are assumed to be such that the resulting col-
lective action set X is a closed convex subset of IRm. If Xf is player-f ’s action set,
X ⊆ X1×· · ·×XF is the collective action set (where X = X1×· · ·×XF represents

6



the special case in which the constraints are uncoupled).
Consider the solution to this game represented by the collective action x∗ where

players’ payoff functions, φf , are continuous in all players’ actions and concave in
their own action9. The Nash equilibrium can be written as

φf (x
∗) = max

x∈X
φf(yf |x

∗) (5)

where yf |x
∗ denotes a collection of actions where the fth agent “tries” yf while

the remaining agents continue to play the collective action x∗. Note that x∗ is a
column vector with elements xg, g = 1, 2, . . . , f − 1, f + 1, . . . , F . At x∗ no player
can improve his own payoff through a unilateral change in his strategy so x∗ is a
Nash equilibrium point. If X is a closed and strictly convex set defined through
coupled constraints (like (4)) then x∗ is a CCE.

3.2 NIRA

Games with coupled constraints rarely allow for an analytical solution and so numer-
ical methods must be employed. Here we use a method based on the Nikaido-Isoda
function and a relaxation algorithm (hence the name: NIRA).

3.2.1 The Nikaido-Isoda function

This function is a cornerstone of the NIRA technique for solving games for their
CCE. It transforms the complex process of solving a (constrained) game into a far
simpler (constrained) optimisation problem.

In the remainder of this section (i.e., section 3), we are indexing a player’s
action, payoff, weight, etc. by the sole index f . If the players’ responsibilities are
distributed non-equally among periods t, then all these variables should be indexed
by f and t. We will do so in sections 4 and 5 where the game solutions are computed
and interpreted. Here, however, for clarity of notation and interpretations of the
Nikaido-Isoda function we use the single index.

Definition 3.1. Let φf be the payoff function for player f , X a collective strategy
set as before and rf > 0 be a given weighting10 of player f .The Nikaido-Isoda

function Ψ : X × X → IR is defined as

Ψ(x,y) =

F
∑

f=1

rf [φf(yf |x) − φf(x)] (6)

Result 3.1. See [21].

Ψ(x,x) ≡ 0 x ∈ X. (7)

9In our study, the payoff function φf (·) corresponds to the expression under the maximisation
operator in (1).

10The weights can be viewed as a political instrument the regulator might use to distribute
the responsibility for the joint constraints’ satisfaction, among the generators and periods. If the
players’ responsibilities are distributed in periods t non-equally, then the weights, actions, payoffs
etc. become rt

f , xt
f , φt

f , respectively.
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Each summand from the Nikaido-Isoda function can be thought of as the im-
provement in payoff a player will receive by changing his action from xf to yf while
all other players continue to play according to x. Therefore, the function repre-
sents the sum of these improvements in payoff. Note that the maximum value this
function can take, for a given x, is always nonnegative, owing to Result 3.1 above.
The function is everywhere non-positive when either x or y is a Nash equilibrium
point, since in an equilibrium situation no player can make any improvement to
their payoff. Consequently, each summand in this case can be at most zero at the
Nash equilibrium point [13].

We observe that the “sum of improvements” in Ψ depends on the weighting
vector r = (rf)f∈F . Consequently, a manifold of equilibria indexed by r is expected
to exist. However, for a given r and diagonal strict concavity of

∑

f∈F rfφf(xf ),
uniqueness of equilibrium x∗ is guaranteed, see [19] and [7]. Also, notice that ac-
cording to Theorem 3.1 (the convergence theorem), if the assumptions are fulfilled,
then NIRA converges to the unique equilibrium, for the value of r that was used in
the definition of Ψ.

When the Nikaido-Isoda function cannot be made (significantly) positive for a
given y, we have (approximately) reached the Nash equilibrium point. This obser-
vation is used to construct a termination condition for the relaxation algorithm,
which is used to min-maximise Ψ. An ε is chosen such that, when

max
y∈IRm

Ψ(xs,y) < ε, (8)

(where xs is the s-th iteration approximation of x∗) the Nash equilibrium would be
achieved to a sufficient degree of precision [13].

The Nikaido-Isoda function is used to construct the optimum response function.
This function is similar to the best response function in standard non-cooperative
game theory. It defines each player’s optimal action to maximise his payoff given
what the other players have chosen. The vector Z(x) gives the ‘best move’ of each
player when faced with the collective action x. It is at this point that the coupled
constraints are introduced into the optimisation problem. The maximisation of the
Nikaido-Isoda function in equation (9) is performed subject to the constraints on
the players’ actions.

Definition 3.2. The optimum response function at point x is

Z(x) ∈ arg max
y∈X

Ψ(x,y). (9)

3.2.2 The relaxation algorithm

The relaxation algorithm iterates the function Ψ to find the Nash equilibrium of a
game. It starts with an initial estimate of the Nash equilibrium and iterates from
that point towards Z(x) until no more improvement is possible. At such a point
every player is playing their optimum response to every other player’s action and the
Nash equilibrium is reached. The relaxation algorithm, when Z(x) is single-valued,
is

xs+1 = (1 − αs)x
s + αsZ(xs) 0 < αs ≤ 1 (10)

s = 0, 1, 2, . . .

8



From the initial estimate, an iterate step s+1 is constructed by a weighted average
of the players’ improvement point Z(xs) and the current action point xs. Given
concavity assumptions explained in section 3.3, this averaging ensures convergence
(see [21], [13]) to the Nash equilibrium by the algorithm. By taking a sufficient
number of iterations of the algorithm, the Nash equilibrium x∗ can be determined
with a specified precision.

3.3 Existence and uniqueness of equilibrium points

It is one thing to know that one has a method to solve games with constraints
but, before proceeding, one needs to establish that the game has an equilibrium
at all. Furthermore, since the NIRA algorithm converges to a single equilibrium
point it would be nice if that equilibrium could be shown to be unique. The
conditions for existence and uniqueness for games with coupled constraints are
more intricate than those for games with uncoupled constraints. It is known that
every concave n-person game with uncoupled constraints has an equilibrium point
[19]. The equivalent definition for a game with coupled constraints relies upon the
notion of a weakly convex-concave function.

A weakly convex-concave function is a bivariate function that exhibits weak
convexity in its first argument and weak concavity in its second argument. The
next three definitions (see [16] or [21]) formalise this notion.11 As Theorem 3.1
(the convergence theorem) will document, weak convex-concavity of a function is a
crucial assumption needed for convergence of a relaxation algorithm to a coupled
constraints equilibrium.

