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Abstract

The Breusch-Pagan Lagrange Multiplier test for heteroskedascity
is supposedly able to detect heteroskedasticity which is an arbitrary
function of some set of regressors. We will show that in fact it detects
only linear functions. The test is inconsistent for general alternatives,
in the sense that its power does not go to 1 as the sample size increases
(and in fact, can be arbitrarily low). Since in fact the Breusch-Pagan
test is essentially an F test in a special model, we also give neces-
sary and sufficient conditions for the consistency of the F test under
misspecification.

1 Introduction

In a classic article, Breusch and Pagan (1979) introduced a Lagrange Multi-
plier test for heteroskedasticy which appears to allow for very general types
of alternatives. Specifically, in a regression model yt = x′

tβ + ǫt, where
Var(ǫt) = σ2

t = f(γ0 + γ′zt), Breusch and Pagan give a test of the null hy-
pothesis H0 : γ = 0 for arbitrary smooth functions f . The object of this
note is to show that this apparent generality is an illusion, and the test
is consistent only for f(x) = x, the identity function. Nonlinear functions
f are tested for as alternatives only to the extent that they are correlated
with the regressors z. In particular, for any non-zero value of γ such that
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Cov(f(γ0+γ′zt), zt) = 0, the Breusch-Pagan test has no power asymptotically
(i.e. is inconsistent).

As a preliminary result of independent interest, we characterize situations
where the F -test is consistent in regression models. We then show that the
Breusch-Pagan test is asymptotically equivalent to a certain F test, and use
our characterization to get the desired result.

2 Consistency of the F test

We develop necessary and sufficient conditions for the consistency of the F
test for significance of a set of regressors in a rather general setting allowing
for substantial misspecification. Almost every symbol to follow will depend
on the sample size T , but it will be notationally convenient to suppress this
dependence.

Suppose y = y(T ) is a T × 1 vector of observations on a dependent
variable. We wish to ‘explain’ y by means of the regressors 1 = 1(T ), a
T × 1 vector of 1’s, and a T × K matrix X = X(T ) of observations on the
independent variables. It will be convenient, and entail no loss of generality,
to assume that the regressors are in the form of differences from means, so
that X ′1 = 0. Define P = X(X ′X)−1X ′ and Q = I−{P +(1/T )11′} and let
dP = K be the rank of P and dQ = T − (K + 1) be the rank of Q. Denoting
by X the vector space spanned by the columns of X and by Z the vector
space orthogonal to X and 1, note that Py is the projection of y onto X and
Qy is the projection of y onto Z.

In the linear regression model y = β01+Xβ + ǫ, the standard F statistic
for testing the null hypothesis β = 0 can be written as

F =
‖Py‖2/dP

‖Qy‖2/dQ

=
y′P ∗y

y′Q∗y
,

where P ∗ = P/dP and Q∗ = Q/dQ. Effectively, the F statistic compares the
average projection of y on X to the average projection of y on Z. Here the
word ‘average’ indicates that the squared length of the projection is divided
by the dimension of the space on the which the projection is made.

In order to allow for misspecification, we assume that y = µ + ǫ, where
µ = µ(T ) is the T × 1 (nonstochasic) mean vector of the dependent variable,
and the T×1 vector of errors ǫ = ǫ(T ) satisfies the following condition. There
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exists a constant B such that for all T and all T × T projection matrices M ,
the following inequality holds:

Var(ǫ′Mǫ) ≤ Btr(M) (1)

Hypothesis (1) is a mild assumption which will typically be satisfied by most
error sequences. Lemma 1 below gives one set of sufficient conditions which
ensures (1). All proofs are given in the appendix.

Lemma 1 If a sequence of errors ǫ1, ǫ2, . . . (A) forms a martingale, and (B)
for all i, j, Var(ǫiǫj) ≤ B < ∞, then it also satisfies (1).

Intuitively speaking, the F test is designed to assess whether the regres-
sors X have a significant relationship with µ, the mean of y. The theorem
below gives necessary and sufficient conditions for the consistency of F test.