Let X be a convex closed subset of the Euclidean space IRm and f a continuous
function f : X → IR.

Definition 3.3. A function of one argument f(x) is weakly convex on X if there
exists a function r(x,y) such that ∀x,y ∈ X

αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y) + α(1 − α)r(x,y) (11)

0 ≤ α ≤ 1, and r(x,y)
‖x−y‖

→ 0 as ‖x − y‖ → 0 ∀x ∈ X.

Definition 3.4. A function of one argument f(x) is weakly concave on X if there
exists a function µ(x,y) such that, ∀x,y ∈ X

αf(x) + (1 − α)f(y) ≤ f(αx + (1 − α)y) + α(1 − α)µ(x,y) (12)

0 ≤ α ≤ 1, and µ(x,y)
‖x−y‖

→ 0 as ‖x − y‖ → 0 ∀x ∈ X.

Example: The convex function f(x) = x2 is weakly concave (see [13]) but the convex
function f(x) = |x| is not.

Now take a bivariate function Ψ : X × X → IR defined on a product X × X,
where X is a convex closed subset of the Euclidean space IRm.

11Recall the following elementary definition: a function is “just” convex ⇐⇒

αf(x) + (1 − α)f(y) ≥ f
(

αx + (1 − α)y
)

, α ∈ [0, 1].

9



Definition 3.5. A function of two vector arguments, Ψ(x,y) is referred to as
weakly convex-concave if it satisfies weak convexity with respect to its first argument
and weak concavity with respect to its second argument.

The functions r(x,y; z) and µ(x,y; z) were introduced with the concept of weak
convex-concavity and are called the residual terms. Notice that smoothness of
Ψ(z,y) is not required. However, if Ψ(x,y) is twice continuously differentiable
with respect to both arguments on X × X, the residual terms satisfy (see [13])

r(x,y;y) = 1
2
〈A(x,x)(x − y),x − y〉 + o1(‖x − y‖2) (13)

and

µ(y,x;x) = 1
2
〈B(x,x)(x − y),x − y〉 + o2(‖x − y‖2) (14)

where A(x,x) = Ψxx(x,y)|y=x is the Hessian of the Nikaido-Isoda function with
respect to the first argument and B(x,x) = Ψyy(x,y)|y=x is the Hessian of the
Nikaido-Isoda function with respect to the second argument, both evaluated at
y = x.

To prove the inequality of condition (5) of Theorem 3.1 (the convergence theo-
rem, below) under the assumption that Ψ(x,y) is twice continuously differentiable,
it suffices to show that

Q(x,x) = A(x,x) − B(x,x) (15)

is strictly positive definite.

Theorem 3.1 (Convergence theorem). There exists a unique normalised Nash equi-
librium point to which the algorithm (10) converges if:

1. X is a convex, compact subset of IRm,

2. the Nikaido-Isoda function Ψ : X × X → IR is a weakly convex-concave
function and Ψ(x,x) = 0 for x ∈ X ,

3. the optimum response function Z(x) is single valued and continuous on X,

4. the residual term r(x,y; z) is uniformly continuous on X w.r.t. z for all
x,y ∈ X ,

5. the residual terms satisfy

r(x,y;y) − µ(y,x;x) ≥ β(‖x − y‖) , x,y ∈ X (16)

where β(0) = 0 and β is a strictly increasing function (i.e., β(t2) > β(t1) if
t2 > t1),

6. the relaxation parameters αs satisfy

• either (non-optimised step)

(a) αs > 0,

10



(b)
∑∞

s=0 αs = ∞,

(c) αs → 0 as s → ∞.

• or (optimised step)

αs = arg min
α∈[0,1)

{

max
y∈X

Ψ(x(s+1)(α),y)

}

. (17)

Proof. See [13] for a proof.

3.4 Enforcement through taxation

Once a CCE, x∗, has been computed it is possible to create an unconstrained
game which has x∗ as its solution by a simple modification to the players’ payoff
functions. For example, a regulator may compute that x∗ is the CCE of a game
involving the desired constraints on agents’ behaviour. He may then wish to induce
the players to arrive at this point through a scheme of taxation that modifies their
payoff functions. This can be achieved by the use of penalty functions that punish
players for breaching the coupled constraints.

Penalty functions are weighted by the Lagrange multipliers obtained from the
constrained game. For each constraint, players are taxed according to the function

Tℓ,f(λ, rf ,x) =
λℓ

rf

max(0, Qℓ(x) − Qℓ) (18)

where λℓ is the Lagrange multiplier associated with the ℓth constraint Qℓ(x) may
be the amount of pollution as described by the left hand side of (4), or of the
transmitted power as in (3), while Qℓ, ℓ = 1, 2, . . . L denote the corresponding
limits (L is the total number of constraints); x is the vector of players’ actions, rf

is player f ’s weight that defines their responsibility for the constraints’ satisfaction.
If the weights r were identical [1 , 1 , . . .1] (see [3]) then the penalty term for

constraint ℓ is the same for each player f

Tℓ,f(λ, 1,x) = λℓ max(0, Qℓ(x) − Qℓ) .

Hence, if the weight for player f is for example rf > 1 and the weights for the
other players were 1, 1,. . . 1, then the responsibility of player f for the constraints’
satisfaction is lessened. Obviously, if the players’ responsibilities are distributed
in periods t non-equally, then the weights, as well as the other variables, need the
other index t.

The players’ payoff functions, so modified, will be

φ
f
(x) = Rf (x) − Cf (x) −

∑

ℓ

Tℓf(λ, r,x) (19)

where Rf and Cf are firm f ’s revenue and cost functions respectively. Notice
that under this taxation scheme the penalties remain “nominal” (i.e., zero) if all
constraints are satisfied.

The Nash equilibrium of the new unconstrained game with payoff functions φ
is implicitly defined by the equation
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φ(x∗∗) = max
yf∈IR

+

φ(yf |x
∗∗) ∀ f, (20)

(compare with equation (5)). For the setup of the problem considered in this paper
x∗ = x∗∗. That is, the CCE is equal to the unconstrained equilibrium with penalty
functions for breaches of the constraints, weighted by the Lagrange multipliers (see
[13], [10] and [11] for a more detailed discussion).

4 Case study

4.1 Without coupled constraints

The example is taken from [2] (originally, from [8]). Numerical data for the general
formulation of the problem is as follows. The period of study is split into two
sub-periods, weekdays and weekends, for which the demands for electricity are
different. The periods account for 5 · 24 h=120 h and 2 · 24 h=48 h per week, or in
annual terms to 5/7 and 2/7 of the 365 · 24 = 8, 760 h of an entire year i.e., 6,257 h
and 2,503 h , respectively. These periods correspond to the two parts, into which
the load duration curve is divided. We assume that every hour within each period
is identical in terms of demand for energy, sales, power generations, etc.

There are three nodes, i = 1, 2, 3, each of which has customers. Generation
occurs only at nodes 1 and 2 and each pair of nodes is connected by a single
transmission line. The demand functions (per hour) are: in period 1, p1

i (σ
1
i ) =

40 − 0.08σ1
i , for nodes i = 1, 2 and p1

3(σ
1
3) = 32 − 0.0516σ1

3 $/MWh for node 3;
in period 2, p2

i (σ
2
i ) = 30 − 0.06σ2

i , for nodes i = 1, 2 and p2
3(σ

2
3) = 24 − 0.0387σ2

3

$/MWh for node 3. Thus, the demand is more elastic at the demand-only node 3.
Firm’s 1 generator is placed at i = 1 and firm’s 2 at i = 2. Since each firm has
only one generator we drop the i and g subscripts for brevity (e.g., P t

fgi becomes
P t

f). Both generators have unlimited capacity and constant marginal costs MC1 =

dC(P 1
1 )

dP 1
1

=
dC(P 2

1 )

dP 2
1

= 15 for firm 1 and MC2 =
dC(P 1

2 )

dP 1
2

=
dC(P 2

2 )

dP 2
2

= 20 for firm 2.

The marginal costs are measured in $/MWh. The three lines have equal impedances
of 0.2 p.u. The slack node is node 3.

Bearing in mind the general formulation of the generation game defined by the
payoffs (1) and constraints (including coupled) (2)–(4) and the numerical values
for the problem parameters as above, both firms solve the following optimisation
problems:
Firm 1:

max
{

[40 − 0.08σ1
1]s

1
11 + [40 − 0.08σ1

2]s
1
12 + [32 − 0.0516σ1

3]s
1
13 − 15P 1

1 · 6, 257+

[30 − 0.06σ2
1]s

2
11 + [30 − 0.06σ2

2]s
2
12 + [24 − 0.0387σ2

3]s
2
13 − 15P 2

1 · 2, 503
}

(21)

Firm 2:

max
{

[40 − 0.08σ1
1]s

1
21 + [40 − 0.08σ1

2]s
1
22 + [32 − 0.0516σ1

3]s
1
23 − 20P 1

2 · 6, 257+

[30 − 0.06σ2
1]s

2
21 + [30 − 0.06σ2

2]s
2
22 + [24 − 0.0387σ2

3]s
2
23 − 20P 2

2 · 2, 503
}

(22)
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P 1
1 ∆1 = s1

11 + s1
12 + s1

13, (23a)

P 2
1 ∆1 = s2

11 + s2
12 + s2

13, (23b)

P 1
2 ∆2 = s1

21 + s1
22 + s1

23, (23c)

P 2
2 ∆2 = s2

21 + s2
22 + s2

23, (23d)

q1
1 = s1

11 + s1
21, (23e)

q2
1 = s2

11 + s2
21, (23f)

q1
2 = s1

12 + s1
22, (23g)

q2
2 = s2

12 + s2
22, (23h)

q1
3 = s1

13 + s1
23, (23i)

q2
3 = s2

13 + s2
23, (23j)

all s1
11, s

2
11, s

1
12, s

2
12, s

1
13, s

2
13, s

1
21, s

2
21, s

1
22, s

2
22, s

1
23, s

2
23,

P
1

1→2, P
2

1→2, P
1

1→3, P
2

1→3, P
1

2→3, P
2

2→3, nonnegative,

where the decision variables of the generators (firms) are: s1
11, s

2
11, s

1
12, s

2
12, s

1
13 and

s2
13 for the first generator, and s1

21, s
2
21, s

1
22, s

2
22, s

1
23 and s2

23 for the second generator.
As in section 2.2, σt

i = qt
i/∆t.

The remaining variables are dependent on the decision variables. If the problem
involves constraints then part of the solution will constitute the Lagrange multi-
pliers that a regional regulator will be able to use to enforce the equilibrium (see
section 3.4).

4.2 Transmission line constraints

A constraint on transmission line capacity per period of the load duration curve
is imposed as described in equation (3).12 The equations of the constraints in this
example are

∣

∣

∣

∣

[

Bd · A
T · B−1

]

·

(

P 1
1 − q1

1/∆1

P 1
2 − q1

2/∆1

)∣

∣

∣

∣

≤

⎛

⎜

⎝

P
1

1→2

P
1

1→3

P
1

2→3

⎞

⎟

⎠
. (25)

∣

∣

∣

∣

[

Bd · A
T · B−1

]

·

(

P 2
1 − q2

1/∆2

P 2
2 − q2

2/∆2

)∣

∣

∣

∣

≤

⎛

⎜

⎝

P
2

1→2

P
2

1→3

P
2

2→3

⎞

⎟

⎠
. (26)

12For example, the first row of P 1

i→j is

P 1

1→2 = 0.66 s1

12/∆1 + 0.33 s1

13/∆1 − 0.66 s1

21/∆1 − 0.33 s1

23/∆1. (24)

This indicates that the flow along the line from node 1 to node 2 in period 1 depends not only
upon the quantity that is sold to nodes 1 and 2 but also upon the quantity of electricity that is
sold to node 3.
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The values of the transmission line constraints are as follows:

Bd =

⎛

⎝

5 0 0
0 5 0
0 0 5

⎞

⎠ , A =

(

1 1 0
−1 0 1

)

, B =

(

10 −5
−5 10

)

. (27)

Note that the first row of matrix A (whose dimension is: 2 nodes times 3 lines)
expresses that node 1 is the starting node of lines 1–2 and 1–3, and the second row
means that node 2 is the ending node of line 1–2 and the starting node of line 2–3.
Node 3 is the slack node for which there are no calculations, since it is the reference
node.

The diagonal terms of B are computed as follows: b11 is the sum of the two line
susceptances connected to node 1, likewise for the other diagonal term correspond-
ing to node 2. The off-diagonal terms are the susceptances of the lines 1–2 and 2–1
(which is the same line), respectively.