Theorem 1 Suppose y = µ+ ǫ where ǫ satisfies the condition 1 given above.
Then the F test is rejects the null with probability one if:

lim
T→∞

µ′P ∗µ

1 + µ′Q∗µ
= ∞ (2)

For the converse, let Σ = Σ(T ) be the covariance matrix of the errors ǫ,
and suppose that 0 < m < λmin(Σ); that is, the smallest eigenvalue of the
covariance matrix of the errors is bounded away from zero for all T . If the
F test rejects the null with probability one then condition (2) must hold.

The theorem states that, under mild assumptions, the F test for the
significance of a set of regressors X will reject the null with probability one
if and only if the average projection of the mean vector µ of y on the space
X is substantially larger (infinitely larger asymptotically) than its average
projection on Z, the space orthogonal to X and 1.

The problem with Lagrange Multiplier tests which arises in the Breusch-
Pagan case can now be illustrated in a simpler setup. Suppose that yt =
f(α + β′xt) + ǫt for t = 1, 2, . . . , T , where ǫt is an i.i.d. sequence of errors
with common distribution N(0, σ2). If f is any smooth function, it is easily
checked that the Lagrange multiplier test of the null hypothesis that H0 :
β = 0 is equivalent to the overall F statistic for the linear regression yt =
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α + βxt + ǫt; see Section 11.4.2 of Zaman (1996) for a derivation. Thus
the Lagrange Multiplier principle suggests that the overall F statistic for a
linear regression tests for the presence of any smooth relationship between
the regressors and the dependent variable. However, our characterization
of the consistency of the F -test shows that the F -test will ‘detect’ (i.e. be
consistent for) nonlinear relationships f only to the extent that f(α + β′xt)
is linearly correlated with xt. In particular, if a non-zero value of β is such
that Cov(f(α + β′xt), xt) = 0, then the usual F test will be unable to reject
the null hypothesis that β = 0 even asymptotically.

3 Inconsistency of Breusch-Pagan test

We now derive the inconsistency of the Breusch-Pagan test as a consequence
of our Theorem 1. Suppose yt = β′xt +ǫt, where ǫt are independent N(0, σ2

t ).
It will be convenient to adopt the following notational conventions:

• [at] refers to a T × 1 column vector with t-th element at.

• [bij] refers to a T × T matrix with (i, j) entry bij.

Let et = yt − β̂′xt be the residuals from an OLS regression. Breusch and
Pagan (1979) derived the Lagrange Multiplier (LM) test of the null hypoth-
esis H0 : γ = 0 given that σ2

t = f(α + γ′zt) for some smooth function f .
Koenker (1981) showed that the original LM statistic is very sensitive to the
assumption of normality, while the asymptotically equivalent statistic based
on the TR2 of the (auxiliary) regression of [e2

t ] on a constant and Z remains
robust to non-normality. Since the overall F statistic for a regression is a
monotonic transform of the TR2, it is clear that using the overall F for the
auxiliary regression will be asymptotically equivalent to the Breusch-Pagan
test. Assume without loss of generality that the regressors Z = Z(T ) have
been differenced from their means so that Z ′1 = 0. Let P = Z(Z ′Z)−1Z ′

be the matrix of the projection onto the column space of Z and let Q be
the matrix of the projection onto the vector space orthogonal to 1 and the
columns of Z.

Theorem 2 Assume the variances σ2

t are bounded above: for all t, σ2

t ≤
M < ∞. Then the Breusch-Pagan test rejects the null hypothesis of ho-
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moskedasticity with probability one if

lim
T→∞

[σ2

t ]
′P ∗[σ2

t ]

1 + [σ2
t ]′Q∗[σ2

t ]
= ∞ (3)

The converse also holds if the variances are bounded away from zero: for all
t, σ2

t > c > 0.