Substituting the matrices in (27) into equations (25) and (26), and choosing
line limits (25, 200, 200)′, gives this numerical expression for the line constraints in
periods 1 and 2:

∣

∣

∣

∣

∣

∣

⎛

⎝

0.33 −0.33
0.66 0.33
0.33 0.66

⎞

⎠ ·

(

P 1
1 − q1

1/∆1

P 1
2 − q1

2/∆1

)

∣

∣

∣

∣

∣

∣

≤

⎛

⎝

25
200
200

⎞

⎠ . (28)

∣

∣

∣

∣

∣

∣

⎛

⎝

0.33 −0.33
0.66 0.33
0.33 0.66

⎞

⎠ ·

(

P 2
1 − q2

1/∆2

P 2
2 − q2

2/∆2

)

∣

∣

∣

∣

∣

∣

≤

⎛

⎝

25
200
200

⎞

⎠ . (29)

P
t

1→3 and P
t

2→3 are set arbitrarily large such that they never bind. Because of
this, our problem can be considered to have only one coupled constraint on P t

1→2.
Lagrange multipliers are only reported for this active constraint in the results below.

4.3 Environmental constraints

In this case study, an emission constraint is added to the problem formulation.
As a result, the problem is set as in (21)–(23), where both firms have the same
optimization functions as before, but, in this case, a new environmental constraint
is added to the constraint set (23), so that:

6, 257 · [(20 − 0.4 · P 1
1 + 0.004 · (P 1

1 )2) + (22 − 0.3 · P 1
2 + 0.005 · (P 1

2 )2)]+
2, 503 · [(20 − 0.4 · P 2

1 + 0.004 · (P 2
1 )2) + (22 − 0.3 · P 2

2 + 0.005 · (P 2
2 )2)] ≤ 2, 190, 000,

(30)
where the maximum allowed emission is 2,190,000 lb. Note13. that (30) is applied to
periods 1 and 2 simultaneously. Consequently, this constraint has a time coupling
effect.

The annual emission limit assumes a constant hourly value of 250 lb/h that,
multiplied by 8,760 hours, results in 2,190,000 lb per year.

13We turn the reader’s attention to the fact that the function in expression (30) is quadratic
so, the second superindex means “square”.
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4.4 What kind of stylised situation reflects the model

Our first generator is economically efficient and has good filters. The other gener-
ator is “outdated” and does not have good filters. The transmission line between
the generators is due for an upgrade while the other lines are recently rebuilt and
have a high transmission capacity.

As judged by the nodal demand laws, the first two nodes represent localities
with a mixture of industrial and domestic customers. The third node corresponds
to a township or a conglomerate of rural customers whose demand for electricity is
lower than in the first two localities.

As said earlier, the demand functions change depending on the period. It is
assumed that the demand in weekdays (first period) is higher than the demand on
weekends (second period).

The local regulator is concerned about pollution levels at some critical location
(like a National Park) where a monitor is installed. The monitor is capable of
detecting if the total annual pollution exceeds 2,190,000 lb, see condition (30).
Presumably, the coefficients of the pollution function in this equation have been
calibrated to reflect the emissions’ transportation process from each generator to
the “critical” location.

The local environmental lobby group has managed to legislate that the limit of
K = 2, 190 klbs per year, measured at the “critical” location, has to be obeyed.
The local regulator considers an introduction of a pollution charge to be paid by
both generators should a violation of this constraint be detected.

The local regulator is interested to know what the generators’ reactions could
be should the pollution charge become a reality. In particular, the regulator would
like to know what energy prices can be expected after the introduction, whether
the energy supply might be affected and in what way the region’s welfare may be
influenced. The results presented below provide some answers to these questions.

5 The first round’s results

5.1 Sharing the constraints’ burden in solidarity

We anticipate that, at realising what impact the constraints on the local econ-
omy might have (“first round” - this section), the regulator will try and test some
measures to “save” the consumer surplus (“second round” - section 6).

As said earlier14, the generation game (21), (22), (23) (with constraints (28),(29)
and (30), if appropriate) satisfies the hypotheses of the convergence theorem (page
10) of the NIRA method. Consequently, we have used NIRA (see section 3.2)
to obtain the game’s solutions15 reported below. In the “first round”, we set all
weights rt

f ≡ 1 (commented on in footnote 10, page 7).

14See [2].
15We remind the reader that a solution (equilibrium) is a combination of the decision variables’

values such that the constraints are satisfied and no player is able to improve his payoff by an
unilateral move.
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5.2 Base case

The results of the application of NIRA to the game defined by (21)–(23) are shown
in tables I and II. These and subsequent tables have three (or two) rows of results:
all first row’s numbers concern the first period, the second row’s refer to the second
period. The third row (if appropriate) provides the sums for both periods.

The energy demanded per node for the first period is: 1,173.18 GWh, 1,173.18
GWh, and 1,172.18 GWh and for the second period, 347.64 GWh, 347.64 GWh,
and 291.05 GWh. As expected, the “weekend” demand is lower than the weekdays’;
also, the third node (“rural”) consumes less energy than the other nodes.

Prices at the nodes, according to the linear demand functions, are: 25, 25, and
22.3 $/MWh for the first period and 21.66, 21.66 and 19.5 $MWh for the second
period.

The flows’ absolute values per hour through the lines are: 73.96 MW, 130.65
MW, and 56.7 MW for lines 1–2, 1–3 and 2–3, in the first period and 94.31 MW,
105.29 MW, and 10.98 MW for lines 1–2, 1–3 and 2–3 in the second period.

Profits for the first period for firms 1 and 2 are 22.16 M$ and 4.57 M$, re-
spectively; for the second period, they are 5.02 M$ and 232 k$, respectively. As
expected, the first generator produces substantially more than the second. Total
pollution is 4,627 klb. As no constraints are active the Lagrange multipliers for
the line and environmental constraints are: λ1

L1 = λ2
L1 = λE = 0 (notice that we

do not index λE with time because this Lagrange multiplier corresponds to the
intertemporary constraint (30)).

Table I: Sales, generation and total emissions in the base case

Sales by Firm 1
(1000MWh)

Sales by Firm 2
(1000MWh)

Generation by
Firms
(1000MWh)

Emissions by
Firms (1000lb)

st
11 st

12 st
13 st

21 st
22 st

23 P t
1∆

t P t
2∆

t Et
1 Et

2

782.12 782.12 889.24 391.06 391.06 282.94 2453.5 1065.1 2992 724.6
278.11 278.11 291.05 69.53 69.53 0 847.3 139.1 858.4 52

1060.24 1060.24 1180.3 460.6 460.6 282.94 3300.8 1204.2 3850.4 776.6
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Table II: Economics of generation in the base case per hour per period

Demand (MW) Prices ($/MWh) Profits ($/h)
σt

1 σt
2 σt

3 pt
1 pt

2 pt
3 Π1 Π2

187.5 187.5 187.34 25 25 22.33 3542.2 730.51
138.89 138.89 116.28 21.66 21.66 19.5 2004.8 92.7

Flows for lines (MW) Lagrange multipliers Emission levels (lb/h)
1 – 2 1 − 3 2 − 3 λt

T
λ

E
Firm1 Firm2 Total

73.96 130.65 56.69 - - 478.18 115.81 593.99
94.31 105.29 10.98 - - 342.93 20.76 363.7

5.3 Generation under a transmission constraint

For this example, a limit of 25 MW in the transmission capacity of the line that
connects nodes 1 and 2 is imposed. As a result, the problem is set as in section 5.2
above with the addition of the constraints described in equations (25) and (26).

This generation game is a game with coupled constraints, among two non iden-
tical players (player 1 produces electricity more cheaply than player 2). From the
results on flows shown in table II we expect the constraints (28), (29) will be bind-
ing.

The results of the relaxation algorithm are shown in tables III and IV. The
energy demanded per node for the first period is: 1,245.8 GWh, 1,100.5 GWh, and
1,172.2 GWh and for the second period, 391.3 GWh, 303.9 GWh, and 280.3 GWh.

Table III: Generation and sales with a line flow limit of 25 MW in line 1–2

Sales by Firm 1
(1000MWh)

Sales by Firm 2
(1000MWh)

Generation by
Firms
(1000MWh)

Emissions by
Firms (1000lb)

st
11 st

12 st
13 st

21 st
22 st

23 P t
1∆

t P t
2∆

t Et
1 Et

2

709.47 636.82 720.28 536.37 463.72 451.9 2066.6 1452 2028.7 1386.8
234.41 190.72 200.2 156.92 113.22 80.06 625.3 350.2 424.8 195

943.89 827.54 920.48 693.29 576.94 531.96 2691.9 1802.2 2453.5 1581.8

Prices at the nodes are: 24.1, 25.9, and 22.3 $/MWh for the first period and
20.6, 22.7 and 19.6 $/MWh for the second period. The flows’ absolute values per
hour through the lines are: 25 MW, 106.17 MW, and 81.17 MW for lines 1–2, 1–3
and 2–3, in the first period and 25 MW, 68.5 MW, and 43.5 MW for lines 1–2,
1–3 and 2–3 in the second period. We notice that the line constraint is binding
and that most prices are higher for this constrained generation case than for the
previous one when no constraint was imposed.

Profits for the first period for firms 1 and 2 are 18.67 M$ and 5.98 M$, re-
spectively; for the second period, they are 3.72 M$ and 378 k$, respectively. To-
tal pollution is 4,035 klb. The Lagrange multipliers for the line constraints are:
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λ1
L1 = 26.16; λ2

L1 = 11.8; the environmental constraint is not imposed hence.
λE = 0. Interestingly, the total energy generation is comparable between this
and this previous cases; however, firm 2 produces now more than before, hence its
marked share has increased.

Table IV: Economics of generation per hour per period with a line flow limit of 25
MW in line 1–2

Demand (MW) Prices ($/MWh) Profits ($/h)
σt

1 σt
2 σt

3 pt
1 pt

2 pt
3 Π1 Π2

199.11 175.89 187.34 24.07 25.93 22.33 2985.04 956.90
156.35 121.43 111.97 20.62 22.71 19.67 1487.42 151.02

Flows for lines (MW) Lagrange multipliers Emission levels (lb/h)
1 – 2 1 − 3 2 − 3 λt

T
λ

E
Firm1 Firm2 Total

25 106.17 81.17 26.16 - 324.23 221.64 545.87
25 68.49 43.49 11.8 - 169.73 77.91 247.64

5.4 Generation under an environmental constraint

The regulator will also be interested to see in what way the generators’ behaviour
would change if the environmental constraint (30) was introduced (and the trans-
mission line upgraded so that the line constraint became non-binding). The results
obtained are shown in tables V and VI.

Table V: Generation and sales with an emission constraint

Sales by Firm 1
(1000MWh)

Sales by Firm 2
(1000MWh)

Generation by
Firms
(1000MWh)

Emissions by
Firms (1000lb)

st
11 st

12 st
13 st

21 st
22 st

23 P t
1∆

t P t
2∆

t Et
1 Et

2

574.62 574.62 567.53 347.34 347.34 215.16 1716.8 909.8 1322.6 526.2
182.92 182.92 154.24 87.86 87.86 6.86 520.1 182.6 274.3 66.9

757.55 757.55 721.78 435.2 435.2 222.02 2236.9 1092.4 1596.9 593.1

The energy demanded per node for the first period is: 921.9 GWh, 921.9 GWh,
and 782.7 GWh and for the second period, 270.7 GWh, 270.7 GWh, and 161.1
GWh. Prices at the nodes are: 28.2, 28.2 and 25.5 $/MWh for the first period and
23.5, 23.5 and 21.5 $MWh for the second period. We notice that the prices rose
even higher than under the transmission constraint.

The flows’ absolute values per hour through the lines are: 42.98 MW, 84.04
MW, and 41.05 MW for lines 1–2, 1–3 and 2–3, in the first period and 44.94 MW,
54.66 MW, and 9.71 MW for lines 1–2, 1–3 and 2–3 in the second period.

Profits for the first period for firms 1 and 2 are 21.17 M$ and 6.89 M$, respec-
tively; for the second period, they are 4.11 M$ and 627 k$, respectively. Total
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Table VI: Economics of generation per hour per period with an emission constraint

Demand (MW) Prices ($/MWh) Profits ($/h)
σt

1 σt
2 σt

3 pt
1 pt

2 pt
3 Π1 Π2

147.35 147.35 125.09 28.21 28.21 25.54 3383.25 1102.44
108.18 108.18 64.36 23.51 23.51 21.51 1644.83 250.5

Flows for lines (MW) Lagrange multipliers Emission levels (lb/h)
1 – 2 1 − 3 2 − 3 λt

T
λ

E
Firm1 Firm2 Total

42.99 84.04 41.05 - - 211.38 84.1 295.48
44.95 54.66 9.71 - 0.0033 109.58 26.72 136.3

pollution is 2,190.0 klb. The Lagrange multipliers for the environmental constraint
is: λE = 0.0033. Also in this constrained generation game, firm 2’s production levels
increase above the no constrained game’s; as a result its market share increases.