Thus consistency of the Breusch-Pagan test requires the average projec-
tion of the vector [σ2

t ] of variances on the column space of the regressors Z
to be large relative to the average projection on the orthogonal complement
of this space. This shows that the Breusch-Pagan test only detects linear
relationships between the variables tested for and the vector of variances
[σ2

t ]. To give a simple example, suppose xt is i.i.d. N(0, 1) and yt = atxt

where at is i.i.d. N(a, 1). This random coefficient model can be rewritten
as yt = axt + ǫt, where σ2

t = Var(ǫt|xt) = x2

t . Letting f(x) = x2, it is clear
that σ2

t = f(a + bxt) with a = 0 and b = 1. Let [e2

t ] be the vector of squared
residuals from an OLS regression of y on x, and use the F statistic for the
regression of [e2

t ] on 1 and x to test for heteroskedasticity. Then our ear-
lier results imply that this test will not reject the null, since x2 and x are
uncorrelated (because x ∼ N(0, 1)). This test is asymptotically equivalent
to the Breusch-Pagan test, and hence the Breusch-Pagan will also not reject
the null asymptotically. This shows clearly that the Breusch-Pagan test only
detects linear relationships and is not valid for general smooth functions f .

4 Appendix

We prove Theorems 1 and 2, and also prove Lemma 1 which is useful in
verifying condition (1) for error sequences.

Proof of Lemma 1: Let ǫ = (ǫ1, . . . , ǫT ) be a sequence of random variables
satisfying properties (A) and (B) of Lemma1. Let Σ be the T ×T covariance
matrix of the vector ǫ. We will use Σij for the (i, j) entry of the matrix Σ.
The martingale property ensures that Σij = 0 if i 6= j.

Let P be any idempotent matrix. We aim to show that Var(ǫ′Pǫ) ≤
2BtrP To prove this, note that

Var(ǫ′Pǫ) = E {tr(ǫǫ′ − Σ)P}
2
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=
∑

i,j

∑

k,l

E ([ǫiǫj − σi,j][ǫkǫl − σk,l]Pi,jPk,l)

=
∑

i,j

E(ǫiǫj − σi,j)
2P 2

i,j

≤ 2B
∑

i,j

P 2

i,j = 2Btr(P ′P ) = 2BtrP

In this derivation, we have used the fact that if ǫt forms a martingale, then
the terms E(ǫiǫj − σi,j)(ǫkǫl − σk,l) = 0 unless i = j, k = l or else i = k, j = l.

Proof of Theorem 1: Define ∆ = 1 + µ′Q∗µ, N = ∆−1(y′P ∗y), and
D = ∆−1(y′Q∗y). It is immediate that F = N/D. We will show that ED
converges to a strictly positive quantity and Var(D) goes to 0. From this it
follows that convergence of F to +∞ is equivalent to convergence of N to
+∞. Then we will show that N goes to infinity if and only the hypothesis
of the theorem holds.
Step 1: ED = ∆−1(µ′Q∗µ + trΣQ∗). Now trΣQ∗ ≤ MtrQ∗ = M . It is easily
deduced that ED is bounded away from +∞. If the variances Σtt are greater
than m > 0 than ED is also bounded away from 0, since trΣQ∗ ≥ mtrQ∗ =
m. Next we will show that Var(D) → 0.

To prove this, first note that Var(X + Y ) ≤ 2Var(X) + 2Var(Y ). Now
Var(∆−1(y′Q∗y) = ∆−2Var(2ǫ′Q∗µ+ǫ′Q∗ǫ) ≤ 2∆−2 (2Var(ǫ′v) + Var(ǫ′Q∗ǫ)),
where v = Q∗µ. It is clear that Var(ǫ′v) ≤ B‖v‖2 where B2 is the upper
bound on the error variances. The assumption (1) permits us to conclude
that Var(ǫ′Q∗ǫ) = Var(ǫ′Qǫ)/d2

Q ≤ B(trQ)/d2

Q = B4/dQ. We thus conclude
that

Var(D) ≤ 2∆−2
(

2B2‖Q
∗µ‖2 + B4/dQ

)