5.5 Generation under transmission and environmental con-

straints

In this case study, both the 25 MW thermal limit of line 1–2 (equations (25) and
(26)) and the emission constraints (equation (30)) are added to the basic problem
formulation.

The results obtained are shown in tables VII and VIII. The energy demanded
per node for the first period is: 989.1 GWh, 883 GWh, and 804.6 GWh and for the
second period, 301.1 GWh, 247.4 GWh, and 166.5 GWh.

Prices at the nodes, according to the linear demand functions, are: 27.35, 28.71
and 25.36 $/MWh for the first period and 22.78, 24.07 and 21.43 $MWh for the
second period. The flows’ absolute values per hour through the lines are: 25 MW,
76.79 MW, and 51.79 MW for lines 1–2, 1–3 and 2–3, in the first period and 25
MW, 45.76 MW, and 20.76 MW for lines 1–2, 1–3 and 2–3 in the second period.

Table VII: Generation and sales with a line flow limit of 25 MW in line 1–2 and an
emission constraint

Sales by Firm 1
(1000MWh)

Sales by Firm 2
(1000MWh)

Generation by
Firms
(1000MWh)

Emissions by
Firms (1000lb)

st
11 st

12 st
13 st

21 st
22 st

23 P t
1∆

t P t
2∆

t Et
1 Et

2

575.62 522.54 527.93 413.54 360.46 276.65 1626.1 1050.7 1165.1 704.6
184.59 157.69 135.98 116.56 89.67 30.52 478.3 236.8 224.3 96

760.21 680.24 663.92 530.11 450.14 307.17 2104.4 1287.5 1389.4 800.6

Profits for the first period for firms 1 and 2 are 19.74 M$ and 7.66 M$, respec-
tively; for the second period, they are 3.74 M$ and 733 k$, respectively. Total
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pollution is 2,190 klb. The Lagrange multipliers for the line and environmental
constraints are: λ1

L1 = 19.11; λ2
L1 = 7.26; λE = 0.003.

Table VIII: Economics of generation per hour per period with a line flow limit of
25 MW in line 1–2 and an emission constraint

Demand (MW) Prices ($/MWh) Profits ($/h)
σt

1 σt
2 σt

3 pt
1 pt

2 pt
3 Π1 Π2

158.09 141.12 128.59 27.35 28.71 25.36 3155.98 1225.02
120.31 98.82 66.52 22.78 24.07 21.43 1494.2 292.85

Flows for lines (MW) Lagrange multipliers Emission levels (lb/h)
1 – 2 1 − 3 2 − 3 λt

T
λ

E
Firm1 Firm2 Total

25 76.79 51.79 19.11 - 186.21 112.6 298.81
25 45.76 20.76 7.26 0.003 89.61 38.36 127.97

5.6 First round’s discussion

We notice that the imposition of constraints favours the second generator in that
its share of production increases, see figure 1. The symbols in the figure correspond
to the above four cases as follows:

1. square – no constraints (section 5.2);

2. diamond – transmission line constraint (section 5.3);

3. pentagram – environmental constraint (section 5.4);

4. hexagram – the two constraints jointly (section 5.5).
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Figure 1: Generations (in MWh) in periods 1 and 2.

All lines in figure 1 are angled at 45o. The solid ones go through the origin. If
the generators were identical, the constraints would affect each them in the same
way and the generation points would be on this line. Obviously, the generators
in the case study are not identical. However, imposition of a constraint blurs the
difference. This is visible from the diminishing distances of the generation points
from the 45o line, after a constraint imposition.

The dash-dotted lines pass through the unconstrained generation point (square).
They are drawn to help assess the distance of each generation point from the 45o

line.
The overall result is that the constrained generation games result in the firm

2’s (the less efficient one) gains of the market. This can be qualified as market dis-
tortion. However, when a transmission constraint is the only model restriction, the
distortion concerns the generators rather than consumers. In case of the imposi-
tion of an environmental constraint (sole or joint with a transmission constraint) the
prices rise substantially and the consumers surplus is diminished. We will comment
on this issue later in section 7.1.

We conjecture that the market distortion due to constraints is unavoidable. If
a line constraint is imposed on the flow through link 1–2, then (24) (in footnote
12) has to be satisfied. It is evident from (24) that, for this to happen, the sales by
firm 2 at nodes one and two have to increase and those of firm 1 have to decrease.
This explains the generation changes (in figure 1 from square to diamond) when a
line constraint is imposed.
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We can also observe the generation changes due to the imposition of an envi-
ronmental constraint. In figure 1, the outputs “move” from square to pentagram.
Generation by firm 1 diminishes substantially while that by firm 2 can increase (in
period 2) or decrease a little (in period 1). In each period firm 2’s market share is
greater than in the unconstrained case.

We observe in figure 2 that imposing a constraint changes the proportions, in
which the firms contribute to the total pollution. In this figure, each bar repre-
sents the total pollution corresponding to the base game, transmission-constraint
game (tc), environmental-constraint game (ec) and transmission-&-environmental-
constraint game (tcec), respectively. The two bottom fields symbolise the first
period’s pollution by firm 1 (bottom) and 2; the two top fields represent the second
period’s pollution by firm 2 (top) and 1.
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Figure 2: Total pollution in 1000lb.

The contributions are functions of the generation, see figure 3.
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Figure 3: Firms’ emissions as functions of hourly generations.

Given that firm 1 is more environmentally friendly (i.e., it emits less per unit
of generation) it could be expected that, as the environmental constraint tightens,
firm 1’s market share would increase. However, this is not what we observe in
figure 1. As the environmental constraint is tightened, with or without a binding
line constraint, the market share of the environmentally inefficient firm 2 increases.
We conjecture that the source of this apparent anomaly are changes in the effective
marginal costs TMCf under the imposition of constraints. In words, the firm’s

effective marginal cost is MCf

(

where MCf is firm’s f marginal cost
dC(Pf)

dPf

)

plus the marginal cost of the pollution constraints’ violation. Under the constraint
imposition we have16

MC1

MC2
<

TMC1

TMC2
< 1 . (31)

In broad terms, there is less difference between the firms when a constraint is
binding hence the outputs’ ratio “must” move closer to the 45o line in figure 1.

Not surprisingly, if generation diminishes because of a constraint, the pollution
diminishes too. Because of that, when contributions of firm 1 diminish, the relative
contributions of firm 2 increase.

Overall, the result of the constraints’ imposition is market distortion (see figure
1), more pollution coming form the less efficient firm (see figure 2) and higher
energy prices (see the tables above). There are also significant imbalances between
the weekdays and weekends pollution contributions.

16See [12].
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The above analysis motivates the regulator to design and solve other generation
games in which the weights rt

f (see section 3.2, footnote 10) will modify players’
efficient marginal costs so that the resulting equilibria will be “socially” more ac-
ceptable.

6 The second round’s results

6.1 How to “improve” results?

The games’ solutions will be obtained in this section for various weights rt
f >

0, f = 1, 2; t = 1, 2 (i.e., not all rt
f = 1). The non identical weights will be used to

help modify the players’ efficient marginal costs in an attempt to achieve equilibria,
socially more attractive than in section 5.

Accepting any set of weights rt
f , including rt

f ≡ 1, requires a political decision
that is about the levels of responsibility for the common constraints’ satisfaction. In
particular, if all weights are set to 1, then the burden of the constraints’ satisfaction
is shared equally.

We have seen in section 5 that rt
f ≡ 1 leads to equilibria that display several

undesirable social characteristics. It is therefore conceivable that the regulator
might be given a mandate (by the local parliament) to seek “better” equilibria,
associated with an unequal treatment of the generators.

We will examine in this section whether it is possible for the regulator to dimin-
ish firm 2’s market share gains and mitigate the emissions’ asymmetry between the
weekends and weekdays generations. We will also watch whether these solutions
will result in lower prices for the consumers and, hence, higher consumers surplus
than in section 5.

6.2 Generation under transmission and environmental con-

straints with preferences for pollution in the second

period

An analysis of the results of section 5.5 concludes that due to a decreased economic
activity in the second period, the pollution stock generated by the weekdays’ output
exceeds the weekend’s stock more that five times. Consequently, the emission flows
substantially differ between weekdays and weekends. While the overall pollution
constraint (30) remains satisfied, the heavy flow on weekdays might create some
health hazards. Also, the fact that it is rather uneconomical to sell electricity on
weekends in the “rural” area can cause social problems.

We will examine whether the regulator can compute an equilibrium where there
would be more production on weekends. We will set the weights r2

1=100 and r2
2=100

and keep r1
f = 1, f = 1, 2. The results obtained are shown in tables IX and X are

visualized in figure 4.
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Table IX: Generation and sales with a line flow limit of 25 MW in line 1–2 and an
emission constraint with preferences for the second period

Sales by Firm 1
(1000MW)

Sales by Firm 2
(1000MW)

Generation by
Firms
(1000MW)

Emissions by
Firms (1000lb)

st
11 st

12 st
13 st

21 st
22 st

23 P t
1 P t

2 Et
1 Et

2

541.46 496.28 481.09 383.83 338.65 236.71 1518.8 959.2 992.35 585.12
233.47 190.01 198.93 156.11 112.65 78.99 622.4 347.8 420.19 192.33

774.94 686.29 680.02 539.95 451.31 315.71 2141.3 1307 1412.55 777.45

Table X: Economics of generation per hour per period with a line flow limit of 25
MW in line 1–2 and an emission constraint with preferences for the second period

Demand (MW) Prices ($/MWh) Profits ($/h)
σt

1 σt
2 σt

3 pt
1 pt

2 pt
3 Π1 Π2

147.88 133.43 114.72 28.17 29.32 26.08 3127.85 1235.89
155.64 120.92 111.03 20.66 22.74 19.7 1489.81 155.41

Flows for lines (MW) Lagrange multipliers Emission levels (lb/h)
1 – 2 1 − 3 2 − 3 λt

T
λ

E
Firm1 Firm2 Total

25 69.86 44.86 16.26 - 158.6 93.51 252.11
25 68.02 43.02 1173.4 0.0041 167.87 76.84 244.71

The energy demanded per node for the first period is: 925.3 GWh, 834.9 GWh,
and 717.8 GWh and for the second period, 389.6 GWh, 302.7 GWh, and 277.9
GWh. We notice that demand in the first period decreased and increased in period
two.

The corresponding prices at the nodes are: 28.17, 29.32 and 26.08 $/MWh for
the first period and 20.66, 22.74 and 19.7 $MWh for the second period. It is evident
that the adopted weights helped ease the second period prices (compare the prices
in table VIII).

The flows’ absolute values per hour through the lines are: 25 MW, 69.9 MW,
and 44.9 MW for lines 1–2, 1–3 and 2–3, in the first period and 25 MW, 68 MW,
and 43 MW for lines 1–2, 1–3 and 2–3 in the second period. Profits for the first
period for firms 1 and 2 are 19.57 M$ and 7.73 M$, respectively; for the second
period, they are 3.72 M$ and 389 k$, respectively.

The Lagrange multipliers for the line and environmental constraints are: λ1
L1 =

16.26; λ2
L1 = 1173.4; λE = 0.0041.

Total pollution is kept at the constraint and equals 2,190.0 klb. As expected,
the pollution in the second period has increased. The pollution changes between
periods are presented in figure 4. In this figure as in figure 2, the bars represent the
total pollution levels corresponding to the transmission-&-environmental-constraint
game with r2

f = 1 (first bar) and r2
f = 100 (second bar). The two bottom fields
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together symbolise the first period’s pollution by firm 1 (bottom) and 2; the two
top fields together represent the second period’s pollution by firm 2 (top) and 1.
The pollution in period one has clearly diminished so has the contribution of firm
2 (“inefficient”). However, we also notice that this equilibrium is achieved with
higher prices than before thus the consumers surplus is bound to diminish.
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Figure 4: Total pollution in 1000lb as a function of the weights rt.