Now ‖Q∗µ‖2 = µ′Qµ/d2

Q = µ′Q∗µ/dQ so that Var(D) ≤ (4B/dQ)(µ′Q∗µ +
(1/2))/(1 + µ′Q∗µ)2. This will converge to 0 as dQ goes to infinity.
Step 2: We will now show that EN → +∞. Also, if we define SN =
√

Var(N), then both SN → +∞ EN/SN → +∞. From these facts we
can conclude that N → +∞ with probability one as follows. We wish to
show that for any (large,positive) constant k, P(N > k) converges to one.
Note that P(N > k) = P((N − EN)/SN) > (k − EN)/SN). Let X = (N −
EN)/SN . If SN and EN/SN both go to +∞ then (k−EN)/SN → −∞ so the
probability in question converges to P(X > −∞). Since X has mean 0 and
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variance 1, this probability converges to unity by, for example, Chebyshev’s
Inequality. It remains to show that EN and EN/SN converge to +∞.

First consider EN = ∆−1(µ′P ∗µ + trΣP ∗). Ignoring the term trΣP ∗

which is positive, the remaining term is assumed to converge to +∞ as the
main hypothesis of the theorem we are proving. Next consider Var(N) ≤
∆−2(4B/dP )(µ′P ∗µ + (1/2)), following the same logic as for Var(D). With

SN =
√

Var(N) it follows that

EN/SN ≥ 2
√

B/dP
µ′P ∗µ + trΣP ∗

(µ′P ∗µ + (1/2))1/2

It is clear that this goes to +∞ provided that µ′P ∗µ does, which is entailed
by the hypothesis of the theorem.

Conversely suppose the hypothesis of the theorem does not hold. It is
immediate that EN fails to go to +∞. Since D is bounded away from 0 and
N ≥ 0, it is immediate that F cannot converge to +∞ with probability one.

Proof of Theorem 2: Step 1: Define MT = M =
{

∑T
t=1

xtx
′

t

}

−1

A key

quantity which occurs in the proof is at = x′

tMT xt. We will need to bound this
as below. The largest possible projection of the vector a = [at] = (a1, . . . , aT )′

is onto itself, so that ‖a′Pa‖ ≤
∑T

t=1
a2

t . To bound this, note that:

T
∑

t=1

at =
T
∑

t=1

trx′

tMT xt = tr

(

T
∑

t=1

xtx
′

t

)

MT = trM−1

T MT = K

Since at ≥ 0, it follows that at ≤ K so that

1 =
T
∑

t=1

(at/K) ≥
T
∑

t=1

a2

t /K
2.

This implies that ‖a‖2 ≤ K2. From this it follows that 0 ≤ a′P ∗a ≤ K2/dP

and 0 ≤ a′Q∗a ≤ K2/dQ.
Step 2: To prove the theorem, it suffices to show that [e2

t ]W [e2

t ] behaves
asymptotically similarly to [ǫ2

t ]W [ǫ2

t ] for the matrices W = P ∗ and W = Q∗,
since applying Theorem 1 to the second form yields the result immediately.
We will therefore analyse the difference between the two quadratic forms
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and show that they remain bounded asymptotically. From this the result
will follow. Define zt = X ′Wxt and note that

e2

t = (ǫt − x′

tWXǫ)2 = (ǫt − z′tǫ)
2 = ǫ2

t − 2ǫt(z
′

tǫ) + (z′tǫ)
2.

Thus the difference D we wish to show is asymptotically negligible can be
written as

D = [e2

t ]W [e2

t ] − [ǫ2

t ]W [ǫ2

t ]

= [(z′tǫ)
2]W [(z′tǫ)

2] − 4[(z′tǫ)
2]W [ǫt(z

′

tǫ)] + 2[(z′tǫ)
2]W [ǫ2

t ]

+4[ǫt(z
′

tǫ)]W [ǫt(z
′

tǫ)] − 4[ǫt(z
′

tǫ)]W [ǫ2

t ]

We will show that each of the five terms in the difference converges in
quadratic mean to zero asymptotically. This will prove the result.