We attribute the shift in generations between the first and second periods to the
weights > 1 attached to payoffs in the second period. This means that, because of
r2
1=100 and r2

2=100, the firms perceive the marginal cost of violating the environ-

mental constraint in period 2 as
λE

100
(βf + 2γfP

2
f ), rather than as λE(βf + 2γfP

1
f )

in the first period.
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6.3 Generation under transmission and environmental con-

straints with preference for the first firm

We will examine whether the regulator can compute an equilibrium where there
would be more production assigned to player 1. We will set the weights r1

1 = r2
1=100

for player 1 and keep r1
2 = r2

2=1 for player 2. The results obtained are shown in
tables XI and XII. We can observe that the profits have dramatically decreased for
firm 2 in both periods.

Table XI: Generation and sales with with preference for the first firm

Sales by Firm 1
(1000MWh)

Sales by Firm 2
(1000MWh)

Generation by
Firms
(1000MWh)

Emissions by
Firms (1000lb)

st
11 st

12 st
13 st

21 st
22 st

23 P t
1∆

t P t
2∆

t Et
1 Et

2

395.8 698.9 674.2 801.4 0 0 1769 801.4 1418 410.5
142.6 218.2 166 207.2 0 0 526.8 207.3 282.8 78.7

538.4 917.1 840.2 1008.7 0 0 2295.8 1008.7 1700.8 489.2

Table XII: Economics of generation per hour per period with preference for the first
firm

Demand (MW) Prices ($/MWh) Profits ($/h)
σt

1 σt
2 σt

3 pt
1 pt

2 pt
3 Π1 Π2

191.33 111.7 107.75 24.69 31.06 26.44 3640.24 601.08
139.8 87.17 66.32 21.61 24.77 21.43 1654.81 133.44

Flows for lines (MW) Lagrange multipliers Emission levels (lb/h)
1 – 2 1 − 3 2 − 3 λt

T
λ

E
Firm1 Firm2 Total

25 66.37 41.37 2342.3 - 226.63 65.59 292.22
25 45.65 20.65 505.9 0.2 112.98 31.44 144.42

The energy demanded per node for the first period is: 1,197.2 GWh, 698.9
GWh, and 674.2 GWh and for the second period, 349.9 GWh, 218.2 GWh, and 166
GWh.

However, prices are hight. They are (at nodes 1, 2 and 3): 24.69, 31.06 and
26.44 $/MWh for the first period and 21.61, 24.77 and 21.43 $MWh for the second
period. We will analyse the shifts in the consumers surplus for this and other cases
in section 7.1.

The flows’ absolute values per hour through the lines are: 25 MW, 66.37 MW,
and 41.37 MW for lines 1–2, 1–3 and 2–3, in the first period and 25 MW, 45.65
MW, and 20.65 MW for lines 1–2, 1–3 and 2–3 in the second period.

Profits for the first period for firms 1 and 2 are 22.77 M$ and 3.76 M$, re-
spectively; for the second period, they are 4.14 M$ and 334 k$, respectively (as
opposed to M$ 19.74, 7.66, 3.74 and .733, respectively, for rt

f ≡ 1, see section
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5.5). The Lagrange multipliers for the line and environmental constraints are:
λ1

L1 = 2342.3; λ2
L1 = 505.9; λE = 0.2.

Total pollution is equal to the upper bound, 2,190.0 klb.
The effect of incentivizing production of firm 1 is clearly observed in figure 5

where the pollution levels of firm 1 in both periods are substantially higher than in
the case with all rf = 1 (see the bottom bar and the second from the top for first
and second period, respectively; notice that the bars do not start from zero).
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Figure 5: Total pollution in 1000lb as a function of the weights rt.

7 What can the regulator learn from the above

results

7.1 Implications for producer profits and consumer surplus

Figure 6 shows the plots of producer profits and consumer surplus (top and bottom
respectively) as the constraints vary.17

17Producer profits (or producer surplus) are calculated from equation (1). Consumer surplus is

CS =
∑N

i=1

q∗
i

2
(ai − p∗i ) where q∗i and p∗i are the equilibrium quantity and price at node i and ai

is the price intercept of the demand curve.
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Figure 6: Producers’ profits and consumers’ surplus in M$.
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There are six bars in each of the panels of figure 6 for the cases as follows:

1. the base case,

2. generation subject to transmission constraints,

3. generation subject to emission constraints,

4. generation subject to both constraints,

5. generation subject to both constraints with preferences for pollution in the
second period,

6. generation subject to both constraints with preference for the first firm.

We observe that the effect of a transmission constraint is negligible in terms of con-
sumers surplus because prices and overall demands remain fairly stable. However,
it diminishes producers profits because of the 25 MW limit imposed, specially on
the more efficient/cheaper firm 1.

The introduction of an emission constraint introduces higher prices. This causes
consumers surplus to substantially decrease and producers profits to increase. If
both constraints are imposed simultaneously the emission limit effect surpasses that
of the line limit by far so, this case is almost equivalent to the emission-limit-alone
case.

If production in period 2 is incentivized, prices increase in period 1 and decrease
in period 2 making consumers surplus decrease in period 1 and increase in period 2.
Producers profits remain almost the same since there is a small shift of generation
between periods 1 and 2.

Finally, if production of firm 1 is incentivized the effects on both the producers
profits and the consumers surplus appear clear but rather small. We notice the
overall decrease in the producer profits and an increase in the consumers surplus.
The absolute sizes of those changes relative to case 4 depend on the parameter
values chosen for this case study. Hence, notwithstanding the small changes, the
regulator might be pleased that the consumers surplus improves when firm 1 is
incentivized.

7.2 Results of varying the “sharing rules”

The results obtained for the case study indicate that the regulator can impact the
producer profits and consumer surplus by imposing different levels of the respon-
sibility for the joint constraints’ satisfaction. In other words, varying the rules
for how the burden of the environmental and transmission standards’ fulfilment is
shared among the producers can generate a number of equilibria of uneven social
desirability. The implication of this is that a desired equilibrium can be chosen.

8 Concluding remarks

We have proposed a methodology for the analysis of the impact of various con-
straints on electricity generation. In particular, this analysis should be useful for a
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regional government that is interested in an assessment of electricity supply changes
due to an introduction of environmental constraints. For the case study considered
in the paper, we notice the possibility of some market distortion when transmission
constraints exist.

Introduction of an environmental constraint, which many businesses fear, may
actually increase the business profits and make the consumers worse off economi-
cally.

We believe that thanks to our analysis, the regional government’s choices will
be informed by the tradeoffs between constraint satisfaction, economic activity and
electricity supply.

In the next paper we plan to extend the analysis to include the optimal choice
of environmental constraints.
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