Consider the first term T1 = [(z′tǫ)
2]W [(z′tǫ)

2]. Note that

ET1 = trE[(z′tǫ)
2][(z′tǫ)

2]′W = tr[E(z′iǫ)
2(z′jǫ)

2]W ≤
T
∑

t=1

E(z′tǫ)
4

The last inequality follows from Amemiya’s Lemma, according to which
trAB ≤ (trA)λmax(B) when A and B are positive semidefinite matrices.
Since W = P, Q are projection matrices, the largest eigenvalue is 1. Since
z′iǫ is normal, its fourth moment is just 3 times its variance, so that

ET1 = 3
T
∑

t=1

z′tΣzt

Now Σ is a diagonal matrix with elements bounded above by M < ∞ and
below by m > 0. It follows that the difference between z′tΣzt and at = z′tzt

is bounded, and since
∑

t at = K as established in Step 1, we conclude that
|ET1 − K| ≤ C. It follows that T1 cannot go to infinity. We make a similar,
but more complex calculation to show that the variance of T1 is similarly
bounded.

Var(T1) = E
{

tr
(

[(z′tǫ)
2][(z′tǫ)

2]′ − E[(z′tǫ)
2][(z′tǫ)

2]′
)

W
}2

=
T
∑

i,j=1

T
∑

k,l=1

Cov((z′iǫ)
2(z′jǫ)

2, (z′kǫ)
2(z′lǫ)

2)W )ijWkl
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To calculate the required covariance, we need the following formula. If
X1, X2, X3, X4 are jointly normal, and σi,j = Cov(Xi, Xj), then

EX2

1
X2

2
X2

3
X2

4
= σ11σ22σ33σ44

+2σ11σ22σ
2

34
+ 2σ11σ

2

23
σ44 + 2σ2

12
σ33σ44 + 2σ2

13
σ22σ44 + 2σ11σ

2

24
σ33

+4σ2

12
σ2

34
+ 4σ2

13
σ2

24
+ 4σ2

14
σ2

23

+8σ11σ23σ24σ34 + 8σ22σ13σ14σ34 + 8σ33σ12σ14σ34 + 8σ44σ12σ13σ23

+16σ12σ34σ13σ24 + 16σ12σ34σ14σ23 + 16σ13σ24σ14σ23

By Cauchy-Scwhartz, we have σ2

ij ≤ σiiσjj. It follows from the formula that
EX2

1
X2

2
X2

3
X2

4
≤ 99σ11σ22σ33σ44, so that

Var(T1) ≤
∑

i,j

∑

k,l

(z′iΣzi)(z
′

jΣzj)(z
′

kΣzk)(z
′

lΣzl)WijWkl

=





T
∑

i,j=1

(z′iΣzi)(z
′

iΣzj)Wij





2

This is bounded by the square of the mean.
To complete the proof requires showing that the other four terms in the

difference of [ǫ2

t ]W [ǫ2

t ] and [e2

t ]W [e2

t ] remain bounded by a finite quantity with
probability 1. These follow exactly the same procedure outlined above, and
in fact are slightly easier. Thus these proofs are omitted for brevity.

Now consider the effect of replacing W by the matrix P ∗. The difference
between [ǫ2

t ]W [ǫ2

t ] and [e2

t ]W [e2

t ] for W = P ∗ remains bounded by a finite
quantity with probability 1 asymptotically. Thus convergence to infinity of
one of the terms is equivalent to convergence to infinity of the other. For
W = Q∗ = Q/dQ in the denominator, the difference is again bounded by a
finite quantity. Dividing by dq which goes to infinity makes the difference
go to zero asymptotically. This means that the hypothesis of the theorem
applied to [e2

t ] give the same results as the hypothesis applied to [ǫ2

t ]. This
is what we desire to prove.
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